
Network Working Group J. Bradley
Internet-Draft Ping Identity
Intended status: Standards Track P. Hunt
Expires: September 6, 2015 Oracle Corporation
 M. Jones
 Microsoft
 H. Tschofenig
 ARM Limited
 March 5, 2015

OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key
Distribution

draft-ietf-oauth-pop-key-distribution-01.txt

Abstract

RFC 6750 specified the bearer token concept for securing access to
 protected resources. Bearer tokens need to be protected in transit
 as well as at rest. When a client requests access to a protected
 resource it hands-over the bearer token to the resource server.

 The OAuth 2.0 Proof-of-Possession security concept extends bearer
 token security and requires the client to demonstrate possession of a
 key when accessing a protected resource.

 This document describes how the client obtains this keying material
 from the authorization server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2015.

Bradley, et al. Expires September 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. Audience . 4
3.1. Audience Parameter 5
3.2. Processing Instructions 5

4. Symmetric Key Transport 6
4.1. Client-to-AS Request 6
4.2. Client-to-AS Response 7

5. Asymmetric Key Transport 9
5.1. Client-to-AS Request 9
5.2. Client-to-AS Response 11

6. Token Types and Algorithms 12
7. Security Considerations 13
8. IANA Considerations . 14
9. Acknowledgements . 15
10. References . 15
10.1. Normative References 15
10.2. Informative References 16

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax 17
A.1. 'aud' Syntax . 17
A.2. 'key' Syntax . 17
A.3. 'alg' Syntax . 17

 Authors' Addresses . 18

1. Introduction

 The work on additional security mechanisms beyond OAuth 2.0 bearer
 tokens [12] is motivated in [17], which also outlines use cases,
 requirements and an architecture. This document defines the ability
 for the client indicate support for this functionality and to obtain
 keying material from the authorization server. As an outcome of the

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bradley, et al. Expires September 6, 2015 [Page 2]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 exchange between the client and the authorization server is an access
 token that is bound to keying material. Clients that access
 protected resources then need to demonstrate knowledge of the secret
 key that is bound to the access token.

 To best describe the scope of this specification, the OAuth 2.0
 protocol exchange sequence is shown in Figure 1. The extension
 defined in this document piggybacks on the message exchange marked
 with (C) and (D).

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

 In OAuth 2.0 [2] access tokens can be obtained via authorization
 grants and using refresh tokens. The core OAuth specification
 defines four authorization grants, see Section 1.3 of [2], and [14]
 adds an assertion-based authorization grant to that list. The token
 endpoint, which is described in Section 3.2 of [2], is used with
 every authorization grant except for the implicit grant type. In the
 implicit grant type the access token is issued directly.

 This document extends the functionality of the token endpoint, i.e.,
 the protocol exchange between the client and the authorization
 server, to allow keying material to be bound to an access token. Two
 types of keying material can be bound to an access token, namely
 symmetric keys and asymmetric keys. Conveying symmetric keys from
 the authorization server to the client is described in Section 4 and
 the procedure for dealing with asymmetric keys is described in

Section 5.

Bradley, et al. Expires September 6, 2015 [Page 3]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

2. Terminology

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 specification are to be interpreted as described in [1].

 Session Key:

 The term session key refers to fresh and unique keying material
 established between the client and the resource server. This
 session key has a lifetime that corresponds to the lifetime of the
 access token, is generated by the authorization server and bound
 to the access token.

 This document uses the following abbreviations:

 JWA: JSON Web Algorithms (JWA) [7]

 JWT: JSON Web Token (JWT) [9]

 JWS: JSON Web Signature (JWS) [6]

 JWK: JSON Web Key (JWK) [5]

 JWE: JSON Web Encryption (JWE) [8]

3. Audience

 When an authorization server creates an access token, according to
 the PoP security architecture [17], it may need to know which
 resource server will process it. This information is necessary when
 the authorization server applies integrity protection to the JWT
 using a symmetric key and has to selected the key of the resource
 server that has to verify it. The authorization server also requires
 this audience information if it has to encrypt a symmetric session
 key inside the access token using a long-term symmetric key.

 This section defines a new header that is used by the client to
 indicate what protected resource at which resource server it wants to
 access. This information may subsequently also communicated by the
 authorization server securely to the resource server, for example
 within the audience field of the access token.

 QUESTION: A benefit of asymmetric cryptography is to allow clients to
 request a PoP token for use with multiple resource servers. The
 downside of that approach is linkability since different resource
 servers will be able to link individual requests to the same client.

