
Open Authentication Protocol T. Lodderstedt, Ed.
Internet-Draft YES Europe AG
Intended status: Best Current Practice J. Bradley
Expires: March 14, 2018 Yubico
 A. Labunets
 Facebook
 September 10, 2017

OAuth Security Topics
draft-ietf-oauth-security-topics-03

Abstract

 This draft gives a comprehensive overview on open OAuth security
 topics. It is intended to serve as a working document for the OAuth
 working group to systematically capture and discuss these security
 topics and respective mitigations and eventually recommend best
 current practice and also OAuth extensions needed to cope with the
 respective security threats.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 14, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Lodderstedt, et al. Expires March 14, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Security Topics September 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Recommended Best Practice 4
2.1. Protecting redirect-based flows 4
2.2. TBD . 5

3. Recommended modifications and extensions to OAuth 5
4. OAuth Credentials Leakage 5
4.1. Insufficient redirect URI validation 5
4.1.1. Attacks on Authorization Code Grant 6
4.1.2. Attacks on Implicit Grant 7
4.1.3. Proposed Countermeasures 8

4.2. Authorization code leakage via referrer headers 10
4.2.1. Proposed Countermeasures 10

4.3. Attacks in the Browser 10
4.3.1. Code in browser history (TBD) 11
4.3.2. Access token in browser history (TBD) 11
4.3.3. Javascript Code stealing Access Tokens (TBD) 11

4.4. Access Token Leakage at the Resource Server 11
 4.4.1. Access Token Phishing by Counterfeit Resource Server 11

4.4.1.1. Metadata . 12
4.4.1.2. Sender Constrained Access Tokens 13
4.4.1.3. Audience Restricted Access Tokens 15

4.4.2. Compromised Resource Server 16
4.4.3. TLS Terminating Reverse Proxies 17

4.5. Mix-Up . 18
4.6. Refresh Token Leakage 18

5. OAuth Credentials Injection 19
5.1. Code Injection . 19
5.1.1. Proposed Countermeasures 21

5.2. Access Token Injection (TBD) 22
5.3. XSRF (TBD) . 23

6. Other Attacks . 23
7. Other Topics . 23
8. Acknowledgements . 24
9. IANA Considerations . 24
10. Security Considerations 24
11. References . 24
11.1. Normative References 24
11.2. Informative References 25

Appendix A. Document History 26
 Authors' Addresses . 27

Lodderstedt, et al. Expires March 14, 2018 [Page 2]

Internet-Draft Security Topics September 2017

1. Introduction

 It's been a while since OAuth has been published in RFC 6749
 [RFC6749] and RFC 6750 [RFC6750]. Since publication, OAuth 2.0 has
 gotten massive traction in the market and became the standard for API
 protection and, as foundation of OpenID Connect, identity providing.
 While OAuth was used in a variety of scenarios and different kinds of
 deployments, the following challenges could be observed:

 o OAuth implementations are being attacked through known
 implementation weaknesses and anti-patterns (XSRF, referrer
 header). Although most of these threats are discussed in RFC 6819
 [RFC6819], continued exploitation demonstrates there may be a need
 for more specific recommendations or that the existing mitigations
 are too difficult to deploy.

 o Technology has changed, e.g. the way browsers treat fragments in
 some situations, which may change the implicit grant's underlying
 security model.

 o OAuth is used in much more dynamic setups than originally
 anticipated, creating new challenges with respect to security.
 Those challenges go beyond the original scope of RFC 6749
 [RFC6749], RFC 6750 [RFC6749], and RFC 6819 [RFC6819].

 OAuth initially assumed a static relationship between client,
 authorization server and resource servers. The URLs of AS and RS
 were known to the client at deployment time and built an anchor for
 the trust relationsship among those parties. The validation whether
 the client talks to a legitimate server was based on TLS server
 authentication (see [RFC6819], Section 4.5.4). With the increasing
 adoption of OAuth, this simple model dissolved and, in several
 scenarios, was replaced by a dynamic establishment of the
 relationship between clients on one side and the authorization and
 resource servers of a particular deployment on the other side. This
 way the same client could be used to access services of different
 providers (in case of standard APIs, such as e-Mail or OpenID
 Connect) or serves as a frontend to a particular tenant in a multi-
 tenancy. Extensions of OAuth, such as [RFC7591] and
 [I-D.ietf-oauth-discovery] were developed in order to support the
 usage of OAuth in dynamic scenarios. As a challenge to the
 community, such usage scenarios open up new attack angles, which are
 discussed in this document.

 The remainder of the document is organized as follows: The next
 section gives a summary of the set of security mechanisms and
 practices, the working group shall consider to recommend to OAuth
 implementers. This is followed by a section proposing modifications

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819#section-4.5.4
https://datatracker.ietf.org/doc/html/rfc7591

Lodderstedt, et al. Expires March 14, 2018 [Page 3]

Internet-Draft Security Topics September 2017

 to OAuth intended to either simplify its usage and to strengthen its
 security.

 The remainder of the draft gives a detailed analyses of the
 weaknesses and implementation issues, which can be found in the wild
 today along with a discussion of potential counter measures. First,
 various scenarios how OAuth credentials (namely access tokens and
 authorization codes) may be disclosed to attackers and proposes
 countermeasures are discussed. Afterwards, the document discusses
 attacks possible with captured credential and how they may be
 prevented. The last sections discuss additional threats.

2. Recommended Best Practice

 This section describes the set of security mechanisms the authors
 believe should be taken into consideration by the OAuth working group
 to be recommended to OAuth implementers.

2.1. Protecting redirect-based flows

 Authorization servers shall utilize exact matching of client redirect
 URIs against pre-registered URIs. This measure contributes to the
 prevention of leakage of authorization codes and access tokens
 (depending on the grant type). It also helps to detect mix up
 attacks.

