
Workgroup: Web Authorization Protocol

Internet-Draft: draft-ietf-oauth-rar-05

Published: 15 May 2021

Intended Status: Standards Track

Expires: 16 November 2021

Authors: T. Lodderstedt

yes.com

J. Richer

Bespoke Engineering

B. Campbell

Ping Identity

OAuth 2.0 Rich Authorization Requests

Abstract

This document specifies a new parameter authorization_details that

is used to carry fine grained authorization data in the OAuth

authorization request.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Request parameter "authorization_details"

2.1. Authorization data elements types

2.2. Authorization Data Types

3. Authorization Request

3.1. Relationship to "scope" parameter

3.2. Relationship to "resource" parameter

4. Authorization Response

5. Authorization Error Response

6. Token Request

6.1. Comparing authorization details

6.2. Interaction with the resource parameter

7. Token Response

7.1. Enriched authorization details in Token Response

8. Token Error Response

9. Resource Servers

9.1. JWT-based Access Tokens

9.2. Token Introspection

10. Metadata

11. Scope value "openid" and "claims" parameter

12. Implementation Considerations

12.1. Using authorization details in a certain deployment

12.2. Minimal product support

12.3. Use of Machine-readable Type Schemas

12.4. Large requests

13. Security Considerations

14. Privacy Considerations

15. Acknowledgements

16. IANA Considerations

16.1. JSON Web Token Claims Registration

16.2. OAuth Authorization Server Metadata

16.3. OAuth Dynamic Client Registration Metadata

16.4. OAuth Extensions Error registry

17. Normative References

18. Informative References

Appendix A. Additional Examples

A.1. OpenID Connect

A.2. Remote Electronic Signing

A.3. Access to Tax Data

A.4. eHealth

Appendix B. Document History

Authors' Addresses

1. Introduction

The OAuth 2.0 authorization framework [RFC6749] defines the

parameter scope that allows OAuth clients to specify the requested

scope, i.e., the permission, of an access token. This mechanism is

sufficient to implement static scenarios and coarse-grained

authorization requests, such as "give me read access to the resource

owner's profile" but it is not sufficient to specify fine-grained

authorization requirements, such as "please let me make a payment

with the amount of 45 Euros" or "please give me read access to

folder A and write access to file X".

This draft introduces a new parameter authorization_details that

allows clients to specify their fine-grained authorization

requirements using the expressiveness of JSON data structures.

For example, a request for payment authorization can be represented

using a JSON object like this:

{

 "type": "payment_initiation",

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

}

This object contains detailed information about the intended

payment, such as amount, currency, and creditor, that are required

to inform the user and obtain her consent. The AS and the respective

RS (providing the payment initiation API) will together enforce this

consent.

For a comprehensive discussion of the challenges arising from new

use cases in the open banking and electronic signing spaces see

[transaction-authorization].

In addition to facilitating custom authorization requests, this

draft also introduces a set of common data type fields for use

across different APIs.

¶

¶

¶

¶

¶

¶

¶

Most notably, the field locations allows a client to specify where

it intends to use a certain authorization, i.e., it is now possible

to unambiguously assign permissions to resource servers. In

situations with multiple resource servers, this prevents unintended

client authorizations (e.g. a read scope value potentially

applicable for an email as well as a cloud service). In combination

with the resource token request parameter as specified in [RFC8707]

or by specifing authorization details with a single location only in

the token request, it enables the AS to mint RS-specific structured

access tokens that only contain the permissions applicable to the

respective RS.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response", and

"client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Request parameter "authorization_details"

The request parameter authorization_details contains, in JSON

notation, an array of objects. Each JSON object contains the data to

specify the authorization requirements for a certain type of

resource. The type of resource or access requirement is determined

by the type field.

This example shows the specification of authorization details using

the payment authorization object shown above:

¶

¶

¶

¶

¶

[

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

This example shows a combined request asking for access to account

information and permission to initiate a payment:

¶

¶

type:

[

 {

 "type": "account_information",

 "actions": [

 "list_accounts",

 "read_balances",

 "read_transactions"

],

 "locations": [

 "https://example.com/accounts"

]

 },

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

The JSON objects with type fields of account_information and

payment_initiation represent the different authorization data to be

used by the AS to ask for consent and MUST subsequently also be made

available to the respective resource servers. The array MAY contain

several elements of the same type.

2.1. Authorization data elements types

The allowable contents of the authorization details object are

determined by the type parameter.

¶

¶

¶

locations:

actions:

datatypes:

identifier:

privileges:

The type of authorization data as a string. This field MAY define

which other elements are allowed in the request. This element is

REQUIRED.

This field MUST be compared using an exact byte match of the string

value against known types by the AS. The AS MUST ensure that there

is no collision between different authorization data types that it

supports. The AS MUST NOT do any collation or normalization of data

types during comparison.

The value of the type field determines the allowable contents of the

object which contains it. This draft defines a set of common data

elements that are designed to be usable across different types of

APIs. These data elements MAY be combined in different ways

depending on the needs of the API. All data elements are OPTIONAL

for use by a given API definition. The allowable values of all

elements are determined by the API being protected.

An array of strings representing the location of the

resource or resource server. These strings are typically URIs

identifying the location of the RS.

An array of strings representing the kinds of actions to

be taken at the resource.

An array of strings representing the kinds of data being

requested from the resource.

A string identifier indicating a specific resource

available at the API.

An array of strings representing the types or levels of

privilege being requested at the resource.