Bradley, et al. Expires September 6, 2015 [Page 4]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 (The same is true if the a single public key is linked with PoP
 tokens used with different resource servers.) Nevertheless, to
 support the functionality the audience parameter could carry an array
 of values. Is this desirable?

3.1. Audience Parameter

 The client constructs the access token request to the token endpoint
 by adding the 'aud' parameter using the "application/x-www-form-
 urlencoded" format with a character encoding of UTF-8 in the HTTP
 request entity-body.

 The URI included in the aud parameter MUST be an absolute URI as
 defined by Section 4.3 of [3]. It MAY include an "application/x-www-
 form-urlencoded" formatted query component (Section 3.4 of [3]).
 The URI MUST NOT include a fragment component.

 The ABNF syntax for the 'aud' element is defined in Appendix A.

3.2. Processing Instructions

 Step (0): As an initial step the client typically determines the
 resource server it wants to interact with. This may, for example,
 happen as part of a discovery procedure or via manual
 configuration.

 Step (1): The client starts the OAuth 2.0 protocol interaction
 based on the selected grant type.

 Step (2): When the client interacts with the token endpoint to
 obtain an access token it MUST populate the newly defined
 'audience' parameter with the information obtained in step (0).

 Step (2): The authorization server who obtains the request from
 the client needs to parse it to determine whether the provided
 audience value matches any of the resource servers it has a
 relationship with. If the authorization server fails to parse the
 provided value it MUST reject the request using an error response
 with the error code "invalid_request". If the authorization
 server does not consider the resource server acceptable it MUST
 return an error response with the error code "access_denied". In
 both cases additional error information may be provided via the
 error_description, and the error_uri parameters. If the request
 has, however, been verified successfully then the authorization
 server MUST include the audience claim into the access token with
 the value copied from the audience field provided by the client.
 In case the access token is encoded using the JSON Web Token
 format [9] the "aud" claim MUST be used. The access token, if

Bradley, et al. Expires September 6, 2015 [Page 5]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 passed per value, MUST be protected against modification by either
 using a digital signature or a keyed message digest. Access
 tokens can also be passed by reference, which then requires the
 token introspection endpoint (or a similiar, proprietary protocol
 mechanism) to be used. The authorization server returns the
 access token to the client, as specified in [2].

 Subsequent steps for the interaction between the client and the
 resource server are beyond the scope of this document.

4. Symmetric Key Transport

4.1. Client-to-AS Request

 In case a symmetric key shall be bound to an PoP token the following
 procedure is applicable. In the request message from the OAuth
 client to the OAuth authorization server the following parameters MAY
 be included:

 token_type: OPTIONAL. See Section 6 for more details.

 alg: OPTIONAL. See Section 6 for more details.

 These two new parameters are optional in the case where the
 authorization server has prior knowledge of the capabilities of the
 client otherwise these two parameters are required. This prior
 knowledge may, for example, be set by the use of a dynamic client
 registration protocol exchange.

 QUESTION: Should we register these two parameters for use with the
 dynamic client registration protocol?

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only).

Bradley, et al. Expires September 6, 2015 [Page 6]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &alg=HS256

 Example Request to the Authorization Server

4.2. Client-to-AS Response

 If the access token request has been successfully verified by the
 authorization server and the client is authorized to obtain a PoP
 token for the indicated resource server, the authorization server
 issues an access token and optionally a refresh token. If client
 authentication failed or is invalid, the authorization server returns
 an error response as described in Section 5.2 of [2].

 The authorization server MUST include an access token and a 'key'
 element in a successful response. The 'key' parameter either
 contains a plain JWK structure or a JWK encrypted with a JWE. The
 difference between the two approaches is the following:

 Plain JWK: If the JWK container is placed in the 'key' element then
 the security of the overall PoP architecture relies on Transport
 Layer Security (TLS) between the authorization server and the
 client. Figure 2 illustrates an example response using a plain
 JWK for key transport from the authorization server to the client.

 JWK protected by a JWE: If the JWK container is protected by a JWE
 then additional security protection at the application layer is
 provided between the authorization server and the client beyond
 the use of TLS. This approach is a reasonable choice, for
 example, when a hardware security module is available on the
 client device and confidentiality protection can be offered
 directly to this hardware security module.