 Clients shall avoid any redirects or forwards, which can be
 parameterized by URI query parameters, in order to provide a further
 layer of defence against token leakage. If there is a need for this
 kind of redirects, clients are advised to implement appropriate
 counter measures against open redirection, e.g. as described by the
 OWASP [owasp].

 Clients shall ensure to only process redirect responses of the OAuth
 authorization server they send the respective request to and in the
 same user agent this request was initiated in. In particular,
 clients shall implement appropriate XSRF prevention by utilizing one-
 time use XSRF tokens carried in the STATE parameter, which are
 securely bound to the user agent. Moreover, the client shall store
 the authorization server's identity it sends an authorization request
 to in a transaction-specific manner, which is also bound to the
 particular user agent. Furthermore, clients should use AS-specific
 redirect URIs as a means to identify the AS a particular response
 came from. Matching this with the before mentioned information
 regarding the AS the client sent the request to helps to detect mix-
 up attacks.

Lodderstedt, et al. Expires March 14, 2018 [Page 4]

Internet-Draft Security Topics September 2017

 Note: [I-D.bradley-oauth-jwt-encoded-state] gives advice on how to
 implement XSRF prevention and AS matching using signed JWTs in the
 STATE parameter.

 Clients shall use PKCE [RFC7636] in order to (with the help of the
 authorization server) detect attempts to inject authorization codes
 into the authorization response. The PKCE challenges must be
 transaction-specific and securely bound to the user agent, in which
 the transaction was started.

 Note: although PKCE so far was recommended as mechanism to protect
 native apps, this advice applies to all kinds of OAuth clients,
 including web applications.

2.2. TBD

 Add further topics:

 o Access Token Leakage at resource servers

3. Recommended modifications and extensions to OAuth

 This section describes the set of modifications and extensions the
 authors believe should be taken into consideration by the OAuth
 working group change and extend OAuth in order to strengthen its
 security and make it simpler to implement. It also recommends some
 changes to the OAuth set of specs.

 Remove requirement to check actual redirect URI at token endpoint -
 seems to be complicated to implement properly and could be
 compromised. The protection goal is achieved even more effective by
 utilizing PKCE as recommended in Section 2.1.

4. OAuth Credentials Leakage

 This section describes a couple of different ways how OAuth
 credentials, namely authorization codes and access tokens, can be
 exposed to attackers.

4.1. Insufficient redirect URI validation

 Some authorization servers allow clients to register redirect URI
 patterns instead of complete redirect URIs. In those cases, the
 authorization server, at runtime, matches the actual redirect URI
 parameter value at the authorization endpoint against this pattern.
 This approach allows clients to encode transaction state into
 additional redirect URI parameters or to register just a single
 pattern for multiple redirect URIs. As a downside, it turned out to

https://datatracker.ietf.org/doc/html/rfc7636

Lodderstedt, et al. Expires March 14, 2018 [Page 5]

Internet-Draft Security Topics September 2017

 be more complex to implement and error prone to manage than exact
 redirect URI matching. Several successful attacks have been observed
 in the wild, which utilized flaws in the pattern matching
 implementation or concrete configurations. Such a flaw effectively
 breaks client identification or authentication (depending on grant
 and client type) and allows the attacker to obtain an authorization
 code or access token, either:

 o by directly sending the user agent to a URI under the attackers
 control or

 o by exposing the OAuth credentials to an attacker by utilizing an
 open redirector at the client in conjunction with the way user
 agents handle URL fragments.

4.1.1. Attacks on Authorization Code Grant

 For a public client using the grant type code, an attack would look
 as follows:

 Let's assume the redirect URL pattern "https://*.example.com/*" had
 been registered for the client "s6BhdRkqt3". This pattern allows
 redirect URIs from any host residing in the domain example.com. So
 if an attacker manager to establish a host or subdomain in
 "example.com" he can impersonate the legitimate client. Assume the
 attacker sets up the host "evil.example.com".

 (1) The attacker needs to trick the user into opening a tampered URL
 in his browser, which launches a page under the attacker's
 control, say "https://www.evil.com".

 (2) This URL initiates an authorization request with the client id
 of a legitimate client to the authorization endpoint. This is
 the example authorization request (line breaks are for display
 purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fevil.example.com%2Fcb HTTP/1.1
 Host: server.example.com

 (1) The authorization validates the redirect URI in order to
 identify the client. Since the pattern allows arbitrary domains
 host names in "example.com", the authorization request is
 processed under the legitimate client's identity. This includes
 the way the request for user consent is presented to the user.
 If auto-approval is allowed (which is not recommended for public
 clients according to RFC 6749), the attack can be performed even
 easier.

https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires March 14, 2018 [Page 6]

Internet-Draft Security Topics September 2017

 (2) If the user does not recognize the attack, the code is issued
 and directly sent to the attacker's client.

 (3) Since the attacker impersonated a public client, it can directly
 exchange the code for tokens at the respective token endpoint.

 Note: This attack will not directly work for confidential clients,
 since the code exchange requires authentication with the legitimate
 client's secret. The attacker will need to utilize the legitimate
 client to redeem the code (e.g. by mounting a code injection attack).
 This and other kinds of injections are covered in
 Section OAuth Credentials Injection.

4.1.2. Attacks on Implicit Grant

 The attack described above works for the implicit grant as well. If
 the attacker is able to send the authorization response to a URI
 under his control, he will directly get access to the fragment
 carrying the access token.

 Additionally, implicit clients can be subject to a further kind of
 attacks. It utilizes the fact that user agents re-attach fragments
 to the destination URL of a redirect if the location header does not
 contain a fragment (see [RFC7231], section 9.5). The attack
 described here combines this behavior with the client as an open
 redirector in order to get access to access tokens. This allows
 circumvention even of strict redirect URI patterns (but not strict
 URL matching!).

