
Open Authentication Protocol T. Lodderstedt, Ed.
Internet-Draft yes.com
Intended status: Best Current Practice J. Bradley
Expires: May 23, 2019 Yubico
 A. Labunets
 Facebook
 D. Fett
 yes.com
 November 19, 2018

OAuth 2.0 Security Best Current Practice
draft-ietf-oauth-security-topics-10

Abstract

 This document describes best current security practice for OAuth 2.0.
 It updates and extends the OAuth 2.0 Security Threat Model to
 incorporate practical experiences gathered since OAuth 2.0 was
 published and covers new threats relevant due to the broader
 application of OAuth 2.0.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 23, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lodderstedt, et al. Expires May 23, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Security Topics November 2018

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Recommendations . 4
2.1. Protecting Redirect-Based Flows 4
2.1.1. Authorization Code Grant 5
2.1.2. Implicit Grant 5

2.2. Token Replay Prevention 6
2.3. Access Token Privilege Restriction 6

3. Attacks and Mitigations 7
3.1. Insufficient Redirect URI Validation 7
3.1.1. Attacks on Authorization Code Grant 7
3.1.2. Attacks on Implicit Grant 8
3.1.3. Proposed Countermeasures 10

3.2. Credential Leakage via Referrer Headers 10
3.2.1. Leakage from the OAuth client 10
3.2.2. Leakage from the Authorization Server 11
3.2.3. Consequences . 11
3.2.4. Proposed Countermeasures 11

3.3. Attacks through the Browser History 12
3.3.1. Code in Browser History 12
3.3.2. Access Token in Browser History 12

3.4. Mix-Up . 13
3.4.1. Attack Description 13
3.4.2. Countermeasures 15

3.5. Authorization Code Injection 16
3.5.1. Proposed Countermeasures 18

3.6. Access Token Injection 19
3.6.1. Proposed Countermeasures 20

3.7. Cross Site Request Forgery 20
3.7.1. Proposed Countermeasures 20

3.8. Access Token Leakage at the Resource Server 20
 3.8.1. Access Token Phishing by Counterfeit Resource Server 20

3.8.1.1. Metadata . 21
3.8.1.2. Sender Constrained Access Tokens 22
3.8.1.3. Audience Restricted Access Tokens 25

3.8.2. Compromised Resource Server 26
3.9. Open Redirection . 27
3.9.1. Authorization Server as Open Redirector 27
3.9.2. Clients as Open Redirector 27

3.10. 307 Redirect . 27
3.11. TLS Terminating Reverse Proxies 28

Lodderstedt, et al. Expires May 23, 2019 [Page 2]

Internet-Draft Security Topics November 2018

3.12. Refresh Token Protection 29
4. Acknowledgements . 31
5. IANA Considerations . 31
6. Security Considerations 31
7. References . 31
7.1. Normative References 31
7.2. Informative References 32

Appendix A. Document History 35
 Authors' Addresses . 37

1. Introduction

 It's been a while since OAuth has been published in RFC 6749
 [RFC6749] and RFC 6750 [RFC6750]. Since publication, OAuth 2.0 has
 gotten massive traction in the market and became the standard for API
 protection and, as foundation of OpenID Connect [OpenID], identity
 providing. While OAuth was used in a variety of scenarios and
 different kinds of deployments, the following challenges could be
 observed:

 o OAuth implementations are being attacked through known
 implementation weaknesses and anti-patterns (CSRF, referrer
 header). Although most of these threats are discussed in the
 OAuth 2.0 Threat Model and Security Considerations [RFC6819],
 continued exploitation demonstrates there may be a need for more
 specific recommendations or that the existing mitigations are too
 difficult to deploy.

 o Technology has changed, e.g., the way browsers treat fragments in
 some situations, which may change the implicit grant's underlying
 security model.

 o OAuth is used in much more dynamic setups than originally
 anticipated, creating new challenges with respect to security.
 Those challenges go beyond the original scope of RFC 6749
 [RFC6749], RFC 6750 [RFC6749], and RFC 6819 [RFC6819].

 OAuth initially assumed a static relationship between client,
 authorization server and resource servers. The URLs of AS and RS
 were known to the client at deployment time and built an anchor for
 the trust relationship among those parties. The validation whether
 the client talks to a legitimate server was based on TLS server
 authentication (see [RFC6819], Section 4.5.4). With the increasing
 adoption of OAuth, this simple model dissolved and, in several
 scenarios, was replaced by a dynamic establishment of the
 relationship between clients on one side and the authorization and
 resource servers of a particular deployment on the other side. This
 way the same client could be used to access services of different

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819#section-4.5.4

Lodderstedt, et al. Expires May 23, 2019 [Page 3]

Internet-Draft Security Topics November 2018

 providers (in case of standard APIs, such as e-Mail or OpenID
 Connect) or serves as a frontend to a particular tenant in a multi-
 tenancy. Extensions of OAuth, such as [RFC7591] and [RFC8414] were
 developed in order to support the usage of OAuth in dynamic
 scenarios. As a challenge to the community, such usage scenarios
 open up new attack angles, which are discussed in this document.

 The remainder of the document is organized as follows: The next
 section summarizes the most important recommendations of the OAuth
 working group for every OAuth implementor. Afterwards, a detailed
 analysis of the threats and implementation issues which can be found
 in the wild today is given along with a discussion of potential
 countermeasures.

2. Recommendations

 This section describes the set of security mechanisms the OAuth
 working group recommendeds to OAuth implementers.

2.1. Protecting Redirect-Based Flows

 Authorization servers MUST utilize exact matching of client redirect
 URIs against pre-registered URIs. This measure contributes to the
 prevention of leakage of authorization codes and access tokens
 (depending on the grant type). It also helps to detect mix-up
 attacks.

 Clients SHOULD avoid forwarding the user's browser to a URI obtained
 from a query parameter since such a function could be utilized to
 exfiltrate authorization codes and access tokens. If there is a
 strong need for this kind of redirects, clients are advised to
 implement appropriate countermeasures against open redirection, e.g.,
 as described by the OWASP [owasp].

 Clients MUST prevent CSRF and ensure that each authorization response
 is only accepted once. One-time use CSRF tokens carried in the
 "state" parameter, which are securely bound to the user agent, SHOULD
 be used for that purpose.

 In order to prevent mix-up attacks, clients MUST only process
 redirect responses of the OAuth authorization server they send the
 respective request to and from the same user agent this authorization
 request was initiated with. Clients MUST memorize which
 authorization server they sent an authorization request to and bind
 this information to the user agent and ensure any sub-sequent
 messages are sent to the same authorization server. Clients SHOULD
 use AS-specific redirect URIs as a means to identify the AS a
 particular response came from.

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc8414

Lodderstedt, et al. Expires May 23, 2019 [Page 4]

Internet-Draft Security Topics November 2018

 Note: [I-D.bradley-oauth-jwt-encoded-state] gives advice on how to
 implement CSRF prevention and AS matching using signed JWTs in the
 "state" parameter.

2.1.1. Authorization Code Grant

 Clients utilizing the authorization grant type MUST use PKCE
 [RFC7636] in order to (with the help of the authorization server)
 detect and prevent attempts to inject (replay) authorization codes
 into the authorization response. The PKCE challenges must be
 transaction-specific and securely bound to the user agent in which
 the transaction was started. OpenID Connect clients MAY use the
 "nonce" parameter of the OpenID Connect authentication request as
 specified in [OpenID] in conjunction with the corresponding ID Token
 claim for the same purpose.

 Note: although PKCE so far was recommended as a mechanism to protect
 native apps, this advice applies to all kinds of OAuth clients,
 including web applications.

 Authorization servers MUST bind authorization codes to a certain
 client and authenticate it using an appropriate mechanism (e.g.
 client credentials or PKCE).

 Authorization servers SHOULD furthermore consider the recommendations
 given in [RFC6819], Section 4.4.1.1, on authorization code replay
 prevention.

2.1.2. Implicit Grant

 The implicit grant (response type "token") and other response types
 causing the authorization server to issue access tokens in the
 authorization response are vulnerable to access token leakage and
 access token replay as described in Section 3.1, Section 3.2,

Section 3.3, and Section 3.6.