When different element types are used in combination, the

permissions the client requests is the cartesian product of the

values. That is to say, the object represents a request for all

action values listed within the object to be used at all locations

values listed within the object for all datatype values listed

within the object. In the following example, the client is

requesting read and write access to both the contacts and photos

belonging to customers in a customer_information API. If this

request is granted, the client would assume it would be able to use

any combination of rights defined by the API, such as reading the

photos and writing the contacts.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers",

]

 "actions": [

 "read",

 "write"

],

 "datatypes": [

 "contacts",

 "photos"

]

 }

]

If the client wishes to have finer control over its access, it can

send multiple objects. In this example, the client is asking for

read access to the contacts and write access to the photos in the

same API endpoint. If this request is granted, the client would not

be able to write to the contacts.

¶

¶

[

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers"

],

 "actions": [

 "read"

],

 "datatypes": [

 "contacts"

]

 },

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers"

],

 "actions": [

 "write"

],

 "datatypes": [

 "photos"

]

 }

]

An API MAY define its own extensions, subject to the type of the

respective authorization object. It is anticipated that API

designers will use a combination of common fields defined in this

specification as well as fields specific to the API itself. The

following non-normative example shows the use of both common and

API-specific fields as part of two different fictitious API type

values. The first access request includes the actions, locations,

and datatypes fields specified here as well as the API-specific

geolocation field. The second access request includes the actions

and identifier fields specified here as well as the API-specific

currency field.

¶

¶

If this request is approved, the resulting access token's access

rights will be the union of the requested types of access for each

of the two APIs, just as above.

2.2. Authorization Data Types

Interpretation of the value of the type parameter, and the object

elements that the type parameter allows, is under the control of the

AS. However, the value of the type parameter is also generally

documented and intended to be used by developers, it is RECOMMENDED

that API designers choose type values that are easily copied without

ambiguity. For example, some glyphs have multiple unicode code

points for the same visual character, and a developer could

potentially type a different character depending than what the AS

has defined. Possible means of reducing potential confusion are

limiting the value to ASCII characters, providing a machine-readable

listing of data type values, or instructing developers to copy and

paste directly from documentation.

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

],

 "geolocation": [

 { lat: -32.364, lng: 153.207 },

 { lat: -35.364, lng: 158.207 }

]

 },

 {

 "type": "financial-transaction",

 "actions": [

 "withdraw"

],

 "identifier": "account-14-32-32-3",

 "currency": "USD"

 }

]

¶

¶

¶

If an application or API is expected to be deployed across different

servers, such as the case in an open standard, the API designer is

RECOMMENDED to use a collision-resistant namespace under their

control, such as a URI that the API designer controls.

The following example shows how an implementation could utilize the

namespace https://scheme.example.org/ to ensure collision resistant

element names.

{

 "type": "https://scheme.example.org/files",

 "locations": [

 "https://example.com/files"

],

 "permissions": [

 {

 "path": "/myfiles/A",

 "access": [

 "read"

]

 },

 {

 "path": "/myfiles/A/X",

 "access": [

 "read",

 "write"

]

 }

]

}

3. Authorization Request

The authorization_details authorization request parameter can be

used to specify authorization requirements in all places where the

scope parameter is used for the same purpose, examples include:

Authorization requests as specified in [RFC6749],

Device Authorization Request as specified in [RFC8628],

Backchannel Authentication Requests as defined in [OpenID.CIBA].

Parameter encoding is determined by the respective context. In the

context of an authorization request according to [RFC6749], the

parameter is encoded using the application/x-www-form-urlencoded

format of the serialized JSON as shown in the following using the

example from Section 2 (line breaks for display purposes only):

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

Based on the data provided in the authorization_details parameter

the AS will ask the user for consent to the requested access

permissions. In this example, the client wants to get access to

account information and intiate a payment:

GET /authorize?response_type=code

 &client_id=s6BhdRkqt3

 &state=af0ifjsldkj

 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

 &code_challenge_method=S256

 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bwc-uCHaoeK1t8U

 &authorization_details=%5B%7B%22type%22%3A%22account%5Finfo

 rmation%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%2C%22

 read%5Fbalances%22%2C%22read%5Ftransactions%22%5D%2C%22loca

 tions%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Faccounts%22%

 5D%7D%2C%7B%22type%22%3A%22payment%5Finitiation%22%2C%22act

 ions%22%3A%5B%22initiate%22%2C%22status%22%2C%22cancel%22%5

 D%2C%22locations%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Fp

 ayments%22%5D%2C%22instructedAmount%22%3A%7B%22currency%22%

 3A%22EUR%22%2C%22amount%22%3A%22123%2E50%22%7D%2C%22credito

 rName%22%3A%22Merchant123%22%2C%22creditorAccount%22%3A%7B%

 22iban%22%3A%22DE02100100109307118603%22%7D%2C%22remittance

 InformationUnstructured%22%3A%22RefNumberMerchant%22%7D%5D HTTP/1.1

Host: server.example.com

¶

¶

[

 {

 "type": "account_information",

 "actions": [

 "list_accounts",

 "read_balances",

 "read_transactions"

],

 "locations": [

 "https://example.com/accounts"

]

 },

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

3.1. Relationship to "scope" parameter

authorization_details and scope can be used in the same

authorization request for carrying independent authorization

requirements.

The AS MUST consider both sets of requirements in combination with

each other for the given authorization request. The details of how

the AS combines these parameters are specific to the APIs being

protected and outside the scope of this specification.

It is RECOMMENDED that a given API uses only one form of requirement

specification.