 Note that there are potentially two JSON-encoded structures in the
 response, namely the access token (with the recommended JWT encoding)
 and the actual key transport mechanism itself. Note, however, that
 the two structures serve a different purpose and are consumed by
 different parites. The access token is created by the authorization
 server and processed by the resource server (and opaque to the

Bradley, et al. Expires September 6, 2015 [Page 7]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 client) whereas the key transport payload is created by the
 authorization server and processed by the client; it is never
 forwarded to the resource server.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "key":"eyJhbGciOiJSU0ExXzUi ...
 (remainder of plain JWK omitted for brevity)"
 }

 Figure 2: Example: Response from the Authorization Server (Symmetric
 Variant)

 The content of the key parameter, which is a JWK in our example, is
 shown in Figure 3.

 {
 "kty":"oct",
 "kid":"id123",
 "alg":"HS256",
 "k":"ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE"
 }

 Figure 3: Example: Key Transport to Client via a JWK

 The content of the 'access_token' in JWT format contains the 'cnf'
 (confirmation) claim, as shown in Figure 4. The confirmation claim
 is defined in [10]. The digital signature or the keyed message
 digest offering integrity protection is not shown in this example but
 MUST be present in a real deployment to mitigate a number of security
 threats. Those security threats are described in [17].

 The JWK in the key element of the response from the authorization
 server, as shown in Figure 2, contains the same session key as the
 JWK inside the access token, as shown in Figure 4. It is, in this

Bradley, et al. Expires September 6, 2015 [Page 8]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 example, protected by TLS and transmitted from the authorization
 server to the client (for processing by the client).

 {
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "cnf":{
 "jwk":
 "JDLUhTMjU2IiwiY3R5Ijoi ...
 (remainder of JWK protected by JWE omitted for brevity)"
 }
 }

 Figure 4: Example: Access Token in JWT Format

 Note: When the JWK inside the access token contains a symmetric key
 it MUST be confidentiality protected using a JWE to maintain the
 security goals of the PoP architecture, as described in [17] since
 content is meant for consumption by the selected resource server
 only.

 Note: This document does not impose requirements on the encoding of
 the access token. The examples used in this document make use of the
 JWT structure since this is the only standardized format.

 If the access token is only a reference then a look-up by the
 resource server is needed, as described in the token introspection
 specification [18].

5. Asymmetric Key Transport

5.1. Client-to-AS Request

 In case an asymmetric key shall be bound to an access token then the
 following procedure is applicable. In the request message from the
 OAuth client to the OAuth authorization server the request MAY
 include the following parameters:

 token_type: OPTIONAL. See Section 6 for more details.

 alg: OPTIONAL. See Section 6 for more details.

Bradley, et al. Expires September 6, 2015 [Page 9]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 key: OPTIONAL. This field contains information about the public key
 the client would like to bind to the access token in the JWK
 format. If the client does not provide a public key then the
 authorization server MUST create an ephemeral key pair
 (considering the information provided by the client) or
 alternatively respond with an error message. The client may
 also convey the fingerprint of the public key to the
 authorization server instead of passing the entire public key
 along (to conserve bandwidth). [11] defines a way to compute a
 thumbprint for a JWK and to embedd it within the JWK format.

 The 'token_type' and the 'alg' parameters are optional in the case
 where the authorization server has prior knowledge of the
 capabilities of the client otherwise these two parameters are
 required.

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only) shown in Figure 5.

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &alg=RS256
 &key=eyJhbGciOiJSU0ExXzUi ...
 (remainder of JWK omitted for brevity)

 Figure 5: Example Request to the Authorization Server (Asymmetric Key
 Variant)

 As shown in Figure 6 the content of the 'key' parameter contains the
 RSA public key the client would like to associate with the access
 token.

Bradley, et al. Expires September 6, 2015 [Page 10]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 {"kty":"RSA",
 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "alg":"RS256",
 "kid":"id123"}

 Figure 6: Client Providing Public Key to Authorization Server

5.2. Client-to-AS Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. If the request client authentication failed or is invalid,
 the authorization server returns an error response as described in
 Section 5.2 of [2].

 The authorization server also places information about the public key
 used by the client into the access token to create the binding
 between the two. The new token type "public_key" is placed into the
 'token_type' parameter.

 An example of a successful response is shown in Figure 7.

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFE....jr1zCsicMWpAA",
 "token_type":"pop",
 "alg":"RS256",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

 Figure 7: Example: Response from the Authorization Server (Asymmetric
 Variant)

 The content of the 'access_token' field contains an encoded JWT with
 the following structure, as shown in Figure 8. The digital signature

Bradley, et al. Expires September 6, 2015 [Page 11]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 or the keyed message digest offering integrity protection is not
 shown (but must be present).