 Moreover, no viable mechanism exists to cryptographically bind access
 tokens issued in the authorization response to a certain client as it
 is recommended in Section 2.2. This makes replay detection for such
 access tokens at resource servers impossible.

 In order to avoid these issues, Clients SHOULD NOT use the implicit
 grant or any other response type causing the authorization server to
 issue an access token in the authorization response.

 Clients SHOULD instead use the response type "code" (aka
 authorization code grant type) as specified in Section 2.1.1 or any
 other response type that causes the authorization server to issue

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1.1

Lodderstedt, et al. Expires May 23, 2019 [Page 5]

Internet-Draft Security Topics November 2018

 access tokens in the token response. This allows the authorization
 server to detect replay attempts and generally reduces the attack
 surface since access tokens are not exposed in URLs. It also allows
 the authorization server to sender-constrain the issued tokens.

2.2. Token Replay Prevention

 Authorization servers SHOULD use TLS-based methods for sender
 constrained access tokens as described in Section 3.8.1.2, such as
 token binding [I-D.ietf-oauth-token-binding] or Mutual TLS for OAuth
 2.0 [I-D.ietf-oauth-mtls] in order to prevent token replay. It is
 also recommended to use end-to-end TLS whenever possible.

2.3. Access Token Privilege Restriction

 The privileges associated with an access token SHOULD be restricted
 to the minimum required for the particular application or use case.
 This prevents clients from exceeding the privileges authorized by the
 resource owner. It also prevents users from exceeding their
 privileges authorized by the respective security policy. Privilege
 restrictions also limit the impact of token leakage although more
 effective counter-measures are described in Section 2.2.

 In particular, access tokens SHOULD be restricted to certain resource
 servers, preferably to a single resource server. To put this into
 effect, the authorization server associates the access token with
 certain resource servers and every resource server is obliged to
 verify for every request, whether the access token sent with that
 request was meant to be used for that particular resource server. If
 not, the resource server MUST refuse to serve the respective request.
 Clients and authorization servers MAY utilize the parameters "scope"
 or "resource" as specified in [RFC6749] and
 [I-D.ietf-oauth-resource-indicators], respectively, to determine the
 resource server they want to access.

 Additionally, access tokens SHOULD be restricted to certain resources
 and actions on resource servers or resources. To put this into
 effect, the authorization server associates the access token with the
 respective resource and actions and every resource server is obliged
 to verify for every request, whether the access token sent with that
 request was meant to be used for that particular action on the
 particular resource. If not, the resource server must refuse to
 serve the respective request. Clients and authorization servers MAY
 utilize the parameter "scope" as specified in [RFC6749] to determine
 those resources and/or actions.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 23, 2019 [Page 6]

Internet-Draft Security Topics November 2018

3. Attacks and Mitigations

 This section gives a detailed description of attacks on OAuth
 implementations, along with potential countermeasures. This section
 complements and enhances the description given in [RFC6819].

3.1. Insufficient Redirect URI Validation

 Some authorization servers allow clients to register redirect URI
 patterns instead of complete redirect URIs. In those cases, the
 authorization server, at runtime, matches the actual redirect URI
 parameter value at the authorization endpoint against this pattern.
 This approach allows clients to encode transaction state into
 additional redirect URI parameters or to register just a single
 pattern for multiple redirect URIs. As a downside, it turned out to
 be more complex to implement and error prone to manage than exact
 redirect URI matching. Several successful attacks have been observed
 in the wild, which utilized flaws in the pattern matching
 implementation or concrete configurations. Such a flaw effectively
 breaks client identification or authentication (depending on grant
 and client type) and allows the attacker to obtain an authorization
 code or access token, either:

 o by directly sending the user agent to a URI under the attackers
 control or

 o by exposing the OAuth credentials to an attacker by utilizing an
 open redirector at the client in conjunction with the way user
 agents handle URL fragments.

3.1.1. Attacks on Authorization Code Grant

 For a public client using the grant type code, an attack would look
 as follows:

 Let's assume the redirect URL pattern "https://*.somesite.example/*"
 had been registered for the client "s6BhdRkqt3". This pattern allows
 redirect URIs pointing to any host residing in the domain
 somesite.example. So if an attacker manages to establish a host or
 subdomain in somesite.example he can impersonate the legitimate
 client. Assume the attacker sets up the host
 "evil.somesite.example".

 (1) The attacker needs to trick the user into opening a tampered URL
 in his browser, which launches a page under the attacker's
 control, say "https://www.evil.example".

https://datatracker.ietf.org/doc/html/rfc6819

Lodderstedt, et al. Expires May 23, 2019 [Page 7]

Internet-Draft Security Topics November 2018

 (2) This URL initiates an authorization request with the client id
 of a legitimate client to the authorization endpoint. This is
 the example authorization request (line breaks are for display
 purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fevil.somesite.example%2Fcb HTTP/1.1
 Host: server.somesite.example

 (3) The authorization server validates the redirect URI in order to
 identify the client. Since the pattern allows arbitrary domains
 host names in "somesite.example", the authorization request is
 processed under the legitimate client's identity. This includes
 the way the request for user consent is presented to the user.
 If auto-approval is allowed (which is not recommended for public
 clients according to [RFC6749]), the attack can be performed
 even easier.

 (4) If the user does not recognize the attack, the code is issued
 and directly sent to the attacker's client.

 (5) Since the attacker impersonated a public client, it can directly
 exchange the code for tokens at the respective token endpoint.

 Note: This attack will not directly work for confidential clients,
 since the code exchange requires authentication with the legitimate
 client's secret. The attacker will need to impersonate or utilize
 the legitimate client to redeem the code (e.g., by performing a code
 injection attack). This kind of injections is covered in
 Section Authorization Code Injection.

3.1.2. Attacks on Implicit Grant

 The attack described above works for the implicit grant as well. If
 the attacker is able to send the authorization response to a URI
 under his control, he will directly get access to the fragment
 carrying the access token.

 Additionally, implicit clients can be subject to a further kind of
 attacks. It utilizes the fact that user agents re-attach fragments
 to the destination URL of a redirect if the location header does not
 contain a fragment (see [RFC7231], Section 9.5). The attack
 described here combines this behavior with the client as an open
 redirector in order to get access to access tokens. This allows
 circumvention even of strict redirect URI patterns (but not strict
 URL matching!).

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7231#section-9.5

Lodderstedt, et al. Expires May 23, 2019 [Page 8]

Internet-Draft Security Topics November 2018

 Assume the pattern for client "s6BhdRkqt3" is
 "https://client.somesite.example/cb?*", i.e., any parameter is
 allowed for redirects to "https://client.somesite.example/cb".
 Unfortunately, the client exposes an open redirector. This endpoint
 supports a parameter "redirect_to" which takes a target URL and will
 send the browser to this URL using an HTTP Location header redirect
 303.

 (1) Same as above, the attacker needs to trick the user into opening
 a tampered URL in his browser, which launches a page under the
 attacker's control, say "https://www.evil.example".

 (2) The URL initiates an authorization request, which is very
 similar to the attack on the code flow. As differences, it
 utilizes the open redirector by encoding
 "redirect_to=https://client.evil.example" into the redirect URI
 and it uses the response type "token" (line breaks are for
 display purposes only):

GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient.somesite.example%2Fcb%26redirect_to
 %253Dhttps%253A%252F%252Fclient.evil.example%252Fcb HTTP/1.1
Host: server.somesite.example

 (3) Since the redirect URI matches the registered pattern, the
 authorization server allows the request and sends the resulting
 access token with a 303 redirect (some response parameters are
 omitted for better readability)

 HTTP/1.1 303 See Other
 Location: https://client.somesite.example/cb?

redirect_to%3Dhttps%3A%2F%2Fclient.evil.example%2Fcb
 #access_token=2YotnFZFEjr1zCsicMWpAA&...

 (4) At example.com, the request arrives at the open redirector. It
 will read the redirect parameter and will issue an HTTP 303
 Location header redirect to the URL
 "https://client.evil.example/cb".