¶

¶

¶

¶

When gathering user consent, the AS MUST present the merged set of

requirements represented by the authorization request.

If the resource owner grants the client the requested access, the AS

will issue tokens to the client that are associated with the

respective authorization_details (and scope values, if applicable).

3.2. Relationship to "resource" parameter

The resource authorization request parameter as defined in [RFC8707]

can be used to further determine the resources where the requested

scope can be applied. The resource parameter does not have any

impact on the way the AS processes the authorization_details

authorization request parameter.

4. Authorization Response

This specification does not define extensions to the authorization

response.

5. Authorization Error Response

The AS MUST refuse to process any unknown authorization data type or

authorization details not conforming to the respective type

definition. If any of the objects in authorization_details contains

an unknown authorization data type or an object of known type but

containing unknown elements or elements of the wrong type or

elements with invalid values or if required elements are missing,

the AS MUST abort processing and respond with an error

invalid_authorization_details to the client.

6. Token Request

The authorization_details token request parameter can be used to

specify the authorization details a client wants the AS to assign to

an access token. The AS checks whether the underlying grant (in case

of grant types authorization_code, refresh_token, ...) or the

client's policy (in case of grant type client_credential) allows the

issuance of an access token with the requested authorization

details. Otherwise, the AS refuses the request with error code

invalid_authorization_details (similar to invalid_scope).

6.1. Comparing authorization details

Many actions in the OAuth protocol allow the AS and RS to make

security decisions based on whether or not the request is asking for

"more" or "less" than a previous, existing request. For example,

upon refreshing a token, the client can ask for a new access token

with "fewer permissions" than had been previously authorized by the

resource owner. Since the nature of an authorization details request

¶

¶

¶

¶

¶

¶

is based solely on the API or APIs that it is describing, there is

not a simple means of comparing any two arbitrary authorization

details requests. Authorization servers should not rely on simple

object comparison in most cases, as the intersection of some

elements within a request could have side effects in the access

rights granted, depending on how the API has been designed and

deployed. This is a similar effect to the scope values used with

some APIs.

However, when comparing a new request to an existing request,

authorization servers can use the same processing techniques as used

in granting the request in the first place to determine if a

resource owner needs to authorize the request. The details of this

comparison are dependent on the definition of the type of

authorization request and outside the scope of this specification,

but common patterns can be applied.

This shall be illustrated using our running example. The example

authorization request in Section 3, if approved by the user,

resulted in the issuance of an authorization code associated with

the privileges to

list accounts

access the balance of one or more accounts,

access the transactions of one or more accounts, and

to initiate a payment.

The client could now request the AS to issue an access token

assigned with the privilege to just access a list of accounts as

follows:

[

 {

 "type":"account_information",

 "actions":[

 "list_accounts"

],

 "locations":[

 "https://example.com/accounts"

]

 }

]

The example API is designed such that each field used by the

account_information type contains additive rights, with each value

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

within the actions and locations arrays specifying a different

element of access. To make a comparison in this instance, the AS

would perform the following steps:

compare that the authorization code issued in the previous step

contains an authorization details object of type

account_information

compare whether the approved list of actions contains

list_account, and

whether the locations value includes only previously-approved

locations.

If all checks succeed, the AS would issue the requested access token

with the reduced set of access.

Note that this comparison is relevant to this specific API type

definition. A different API type definition could have different

processing rules. For example, the value of an action could subsume

the rights associated with another action value. For example, if a

client initially asks for a token with write access, which implies

both read and write access to this API:

[

 {

 "type": "example_api",

 "actions": [

 "write"

]

 }

]

Later that same client makes a refresh request for read access:

[

 {

 "type": "example_api",

 "actions": [

 "read"

]

 }

]

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

The AS would compare the type value and the action value to

determine that the read access is already covered by the write

access previously granted to the client.

6.2. Interaction with the resource parameter

The resource token request parameter as defined in [RFC8707] MAY be

used in the token request to request the creation of an audience

restricted access token (as recommended in [I-D.ietf-oauth-security-

topics]). If the client uses this parameter, the AS MUST consider

the audience restriction defined by the locations elements of the

authorization_details to filter the authorization data objects

applicable to the respective resource(s).

The logic is as follows:

For every authorization details object without a locations

element: the authorization server treats it as applicable to all

resources, i.e. it assigns this authorization details object to

the access token.

For every authorization details object with a locations element:

the authorization server adds this object to the access token, if

at least one of the locations values exactly matches the resource

token request parameter value. The authorization server MUST

compare both values using an exact byte match of the string

values.

For example the following token request selects authorization

details applicable for the resource server represented by the URI

https://example.com/payments.

POST /token HTTP/1.1

Host: as.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&resource=https%3A%2F%2Fexample%2Ecom%2Fpayments

Using the example given above, this request would result in the

assignment of the payment_initiation authorization details object

from Section 2 to the access token to be issued (see below).

¶

¶

¶

*

¶

*

¶

¶

¶

¶

7. Token Response

The authorization details assigned to the access token issued in a

token response are determined by the authorization_detail parameter

of the corresponding token request as well as any related parameters

such as resource and scope. If the client does not specify any of

those token request parameters, the AS determines the resulting

authorization details at its discretion.

In addition to the token response parameters as defined in

[RFC6749], the authorization server MUST also return the

authorization details as granted by the resource owner and assigned

to the respective access token.