 Assume the pattern for client "s6BhdRkqt3" is
 "https://client.example.com/cb?*", i.e. any parameter is allowed for
 redirects to "https://client.example.com/cb". Unfortunately, the
 client exposes an open redirector. This endpoint supports a
 parameter "redirect_to", which takes a target URL and will send the
 browser to this URL using a HTTP 302.

 (1) Same as above, the attacker needs to trick the user into opening
 a tampered URL in his browser, which launches a page under the
 attacker's control, say "https://www.evil.com".

 (2) The URL initiates an authorization request, which is very
 similar to the attack on the code flow. As differences, it
 utilizes the open redirector by encoding
 "redirect_to=https://client.evil.com" into the redirect URI and
 it uses the response type "token" (line breaks are for display
 purposes only):

https://datatracker.ietf.org/doc/html/rfc7231#section-9.5

Lodderstedt, et al. Expires March 14, 2018 [Page 7]

Internet-Draft Security Topics September 2017

 GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fcb%26redirect_to
 %253Dhttps%253A%252F%252Fclient.evil.com%252Fcb HTTP/1.1
 Host: server.example.com

 (1) Since the redirect URI matches the registered pattern, the
 authorization server allows the request and sends the resulting
 access token with a 302 redirect (some response parameters are
 omitted for better readability)

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?
 redirect_to%3Dhttps%3A%2F%2Fclient.evil.com%2Fcb
 #access_token=2YotnFZFEjr1zCsicMWpAA&...

 (2) At the example.com, the request arrives at the open redirector.
 It will read the redirect parameter and will issue a HTTP 302 to
 the URL "https://evil.example.com/cb".

 HTTP/1.1 302 Found
 Location: https://client.evil.com/cb

 (3) Since the redirector at example.com does not include a fragment
 in the Location header, the user agent will re-attach the
 original fragment
 "#access_token=2YotnFZFEjr1zCsicMWpAA&..." to the URL and will
 navigate to the following URL:

https://client.evil.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA&...

 (4) The attacker's page at client.evil.com can access the fragment
 and obtain the access token.

4.1.3. Proposed Countermeasures

 The complexity of implementing and managing pattern matching
 correctly obviously causes security issues. This document therefore
 proposes to simplify the required logic and configuration by using
 exact redirect URI matching only. This means the authorization
 server shall compare the two URIs using simple string comparison as
 defined in [RFC3986], Section 6.2.1..

 This would cause the following impacts:

 o This change will require all OAuth clients to maintain the
 transaction state (and XSRF tokens) in the "state" parameter.
 This is a normative change to RFC 6749 since section 3.1.2.2
 allows for dynamic URI query parameters in the redirect URI. In

https://client.evil.com/cb
https://client.evil
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.1
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires March 14, 2018 [Page 8]

Internet-Draft Security Topics September 2017

 order to assess the practical impact, the working group needs to
 collect data on whether this feature is really used in deployments
 today.

 o The working group may also consider this change as a step towards
 improved interoperability for OAuth implementations since RFC 6749
 is somewhat vague on redirect URI validation. Notably there are
 no rules for pattern matching. One may therefore assume all
 clients utilizing pattern matching will do so in a deployment
 specific way. On the other hand, RFC 6749 already recommends
 exact matching if the full URL had been registered.

 o Clients with multiple redirect URIs need to register all of them
 explicitly.
 Note: clients with just a single redirect URI would not even need
 to send a redirect URI with the authorization request. Does it
 make sense to emphasize this option? Would that further simplify
 use of the protocol and foster security?

 o Exact redirect matching does not work for native apps utilizing a
 local web server due to dynamic port numbers - at least wild cards
 for port numbers are required.
 Question: Does redirect uri validation solve any problem for
 native apps? Effective against impersonation when used in
 conjunction with claimed HTTPS redirect URIs only.
 For Windows token broker exact redirect URI matching is important
 as the redirect URI encodes the app identity. For custom scheme
 redirects there is a question however it is probably a useful part
 of defense in depth.

 Additional recommendations:

 o Servers on which callbacks are hosted must not expose open
 redirectors (see respective section).

 o Clients may drop fragments via intermediary URLs with "fix
 fragments" (e.g. https://developers.facebook.com/blog/post/552/)
 to prevent the user agent from appending any unintended fragments.

 Alternatives to exact redirect URI matching:

 o authenticate client using digital signatures (JAR?
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-09)

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://developers.facebook.com/blog/post/552/
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-09

Lodderstedt, et al. Expires March 14, 2018 [Page 9]

Internet-Draft Security Topics September 2017

4.2. Authorization code leakage via referrer headers

 It is possible authorization codes are unintentionally disclosed to
 attackers, if a OAuth client renders a page containing links to other
 pages (ads, faq, ...) as result of a successful authorization
 request.

 If the user clicks onto one of those links and the target is under
 the control of an attacker, it can get access to the response URL in
 the referrer header.

 It is also possible that an attacker injects cross-domain content
 somehow into the page, such as (f.e. if this is blog web site
 etc.): the implication is obviously the same - loading this content
 by browser results in leaking referrer with a code.

