
Network Working Group J. Bradley
Internet-Draft Ping Identity
Intended status: Standards Track P. Hunt
Expires: September 12, 2019 Oracle Corporation
 M. Jones
 Microsoft
 H. Tschofenig
 Arm Ltd.
 M. Meszaros
 GITDA
 March 11, 2019

OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key
Distribution

draft-ietf-oauth-pop-key-distribution-05

Abstract

RFC 6750 specified the bearer token concept for securing access to
 protected resources. Bearer tokens need to be protected in transit
 as well as at rest. When a client requests access to a protected
 resource it hands-over the bearer token to the resource server.

 The OAuth 2.0 Proof-of-Possession security concept extends bearer
 token security and requires the client to demonstrate possession of a
 key when accessing a protected resource.

 This document describes how the client requests and obtains a PoP
 access token from the authorization server for use with HTTPS-based
 transport. Alternative transports, for example using the Constrained
 Application Protocol (CoAP), have been specified in companion
 specifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bradley, et al. Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. Processing Instructions 4
4. Examples . 5
4.1. Symmetric Key Transport 5
4.1.1. Client-to-AS Request 5
4.1.2. Client-to-AS Response 5

4.2. Asymmetric Key Transport 8
4.2.1. Client-to-AS Request 8
4.2.2. Client-to-AS Response 9

5. Security Considerations 10
6. IANA Considerations . 12
7. Acknowledgements . 12
8. References . 12
8.1. Normative References 12
8.2. Informative References 14

 Authors' Addresses . 14

1. Introduction

 The work on proof-of-possession tokens, an extended token security
 mechanisms for OAuth 2.0, is motivated in [21]. This document
 defines the ability for the client request and to obtain PoP tokens
 from the authorization server. After successfully completing the
 exchange the client is in possession of a PoP token and the keying
 material bound to it. Clients that access protected resources then
 need to demonstrate knowledge of the secret key that is bound to the
 PoP token.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bradley, et al. Expires September 12, 2019 [Page 2]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 To best describe the scope of this specification, the OAuth 2.0
 protocol exchange sequence is shown in Figure 1. The extension
 defined in this document piggybacks on the message exchange marked
 with (C) and (D). To demonstrate possession of the private/secret
 key to the resource server protocol mechanisms outside the scope of
 this document are used.

 +--------+ +---------------+
	--(A)- Authorization Request ->	Resource
		Owner
	<-(B)-- Authorization Grant ---	
	+---------------+	
	+---------------+	
	--(C)-- Authorization Grant -->	
Client	(aud, cnf)	Authorization
		Server
	<-(D)-- PoP Access Token ------	
	(profile, cnf, rs_cnf, +---------------+	
	token_type)	
	+---------------+	
	--(E)-- PoP Access Token ----->	
	(with proof of private key)	Resource
		Server
	<-(F)--- Protected Resource ---	
 +--------+ +---------------+

 Figure 1: Augmented OAuth 2.0 Protocol Flow

 In OAuth 2.0 [2] access tokens can be obtained via authorization
 grants and using refresh tokens. The core OAuth specification
 defines four authorization grants, see Section 1.3 of [2], and [18]
 adds an assertion-based authorization grant to that list. The token
 endpoint, which is described in Section 3.2 of [2], is used with
 every authorization grant except for the implicit grant type. In the
 implicit grant type the access token is issued directly.

 This document extends the functionality of the token endpoint, i.e.,
 the protocol exchange between the client and the authorization
 server, to allow keying material to be bound to an access token. Two
 types of keying material can be bound to an access token, namely
 symmetric keys and asymmetric keys. Conveying symmetric keys from
 the authorization server to the client is described in Section 4.1
 and the procedure for dealing with asymmetric keys is described in

Section 4.2.

Bradley, et al. Expires September 12, 2019 [Page 3]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

2. Terminology

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 specification are to be interpreted as described in [1].

 Session Key:

 In the context of this specification 'session key' refers to fresh
 and unique keying material established between the client and the
 resource server. This session key has a lifetime that corresponds
 to the lifetime of the access token, is generated by the
 authorization server and bound to the access token.