For our running example, this would look like this:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 "access_token": "2YotnFZFEjr1zCsicMWpAA",

 "token_type": "example",

 "expires_in": 3600,

 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA",

 "authorization_details": [

 {

 "type": "https://www.someorg.com/payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

}

¶

¶

¶

7.1. Enriched authorization details in Token Response

The authorization details attached to the access token MAY differ

from what the client requests. In addition to the user authorizing

less than what the client requested, there are use cases where the

authorization server enriches the data in an authorization details

object. For example, a client may ask for access to account

information but leave the decision about the accounts it will be

able to access to the user. The user would select the sub set of

accounts they wants the client to entitle to access in the course of

the authorization process. In order to allow the client to determine

the accounts it is entitled to access, the authorization server will

add this information to the respective authorization details object.

As an example, the requested authorization detail parameter could

look like this:

"authorization_details": [

 {

 "type": "account_information",

 "access": {

 "accounts": [],

 "balances": [],

 "transactions": []

 },

 "recurringIndicator":true

 }

]

The authorization server then would expand the authorization details

object and add the respective account identifiers.

¶

¶

¶

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JokF0XG5Qx2TlKWIA",

 "authorization_details":[

 {

 "type":"account_information",

 "access":{

 "accounts":[

 {

 "iban":"DE2310010010123456789"

 },

 {

 "maskedPan":"123456xxxxxx1234"

 }

],

 "balances":[

 {

 "iban":"DE2310010010123456789"

 }

],

 "transactions":[

 {

 "iban":"DE2310010010123456789"

 },

 {

 "maskedPan":"123456xxxxxx1234"

 }

]

 },

 "recurringIndicator":true

 }

]

}

For another example, the client is asking for access to a medical

record but does not know the record number at request time. In this

example, the client specifies the type of access it wants but

doesn't specify the location or identifier of that access.

¶

¶

{

"authorization_details": [

 {

 "type": "medical_record",

 "sens": ["HIV", "ETH", "MART"],

 "actions": ["read"],

 "datatypes": ["Patient", "Observation", "Appointment"]

 }

]

When the user interacts with the AS, they select which of the

medical records they are responsible for to give to the client. This

information gets returned with the access token.

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JokF0XG5Qx2TlKWIA",

 "authorization_details":[

 {

 "type": "medical_record",

 "sens": ["HIV", "ETH", "MART"],

 "actions": ["read"],

 "datatypes": ["Patient", "Observation", "Appointment"]

 "identifier": "patient-541235",

 "locations": ["https://records.example.com/"]

 }

]

}

Note: the client needs to be aware upfront of the possibility that a

certain authorization details object can be enriched. It is assumned

that this property is part of the definition of the respective

authorization details type.

8. Token Error Response

The AS MUST refuse to process any unknown authorization data type or

authorization details not conforming to the respective type

definition. If any of the objects in authorization_details contains

an unknown authorization data type or an object of known type but

containing unknown elements or elements of the wrong type, elements

with invalid values, or if required elements are missing, the AS

¶

¶

¶

¶

MUST abort processing and respond with an error

invalid_authorization_details to the client.

9. Resource Servers

In order to enable the RS to enforce the authorization details as

approved in the authorization process, the AS MUST make this data

available to the RS. The AS MAY add the authorization_details

element to access tokens in JWT format or to Token Introspection

responses.

9.1. JWT-based Access Tokens

If the access token is a JWT [RFC7519], the AS is RECOMMENDED to add

the authorization_details object, filtered to the specific audience,

as top-level claim.

The AS will typically also add further claims to the JWT the RS

requires for request processing, e.g., user id, roles, and

transaction specific data. What claims the particular RS requires is

defined by the RS-specific policy with the AS.

The following shows the contents of an example JWT for the payment

initation example above:

¶

¶

¶

¶

¶

{

 "iss": "https://as.example.com",

 "sub": "24400320",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 "acr": "psd2_sca",

 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",

 "authorization_details": [

 {

 "type": "https://www.someorg.com/payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

],

 "debtorAccount": {

 "iban": "DE40100100103307118608",

 "user_role": "owner"

 }

}

In this case, the AS added the following example claims:

sub: conveys the user on which behalf the client is asking for

payment initation

txn: transaction id used to trace the transaction across the

services of provider example.com

debtorAccount: API-specific element containing the debtor

account. In the example, this account was not passed in the

authorization details but selected by the user during the

authorization process. The field user_role conveys the role the

¶

¶

*

¶

*

¶

*

user has with respect to this particuar account. In this case,

they is the owner. This data is used for access control at the

payment API (the RS).

9.2. Token Introspection

In case of opaque access tokens, the data provided to a certain RS

is determined using the RS's identifier with the AS (see [I-D.ietf-

oauth-jwt-introspection-response], section 3).

The token endpoint response provides the RS with the authorization

details applicable to it as a top-level JSON element along with the

claims the RS requires for request processing.

Here is an example for the payment initation example RS:

¶

¶

¶

¶

{

 "active": true,

 "sub": "24400320",

 "aud": "s6BhdRkqt3",

 "exp": 1311281970,

 "acr": "psd2_sca",

 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",

 "authorization_details": [

 {

 "type": "https://www.someorg.com/payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

],

 "debtorAccount": {

 "iban": "DE40100100103307118608",

 "user_role": "owner"

 }

}

10. Metadata

The AS publishes the list of authorization details types it supports

using the metadata parameter authorization_details_types_supported,

which is a JSON array.

Clients announce the authorization data types they use in the new

dynamic client registration parameter authorization_details_types.

The registration of authorization data types with the AS is out of

scope of this draft.