 HTTP/1.1 303 See Other
 Location: https://client.evil.example/cb

 (5) Since the redirector at client.somesite.example does not include
 a fragment in the Location header, the user agent will re-attach
 the original fragment
 "#access_token=2YotnFZFEjr1zCsicMWpAA&..." to the URL and will
 navigate to the following URL:

https://client.somesite.example/cb?redirect_to%3Dhttps%3A%2F%2Fclient.evil.example%2Fcb
https://client.somesite.example/cb?redirect_to%3Dhttps%3A%2F%2Fclient.evil.example%2Fcb
https://client.evil.example/cb

Lodderstedt, et al. Expires May 23, 2019 [Page 9]

Internet-Draft Security Topics November 2018

https://client.evil.example/cb#access_token=2YotnFZFEjr1zCsicMWpAA&...

 (6) The attacker's page at client.evil.example can access the
 fragment and obtain the access token.

3.1.3. Proposed Countermeasures

 The complexity of implementing and managing pattern matching
 correctly obviously causes security issues. This document therefore
 proposes to simplify the required logic and configuration by using
 exact redirect URI matching only. This means the authorization
 server must compare the two URIs using simple string comparison as
 defined in [RFC3986], Section 6.2.1..

 Additional recommendations:

 o Servers on which callbacks are hosted must not expose open
 redirectors (see Section 3.9).

 o Clients MAY drop fragments via intermediary URLs with "fix
 fragments" (see [fb_fragments]) to prevent the user agent from
 appending any unintended fragments.

 o Clients SHOULD use the authorization code response type instead of
 response types causing access token issuance at the authorization
 endpoint. This offers countermeasures against reuse of leaked
 credentials through the exchange process with the authorization
 server and token replay through certificate binding of the access
 tokens.

 As an alternative to exact redirect URI matching, the AS could also
 authenticate clients, e.g., using [I-D.ietf-oauth-jwsreq].

3.2. Credential Leakage via Referrer Headers

 Authorization codes or values of "state" can unintentionally be
 disclosed to attackers through the referrer header, by leaking either
 from a client's web site or from an AS's web site. Note: even if
 specified otherwise in [RFC2616], section 14.36, the same may happen
 to access tokens conveyed in URI fragments due to browser
 implementation issues as illustrated by Chromium Issue 168213
 [bug.chromium].

3.2.1. Leakage from the OAuth client

 This requires that the client, as a result of a successful
 authorization request, renders a page that

https://client.evil
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.1
https://datatracker.ietf.org/doc/html/rfc2616#section-14.36

Lodderstedt, et al. Expires May 23, 2019 [Page 10]

Internet-Draft Security Topics November 2018

 o contains links to other pages under the attacker's control (ads,
 faq, ...) and a user clicks on such a link, or

 o includes third-party content (iframes, images, etc.) for example
 if the page contains user-generated content (blog).

 As soon as the browser navigates to the attacker's page or loads the
 third-party content, the attacker receives the authorization response
 URL and can extract "code", "access token", or "state".

3.2.2. Leakage from the Authorization Server

 In a similar way, an attacker can learn "state" if the authorization
 endpoint at the authorization server contains links or third-party
 content as above.

3.2.3. Consequences

 An attacker that learns a valid code or access token through a
 referrer header can perform the attacks as described in

Section 3.1.1, Section 3.5, and Section 3.6. If the attacker learns
 "state", the CSRF protection achieved by using "state" is lost,
 resulting in CSRF attacks as described in [RFC6819],
 Section 4.4.1.8..

3.2.4. Proposed Countermeasures

 The page rendered as a result of the OAuth authorization response and
 the authorization endpoint SHOULD not include third-party resources
 or links to external sites.

 The following measures further reduce the chances of a successful
 attack:

 o Bind authorization code to a confidential client or PKCE
 challenge. In this case, the attacker lacks the secret to request
 the code exchange.

 o Authorization codes SHOULD be invalidated by the AS after their
 first use at the token endpoint. For example, if an AS
 invalidated the code after the legitimate client redeemed it, the
 attacker would fail exchanging this code later. (This does not
 mitigate the attack if the attacker manages to exchange the code
 for a token before the legitimate client does so.)

 o The "state" value SHOULD be invalidated by the client after its
 first use at the redirection endpoint. If this is implemented,
 and an attacker receives a token through the referrer header from

https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1.8
https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1.8

Lodderstedt, et al. Expires May 23, 2019 [Page 11]

Internet-Draft Security Topics November 2018

 the client's web site, the "state" was already used, invalidated
 by the client and cannot be used again by the attacker. (This
 does not help if the "state" leaks from the AS's web site, since
 then the "state" has not been used at the redirection endpoint at
 the client yet.)

 o Suppress the referrer header by adding the attribute
 "rel="noreferrer"" to HTML links or by applying an appropriate
 Referrer Policy [webappsec-referrer-policy] to the document
 (either as part of the "referrer" meta attribute or by setting a
 Referrer-Policy header).

 o Use authorization code instead of response types causing access
 token issuance from the authorization endpoint. This provides
 countermeasures against leakage on the OAuth protocol level
 through the code exchange process with the authorization server.

 o Additionally, one might use the form post response mode instead of
 redirect for authorization response (see
 [oauth-v2-form-post-response-mode]).

3.3. Attacks through the Browser History

 Authorization codes and access tokens can end up in the browser's
 history of visited URLs, enabling the attacks described in the
 following.

3.3.1. Code in Browser History

 When a browser navigates to "client.example/
 redirection_endpoint?code=abcd" as a result of a redirect from a
 provider's authorization endpoint, the URL including the
 authorization code may end up in the browser's history. An attacker
 with access to the device could obtain the code and try to replay it.

 Proposed countermeasures:

 o Authorization code replay prevention as described in [RFC6819],
 Section 4.4.1.1, and Section 3.5

 o Use form post response mode instead of redirect for authorization
 response (see [oauth-v2-form-post-response-mode])

3.3.2. Access Token in Browser History

 An access token may end up in the browser history if a a client or
 just a web site, which already has a token, deliberately navigates to
 a page like "provider.com/get_user_profile?access_token=abcdef.".

https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1.1
https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1.1

Lodderstedt, et al. Expires May 23, 2019 [Page 12]

Internet-Draft Security Topics November 2018

 Actually [RFC6750] discourages this practice and asks to transfer
 tokens via a header, but in practice web sites often just pass access
 token in query parameters.

 In case of implicit grant, a URL like "client.example/
 redirection_endpoint#access_token=abcdef" may also end up in the
 browser history as a result of a redirect from a provider's
 authorization endpoint.

 Proposed countermeasures:

 o Replace implicit flow with postmessage communication or the
 authorization code grant

 o Never pass access tokens in URL query parameters

3.4. Mix-Up

 Mix-up is an attack on scenarios where an OAuth client interacts with
 multiple authorization servers, as is usually the case when dynamic
 registration is used. The goal of the attack is to obtain an
 authorization code or an access token by tricking the client into
 sending those credentials to the attacker instead of using them at
 the respective endpoint at the authorization/resource server.

3.4.1. Attack Description

 For a detailed attack description, refer to [arXiv.1601.01229] and
 [I-D.ietf-oauth-mix-up-mitigation]. The description here closely
 follows [arXiv.1601.01229], with variants of the attack outlined
 below.

 Preconditions: For the attack to work, we assume that

 (1) the implicit or authorization code grant are used with multiple
 AS of which one is considered "honest" (H-AS) and one is
 operated by the attacker (A-AS),

 (2) the client stores the AS chosen by the user in a session bound
 to the user's browser and uses the same redirection endpoint URI
 for each AS, and

 (3) the attacker can manipulate the first request/response pair from
 a user's browser to the client (in which the user selects a
 certain AS and is then redirected by the client to that AS).

 Some of the attack variants described below require different
 preconditions.

https://datatracker.ietf.org/doc/html/rfc6750

Lodderstedt, et al. Expires May 23, 2019 [Page 13]

Internet-Draft Security Topics November 2018

 In the following, we assume that the client is registered with H-AS
 (URI: "https://honest.as.example", client id: 7ZGZldHQ) and with A-AS
 (URI: "https://attacker.example", client id: 666RVZJTA).

 Attack on the authorization code grant:

 (1) The user selects to start the grant using H-AS (e.g., by
 clicking on a button at the client's website).

 (2) The attacker intercepts this request and changes the user's
 selection to "A-AS".