 This document uses the following abbreviations:

 JWA: JSON Web Algorithms[7]

 JWT: JSON Web Token[9]

 JWS: JSON Web Signature[6]

 JWK: JSON Web Key[5]

 JWE: JSON Web Encryption[8]

 CWT: CBOR Web Token[14]

 COSE: CBOR Object Signing and Encryption[15]

3. Processing Instructions

 Step (0): As an initial step the client typically determines the
 resource server it wants to interact with. This may, for example,
 happen as part of a discovery procedure or via manual
 configuration.

 Step (1): The client starts the OAuth 2.0 protocol interaction
 based on the selected grant type.

 Step (2): When the client interacts with the token endpoint to
 obtain an access token it MUST follow the processing steps for the
 HTTPS-based transport described in Section 5.6.1 of [12]. This
 includes determining whether to use the 'aud' and the 'cnf'
 parameters.

 Step (3): The authorization server parses the request from the
 server and determines the suitable response based on the

Bradley, et al. Expires September 12, 2019 [Page 4]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 description in Section 5.6.2 of [12]. In case of an error the
 procedure in Section 5.6.3 of [12] is applicable.

 Note that PoP access tokens may be encoded in a variety of ways. In
 case the access token is encoded using the JSON Web Token (JWT)
 format [9] it MUST be protected against modification by either using
 a digital signature or a keyed message digest, as described in [6].
 The JWT may also be encrypted using [8]. [14] defines an alternative
 token format based on CBOR. The proof-of-possession token
 functionality is defined in [13]. Finally, access tokens can also be
 passed by reference, which then requires the token introspection
 endpoint (or a similiar, proprietary protocol mechanism) to be used.
 This specification does not mandate a specific PoP token format.

 Subsequent steps for the interaction between the client and the
 resource server are beyond the scope of this document.

4. Examples

 This section provides a number of examples.

4.1. Symmetric Key Transport

4.1.1. Client-to-AS Request

 The client starts with a request to the authorization server
 indicating that it is interested to obtain a token for example-
 server.

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &aud=example-server

 Example Request to the Authorization Server

4.1.2. Client-to-AS Response

 If the access token request has been successfully verified by the
 authorization server and the client is authorized to obtain a PoP

Bradley, et al. Expires September 12, 2019 [Page 5]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 token for the indicated resource server, the authorization server
 issues an access token and optionally a refresh token.

 Figure 2 shows a response containing a token and a "cnf" parameter
 with a symmetric proof-of-possession key.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "cnf":{
 "keys" : {
 "kty" : "Symmetric",
 "kid" : b64'39Gqlw',
 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
 }
 }
 }

 Figure 2: Example: Response from the Authorization Server (Symmetric
 Variant)

 Note that the cnf payload in Figure 2 is not encrypted at the
 application layer since Transport Layer Security is used between the
 AS and the client and the content of the cnf payload is consumed by
 the client itself. Alternatively, a JWE could be used to encrypt the
 key distribution, as shown in Figure 3.

Bradley, et al. Expires September 12, 2019 [Page 6]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 {
 "access_token":"SlAV32hkKG ...
 (remainder of JWT omitted for brevity;
 JWT contains JWK in the cnf claim)",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "cnf":{
 "jwe":
 "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhDQkMtSFMyNTYifQ.
 (remainder of JWE omitted for brevity)"
 }
 }
 }

 Figure 3: Example: Encrypted Symmmetric Key

 The content of the key parameter, which is a JWK in our example, is
 shown in Figure 4.

 {
 "kty":"oct",
 "kid":"id123",
 "alg":"HS256",
 "k":"ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE"
 }

 Figure 4: Example: Key Transport to Client via a JWK

 The content of the 'access_token' in JWT format contains the 'cnf'
 (confirmation) claim, as shown in Figure 5. The confirmation claim
 is defined in [10]. The digital signature or the keyed message
 digest offering integrity protection is not shown in this example but
 has to be present in a real deployment to mitigate a number of
 security threats.