 {
 "iss":"xas.example.com",
 "aud":"http://auth.example.com",
 "exp":"1361398824",
 "nbf":"1360189224",
 "cnf":{
 "jwk":{"kty":"RSA",
 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "alg":"RS256",
 "kid":"id123"}
 }
 }

 Figure 8: Example: Access Token Structure (Asymmetric Variant)

 Note: In this example there is no need for the authorization server
 to convey further keying material to the client since the client is
 already in possession of the private RSA key.

6. Token Types and Algorithms

 To allow clients to indicate support for specific token types and
 respective algorithms they need to interact with authorization
 servers. They can either provide this information out-of-band, for
 example, via pre-configuration or up-front via the dynamic client
 registration protocol [16].

 The value in the 'alg' parameter together with value from the
 'token_type' parameter allow the client to indicate the supported
 algorithms for a given token type. The token type refers to the
 specification used by the client to interact with the resource server
 to demonstrate possession of the key. The 'alg' parameter provides
 further information about the algorithm, such as whether a symmetric
 or an asymmetric crypto-system is used. Hence, a client supporting a
 specific token type also knows how to populate the values to the
 'alg' parameter.

Bradley, et al. Expires September 6, 2015 [Page 12]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 The value for the 'token_type' MUST be taken from the 'OAuth Access
 Token Types' registry created by [2].

 This document does not register a new value for the OAuth Access
 Token Types registry nor does it define values to be used for the
 'alg' parameter since this is the responsibility of specifications
 defining the mechanism for clients interacting with resource servers.
 An example of such specification can be found in [19].

 The values in the 'alg' parameter are case-sensitive. If the client
 supports more than one algorithm then each individual value MUST be
 separated by a space.

7. Security Considerations

 [17] describes the architecture for the OAuth 2.0 proof-of-possession
 security architecture, including use cases, threats, and
 requirements. This requirements describes one solution component of
 that architecture, namely the mechanism for the client to interact
 with the authorization server to either obtain a symmetric key from
 the authorization server, to obtain an asymmetric key pair, or to
 offer a public key to the authorization. In any case, these keys are
 then bound to the access token by the authorization server.

 To summarize the main security recommendations: A large range of
 threats can be mitigated by protecting the contents of the access
 token by using a digital signature or a keyed message digest.
 Consequently, the token integrity protection MUST be applied to
 prevent the token from being modified, particularly since it contains
 a reference to the symmetric key or the asymmetric key. If the
 access token contains the symmetric key (see Section 2.2 of [10] for
 a description about how symmetric keys can be securely conveyed
 within the access token) this symmetric key MUST be encrypted by the
 authorization server with a long-term key shared with the resource
 server.

 To deal with token redirect, it is important for the authorization
 server to include the identity of the intended recipient (the
 audience), typically a single resource server (or a list of resource
 servers), in the token. Using a single shared secret with multiple
 authorization server to simplify key management is NOT RECOMMENDED
 since the benefit from using the proof-of-possession concept is
 significantly reduced.

 Token replay is also not possible since an eavesdropper will also
 have to obtain the corresponding private key or shared secret that is
 bound to the access token. Nevertheless, it is good practice to

Bradley, et al. Expires September 6, 2015 [Page 13]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 limit the lifetime of the access token and therefore the lifetime of
 associated key.

 The authorization server MUST offer confidentiality protection for
 any interactions with the client. This step is extremely important
 since the client will obtain the session key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby making the OAuth 2.0 proof-of-possession
 security model completely insecure. OAuth 2.0 [2] relies on TLS to
 offer confidentiality protection and additional protection can be
 applied using the JWK [5] offered security mechanism, which would add
 an additional layer of protection on top of TLS for cases where the
 keying material is conveyed, for example, to a hardware security
 module. Which version(s) of TLS ought to be implemented will vary
 over time, and depend on the widespread deployment and known security
 vulnerabilities at the time of implementation. At the time of this
 writing, TLS version 1.2 [4] is the most recent version. The client
 MUST validate the TLS certificate chain when making requests to
 protected resources, including checking the validity of the
 certificate.

 Similarly to the security recommendations for the bearer token
 specification [12] developers MUST ensure that the ephemeral
 credentials (i.e., the private key or the session key) is not leaked
 to third parties. An adversary in possession of the ephemeral
 credentials bound to the access token will be able to impersonate the
 client. Be aware that this is a real risk with many smart phone app
 and Web development environments.