 (3) The client stores in the user's session that the user selected
 "A-AS" and redirects the user to A-AS's authorization endpoint
 by sending the following response:

HTTP/1.1 303 See Other
 Location: https://attacker.example/authorize?
response_type=code&client_id=666RVZJTA

 (4) Now the attacker intercepts this response and changes the
 redirection such that the user is being redirected to H-AS. The
 attacker also replaces the client id of the client at A-AS with
 the client's id at H-AS, resulting in the following response
 being sent to the browser:

HTTP/1.1 303 See Other
 Location: https://honest.as.example/authorize?
response_type=code&client_id=7ZGZldHQ

 (5) Now, the user authorizes the client to access her resources at
 H-AS. H-AS issues a code and sends it (via the browser) back to
 the client.

 (6) Since the client still assumes that the code was issued by A-AS,
 it will try to redeem the code at A-AS's token endpoint.

 (7) The attacker therefore obtains code and can either exchange the
 code for an access token (for public clients) or perform a code
 injection attack as described in Section 3.5.

 Variants:

 Implicit Grant In the implicit grant, the attacker receives an
 access token instead of the code; the rest of the attack
 works as above.

 Mix-Up Without Interception A variant of the above attack works even
 if the first request/response pair cannot be intercepted (for

https://attacker
https://honest.as

 example, because TLS is used to protect these messages):

Lodderstedt, et al. Expires May 23, 2019 [Page 14]

Internet-Draft Security Topics November 2018

 Here, we assume that the user wants to start the grant using
 A-AS (and not H-AS). After the client redirected the user to
 the authorization endpoint at A-AS, the attacker immediately
 redirects the user to H-AS (changing the client id
 "7ZGZldHQ"). (A vigilant user might at this point detect
 that she intended to use A-AS instead of H-AS.) The attack
 now proceeds exactly as in step 1 of the attack description
 above.

 Per-AS Redirect URIs If clients use different redirect URIs for
 different ASs, do not store the selected AS in the user's
 session, and ASs do not check the redirect URIs properly,
 attackers can mount an attack called "Cross-Social Network
 Request Forgery". We refer to [oauth_security_jcs_14] for
 details.

 OpenID Connect There are several variants that can be used to attack
 OpenID Connect. They are described in detail in
 [arXiv.1704.08539], Appendix A, and [arXiv.1508.04324v2],
 Section 6 ("Malicious Endpoints Attacks").

3.4.2. Countermeasures

 In scenarios where an OAuth client interacts with multiple
 authorization servers, clients MUST prevent mix-up attacks.

 Potential countermeasures:

 o Configure authorization servers to return an AS identitifier
 ("iss") and the "client_id" for which a code or token was issued
 in the authorization response. This enables clients to compare
 this data to their own client id and the "iss" identifier of the
 AS it believed it sent the user agent to. This mitigation is
 discussed in detail in [I-D.ietf-oauth-mix-up-mitigation]. In
 OpenID Connect, if an ID token is returned in the authorization
 response, it carries client id and issuer. It can be used for
 this mitigation.

 o As it can be seen in the preconditions of the attacks above,
 clients can prevent mix-up attack by (1) using AS-specific
 redirect URIs with exact redirect URI matching, (2) storing, for
 each authorization request, the intended AS, and (3) comparing the
 intended AS with the actual redirect URI where the authorization
 response was received.

Lodderstedt, et al. Expires May 23, 2019 [Page 15]

Internet-Draft Security Topics November 2018

3.5. Authorization Code Injection

 In such an attack, the adversary attempts to inject a stolen
 authorization code into a legitimate client on a device under his
 control. In the simplest case, the attacker would want to use the
 code in his own client. But there are situations where this might
 not be possible or intended. Examples are:

 o The attacker wants to access certain functions in this particular
 client. As an example, the attacker wants to impersonate his
 victim in a certain app or on a certain web site.

 o The code is bound to a particular confidential client and the
 attacker is unable to obtain the required client credentials to
 redeem the code himself.

 o The authorization or resource servers are limited to certain
 networks, the attackers is unable to access directly.

 How does an attack look like?

 (1) The attacker obtains an authorization code by performing any of
 the attacks described above.

 (2) It performs a regular OAuth authorization process with the
 legitimate client on his device.

 (3) The attacker injects the stolen authorization code in the
 response of the authorization server to the legitimate client.

 (4) The client sends the code to the authorization server's token
 endpoint, along with client id, client secret and actual
 "redirect_uri".

 (5) The authorization server checks the client secret, whether the
 code was issued to the particular client and whether the actual
 redirect URI matches the "redirect_uri" parameter (see
 [RFC6749]).

 (6) If all checks succeed, the authorization server issues access
 and other tokens to the client, so now the attacker is able to
 impersonate the legitimate user.

 Obviously, the check in step (5) will fail, if the code was issued to
 another client id, e.g., a client set up by the attacker. The check
 will also fail if the authorization code was already redeemed by the
 legitimate user and was one-time use only.

https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 23, 2019 [Page 16]

Internet-Draft Security Topics November 2018

 An attempt to inject a code obtained via a malware pretending to be
 the legitimate client should also be detected, if the authorization
 server stored the complete redirect URI used in the authorization
 request and compares it with the redirect_uri parameter.

[RFC6749], Section 4.1.3, requires the AS to "... ensure that the
 "redirect_uri" parameter is present if the "redirect_uri" parameter
 was included in the initial authorization request as described in

Section 4.1.1, and if included ensure that their values are
 identical.". In the attack scenario described above, the legitimate
 client would use the correct redirect URI it always uses for
 authorization requests. But this URI would not match the tampered
 redirect URI used by the attacker (otherwise, the redirect would not
 land at the attackers page). So the authorization server would
 detect the attack and refuse to exchange the code.

 Note: this check could also detect attempt to inject a code, which
 had been obtained from another instance of the same client on another
 device, if certain conditions are fulfilled:

 o the redirect URI itself needs to contain a nonce or another kind
 of one-time use, secret data and

 o the client has bound this data to this particular instance.

 But this approach conflicts with the idea to enforce exact redirect
 URI matching at the authorization endpoint. Moreover, it has been
 observed that providers very often ignore the redirect_uri check
 requirement at this stage, maybe because it doesn't seem to be
 security-critical from reading the spec.

 Other providers just pattern match the redirect_uri parameter against
 the registered redirect URI pattern. This saves the authorization
 server from storing the link between the actual redirect URI and the
 respective authorization code for every transaction. But this kind
 of check obviously does not fulfill the intent of the spec, since the
 tampered redirect URI is not considered. So any attempt to inject a
 code obtained using the "client_id" of a legitimate client or by
 utilizing the legitimate client on another device won't be detected
 in the respective deployments.

 It is also assumed that the requirements defined in [RFC6749],
 Section 4.1.3, increase client implementation complexity as clients
 need to memorize or re-construct the correct redirect URI for the
 call to the tokens endpoint.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

Lodderstedt, et al. Expires May 23, 2019 [Page 17]

Internet-Draft Security Topics November 2018

 This document therefore recommends to instead bind every
 authorization code to a certain client instance on a certain device
 (or in a certain user agent) in the context of a certain transaction.

3.5.1. Proposed Countermeasures

 There are multiple technical solutions to achieve this goal:

 Nonce OpenID Connect's existing "nonce" parameter could be used for
 this purpose. The nonce value is one-time use and created by
 the client. The client is supposed to bind it to the user
 agent session and sends it with the initial request to the
 OpenId Provider (OP). The OP associates the nonce to the
 authorization code and attests this binding in the ID token,
 which is issued as part of the code exchange at the token
 endpoint. If an attacker injected an authorization code in
 the authorization response, the nonce value in the client
 session and the nonce value in the ID token will not match
 and the attack is detected. The assumption is that an
 attacker cannot get hold of the user agent state on the
 victims device, where he has stolen the respective
 authorization code. The main advantage of this option is
 that Nonce is an existing feature used in the wild. On the
 other hand, leveraging Nonce by the broader OAuth community
 would require AS and client to adopt ID Tokens.

 Code-bound State The "state" parameter as specified in [RFC6749]
 could be used similarly to what is described above. This
 would require to add a further parameter "state" to the code
 exchange token endpoint request. The authorization server
 would then compare the "state" value it associated with the
 code and the "state" value in the parameter. If those values
 do not match, it is considered an attack and the request
 fails. The advantage of this approach would be to utilize an
 existing OAuth parameter. But it would also mean to re-
 interpret the purpose of "state" and to extend the token
 endpoint request.