4.2.1. Proposed Countermeasures

 There are some means to prevent leakage as described above:

 o Use of the HTML link attribute rel="noreferrer" (Chrome
 52.0.2743.116, FF 49.0.1, Edge 38.14393.0.0, IE/Win10)

 o Use of the "referrer" meta link attribute (possible values e.g.
 noreferrer, origin, ...) (cf. https://w3c.github.io/webappsec-

referrer-policy/ - work in progress (seems Google, Chrome and Edge
 support it))

 o Redirect to intermediate page (sanitize history) before sending
 user agent to other pages
 Note: double check redirect/referrer header behavior

 o Use form post mode instead of redirect for authorization response
 (don't transport credentials via URL parameters and GET)

 Note: There shouldn't be a referer header when loading HTTP content
 from a HTTPS -loaded page (e.g. help/faq pages)

 Note: This kind of attack is not applicable to the implicit grant
 since fragments are not be included in referrer headers (cf.

https://tools.ietf.org/html/rfc7231#section-5.5.2)

4.3. Attacks in the Browser

https://w3c.github.io/webappsec-referrer-policy/
https://w3c.github.io/webappsec-referrer-policy/
https://tools.ietf.org/html/rfc7231#section-5.5.2

Lodderstedt, et al. Expires March 14, 2018 [Page 10]

Internet-Draft Security Topics September 2017

4.3.1. Code in browser history (TBD)

 When browser navigates to "client.com/redirection_endpoint?code=abcd"
 as a result of a redirect from a provider's authorization endpoint.

 Proposed countermeasures: code is one time use, has limited duration,
 is bound to client id/secret (confidential clients only)

4.3.2. Access token in browser history (TBD)

 When a client or just a web site which already has a token
 deliberately navigates to a page like provider.com/
 get_user_profile?access_token=abcdef.. Actually RFC6750 discourages
 this practice and asks to transfer tokens via a header, but in
 practice web sites often just pass access token in query

 When browser navigates to client.com/
 redirection_endpoint#access_token=abcef as a result of a redirect
 from a provider's authorization endpoint.

 Proposal: replace implicit flow with postmessage communication

4.3.3. Javascript Code stealing Access Tokens (TBD)

 sandboxing using service workers

4.4. Access Token Leakage at the Resource Server

4.4.1. Access Token Phishing by Counterfeit Resource Server

 An attacker may setup his own resource server and trick a client into
 sending access tokens to it, which are valid for other resource
 servers. If the client sends a valid access token to this
 counterfeit resource server, the attacker in turn may use that token
 to access other services on behalf of the resource owner.

 This attack assumes the client is not bound to a certain resource
 server (and the respective URL) at development time, but client
 instances are configured with an resource server's URL at runtime.
 This kind of late binding is typical in situations, where the client
 uses a standard API, e.g. for e-Mail, calendar, health, or banking
 and is configured by an user or administrator for the standard-based
 service, this particular user or company uses.

 There are several potential mitigation strategies, which will be
 discussed in the following sections.

https://datatracker.ietf.org/doc/html/rfc6750

Lodderstedt, et al. Expires March 14, 2018 [Page 11]

Internet-Draft Security Topics September 2017

4.4.1.1. Metadata

 An authorization server could provide the client with additional
 information about the location where it is safe to use its access
 tokens.

 In the simplest form, this would require the AS to publish a list of
 its known resource servers, illustrated in the following example
 using a metadata parameter "resource_servers":

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "issuer":"https://server.example.com",
 "authorization_endpoint":"https://server.example.com/authorize",
 "resource_servers":[
 "email.example.com",
 "storage.example.com",
 "video.example.com"]
 ...
 }

 The AS could also return the URL(s) an access token is good for in
 the token response, illustrated by the example return parameter
 "access_token_resource_server":

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "access_token_resource_server":"https://hostedresource.example.com/path1",
...
}

 This mitigation strategy would rely on the client to enforce the
 security policy and to only send access tokens to legitimate
 destinations. Results of OAuth related security research (see for
 example [oauth_security_ubc] and [oauth_security_cmu]) indicate a
 large portion of client implementations do not or fail to properly
 implement security controls, like state checks. So relying on
 clients to detect and properly handle access token phishing is likely
 to fail as well. Moreover given the ratio of clients to
 authorization and resource servers, it is considered the more viable
 approach to move as much as possible security-related logic to those

Lodderstedt, et al. Expires March 14, 2018 [Page 12]

Internet-Draft Security Topics September 2017

 entities. Clearly, the client has to contribute to the overall
 security. But there are alternative counter measures, as described
 in the next sections, which provide a better balance between the
 involved parties.

4.4.1.2. Sender Constrained Access Tokens

 As the name suggests, sender constraint access token scope the
 applicability of an access token to a certain sender. This sender is
 obliged to demonstrate knowledge of a certain secret as prerequisite
 for the acceptance of that token at a resource server.

 A typical flow looks like this:

 1. The authorization server associates data with the access token,
 which bind this particular token to a certain client. The
 binding can utilize the client identity, but in most cases the AS
 utilizes key material (or data derived from the key material)
 known to the client.

 2. This key material must be distributed somehow. Either the key
 material already exists before the AS creates the binding or the
 AS creates ephemeral keys. The way pre-existing key material is
 distributed varies among the different approaches. For example,
 X.509 Certificates can be used in which case the distribution
 happens explicitly during the enrollment process. Or the key
 material is created and distributed at the TLS layer, in which
 case it might automatically happens during the setup of a TLS
 connection.

 3. The RS must implement the actual proof of possession check. This
 is typically done on the application level, it may utilize
 capabilities of the transport layer (e.g. TLS). Note: replay
 detection is required as well!