 Clients can at any time request a new proof-of-possession capable
 access token. Using a refresh token to regularly request new access
 tokens that are bound to fresh and unique keys is important. Keeping
 the lifetime of the access token short allows the authorization
 server to use shorter key sizes, which translate to a performance
 benefit for the client and for the resource server. Shorter keys
 also lead to shorter messages (particularly with asymmetric keying
 material).

 When authorization servers bind symmetric keys to access tokens then
 they SHOULD scope these access tokens to a specific permissions.

8. IANA Considerations

 This specification registers the following parameters in the OAuth
 Parameters Registry established by [2].

 Parameter name: alg

Bradley, et al. Expires September 6, 2015 [Page 14]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: key

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: aud

 Parameter usage location: token request

 Change controller: IETF

 Specification document(s): [[This document.]

 Related information: None

9. Acknowledgements

 We would like to thank Chuck Mortimore for his review comments.

10. References

10.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [3] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Bradley, et al. Expires September 6, 2015 [Page 15]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [5] Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-
key-41 (work in progress), January 2015.

 [6] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-41
 (work in progress), January 2015.

 [7] Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-
json-web-algorithms-40 (work in progress), January 2015.

 [8] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption-40 (work in progress),

 January 2015.

 [9] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-32 (work in
 progress), December 2014.

 [10] Jones, M., Bradley, J., and H. Tschofenig, "Proof-Of-
 Possession Semantics for JSON Web Tokens (JWTs)", draft-

jones-oauth-proof-of-possession-02 (work in progress),
 July 2014.

 [11] Jones, M., "JSON Web Key (JWK) Thumbprint", draft-jones-
jose-jwk-thumbprint-01 (work in progress), July 2014.

10.2. Informative References

 [12] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [13] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [14] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions-18
 (work in progress), October 2014.

 [15] Sakimura, N., Bradley, J., and N. Agarwal, "OAuth
 Symmetric Proof of Posession for Code Extension", draft-

sakimura-oauth-tcse-03 (work in progress), April 2014.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-40
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-32
https://datatracker.ietf.org/doc/html/draft-jones-oauth-proof-of-possession-02
https://datatracker.ietf.org/doc/html/draft-jones-oauth-proof-of-possession-02
https://datatracker.ietf.org/doc/html/draft-jones-jose-jwk-thumbprint-01
https://datatracker.ietf.org/doc/html/draft-jones-jose-jwk-thumbprint-01
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions-18
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-tcse-03
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-tcse-03

Bradley, et al. Expires September 6, 2015 [Page 16]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

 [16] ietf@justin.richer.org, i., Jones, M., Bradley, J.,
 Machulak, M., and P. Hunt, "OAuth 2.0 Dynamic Client
 Registration Protocol", draft-ietf-oauth-dyn-reg-24 (work
 in progress), February 2015.

 [17] Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-hunt-oauth-pop-architecture-02 (work
 in progress), June 2014.

 [18] Richer, J., "OAuth Token Introspection", draft-richer-
oauth-introspection-06 (work in progress), July 2014.

 [19] Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing an HTTP Requests for OAuth", draft-richer-oauth-

signed-http-request-01 (work in progress), April 2014.

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax

 This section provides Augmented Backus-Naur Form (ABNF) syntax
 descriptions for the elements defined in this specification using the
 notation of [13].

A.1. 'aud' Syntax

 The ABNF syntax is defined as follows where by the "URI-reference"
 definition is taken from [3]:

 aud = URI-reference

A.2. 'key' Syntax

 The "key" element is defined in Section 4 and Section 5:

 key = 1*VSCHAR

A.3. 'alg' Syntax

 The "alg" element is defined in Section 6:

 alg = alg-token *(SP alg-token)

 alg-token = 1*NQCHAR

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-24
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-pop-architecture-02
https://datatracker.ietf.org/doc/html/draft-richer-oauth-introspection-06
https://datatracker.ietf.org/doc/html/draft-richer-oauth-introspection-06
https://datatracker.ietf.org/doc/html/draft-richer-oauth-signed-http-request-01
https://datatracker.ietf.org/doc/html/draft-richer-oauth-signed-http-request-01

Bradley, et al. Expires September 6, 2015 [Page 17]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2015

Authors' Addresses

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com
 URI: http://www.indepdentid.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

http://www.thread-safe.com/
http://www.indepdentid.com
http://self-issued.info/
http://www.tschofenig.priv.at

Bradley, et al. Expires September 6, 2015 [Page 18]