 PKCE The PKCE parameter "challenge" along with the corresponding
 "verifier" as specified in [RFC7636] could be used in the
 same way as "nonce" or "state". In contrast to its original
 intention, the verifier check would fail although the client
 uses its correct verifier but the code is associated with a
 challenge, which does not match. PKCE is a deployed OAuth
 feature, even though it is used today to secure native apps,
 only.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636

Lodderstedt, et al. Expires May 23, 2019 [Page 18]

Internet-Draft Security Topics November 2018

 Token Binding Token binding [I-D.ietf-oauth-token-binding] could
 also be used. In this case, the code would need to be bound
 to two legs, between user agent and AS and the user agent and
 the client. This requires further data (extension to
 response) to manifest binding id for particular code. Token
 binding is promising as a secure and convenient mechanism
 (due to its browser integration). As a challenge, it
 requires broad browser support and use with native apps is
 still under discussion.

 per instance client id/secret One could use per instance "client_id"
 and secrets and bind the code to the respective "client_id".
 Unfortunately, this does not fit into the web application
 programming model (would need to use per user client ids).

 PKCE seems to be the most obvious solution for OAuth clients as it
 available and effectively used today for similar purposes for OAuth
 native apps whereas "nonce" is appropriate for OpenId Connect
 clients.

 Note on pre-warmed secrets: An attacker can circumvent the
 countermeasures described above if he is able to create or capture
 the respective secret or code_challenge on a device under his
 control, which is then used in the victim's authorization request.
 Exact redirect URI matching of authorization requests can prevent the
 attacker from using the pre-warmed secret in the faked authorization
 transaction on the victim's device.
 Unfortunately, it does not work for all kinds of OAuth clients. It
 is effective for web and JS apps and for native apps with claimed
 URLs. Attacks on native apps using custom schemes or redirect URIs
 on localhost cannot be prevented this way, except if the AS enforces
 one-time use for PKCE verifier or "nonce" values.

3.6. Access Token Injection

 In such an attack, the adversary attempts to inject a stolen access
 token into a legitimate client on a device under his control. This
 will typically happen if the attacker wants to utilize a leaked
 access token to impersonate a user in a certain client.

 To conduct the attack, the adversary starts an OAuth flow with the
 client and modifies the authorization response by replacing the
 access token issued by the authorization server or directly makes up
 an authorization server response including the leaked access token.
 Since the response includes the state value generated by the client
 for this particular transaction, the client does not treat the
 response as a CSRF and will use the access token injected by the
 attacker.

Lodderstedt, et al. Expires May 23, 2019 [Page 19]

Internet-Draft Security Topics November 2018

3.6.1. Proposed Countermeasures

 There is no way to detect such an injection attack on the OAuth
 protocol level, since the token is issued without any binding to the
 transaction or the particular user agent.

 The recommendation is therefore to use the authorization code grant
 type instead of relying on response types issuing acess tokens at the
 authorization endpoint. Code injection can be detected using one of
 the countermeasures discussed in Section 3.5.

3.7. Cross Site Request Forgery

 An attacker might attempt to inject a request to the redirect URI of
 the legitimate client on the victim's device, e.g., to cause the
 client to access resources under the attacker's control.

3.7.1. Proposed Countermeasures

 Standard CSRF defenses should be used to protect the redirection
 endpoint, for example:

 CSRF Tokens Use of CSRF tokens which are bound to the user agent
 and passed in the "state" parameter to the
 authorization server.

 Origin Header The Origin header can be used to detect and prevent
 CSRF attacks. Since this feature, at the time of
 writing, is not consistently supported by all
 browsers, CSRF tokens should be used in addition to
 Origin header checking.

 For more details see [owasp_csrf].

3.8. Access Token Leakage at the Resource Server

 Access tokens can leak from a resource server under certain
 circumstances.

3.8.1. Access Token Phishing by Counterfeit Resource Server

 An attacker may setup his own resource server and trick a client into
 sending access tokens to it, which are valid for other resource
 servers. If the client sends a valid access token to this
 counterfeit resource server, the attacker in turn may use that token
 to access other services on behalf of the resource owner.

Lodderstedt, et al. Expires May 23, 2019 [Page 20]

Internet-Draft Security Topics November 2018

 This attack assumes the client is not bound to a certain resource
 server (and the respective URL) at development time, but client
 instances are configured with an resource server's URL at runtime.
 This kind of late binding is typical in situations where the client
 uses a standard API, e.g., for e-Mail, calendar, health, or banking
 and is configured by an user or administrator for the standard-based
 service, this particular user or company uses.

 There are several potential mitigation strategies, which will be
 discussed in the following sections.

3.8.1.1. Metadata

 An authorization server could provide the client with additional
 information about the location where it is safe to use its access
 tokens.

 In the simplest form, this would require the AS to publish a list of
 its known resource servers, illustrated in the following example
 using a metadata parameter "resource_servers":

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "issuer":"https://server.somesite.example",
 "authorization_endpoint":
 "https://server.somesite.example/authorize",
 "resource_servers":[
 "email.somesite.example",
 "storage.somesite.example",
 "video.somesite.example"]
 ...
 }

 The AS could also return the URL(s) an access token is good for in
 the token response, illustrated by the example return parameter
 "access_token_resource_server":

Lodderstedt, et al. Expires May 23, 2019 [Page 21]

Internet-Draft Security Topics November 2018

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "access_token_resource_server":
 "https://hostedresource.somesite.example/path1",
 ...
 }

 This mitigation strategy would rely on the client to enforce the
 security policy and to only send access tokens to legitimate
 destinations. Results of OAuth related security research (see for
 example [oauth_security_ubc] and [oauth_security_cmu]) indicate a
 large portion of client implementations do not or fail to properly
 implement security controls, like "state" checks. So relying on
 clients to prevent access token phishing is likely to fail as well.
 Moreover given the ratio of clients to authorization and resource
 servers, it is considered the more viable approach to move as much as
 possible security-related logic to those entities. Clearly, the
 client has to contribute to the overall security. But there are
 alternative countermeasures, as described in the next sections, which
 provide a better balance between the involved parties.

3.8.1.2. Sender Constrained Access Tokens

 As the name suggests, sender constrained access token scope the
 applicability of an access token to a certain sender. This sender is
 obliged to demonstrate knowledge of a certain secret as prerequisite
 for the acceptance of that token at a resource server.

 A typical flow looks like this:

 1. The authorization server associates data with the access token
 which binds this particular token to a certain client. The
 binding can utilize the client identity, but in most cases the AS
 utilizes key material (or data derived from the key material)
 known to the client.

 2. This key material must be distributed somehow. Either the key
 material already exists before the AS creates the binding or the
 AS creates ephemeral keys. The way pre-existing key material is
 distributed varies among the different approaches. For example,
 X.509 Certificates can be used in which case the distribution
 happens explicitly during the enrollment process. Or the key
 material is created and distributed at the TLS layer, in which

Lodderstedt, et al. Expires May 23, 2019 [Page 22]

Internet-Draft Security Topics November 2018

 case it might automatically happens during the setup of a TLS
 connection.

 3. The RS must implement the actual proof of possession check. This
 is typically done on the application level, it may utilize
 capabilities of the transport layer (e.g., TLS). Note: replay
 prevention is required as well!