 There exists several proposals to demonstrate the proof of possession
 in the scope of the OAuth working group:

 o [I-D.ietf-oauth-token-binding]: In this approach, an access tokens
 is, via the so-called token binding id, bound to key material
 representing a long term association between a client and a
 certain TLS host. Negotiation of the key material and proof of
 possession in the context of a TLS handshake is taken care of by
 the TLS stack. The client needs to determine the token binding id
 of the target resource server and pass this data to the access
 token request. The authorization server than associates the
 access token with this id. The resource server checks on every
 invocation that the token binding id of the active TLS connection

Lodderstedt, et al. Expires March 14, 2018 [Page 13]

Internet-Draft Security Topics September 2017

 and the token binding id of associated with the access token
 match. Since all crypto-related functions are covered by the TLS
 stack, this approach is very client developer friendly. As a
 prerequisite, token binding as described in
 [I-D.ietf-tokbind-https] (including federated token bindings) must
 be supported on all ends (client, authorization server, resource
 server).

 o [I-D.ietf-oauth-mtls]: The approach as specified in this document
 allow use of mutual TLS for both client authentication and sender
 constraint access tokens. For the purpose of sender constraint
 access tokens, the client is identified towards the resource
 server by the fingerprint of its public key. During processing of
 an access token request, the authorization server obtains the
 client's public key from the TLS stack and associates its
 fingerprint with the respective access tokens. The resource
 server in the same way obtains the public key from the TLS stack
 and compares its fingerprint with the fingerprint associated with
 the access token.

 o [I-D.ietf-oauth-signed-http-request] specifies an approach to sign
 HTTP requests. It utilizes [I-D.ietf-oauth-pop-key-distribution]
 and represents the elements of the signature in a JSON object.
 The signature is built using JWS. The mechanism has built-in
 support for signing of HTTP method, query parameters and headers.
 It also incorporates a timestamp as basis for replay detection.

 o [I-D.sakimura-oauth-jpop]: this draft describes different ways to
 constrain access token usage, namely TLS or request signing.
 Note: Since the authors of this draft contributed the TLS-related
 proposal to [I-D.ietf-oauth-mtls], this document only considers
 the request signing part. For request signing, the draft utilizes
 [I-D.ietf-oauth-pop-key-distribution] and RFC 7800 [RFC7800]. The
 signature data is represented in a JWT and JWS is used for
 signing. Replay detection is provided by building the signature
 over a server-provided nonce, client-provided nonce and a nonce
 counter.

 [I-D.ietf-oauth-mtls] and [I-D.ietf-oauth-token-binding] are built on
 top of TLS and this way continue the successful OAuth 2.0 philosophy
 to leverage TLS to secure OAuth wherever possible. Both mechanisms
 allow prevention of access token leakage in a fairly client developer
 friendly way.

 There are some differences between both approaches: To start with, in
 [I-D.ietf-oauth-token-binding] all key material is automatically
 managed by the TLS stack whereas [I-D.ietf-oauth-mtls] requires the
 developer to create and maintain the key pairs and respective

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7800

Lodderstedt, et al. Expires March 14, 2018 [Page 14]

Internet-Draft Security Topics September 2017

 certificates. Use of self-signed certificates, which is supported by
 the draft, significantly reduce the complexity of this task.
 Furthermore, [I-D.ietf-oauth-token-binding] allows to use different
 key pairs for different resource servers, which is a privacy benefit.
 On the other hand, [I-D.ietf-oauth-mtls] only requires widely
 deployed TLS features, which means it might be easier to adopt in the
 short term.

 Application level signing approaches, like
 [I-D.ietf-oauth-signed-http-request] and [I-D.sakimura-oauth-jpop]
 have been debated for a long time in the OAuth working group without
 a clear outcome.

 As one advantage, application-level signing allows for end-to-end
 protection including non-repudiation even if the TLS connection is
 terminated between client and resource server. But deployment
 experiences have revealed challenges regarding robustness (e.g.
 reproduction of the signature base string including correct URL) as
 well as state management (e.g. replay detection).

 This document therefore recommends implementors to consider one of
 TLS-based approaches wherever possible.

4.4.1.3. Audience Restricted Access Tokens

 An audience restriction essentially restricts the resource server a
 particular access token can be used at. The authorization server
 associates the access token with a certain resource server and every
 resource server is obliged to verify for every request, whether the
 access token send with that request was meant to be used at the
 particular resource server. If not, the resource server must refuse
 to serve the respective request. In the general case, audience
 restrictions limit the impact of a token leakage. In the case of a
 counterfeit resource server, it may (as described see below) also
 prevent abuse of the phished access token at the legitimate resource
 server.

 The audience can basically be expressed using logical names or
 physical addresses (like URLs). In order to detect phishing, it is
 necessary to use the actual URL the client will send requests to. In
 the phishing case, this URL will point to the counterfeit resource
 server. If the attacker tries to use the access token at the
 legitimate resource server (which has a different URL), the resource
 server will detect the mismatch (wrong audience) and refuse to serve
 the request.

Lodderstedt, et al. Expires March 14, 2018 [Page 15]

Internet-Draft Security Topics September 2017

 In deployments where the authorization server knows the URLs of all
 resource servers, the authorization server may just refuse to issue
 access tokens for unknown resource server URLs.

 The client needs to tell the authorization server, at which URL it
 will use the access token it is requesting. It could use the
 mechanism proposed [I-D.campbell-oauth-resource-indicators] or encode
 the information in the scope value.

 Instead of the URL, it is also possible to utilize the fingerprint of
 the resource server's X.509 certificate as audience value. This
 variant would also allow to detect an attempt to spoof the legit
 resource server's URL by using a valid TLS certificate obtained from
 a different CA. It might also be considered a privacy benefit to
 hide the resource server URL from the authorization server.

 Audience restriction seems easy to use since it does not require any
 crypto on the client side. But since every access token is bound to
 a certain resource server, the client also needs to obtain different
 RS-specific access tokens, if it wants to access several resource
 services. [I-D.ietf-oauth-token-binding] has the same property,
 since different token binding ids must be associated with the access
 token. [I-D.ietf-oauth-mtls] on the other hand allows a client to
 use the access token at multiple resource servers.

 It shall be noted that audience restrictions, or generally speaking
 an indication by the client to the authorization server where it
 wants to use the access token, has additional benefits beyond the
 scope of token leakage prevention. It allows the authorization
 server to create different access token whose format and content is
 specifically minted for the respective server. This has huge
 functional and privacy advantages in deployments using structured
 access tokens.