 The JWK in the key element of the response from the authorization
 server, as shown in Figure 2, contains the same session key as the
 JWK inside the access token, as shown in Figure 5. It is, in this
 example, protected by TLS and transmitted from the authorization
 server to the client (for processing by the client).

Bradley, et al. Expires September 12, 2019 [Page 7]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 {
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "cnf":{
 "jwk":
 "JDLUhTMjU2IiwiY3R5Ijoi ...
 (remainder of JWK protected by JWE omitted for brevity)"
 }
 }

 Figure 5: Example: Access Token in JWT Format

 Note: When the JWK inside the access token contains a symmetric key
 it must be confidentiality protected using a JWE to maintain the
 security goals of the PoP architecture, as described in [21] since
 content is meant for consumption by the selected resource server
 only.

 Note: This document does not impose requirements on the encoding of
 the access token. The examples used in this document make use of the
 JWT structure but the CWT format is an equally appropriate format to
 use.

 If the access token is only a reference then a look-up by the
 resource server is needed, as described in the token introspection
 specification [22].

4.2. Asymmetric Key Transport

4.2.1. Client-to-AS Request

 This example illustrates the case where an asymmetric key shall be
 bound to an access token. The client makes the following HTTPS
 request shown in Figure 6. Extra line breaks are for display
 purposes only.

Bradley, et al. Expires September 12, 2019 [Page 8]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=pop
 &cnf=eyJhbGciOiJSU0ExXzUi ...
 (remainder of JWK omitted for brevity)

 Figure 6: Example Request to the Authorization Server (Asymmetric Key
 Variant)

 As shown in Figure 7 the content of the 'cnf' parameter contains the
 ECC public key the client would like to associate with the access
 token.

 "jwk":{
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "x": "18wHLeIgW9wVN6VD1Txgpqy2LszYkMf6J8njVAibvhM",
 "y": "-V4dS4UaLMgP_4fY4j8ir7cl1TXlFdAgcx55o7TkcSA"
 }

 Figure 7: Client Providing Public Key to Authorization Server

4.2.2. Client-to-AS Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. The authorization server also places information about the
 public key used by the client into the access token to create the
 binding between the two. The new token type "public_key" is placed
 into the 'token_type' parameter.

 An example of a successful response is shown in Figure 8.

Bradley, et al. Expires September 12, 2019 [Page 9]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFE....jr1zCsicMWpAA",
 "token_type":"pop",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

 Figure 8: Example: Response from the Authorization Server (Asymmetric
 Variant)

 The content of the 'access_token' field contains an encoded JWT, as
 shown in Figure 9. The digital signature covering the access token
 offering authenticity and integrity protection is not shown below
 (but must be present).

 {
 "iss":"xas.example.com",
 "aud":"http://auth.example.com",
 "exp":"1361398824",
 "nbf":"1360189224",
 "cnf":{
 "jwk" : {
 "kty" : "EC",
 "kid" : h'11',
 "crv" : "P-256",
 "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
 "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
 }
 }
 }

 Figure 9: Example: Access Token Structure (Asymmetric Variant)

 Note: In this example there is no need for the authorization server
 to convey further keying material to the client since the client is
 already in possession of the private key.

5. Security Considerations

 [21] describes the architecture for the OAuth 2.0 proof-of-possession
 security architecture, including use cases, threats, and
 requirements. This requirements describes one solution component of

Bradley, et al. Expires September 12, 2019 [Page 10]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 that architecture, namely the mechanism for the client to interact
 with the authorization server to either obtain a symmetric key from
 the authorization server, to obtain an asymmetric key pair, or to
 offer a public key to the authorization. In any case, these keys are
 then bound to the access token by the authorization server.

 To summarize the main security recommendations: A large range of
 threats can be mitigated by protecting the contents of the access
 token by using a digital signature or a keyed message digest.
 Consequently, the token integrity protection MUST be applied to
 prevent the token from being modified, particularly since it contains
 a reference to the symmetric key or the asymmetric key. If the
 access token contains the symmetric key (see Section 2.2 of [10] for
 a description about how symmetric keys can be securely conveyed
 within the access token) this symmetric key MUST be encrypted by the
 authorization server with a long-term key shared with the resource
 server.