 There exists several proposals to demonstrate the proof of possession
 in the scope of the OAuth working group:

 o [I-D.ietf-oauth-token-binding]: In this approach, an access tokens
 is, via the so-called token binding id, bound to key material
 representing a long term association between a client and a
 certain TLS host. Negotiation of the key material and proof of
 possession in the context of a TLS handshake is taken care of by
 the TLS stack. The client needs to determine the token binding id
 of the target resource server and pass this data to the access
 token request. The authorization server than associates the
 access token with this id. The resource server checks on every
 invocation that the token binding id of the active TLS connection
 and the token binding id of associated with the access token
 match. Since all crypto-related functions are covered by the TLS
 stack, this approach is very client developer friendly. As a
 prerequisite, token binding as described in
 [I-D.ietf-tokbind-https] (including federated token bindings) must
 be supported on all ends (client, authorization server, resource
 server).

 o [I-D.ietf-oauth-mtls]: The approach as specified in this document
 allow use of mutual TLS for both client authentication and sender
 constraint access tokens. For the purpose of sender constraint
 access tokens, the client is identified towards the resource
 server by the fingerprint of its public key. During processing of
 an access token request, the authorization server obtains the
 client's public key from the TLS stack and associates its
 fingerprint with the respective access tokens. The resource
 server in the same way obtains the public key from the TLS stack
 and compares its fingerprint with the fingerprint associated with
 the access token.

 o [I-D.ietf-oauth-signed-http-request] specifies an approach to sign
 HTTP requests. It utilizes [I-D.ietf-oauth-pop-key-distribution]
 and represents the elements of the signature in a JSON object.
 The signature is built using JWS. The mechanism has built-in
 support for signing of HTTP method, query parameters and headers.
 It also incorporates a timestamp as basis for replay prevention.

Lodderstedt, et al. Expires May 23, 2019 [Page 23]

Internet-Draft Security Topics November 2018

 o [I-D.sakimura-oauth-jpop]: this draft describes different ways to
 constrain access token usage, namely TLS or request signing.
 Note: Since the authors of this draft contributed the TLS-related
 proposal to [I-D.ietf-oauth-mtls], this document only considers
 the request signing part. For request signing, the draft utilizes
 [I-D.ietf-oauth-pop-key-distribution] and RFC 7800 [RFC7800]. The
 signature data is represented in a JWT and JWS is used for
 signing. Replay prevention is provided by building the signature
 over a server-provided nonce, client-provided nonce and a nonce
 counter.

 [I-D.ietf-oauth-mtls] and [I-D.ietf-oauth-token-binding] are built on
 top of TLS and this way continue the successful OAuth 2.0 philosophy
 to leverage TLS to secure OAuth wherever possible. Both mechanisms
 allow prevention of access token leakage in a fairly client developer
 friendly way.

 There are some differences between both approaches: To start with, in
 [I-D.ietf-oauth-token-binding] all key material is automatically
 managed by the TLS stack whereas [I-D.ietf-oauth-mtls] requires the
 developer to create and maintain the key pairs and respective
 certificates. Use of self-signed certificates, which is supported by
 the draft, significantly reduce the complexity of this task.
 Furthermore, [I-D.ietf-oauth-token-binding] allows to use different
 key pairs for different resource servers, which is a privacy benefit.
 On the other hand, [I-D.ietf-oauth-mtls] only requires widely
 deployed TLS features, which means it might be easier to adopt in the
 short term.

 Application level signing approaches, like
 [I-D.ietf-oauth-signed-http-request] and [I-D.sakimura-oauth-jpop]
 have been debated for a long time in the OAuth working group without
 a clear outcome.

 As one advantage, application-level signing allows for end-to-end
 protection including non-repudiation even if the TLS connection is
 terminated between client and resource server. But deployment
 experiences have revealed challenges regarding robustness (e.g.,
 reproduction of the signature base string including correct URL) as
 well as state management (e.g., replay prevention).

 This document therefore recommends implementors to consider one of
 TLS-based approaches wherever possible.

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7800

Lodderstedt, et al. Expires May 23, 2019 [Page 24]

Internet-Draft Security Topics November 2018

3.8.1.3. Audience Restricted Access Tokens

 An audience restriction essentially restricts the resource server a
 particular access token can be used at. The authorization server
 associates the access token with a certain resource server and every
 resource server is obliged to verify for every request, whether the
 access token sent with that request was meant to be used at the
 particular resource server. If not, the resource server must refuse
 to serve the respective request. In the general case, audience
 restrictions limit the impact of a token leakage. In the case of a
 counterfeit resource server, it may (as described see below) also
 prevent abuse of the phished access token at the legitimate resource
 server.

 The audience can basically be expressed using logical names or
 physical addresses (like URLs). In order to prevent phishing, it is
 necessary to use the actual URL the client will send requests to. In
 the phishing case, this URL will point to the counterfeit resource
 server. If the attacker tries to use the access token at the
 legitimate resource server (which has a different URL), the resource
 server will detect the mismatch (wrong audience) and refuse to serve
 the request.

 In deployments where the authorization server knows the URLs of all
 resource servers, the authorization server may just refuse to issue
 access tokens for unknown resource server URLs.

 The client needs to tell the authorization server, at which URL it
 will use the access token it is requesting. It could use the
 mechanism proposed [I-D.ietf-oauth-resource-indicators] or encode the
 information in the scope value.

 Instead of the URL, it is also possible to utilize the fingerprint of
 the resource server's X.509 certificate as audience value. This
 variant would also allow to detect an attempt to spoof the legit
 resource server's URL by using a valid TLS certificate obtained from
 a different CA. It might also be considered a privacy benefit to
 hide the resource server URL from the authorization server.

 Audience restriction seems easy to use since it does not require any
 crypto on the client side. But since every access token is bound to
 a certain resource server, the client also needs to obtain different
 RS-specific access tokens, if it wants to access several resource
 services. [I-D.ietf-oauth-token-binding] has the same property,
 since different token binding ids must be associated with the access
 token. [I-D.ietf-oauth-mtls] on the other hand allows a client to
 use the access token at multiple resource servers.

Lodderstedt, et al. Expires May 23, 2019 [Page 25]

Internet-Draft Security Topics November 2018

 It shall be noted that audience restrictions, or generally speaking
 an indication by the client to the authorization server where it
 wants to use the access token, has additional benefits beyond the
 scope of token leakage prevention. It allows the authorization
 server to create different access token whose format and content is
 specifically minted for the respective server. This has huge
 functional and privacy advantages in deployments using structured
 access tokens.

3.8.2. Compromised Resource Server

 An attacker may compromise a resource server in order to get access
 to its resources and other resources of the respective deployment.
 Such a compromise may range from partial access to the system, e.g.,
 its logfiles, to full control of the respective server.

 If the attacker was able to take over full control including shell
 access it will be able to circumvent all controls in place and access
 resources without access control. It will also get access to access
 tokens, which are sent to the compromised system and which
 potentially are valid for access to other resource servers as well.
 Even if the attacker "only" is able to access logfiles or databases
 of the server system, it may get access to valid access tokens.

 Preventing server breaches by way of hardening and monitoring server
 systems is considered a standard operational procedure and therefore
 out of scope of this document. This section will focus on the impact
 of such breaches on OAuth-related parts of the ecosystem, which is
 the replay of captured access tokens on the compromised resource
 server and other resource servers of the respective deployment.

 The following measures should be taken into account by implementors
 in order to cope with access token replay:

 o The resource server must treat access tokens like any other
 credentials. It is considered good practice to not log them and
 not to store them in plain text.

 o Sender constraint access tokens as described in Section 3.8.1.2
 will prevent the attacker from replaying the access tokens on
 other resource servers. Depending on the severity of the
 penetration, it will also prevent replay on the compromised
 system.

 o Audience restriction as described in Section 3.8.1.3 may be used
 to prevent replay of captured access tokens on other resource
 servers.

Lodderstedt, et al. Expires May 23, 2019 [Page 26]

Internet-Draft Security Topics November 2018

3.9. Open Redirection

 The following attacks can occur when an AS or client has an open
 redirector, i.e., a URL which causes an HTTP redirect to an attacker-
 controlled web site.

3.9.1. Authorization Server as Open Redirector

 Attackers could try to utilize a user's trust in the authorization
 server (and its URL in particular) for performing phishing attacks.

[RFC6749], Section 4.1.2.1, already prevents open redirects by
 stating the AS MUST NOT automatically redirect the user agent in case
 of an invalid combination of client_id and redirect_uri.

 However, as described in [I-D.ietf-oauth-closing-redirectors], an
 attacker could also utilize a correctly registered redirect URI to
 perform phishing attacks. It could for example register a client via
 dynamic client [RFC7591] registration and intentionally send an
 erroneous authorization request, e.g., by using an invalid scope
 value, to cause the AS to automatically redirect the user agent to
 its phishing site.

 The AS MUST take precautions to prevent this threat. Based on its
 risk assessment the AS needs to decide whether it can trust the
 redirect URI or not and SHOULD only automatically redirect the user
 agent, if it trusts the redirect URI. If not, it MAY inform the user
 that it is about to redirect her to the another site and rely on the
 user to decide or MAY just inform the user about the error.