4.4.2. Compromised Resource Server

 An attacker may compromise a resource server in order to get access
 to its resources and other resources of the respective deployment.
 Such a compromise may range from partial access to the system, e.g.
 its logfiles, to full control of the respective server.

 If the attacker was able to take over full control including shell
 access it will be able to circumvent all controls in place and access
 resources without access control. It will also get access to access
 tokens, which are sent to the compromised system and which
 potentially are valid for access to other resource servers as well.
 Even if the attacker "only" is able to access logfiles or databases
 of the server system, it may get access to valid access tokens.

Lodderstedt, et al. Expires March 14, 2018 [Page 16]

Internet-Draft Security Topics September 2017

 Preventing and detecting server breaches by way of hardening and
 monitoring server systems is considered a standard operational
 procedure and therefore out of scope of this document. This section
 will focus on the impact of such breaches on OAuth-related parts of
 the ecosystem, which is the replay of captured access tokens on the
 compromised resource server and other resource servers of the
 respective deployment.

 The following measures shall be taken into account by implementors in
 order to cope with access token replay:

 o The resource server must treat access tokens like any other
 credentials. It is considered good practice to not log them and
 not to store them in plain text.

 o Sender constraint access tokens as described in Section 4.4.1.2
 will prevent the attacker from replaying the access tokens on
 other resource servers. Depending on the severity of the
 penetration, it will also prevent replay on the compromised
 system.

 o Audience restriction as described in Section 4.4.1.3 may be used
 to prevent replay of captured access tokens on other resource
 servers.

4.4.3. TLS Terminating Reverse Proxies

 A common deployment architecture for HTTP applications is to have the
 application server sitting behind a reverse proxy, which terminates
 the TLS connection and dispatches the incoming requests to the
 respective application server nodes.

 This section highlights some attack angles of this deployment
 architecture, which are relevant to OAuth, and give recommendations
 for security controls.

 In some situations, the reverse proxy needs to pass security-related
 data to the upstream application servers for further processing.
 Examples include the IP address of the request originator, token
 binding ids and authenticated TLS client certificates.

 If the reverse proxy would pass through any header sent from the
 outside, an attacker could try to directly send the faked header
 values through the proxy to the application server in order to
 circumvent security controls that way. For example, it is standard
 practice of reverse proxies to accept "forwarded_for" headers and
 just add the origin of the inbound request (making it a list).
 Depending on the logic performed in the application server, the

Lodderstedt, et al. Expires March 14, 2018 [Page 17]

Internet-Draft Security Topics September 2017

 attacker could simply add a whitelisted IP address to the header and
 render a IP whitelist useless. A reverse proxy must therefore
 sanitize any inbound requests to ensure the authenticity and
 integrity of all header values relevant for the security of the
 application servers.

 If an attacker would be able to get access to the internal network
 between proxy and application server, it could also try to circumvent
 security controls in place. It is therefore important to ensure the
 authenticity of the communicating entities. Furthermore, the
 communication link between reverse proxy and application server must
 therefore be protected against tapping and injection (including
 replay prevention).

4.5. Mix-Up

 Mix-up is another kind of attack on more dynamic OAuth scenarios (or
 at least scenarios where a OAuth client interacts with multiple
 authorization servers). The goal of the attack is to obtain an
 authorization code or an access token by tricking the client into
 sending those credentials to the attacker (which acts as MITM between
 client and authorization server)

 A detailed description of the attack and potential countermeasures is
 given in cf. https://tools.ietf.org/html/draft-ietf-oauth-mix-up-

mitigation-01.

 Potential mitigations:

 o AS returns client_id and its iss in the response. Client compares
 this data to AS it believed it sent the user agent to.

 o ID token carries client id and issuer (requires OpenID Connect)

 o Clients use AS-specific redirect URIs, for every authorization
 request store intended AS and compare intention with actual
 redirect URI where the response was received (no change to OAuth
 required)

4.6. Refresh Token Leakage

 mitm, log files on the device, ...

 refresh token rotation, mutual TLS authentication at the token
 endpoint

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01
https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

Lodderstedt, et al. Expires March 14, 2018 [Page 18]

Internet-Draft Security Topics September 2017

5. OAuth Credentials Injection

 Credential injection means an attacker somehow obtained a valid OAuth
 credential (code or token) and is able to utilize this to impersonate
 the legitimate resource owner or to cause a victim to access
 resources under the attacker's control (XSRF).

5.1. Code Injection

 In such an attack, the adversary attempts to inject a stolen
 authorization code into a legitimate client on a device under his
 control. In the simplest case, the attacker would want to use the
 code in his own client. But there are situations where this might
 not be possible or intended. Example are:

 o The code is bound to a particular confidential client and the
 attacker is unable to obtain the required client credentials to
 redeem the code himself and/or

 o The attacker wants to access certain functions in this particular
 client. As an example, the attacker potentially wants to
 impersonate his victim in a certain app.

 o Another example could be that access to the authorization and
 resource servers is some how limited to networks, the attackers is
 unable to access directly.

 How does an attack look like?

 (1) The attacker obtains an authorization code by executing any of
 the attacks described above (OAuth Credentials Leakage).

 (2) It performs an OAuth authorization process with the legitimate
 client on his device.

 (3) The attacker injects the stolen authorization code in the
 response of the authorization server to the legitimate client.

 (4) The client sends the code to the authorization server's token
 endpoint, along with client id, client secret and actual
 redirect_uri.

 (5) The authorization server checks the client secret, whether the
 code was issued to the particular client and whether the actual
 redirect URI matches the redirect_uri parameter.

 (6) If all checks succeed, the authorization server issues access
 and other tokens to the client.

Lodderstedt, et al. Expires March 14, 2018 [Page 19]

Internet-Draft Security Topics September 2017

 (7) The attacker just impersonated the victim.

 Obviously, the check in step (5) will fail, if the code was issued to
 another client id, e.g. a client set up by the attacker.