¶

¶

¶

¶

11. Scope value "openid" and "claims" parameter

OpenID Connect [OIDC] specifies the JSON-based claims request

parameter that can be used to specify the claims a client (acting as

OpenID Connect Relying Party) wishes to receive in a fine-grained

and privacy preserving way as well as assign those claims to a

certain delivery mechanisms, i.e. ID Token or userinfo response.

The combination of the scope value openid and the additional

parameter claims can be used beside authorization_details in the

same way as every non-OIDC scope value.

Alternatively, there could be an authorization data type for OpenID

Connect. Appendix A.1 gives an example of what such an authorization

data type could look like.

12. Implementation Considerations

12.1. Using authorization details in a certain deployment

Using authorization details in a certain deployment will require the

follwowing steps:

Define authorization details types

Publish authorization details types in the OAuth server metadata

Determine how authorization details are shown to the user in the

user consent

(if needed) Enrich authorization details in the user consent

process (e.g. add selected accounts or set expirations)

(if needed) Determine how authorization details are reflected in

access token content or introspection responses

Determine how the resource server(s) process(s) the authorization

details or token data derived from authorization details

12.2. Minimal product support

Products supporting this specification should provide the following

basic functions:

Support advertisement of supported authorization details types in

OAuth server metadata

Accept authorization_details parameter in authorization requests

including basic syntax check for compliance with this

specification

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

Support storage of consented authorization details as part of a

grant

Implement default behavior for adding authorization details to

access tokens and token introspection responses in order to make

them available to resource servers (similar to scope values).

This should work with any grant type, especially

authorization_code and refresh_token.

If the product supports resource indicators, it should also

support filtering of the authorization details to be assigned to

access tokens using the resource token request parameter.

Processing and presentation of authorization details will vary

significantly among different authorization data types. Products

should therefore support customization of the respective behavior.

In particular products should

allow deployments to determine presentation of the authorization

details

allow deployments to modify requested authorization details in

the user consent process, e.g. adding fields

allow deployments to merge requested and pre-existing

authorization details

One option would be to have a mechanism allowing the registration of

extension modules, each of them responsible for rendering the

respective user consent and any transformation needed to provide the

data needed to the resource server by way of structured access

tokens or token introspection responses.

12.3. Use of Machine-readable Type Schemas

Products might allow deployments to use machine-readable schema

languages for defining authorization details types to facilitate

creating and validating authorization details objects against such

schemas. For example, if an authorization details type were defined

using JSON Schemas [JSON.Schema], the JSON schema id could be used

as type value in the respective authorization details objects.

Note however that type values are identifiers understood by the AS

and, to the extent necessary, the client and RS. This specification

makes no assumption that a type value point to a machine-readable

schema format, or that any party in the system (such as the client,

AS, or RS) dereference or process the contents of the type field in

any specific way.

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

12.4. Large requests

Authorization request URIs containing authorization details in a

request parameter or a request object can become very long.

Implementers SHOULD therefore consider using the request_uri

parameter as defined in [I-D.ietf-oauth-jwsreq] in combination with

the pushed request object mechanism as defined in [I-D.ietf-oauth-

par] to pass authorization details in a reliable and secure manner.

Here is an example of such a pushed authorization request that sends

the authorization request data directly to the AS via a HTTPS-

protected connection:

13. Security Considerations

Authorization details are sent through the user agent in case of an

OAuth authorization request, which makes them vulnerable to

modifications by the user. In order to ensure their integrity, the

client SHOULD send authorization details in a signed request object

as defined in [I-D.ietf-oauth-jwsreq] or use the request_uri

authorization request parameter as defined in [I-D.ietf-oauth-

jwsreq] in conjunction with [I-D.ietf-oauth-par] to pass the URI of

the request object to the authorization server.

All strings MUST be compared using the exact byte representation of

the characters as defined by [RFC8259]. This is especially true for

the type field, which dictates which other fields and functions are

¶

 POST /as/par HTTP/1.1

 Host: as.example.com

 Content-Type: application/x-www-form-urlencoded

 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 response_type=code&

 client_id=s6BhdRkqt3

 &state=af0ifjsldkj

 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

 &code_challenge_method=S256

 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bwc-uCHaoeK1t8U

 &authorization_details=%5B%7B%22type%22%3A%22account_information%22

 %2C%22actions%22%3A%5B%22list_accounts%22%2C%22read_balances%22%2C%

 22read_transactions%22%5D%2C%22locations%22%3A%5B%22https%3A%2F%2Fe

 xample.com%2Faccounts%22%5D%7D%2C%7B%22type%22%3A%22payment_initiat

 ion%22%2C%22actions%22%3A%5B%22initiate%22%2C%22status%22%2C%22canc

 el%22%5D%2C%22locations%22%3A%5B%22https%3A%2F%2Fexample.com%2Fpaym

 ents%22%5D%2C%22instructedAmount%22%3A%7B%22currency%22%3A%22EUR%22

 %2C%22amount%22%3A%22123.50%22%7D%2C%22creditorName%22%3A%22Merchan

 t123%22%2C%22creditorAccount%22%3A%7B%22iban%22%3A%22DE021001001093

 07118603%22%7D%2C%22remittanceInformationUnstructured%22%3A%22Ref%2

 0Number%20Merchant%22%7D%5D

¶

¶

Claim Name:

allowed in the request. The server MUST NOT perform any form of

collation, transformation, or equivalence on the string values.

14. Privacy Considerations

Implementers MUST design and use authorization details in a privacy

preserving manner.