3.9.2. Clients as Open Redirector

 Client MUST NOT expose URLs which could be utilized as open
 redirector. Attackers may use an open redirector to produce URLs
 which appear to point to the client, which might trick users to trust
 the URL and follow it in her browser. Another abuse case is to
 produce URLs pointing to the client and utilize them to impersonate a
 client with an authorization server.

 In order to prevent open redirection, clients should only expose such
 a function, if the target URLs are whitelisted or if the origin of a
 request can be authenticated.

3.10. 307 Redirect

 At the authorization endpoint, a typical protocol flow is that the AS
 prompts the user to enter her credentials in a form that is then
 submitted (using the HTTP POST method) back to the authorization

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.2.1
https://datatracker.ietf.org/doc/html/rfc7591

Lodderstedt, et al. Expires May 23, 2019 [Page 27]

Internet-Draft Security Topics November 2018

 server. The AS checks the credentials and, if successful, redirects
 the user agent to the client's redirection endpoint.

 In [RFC6749], the HTTP status code 302 is used for this purpose, but
 "any other method available via the user-agent to accomplish this
 redirection is allowed". However, when the status code 307 is used
 for redirection, the user agent will send the form data (user
 credentials) via HTTP POST to the client since this status code does
 not require the user agent to rewrite the POST request to a GET
 request (and thereby dropping the form data in the POST request
 body). If the relying party is malicious, it can use the credentials
 to impersonate the user at the AS.

 In the HTTP standard [RFC6749], only the status code 303
 unambigiously enforces rewriting the HTTP POST request to an HTTP GET
 request. For all other status codes, including the popular 302, user
 agents can opt not to rewrite POST to GET requests and therefore to
 reveal the user credentials to the client. (In practice, however,
 most user agents will only show this behaviour for 307 redirects.)

 AS which redirect a request that potentially contains user
 credentials therefore MUST not use the HTTP 307 status code for
 redirection. If an HTTP redirection (and not, for example,
 JavaScript) is used for such a request, AS SHOULD use HTTP status
 code 303 "See Other".

3.11. TLS Terminating Reverse Proxies

 A common deployment architecture for HTTP applications is to have the
 application server sitting behind a reverse proxy, which terminates
 the TLS connection and dispatches the incoming requests to the
 respective application server nodes.

 This section highlights some attack angles of this deployment
 architecture, which are relevant to OAuth, and give recommendations
 for security controls.

 In some situations, the reverse proxy needs to pass security-related
 data to the upstream application servers for further processing.
 Examples include the IP address of the request originator, token
 binding ids and authenticated TLS client certificates.

 If the reverse proxy would pass through any header sent from the
 outside, an attacker could try to directly send the faked header
 values through the proxy to the application server in order to
 circumvent security controls that way. For example, it is standard
 practice of reverse proxies to accept "forwarded_for" headers and
 just add the origin of the inbound request (making it a list).

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 23, 2019 [Page 28]

Internet-Draft Security Topics November 2018

 Depending on the logic performed in the application server, the
 attacker could simply add a whitelisted IP address to the header and
 render a IP whitelist useless. A reverse proxy must therefore
 sanitize any inbound requests to ensure the authenticity and
 integrity of all header values relevant for the security of the
 application servers.

 If an attacker would be able to get access to the internal network
 between proxy and application server, it could also try to circumvent
 security controls in place. It is therefore important to ensure the
 authenticity of the communicating entities. Furthermore, the
 communication link between reverse proxy and application server must
 therefore be protected against tapping and injection (including
 replay prevention).

3.12. Refresh Token Protection

 Refresh tokens are a convenient and UX-friendly way to obtain new
 access tokens after the expiration of older access tokens. Refresh
 tokens also add to the security of OAuth since they allow the
 authorization server to issue access tokens with a short lifetime and
 reduced scope thus reducing the potential impact of access token
 leakage.

 Refresh tokens themself are an attractive target for attackers since
 they represent the overall grant a resource owner delegated to a
 certain client. If an attacker is able to exfiltrate and
 successfully replay a refresh token, it will be able to mint access
 tokens and use them to access resource servers on behalf of the
 resource server.

 [RFC6749] already provides robust base protection by requiring

 o confidentiality of the refresh tokens in transit and storage,

 o the transmission of refresh tokens over TLS-protected connections
 between authorization server and client,

 o the authorization server to maintain and check the binding of a
 refresh token to a certain client_id,

 o authentication of this client_id during token refresh, if
 possible, and

 o that refresh tokens cannot be generated, modified, or guessed.

 [RFC6749] also lays the foundation for further (implementation
 specific) security measures, such as refresh token expiration and

Lodderstedt, et al. Expires May 23, 2019 [Page 29]

Internet-Draft Security Topics November 2018

 revocation as well as refresh token rotation by defining respective
 error codes and response behavior.

 This draft gives recommendations beyond the scope of [RFC6749] and
 clarifications.

 Authorization servers SHALL determine based on their risk assessment
 whether to issue refresh tokens to a certain client. If the
 authorization server decides not to issue refresh tokens, the client
 may refresh access tokens by utilizing other grant types, such as the
 authorization code grant type. In such a case, the authorization
 server may utilize cookies and persistents grants to optimize the
 user experience.

 If refresh tokens are issued, those refresh tokens MUST be bound to
 the scope and resource servers as consented by the resource owner.
 This is to prevent privilege escalation by the legit client and
 reduce the impact of refresh tokens leakage.

 Authorization server SHALL utilize one of the methods listed below to
 detect refresh token replay for public clients:

 o Refresh token rotation: the authorization issues a new refresh
 token with every access token refresh response. The previous
 refresh token is invalidated but information about the
 relationship is retained by the authorization server. If a
 refresh token is compromised and subsequently used by both the
 attacker and the legitimate client, one of them will present an
 invalidated refresh token, which will inform the authorization
 server of the breach. The authorization server cannot determine
 which party submitted the invalid refresh token, but it can revoke
 the active refresh token. This stops the attack at the cost of
 forcing the legit client to obtain a fresh authorization grant.

 o Sender constrained refresh tokens: the authorization server
 cryptographically binds the refresh token to a certain client
 instance by utilizing [I-D.ietf-oauth-token-binding] or
 [I-D.ietf-oauth-mtls].

 Authorization servers may revoke refresh tokens automatically in case
 of a security event, such as:

 o password change

 o logout at the authorization server

 Refresh tokens should expire if the client has been inactive for some
 time.

https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 23, 2019 [Page 30]

Internet-Draft Security Topics November 2018

4. Acknowledgements

 We would like to thank Jim Manico, Phil Hunt, Nat Sakimura, Christian
 Mainka, Doug McDorman, Johan Peeters, Joseph Heenan, Brock Allen, and
 Brian Campbell for their valuable feedback.

5. IANA Considerations

 This draft includes no request to IANA.

6. Security Considerations

 All relevant security considerations have been given in the
 functional specification.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231

Lodderstedt, et al. Expires May 23, 2019 [Page 31]

Internet-Draft Security Topics November 2018

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

7.2. Informative References

 [arXiv.1508.04324v2]
 Mladenov, V., Mainka, C., and J. Schwenk, "On the security
 of modern Single Sign-On Protocols: Second-Order
 Vulnerabilities in OpenID Connect", arXiv 1508.04324v2,
 January 2016, <http://arxiv.org/abs/1508.04324v2/>.

 [arXiv.1601.01229]
 Fett, D., Kuesters, R., and G. Schmitz, "A Comprehensive
 Formal Security Analysis of OAuth 2.0", arXiv 1601.01229,
 January 2016, <http://arxiv.org/abs/1601.01229/>.

 [arXiv.1704.08539]
 Fett, D., Kuesters, R., and G. Schmitz, "The Web SSO
 Standard OpenID Connect: In-Depth Formal Security Analysis
 and Security Guidelines", arXiv 1704.08539, April 2017,
 <http://arxiv.org/abs/1704.08539/>.

 [bug.chromium]
 "Referer header includes URL fragment when opening link
 using New Tab",
 <https://bugs.chromium.org/p/chromium/issues/

detail?id=168213/>.