 An attempt to inject a code obtained via a malware pretending to be
 the legitimate client should also be detected, if the authorization
 server stored the complete redirect URI used in the authorization
 request and compares it with the redirect_uri parameter.

[RFC6749], Section 4.1.3, requires the AS to ... "ensure that the
 "redirect_uri" parameter is present if the "redirect_uri" parameter
 was included in the initial authorization request as described in

Section 4.1.1, and if included ensure that their values are
 identical." In the attack scenario described above, the legitimate
 client would use the correct redirect URI it always uses for
 authorization requests. But this URI would not match the tampered
 redirect URI used by the attacker (otherwise, the redirect would not
 land at the attackers page). So the authorization server would
 detect the attack and refuse to exchange the code.

 Note: this check could also detect attempt to inject a code, which
 had been obtained from another instance of the same client on another
 device, if certain conditions are fulfilled:

 o the redirect URI itself needs to contain a nonce or another kind
 of one-time use, secret data and

 o the client has bound this data to this particular instance

 But this approach conflicts with the idea to enforce exact redirect
 URI matching at the authorization endpoint. Moreover, it has been
 observed that providers very often ignore the redirect_uri check
 requirement at this stage, maybe, because it doesn't seem to be
 security-critical from reading the spec.

 Other providers just pattern match the redirect_uri parameter against
 the registered redirect URI pattern. This saves the authorization
 server from storing the link between the actual redirect URI and the
 respective authorization code for every transaction. But this kind
 of check obviously does not fulfill the intent of the spec, since the
 tampered redirect URI is not considered. So any attempt to inject a
 code obtained using the client_id of a legitimate client or by
 utilizing the legitimate client on another device won't be detected
 in the respective deployments.

 It is also assumed that the requirements defined in [RFC6749],
 Section 4.1.3, increase client implementation complexity as clients

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

Lodderstedt, et al. Expires March 14, 2018 [Page 20]

Internet-Draft Security Topics September 2017

 need to memorize or re-construct the correct redirect URI for the
 call to the tokens endpoint.

 The authors therefore propose to the working group to drop this
 feature in favor of more effective and (hopefully) simpler approaches
 to code injection prevention as described in the following section.

5.1.1. Proposed Countermeasures

 The general proposal is to bind every particular authorization code
 to a certain client on a certain device (or in a certain user agent)
 in the context of a certain transaction. There are multiple
 technical solutions to achieve this goal:

 Nonce OpenID Connect's existing "nonce" parameter is used for this
 purpose. The nonce value is one time use and created by the
 client. The client is supposed to bind it to the user agent
 session and sends it with the initial request to the OpenId
 Provider (OP). The OP associates the nonce to the
 authorization code and attests this binding in the ID token,
 which is issued as part of the code exchange at the token
 endpoint. If an attacker injected an authorization code in
 the authorization response, the nonce value in the client
 session and the nonce value in the ID token will not match
 and the attack is detected. assumption: attacker cannot get
 hold of the user agent state on the victims device, where he
 has stolen the respective authorization code.
 pro:
 - existing feature, used in the wild
 con:
 - OAuth does not have an ID Token - would need to push that
 down the stack

 Code-bound State It has been discussed in the security workshop in
 December to use the OAuth state value much similar in the way
 as described above. In the case of the state value, the idea
 is to add a further parameter state to the code exchange
 request. The authorization server then compares the state
 value it associated with the code and the state value in the
 parameter. If those values do not match, it is considered an
 attack and the request fails. Note: a variant of this
 solution would be send a hash of the state (in order to
 prevent bulky requests and DoS).
 pro:
 - use existing concept
 con:
 - state needs to fulfil certain requirements (one time use,
 complexity)

Lodderstedt, et al. Expires March 14, 2018 [Page 21]

Internet-Draft Security Topics September 2017

 - new parameter means normative spec change

 PKCE Basically, the PKCE challenge/verifier could be used in the
 same way as Nonce or State. In contrast to its original
 intention, the verifier check would fail although the client
 uses its correct verifier but the code is associated with a
 challenge, which does not match.
 pro:
 - existing and deployed OAuth feature
 con:
 - currently used and recommended for native apps, not web
 apps

 Token Binding Code must be bind to UA-AS and UA-Client legs -
 requires further data (extension to response) to manifest
 binding id for particular code.
 Note: token binding could be used in conjunction with PKCE as
 an option (https://tools.ietf.org/html/draft-ietf-oauth-

token-binding-02#section-4).
 pro:
 - highly secure
 con:
 - highly sophisticated, requires browser support, will it
 work for native apps?

 per instance client id/secret ...

 Note on pre-warmed secrets: An attacker can circumvent the
 countermeasures described above if he is able to create or capture
 the respective secret or code_challenge on a device under his
 control, which is then used in the victim's authorization request.
 Exact redirect URI matching of authorization requests can prevent the
 attacker from using the pre-warmed secret in the faked authorization
 transaction on the victim's device.
 Unfortunately it does not work for all kinds of OAuth clients. It is
 effective for web and JS apps and for native apps with claimed URLs.
 What about other native apps? Treat nonce or PKCE challenge as
 replay detection tokens (needs to ensure cluster-wide one-time use)?

5.2. Access Token Injection (TBD)

 Note: An attacker in possession of an access token can access any
 resources the access token gives him the permission to. This kind of
 attacks simply illustrates the fact that bearer tokens utilized by
 OAuth are reusable similar to passwords unless they are protected by
 further means.

https://tools.ietf.org/html/draft-ietf-oauth-token-binding-02#section-4
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-02#section-4

Lodderstedt, et al. Expires March 14, 2018 [Page 22]

Internet-Draft Security Topics September 2017

 (where do we treat access token replay/use at the resource server?
https://tools.ietf.org/html/rfc6819#section-4.6.4 has some text about

 it but is it sufficient?)