Any sensitive personal data included in authorization details MUST

be prevented from leaking, e.g., through referrer headers.

Implementation options include encrypted request objects as defined

in [I-D.ietf-oauth-jwsreq] or transmission of authorization details

via end-to-end encrypted connections between client and

authorization server by utilizing the request_uri authorization

request parameter as defined in [I-D.ietf-oauth-jwsreq].

Even if the request data is encrypted, an attacker could use the

authorization server to learn the user data by injecting the

encrypted request data into an authorization request on a device

under his control and use the authorization server's user consent

screens to show the (decrypted) user data in the clear.

Implementations MUST consider this attacker vector and implement

appropriate counter measures, e.g. by only showing portions of the

data or, if possible, determing whether the assumed user context is

still the same (after user authentication).

The AS MUST take into consideration the privacy implications when

sharing authorization details with the resource servers. The AS

SHOULD share this data with the resource servers on a "need to know"

basis.

15. Acknowledgements

We would would like to thank Daniel Fett, Sebastian Ebling, Dave

Tonge, Mike Jones, Nat Sakimura, and Rob Otto for their valuable

feedback during the preparation of this draft.

We would also like to thank Vladimir Dzhuvinov, Takahiko Kawasaki,

Daniel Fett, Dave Tonge, Travis Spencer, Jørgen

Binningsbø, Aamund Bremer, Steinar Noem, Francis Pouatcha, and

Aaron Parecki for their valuable feedback to this draft.

16. IANA Considerations

16.1. JSON Web Token Claims Registration

This specification requests registration of the following value in

the IANA "JSON Web Token Claims Registry" established by [RFC7519].

authorization_details

¶

¶

¶

¶

¶

¶

¶

¶

¶

Claim Description:

Change Controller:

Specification Document(s):

Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

[RFC8707]

The request parameter authorization_details

contains, in JSON notation, an array of objects. Each JSON object

contains the data to specify the authorization requirements for a

certain type of resource.

IESG

Section 2 of this document

16.2. OAuth Authorization Server Metadata

This specification requests registration of the following values in

the IANA "OAuth Authorization Server Metadata" registry of

[IANA.OAuth.Parameters] established by [RFC8414].

authorization_details_types_supported

JSON array containing the authorization

details types the AS supports

IESG

Section 10 of [[this document]]

16.3. OAuth Dynamic Client Registration Metadata

This specification requests registration of the following value in

the IANA "OAuth Dynamic Client Registration Metadata" registry of

[IANA.OAuth.Parameters] established by [RFC7591].

authorization_details_types

Indicates what authorization details types

the client uses.

IESG

Section 10 of [[this document]]

16.4. OAuth Extensions Error registry

This specification requests registration of the following value in

the IANA "OAuth Extensions Error registry" registry of

[IANA.OAuth.Parameters] established by [RFC6749].

invalid_authorization_details

indicates invalid

authorization_details_parameterto the client.

IESG

Section 5 of [[this document]]

17. Normative References

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/

RFC8707, February 2020, <https://www.rfc-editor.org/info/

rfc8707>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707

[RFC8174]

[RFC8414]

[RFC2119]

[RFC8628]

[RFC7519]

[I-D.ietf-oauth-jwsreq]

[I-D.ietf-oauth-par]

[JSON.Schema]

[RFC8259]

[RFC7591]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,

"OAuth 2.0 Device Authorization Grant", RFC 8628, DOI

10.17487/RFC8628, August 2019, <https://www.rfc-

editor.org/info/rfc8628>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

18. Informative References

Sakimura, N., Bradley, J., and M. B. Jones,

"The OAuth 2.0 Authorization Framework: JWT Secured

Authorization Request (JAR)", Work in Progress, Internet-

Draft, draft-ietf-oauth-jwsreq-34, 8 April 2021,

<https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-34>.

Lodderstedt, T., Campbell, B., Sakimura, N.,

Tonge, D., and F. Skokan, "OAuth 2.0 Pushed Authorization

Requests", Work in Progress, Internet-Draft, draft-ietf-

oauth-par-07, 12 April 2021, <https://tools.ietf.org/

html/draft-ietf-oauth-par-07>.

json-schema.org, "JSON Schema", <https://json-

schema.org/>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,

and P. Hunt, "OAuth 2.0 Dynamic Client Registration

Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015,

<https://www.rfc-editor.org/info/rfc7591>.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc7519
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-34
https://tools.ietf.org/html/draft-ietf-oauth-par-07
https://tools.ietf.org/html/draft-ietf-oauth-par-07
https://json-schema.org/
https://json-schema.org/
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc7591

[CSC]

[RFC6749]

[I-D.ietf-oauth-security-topics]

[ETSI]

[transaction-authorization]

[OpenID.CIBA]

[I-D.ietf-oauth-jwt-introspection-response]

[OIDC]

[IANA.OAuth.Parameters]

Consortium, C. S., "Architectures and protocols for

remote signature applications", 1 June 2019, <https://

cloudsignatureconsortium.org/wp-content/uploads/2019/07/

CSC_API_V1_1.0.4.0.pdf>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Lodderstedt, T., Bradley, J.,

Labunets, A., and D. Fett, "OAuth 2.0 Security Best

Current Practice", Work in Progress, Internet-Draft,

draft-ietf-oauth-security-topics-18, 13 April 2021,

<https://tools.ietf.org/html/draft-ietf-oauth-security-

topics-18>.