 To deal with token redirect, it is important for the authorization
 server to include the identity of the intended recipient (the
 audience), typically a single resource server (or a list of resource
 servers), in the token. Using a single shared secret with multiple
 authorization server to simplify key management is NOT RECOMMENDED
 since the benefit from using the proof-of-possession concept is
 significantly reduced.

 Token replay is also not possible since an eavesdropper will also
 have to obtain the corresponding private key or shared secret that is
 bound to the access token. Nevertheless, it is good practice to
 limit the lifetime of the access token and therefore the lifetime of
 associated key.

 The authorization server MUST offer confidentiality protection for
 any interactions with the client. This step is extremely important
 since the client will obtain the session key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby making the OAuth 2.0 proof-of-possession
 security model completely insecure. OAuth 2.0 [2] relies on TLS to
 offer confidentiality protection and additional protection can be
 applied using the JWK [5] offered security mechanism, which would add
 an additional layer of protection on top of TLS for cases where the
 keying material is conveyed, for example, to a hardware security
 module. Which version(s) of TLS ought to be implemented will vary
 over time, and depend on the widespread deployment and known security
 vulnerabilities at the time of implementation. At the time of this
 writing, TLS version 1.2 [4] is the most recent version. The client
 MUST validate the TLS certificate chain when making requests to

Bradley, et al. Expires September 12, 2019 [Page 11]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 protected resources, including checking the validity of the
 certificate.

 Similarly to the security recommendations for the bearer token
 specification [16] developers MUST ensure that the ephemeral
 credentials (i.e., the private key or the session key) is not leaked
 to third parties. An adversary in possession of the ephemeral
 credentials bound to the access token will be able to impersonate the
 client. Be aware that this is a real risk with many smart phone app
 and Web development environments.

 Clients can at any time request a new proof-of-possession capable
 access token. Using a refresh token to regularly request new access
 tokens that are bound to fresh and unique keys is important. Keeping
 the lifetime of the access token short allows the authorization
 server to use shorter key sizes, which translate to a performance
 benefit for the client and for the resource server. Shorter keys
 also lead to shorter messages (particularly with asymmetric keying
 material).

 When authorization servers bind symmetric keys to access tokens then
 they SHOULD scope these access tokens to a specific permissions.

6. IANA Considerations

 This document does not require any actions by IANA.

7. Acknowledgements

 We would like to thank Chuck Mortimore for his review comments.

8. References

8.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [2] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [3] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986

Bradley, et al. Expires September 12, 2019 [Page 12]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [5] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [6] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [7] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [8] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

 [9] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [10] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [11] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

 [12] Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-22
 (work in progress), March 2019.

 [13] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-

possession-06 (work in progress), February 2019.

 [14] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://datatracker.ietf.org/doc/html/rfc7638
https://www.rfc-editor.org/info/rfc7638
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-22
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cwt-proof-of-possession-06
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cwt-proof-of-possession-06
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392

Bradley, et al. Expires September 12, 2019 [Page 13]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 [15] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

8.2. Informative References

 [16] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [17] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [18] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [19] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [20] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [21] Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-08 (work
 in progress), July 2016.

 [22] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [23] IANA, "JSON Web Token Claims", March 2019.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7521
https://www.rfc-editor.org/info/rfc7521
https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-08
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662

Bradley, et al. Expires September 12, 2019 [Page 14]

Internet-Draft OAuth 2.0 PoP: AS-Client Key Distribution March 2019

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com
 URI: http://www.indepdentid.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 Arm Ltd.
 Absam 6067
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Mihaly Meszaros
 GITDA
 Debrecen 4033
 Hungary

 Email: bakfitty@gmail.com
 URI: https://github.com/misi

http://www.thread-safe.com/
http://www.indepdentid.com
http://self-issued.info/
http://www.tschofenig.priv.at
https://github.com/misi

Bradley, et al. Expires September 12, 2019 [Page 15]