 The attack described in this section is about injecting a stolen
 access token into a legitimate client on a device under the
 adversaries control. The attacker wants to impersonate a victim and
 cannot use his own client, since he wants to access certain functions
 in this particular client.

 Proposal: token binding, hybrid flow+nonce(OIDC), other
 cryptographical binding between access token and user agent instance

5.3. XSRF (TBD)

 injection of code or access token on a victim's device (e.g. to cause
 client to access resources under the attacker's control)

 mitigation: XSRF tokens (one time use) w/ user agent binding (cf.
https://www.owasp.org/index.php/

 CrossSite_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet)

6. Other Attacks

 Using the AS as Open Redirector - error handling AS (redirects)
 (draft-ietf-oauth-closing-redirectors-00)

 Using the Client as Open Redirector

 redirect via status code 307 - use 302

7. Other Topics

 why to rotate refresh tokens

 how to support multi AS per RS

 differentiate native, JS and web clients

 do not put sensitive data in URL/GET parameters (Jim Manico)

 Incorporate Christian Mainka's feedback

 WPAD attack - https://www.blackhat.com/docs/us-16/materials/us-16-
Kotler-Crippling-HTTPS-With-Unholy-PAC.pdf

https://tools.ietf.org/html/rfc6819#section-4.6.4
https://www.owasp.org/index.php/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-closing-redirectors-00
https://www.blackhat.com/docs/us-16/materials/us-16-Kotler-Crippling-HTTPS-With-Unholy-PAC.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kotler-Crippling-HTTPS-With-Unholy-PAC.pdf

Lodderstedt, et al. Expires March 14, 2018 [Page 23]

Internet-Draft Security Topics September 2017

8. Acknowledgements

 We would like to thank Jim Manico, Phil Hunt, and Brian Campbell for
 their valuable feedback.

9. IANA Considerations

 This draft includes no request to IANA.

10. Security Considerations

 All relevant security considerations have been given in the
 functional specification.

11. References

11.1. Normative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591

Lodderstedt, et al. Expires March 14, 2018 [Page 24]

Internet-Draft Security Topics September 2017

11.2. Informative References

 [I-D.bradley-oauth-jwt-encoded-state]
 Bradley, J., Lodderstedt, T., and H. Zandbelt, "Encoding
 claims in the OAuth 2 state parameter using a JWT", draft-

bradley-oauth-jwt-encoded-state-07 (work in progress),
 March 2017.

 [I-D.campbell-oauth-resource-indicators]
 Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", draft-campbell-oauth-resource-

indicators-02 (work in progress), November 2016.

 [I-D.ietf-oauth-discovery]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-

discovery-07 (work in progress), September 2017.

 [I-D.ietf-oauth-mtls]
 Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "Mutual TLS Profile for OAuth 2.0", draft-

ietf-oauth-mtls-03 (work in progress), July 2017.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-

distribution-03 (work in progress), February 2017.

 [I-D.ietf-oauth-signed-http-request]
 Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing HTTP Requests for OAuth", draft-ietf-oauth-signed-

http-request-03 (work in progress), August 2016.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Bradley, J., Campbell, B., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-04 (work in progress), July 2017.

 [I-D.ietf-tokbind-https]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., Harper,
 N., and J. Hodges, "Token Binding over HTTP", draft-ietf-

tokbind-https-10 (work in progress), July 2017.

 [I-D.sakimura-oauth-jpop]
 Sakimura, N., Li, K., and J. Bradley, "The OAuth 2.0
 Authorization Framework: JWT Pop Token Usage", draft-

sakimura-oauth-jpop-04 (work in progress), March 2017.

https://datatracker.ietf.org/doc/html/draft-bradley-oauth-jwt-encoded-state-07
https://datatracker.ietf.org/doc/html/draft-bradley-oauth-jwt-encoded-state-07
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-resource-indicators-02
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-resource-indicators-02
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-07
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-04
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-10
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-10
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04

Lodderstedt, et al. Expires March 14, 2018 [Page 25]

Internet-Draft Security Topics September 2017

 [oauth_security_cmu]
 Carnegie Mellon University, Carnegie Mellon University,
 Microsoft Research, Carnegie Mellon University, Carnegie
 Mellon University, and Carnegie Mellon University, "OAuth
 Demystified for Mobile Application Developers", November
 2014.

 [oauth_security_ubc]
 University of British Columbia and University of British
 Columbia, "The Devil is in the (Implementation) Details:
 An Empirical Analysis of OAuth SSO Systems", October 2012,
 <http://passwordresearch.com/papers/paper267.html>.

 [owasp] "Open Web Application Security Project Home Page",
 <https://www.owasp.org/>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

Appendix A. Document History

 [[To be removed from the final specification]]

 -03

 o Added section on Access Token Leakage at Resource Server

 o incorporated Brian Campbell's findings

 -02

 o Folded Mix up and Access Token leakage through a bad AS into new
 section for dynamic OAuth threats

 o reworked dynamic OAuth section

 -01

 o Added references to mitigation methods for token leakage

 o Added reference to Token Binding for Authorization Code

http://passwordresearch.com/papers/paper267.html
https://www.owasp.org/
https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800

Lodderstedt, et al. Expires March 14, 2018 [Page 26]

Internet-Draft Security Topics September 2017

 o incorporated feedback of Phil Hunt

 o fixed numbering issue in attack descriptions in section 2

 -00 (WG document)

 o turned the ID into a WG document and a BCP

 o Added federated app login as topic in Other Topics

Authors' Addresses

 Torsten Lodderstedt (editor)
 YES Europe AG

 Email: torsten@lodderstedt.net

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com

 Andrey Labunets
 Facebook

 Email: isciurus@fb.com

Lodderstedt, et al. Expires March 14, 2018 [Page 27]