ETSI, "ETSI TS 119 432, Electronic Signatures and

Infrastructures (ESI); Protocols for remote digital

signature creation", 20 March 2019, <https://

www.etsi.org/deliver/etsi_ts/

119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf>.

Lodderstedt, T., "Transaction

Authorization or why we need to re-think OAuth scopes",

20 April 2019, <https://medium.com/oauth-2/transaction-

authorization-or-why-we-need-to-re-think-oauth-

scopes-2326e2038948>.

Fernandez, G., Walter, F., Nennker, A., Tonge, D.,

and B. Campbell, "OpenID Connect Client Initiated

Backchannel Authentication Flow - Core 1.0", 16 January

2019, <https://openid.net/specs/openid-client-initiated-

backchannel-authentication-core-1_0.html>.

Lodderstedt, T. and V.

Dzhuvinov, "JWT Response for OAuth Token Introspection",

Work in Progress, Internet-Draft, draft-ietf-oauth-jwt-

introspection-response-10, 18 October 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-jwt-introspection-

response-10>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0 incorporating

errata set 1", 8 November 2014, <http://openid.net/specs/

openid-connect-core-1_0.html>.

IANA, "OAuth Parameters", <http://

www.iana.org/assignments/oauth-parameters>.

https://cloudsignatureconsortium.org/wp-content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf
https://cloudsignatureconsortium.org/wp-content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf
https://cloudsignatureconsortium.org/wp-content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-18
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-18
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-jwt-introspection-response-10
https://tools.ietf.org/html/draft-ietf-oauth-jwt-introspection-response-10
https://tools.ietf.org/html/draft-ietf-oauth-jwt-introspection-response-10
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://www.iana.org/assignments/oauth-parameters
http://www.iana.org/assignments/oauth-parameters

Appendix A. Additional Examples

A.1. OpenID Connect

These hypothetical examples try to encapsulate all details specific

to the OpenID Connect part of an authorization process into an

authorization JSON object.

The top-level elements are based on the definitions given in [OIDC]:

claim_sets: names of predefined claim sets, replacement for

respective scope values, such as profile

max_age: Maximum Authentication Age

acr_values: array of ACR values

claims: the claims JSON structure as defined in [OIDC]

This is a simple request for some claim sets.

[

 {

 "type": "openid",

 "locations": [

 "https://op.example.com/userinfo"

],

 "claim_sets": [

 "email",

 "profile"

]

 }

]

Note: locations specifies the location of the userinfo endpoint

since this is the only place where an access token is used by a

client (RP) in OpenID Connect to obtain claims.

A more sophisticated example is shown in the following

¶

¶

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

[

 {

 "type": "openid",

 "locations": [

 "https://op.example.com/userinfo"

],

 "max_age": 86400,

 "acr_values": "urn:mace:incommon:iap:silver",

 "claims": {

 "userinfo": {

 "given_name": {

 "essential": true

 },

 "nickname": null,

 "email": {

 "essential": true

 },

 "email_verified": {

 "essential": true

 },

 "picture": null,

 "http://example.info/claims/groups": null

 },

 "id_token": {

 "auth_time": {

 "essential": true

 }

 }

 }

 }

]

A.2. Remote Electronic Signing

The following example is based on the concept layed out for remote

electronic signing in ETSI TS 119 432 [ETSI] and the CSC API for

remote signature creation [CSC].

¶

¶

[

 {

 "type": "sign",

 "locations": [

 "https://signing.example.com/signdoc"

],

 "credentialID": "60916d31-932e-4820-ba82-1fcead1c9ea3",

 "documentDigests": [

 {

 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",

 "label": "Credit Contract"

 },

 {

 "hash": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",

 "label": "Contract Payment Protection Insurance"

 }

],

 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"

 }

]

The top-level elements have the following meaning:

credentialID: identifier of the certificate to be used for

signing

documentDigests: array containing the hash of every document to

be signed (hash elements). Additionally, the corresponding label

element identifies the respective document to the user, e.g. to

be used in user consent.

hashAlgorithm: algomrithm that was used to calculate the hash

values.

The AS is supposed to ask the user for consent for the creation of

signatues for the documents listed in the structure. The client uses

the access token issued as result of the process to call the sign

doc endpoint at the respective signing service to actually create

the signature. This access token is bound to the client, the user id

and the hashes (and signature algorithm) as consented by the user.

A.3. Access to Tax Data

This example is inspired by an API allowing third parties to access

citizen's tax declarations and income statements, for example to

determine their credit worthiness.

¶

¶

*

¶

*

¶

*

¶

¶

¶

[

 {

 "type": "tax_data",

 "locations": [

 "https://taxservice.govehub.no"

],

 "actions":"read_tax_declaration",

 "periods": ["2018"],

 "duration_of_access": 30,

 "tax_payer_id": "23674185438934"

 }

]

The top-level elements have the following meaning:

periods: determines the periods the client wants to access

duration_of_access: how long does the client intend to access the

data in days

tax_payer_id: identifier of the tax payer (if known to the

client)

A.4. eHealth

These two examples are inspired by requirements for APIs used in the

Norwegian eHealth system.

In this use case the physical therapist sits in front of her

computer using a local Electronic Health Records (EHR) system. They

wants to look at the electronic patient records of a certain patient

and they also wants to fetch the patients journal entries in another

system, perhaps at another institution or a national service. Access

to this data is provided by an API.

The information necessary to authorize the request at the API is

only known by the EHR system, and must be presented to the API.

In the first example the authorization details object contains the

identifier of an organization. In this case the API needs to know if

the given organization has the lawful basis for processing personal

health information to give access to sensitive data.