 [fb_fragments]
 "Facebook Developer Blog",
 <https://developers.facebook.com/blog/post/552/>.

 [I-D.bradley-oauth-jwt-encoded-state]
 Bradley, J., Lodderstedt, T., and H. Zandbelt, "Encoding
 claims in the OAuth 2 state parameter using a JWT", draft-

bradley-oauth-jwt-encoded-state-09 (work in progress),
 November 2018.

 [I-D.ietf-oauth-closing-redirectors]
 Bradley, J., Sanso, A., and H. Tschofenig, "OAuth 2.0
 Security: Closing Open Redirectors in OAuth", draft-ietf-

oauth-closing-redirectors-00 (work in progress), February
 2016.

https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
http://arxiv.org/abs/1508.04324v2/
http://arxiv.org/abs/1601.01229/
http://arxiv.org/abs/1704.08539/
https://bugs.chromium.org/p/chromium/issues/detail?id=168213/
https://bugs.chromium.org/p/chromium/issues/detail?id=168213/
https://developers.facebook.com/blog/post/552/
https://datatracker.ietf.org/doc/html/draft-bradley-oauth-jwt-encoded-state-09
https://datatracker.ietf.org/doc/html/draft-bradley-oauth-jwt-encoded-state-09
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-closing-redirectors-00
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-closing-redirectors-00

Lodderstedt, et al. Expires May 23, 2019 [Page 32]

Internet-Draft Security Topics November 2018

 [I-D.ietf-oauth-jwsreq]
 Sakimura, N. and J. Bradley, "The OAuth 2.0 Authorization
 Framework: JWT Secured Authorization Request (JAR)",

draft-ietf-oauth-jwsreq-17 (work in progress), October
 2018.

 [I-D.ietf-oauth-mix-up-mitigation]
 Jones, M., Bradley, J., and N. Sakimura, "OAuth 2.0 Mix-Up
 Mitigation", draft-ietf-oauth-mix-up-mitigation-01 (work
 in progress), July 2016.

 [I-D.ietf-oauth-mtls]
 Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual TLS Client Authentication
 and Certificate Bound Access Tokens", draft-ietf-oauth-

mtls-12 (work in progress), October 2018.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., Tschofenig, H., and M.
 Mihaly, "OAuth 2.0 Proof-of-Possession: Authorization
 Server to Client Key Distribution", draft-ietf-oauth-pop-

key-distribution-04 (work in progress), October 2018.

 [I-D.ietf-oauth-resource-indicators]
 Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", draft-ietf-oauth-resource-

indicators-01 (work in progress), October 2018.

 [I-D.ietf-oauth-signed-http-request]
 Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing HTTP Requests for OAuth", draft-ietf-oauth-signed-

http-request-03 (work in progress), August 2016.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-08 (work in progress), October 2018.

 [I-D.ietf-tokbind-https]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., Harper,
 N., and J. Hodges, "Token Binding over HTTP", draft-ietf-

tokbind-https-18 (work in progress), June 2018.

 [I-D.sakimura-oauth-jpop]
 Sakimura, N., Li, K., and J. Bradley, "The OAuth 2.0
 Authorization Framework: JWT Pop Token Usage", draft-

sakimura-oauth-jpop-04 (work in progress), March 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-17
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mix-up-mitigation-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-18
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-18
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04

Lodderstedt, et al. Expires May 23, 2019 [Page 33]

Internet-Draft Security Topics November 2018

 [oauth-v2-form-post-response-mode]
 Microsoft and Ping Identity, "OAuth 2.0 Form Post Response
 Mode", April 2015, <http://openid.net/specs/

oauth-v2-form-post-response-mode-1_0.html>.

 [oauth_security_cmu]
 Carnegie Mellon University, Carnegie Mellon University,
 Microsoft Research, Carnegie Mellon University, Carnegie
 Mellon University, and Carnegie Mellon University, "OAuth
 Demystified for Mobile Application Developers", November
 2014.

 [oauth_security_jcs_14]
 Bansal, C., Bhargavan, K., Delignat-Lavaud, A., and S.
 Maffeis, "Discovering concrete attacks on website
 authorization by formal analysis", April 2014.

 [oauth_security_ubc]
 University of British Columbia and University of British
 Columbia, "The Devil is in the (Implementation) Details:
 An Empirical Analysis of OAuth SSO Systems", October 2012,
 <http://passwordresearch.com/papers/paper267.html>.

 [OpenID] NRI, Ping Identity, Microsoft, Google, and Salesforce,
 "OpenID Connect Core 1.0 incorporating errata set 1", Nov
 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [owasp] "Open Web Application Security Project Home Page",
 <https://www.owasp.org/>.

 [owasp_csrf]
 "Cross-Site Request Forgery (CSRF) Prevention Cheat
 Sheet", <https://www.owasp.org/index.php/
 Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://passwordresearch.com/papers/paper267.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.owasp.org/
https://www.owasp.org/index.php/
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636

Lodderstedt, et al. Expires May 23, 2019 [Page 34]

Internet-Draft Security Topics November 2018

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [webappsec-referrer-policy]
 Google Inc. and Google Inc., "Referrer Policy", April
 2017, <https://w3c.github.io/webappsec-referrer-policy>.

Appendix A. Document History

 [[To be removed from the final specification]]

 -10

 o incorporated feedback by Joseph Heenan

 o changed occurrences of SHALL to MUST

 o added text on lack of token/cert binding support tokens issued in
 the authorization response as justification to not recommend
 issuing tokens there at all

 o added requirement to authenticate clients during code exchange
 (PKCE or client credential) to 2.1.1.

 o added section on refresh tokens

 o editorial enhancements to 2.1.2 based on feedback

 -09

 o changed text to recommend not to use implicit but code

 o added section on access token injection

 o reworked sections 3.1 through 3.3 to be more specific on implicit
 grant issues

 -08

 o added recommendations re implicit and token injection

https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://w3c.github.io/webappsec-referrer-policy

Lodderstedt, et al. Expires May 23, 2019 [Page 35]

Internet-Draft Security Topics November 2018

 o uppercased key words in Section 2 according to RFC 2119

 -07

 o incorporated findings of Doug McDorman

 o added section on HTTP status codes for redirects

 o added new section on access token privilege restriction based on
 comments from Johan Peeters

 -06

 o reworked section 3.8.1

 o incorporated Phil Hunt's feedback

 o reworked section on mix-up

 o extended section on code leakage via referrer header to also cover
 state leakage

 o added Daniel Fett as author

 o replaced text intended to inform WG discussion by recommendations
 to implementors

 o modified example URLs to conform to RFC 2606

 -05

 o Completed sections on code leakage via referrer header, attacks in
 browser, mix-up, and CSRF

 o Reworked Code Injection Section

 o Added reference to OpenID Connect spec

 o removed refresh token leakage as respective considerations have
 been given in section 10.4 of RFC 6749

 o first version on open redirection

 o incorporated Christian Mainka's review feedback

 -04

 o Restructured document for better readability

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2606
https://datatracker.ietf.org/doc/html/rfc6749#section-10.4

Lodderstedt, et al. Expires May 23, 2019 [Page 36]

Internet-Draft Security Topics November 2018

 o Added best practices on Token Leakage prevention

 -03

 o Added section on Access Token Leakage at Resource Server

 o incorporated Brian Campbell's findings

 -02

 o Folded Mix up and Access Token leakage through a bad AS into new
 section for dynamic OAuth threats

 o reworked dynamic OAuth section

 -01

 o Added references to mitigation methods for token leakage

 o Added reference to Token Binding for Authorization Code

 o incorporated feedback of Phil Hunt

 o fixed numbering issue in attack descriptions in section 2

 -00 (WG document)

 o turned the ID into a WG document and a BCP

 o Added federated app login as topic in Other Topics

Authors' Addresses

 Torsten Lodderstedt (editor)
 yes.com

 Email: torsten@lodderstedt.net

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com

Lodderstedt, et al. Expires May 23, 2019 [Page 37]

Internet-Draft Security Topics November 2018

 Andrey Labunets
 Facebook

 Email: isciurus@fb.com

 Daniel Fett
 yes.com

 Email: mail@danielfett.de

Lodderstedt, et al. Expires May 23, 2019 [Page 38]