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

"authorization_details":{

 "type":"patient_record",

 "requesting_entity": {

 "type": "Practitioner",

 "identifier": [

 {

 "system": " urn:oid:2.16.578.1.12.4.1.4.4",

 "value": "1234567"

 }],

 "practitioner_role":{

 "organization":{

 "identifier": {

 "system":"urn:oid:2.16.578.1.12.4.1.2.101",

 "type":"ENH",

 "value":"[organizational number]"

 }

 }

 }

 }

}

In the second example the API requires more information to authorize

the request. In this case the authorization details object contains

additional information about the health institution and the current

profession the user has at the time of the request. The additional

level of detail could be used for both authorization and data

minimization.

¶

¶

[

 {

 "type": "patient_record",

 "location": "https://fhir.example.com/patient",

 "actions": [

 "read"

],

 "patient_identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.4.1",

 "value": "12345678901"

 }

],

 "reason_for_request": "Clinical treatment",

 "requesting_entity": {

 "type": "Practitioner",

 "identifier": [

 {

 "system": " urn:oid:2.16.578.1.12.4.1.4.4",

 "value": "1234567"

 }

],

 "practitioner_role": {

 "organization": {

 "identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.2.101",

 "type": "ENH",

 "value": "<organizational number>"

 }

],

 "type": {

 "coding": [

 {

 "system":

 "http://hl7.org/fhir/organization-type",

 "code": "dept",

 "display": "Hospital Department"

 }

]

 },

 "name": "Akuttmottak"

 },

 "profession": {

 "coding": [

 {

 "system": "http://snomed.info/sct",

 "code": "36682004",

 "display": "Physical therapist"

 }

]

 }

 }

 }

 }

]

Description of the elements:

patient_identifier: the identifier of the patient composed of a

system identifier in OID format (namespace) and the acutal value

within this namespace.

reason_for_request: the reason why the user wants to access a

certain API

requesting_entity: specification of the requester by means of

identity, role and organizational context. This data is provided

to facilitate authorization and for auditing purposes.

In this use case, the AS authenticates the requester, who is not the

patient, and approves access based on policies.

Appendix B. Document History

[[To be removed from the final specification]]

-05

added authorization_details token request parameter and

discussion on authorization details comparison

added privileges field to authorization details (to align with

GNAP)

added IANA text and changed metadata parameter names

added text about use of machine-readable type schemas, e.g JSON

Schema

added text on how authorization details are determined for access

token issued with token response

added token error response and further error conditions to

authorization error response

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

-04

restructured draft for better readability

simplified normative text about use of the resource parameter

with authorization_details

added implementation considerations for deployments and products

added type union language from GNAP

added recommendation to use PAR to cope with large requests and

for request protection

-03

Updated references to current revisions or RFC numbers

Added section about enrichment of authorization details objects

by the AS

Clarified processing of unknown authorization details parameters

clarified dependencies between resource and authorization_details

parameters

-02

Clarify "type" parameter processing

-01

Minor fix-up in a few examples

-00 (WG draft)

initial WG revision

-03

Reworked examples to illustrate privacy preserving use of

authorization_details

Added text on audience restriction

Added description of relationship between scope and

authorization_details

Added text on token request & response and authorization_details

¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

*

¶

* ¶

*

¶

* ¶

Added text on how authorization details are conveyed to RSs by

JWTs or token endpoint response

Added description of relationship between claims and

authorization_details

Added more example from different sectors

Clarified string comparison to be byte-exact without collation

-02

Added Security Considerations

Added Privacy Considerations

Added notes on URI size and authorization details

Added requirement to return the effective authorization details

granted by the resource owner in the token response

changed authorization_details structure from object to array

added Justin Richer & Brian Campbell as Co-Authors

-00 / -01

first draft

Authors' Addresses

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

Justin Richer

Bespoke Engineering

Email: ietf@justin.richer.org

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

*

¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

mailto:torsten@lodderstedt.net
mailto:ietf@justin.richer.org
mailto:bcampbell@pingidentity.com

	OAuth 2.0 Rich Authorization Requests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Request parameter "authorization_details"
	2.1. Authorization data elements types
	2.2. Authorization Data Types

	3. Authorization Request
	3.1. Relationship to "scope" parameter
	3.2. Relationship to "resource" parameter

	4. Authorization Response
	5. Authorization Error Response
	6. Token Request
	6.1. Comparing authorization details
	6.2. Interaction with the resource parameter

	7. Token Response
	7.1. Enriched authorization details in Token Response

	8. Token Error Response
	9. Resource Servers
	9.1. JWT-based Access Tokens
	9.2. Token Introspection

	10. Metadata
	11. Scope value "openid" and "claims" parameter
	12. Implementation Considerations
	12.1. Using authorization details in a certain deployment
	12.2. Minimal product support
	12.3. Use of Machine-readable Type Schemas
	12.4. Large requests

	13. Security Considerations
	14. Privacy Considerations
	15. Acknowledgements
	16. IANA Considerations
	16.1. JSON Web Token Claims Registration
	16.2. OAuth Authorization Server Metadata
	16.3. OAuth Dynamic Client Registration Metadata
	16.4. OAuth Extensions Error registry

	17. Normative References
	18. Informative References
	Appendix A. Additional Examples
	A.1. OpenID Connect
	A.2. Remote Electronic Signing
	A.3. Access to Tax Data
	A.4. eHealth
	Appendix B. Document History
	Authors' Addresses

