
Workgroup: Web Authorization Protocol

Internet-Draft:

draft-ietf-oauth-security-topics-16

Published: 5 October 2020

Intended Status: Best Current Practice

Expires: 8 April 2021

Authors: T. Lodderstedt

yes.com

J. Bradley

Yubico

A. Labunets D. Fett

yes.com

OAuth 2.0 Security Best Current Practice

Abstract

This document describes best current security practice for OAuth

2.0. It updates and extends the OAuth 2.0 Security Threat Model to

incorporate practical experiences gathered since OAuth 2.0 was

published and covers new threats relevant due to the broader

application of OAuth 2.0.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 April 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Structure

1.2. Conventions and Terminology

2. Recommendations

2.1. Protecting Redirect-Based Flows

2.1.1. Authorization Code Grant

2.1.2. Implicit Grant

2.2. Token Replay Prevention

2.2.1. Access Tokens

2.2.2. Refresh Tokens

2.3. Access Token Privilege Restriction

2.4. Resource Owner Password Credentials Grant

2.5. Client Authentication

2.6. Other Recommendations

3. The Updated OAuth 2.0 Attacker Model

4. Attacks and Mitigations

4.1. Insufficient Redirect URI Validation

4.1.1. Redirect URI Validation Attacks on Authorization Code

Grant

4.1.2. Redirect URI Validation Attacks on Implicit Grant

4.1.3. Countermeasures

4.2. Credential Leakage via Referer Headers

4.2.1. Leakage from the OAuth Client

4.2.2. Leakage from the Authorization Server

4.2.3. Consequences

4.2.4. Countermeasures

4.3. Credential Leakage via Browser History

4.3.1. Authorization Code in Browser History

4.3.2. Access Token in Browser History

4.4. Mix-Up Attacks

4.4.1. Attack Description

4.4.2. Countermeasures

4.5. Authorization Code Injection

4.5.1. Attack Description

4.5.2. Discussion

4.5.3. Countermeasures

4.5.4. Limitations

4.6. Access Token Injection

4.6.1. Countermeasures

4.7. Cross Site Request Forgery

4.7.1. Countermeasures

4.8. PKCE Downgrade Attack

4.8.1. Attack Description

4.8.2. Countermeasures

4.9. Access Token Leakage at the Resource Server

4.9.1. Access Token Phishing by Counterfeit Resource Server

4.9.2. Compromised Resource Server

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.10. Open Redirection

4.10.1. Client as Open Redirector

4.10.2. Authorization Server as Open Redirector

4.11. 307 Redirect

4.12. TLS Terminating Reverse Proxies

4.13. Refresh Token Protection

4.13.1. Discussion

4.13.2. Recommendations

4.14. Client Impersonating Resource Owner

4.14.1. Countermeasures

4.15. Clickjacking

5. Acknowledgements

6. IANA Considerations

7. Security Considerations

8. Normative References

9. Informative References

Appendix A. Document History

Authors' Addresses

1. Introduction

Since its publication in [RFC6749] and [RFC6750], OAuth 2.0 ("OAuth"

in the following) has gotten massive traction in the market and

became the standard for API protection and the basis for federated

login using OpenID Connect [OpenID]. While OAuth is used in a

variety of scenarios and different kinds of deployments, the

following challenges can be observed:

OAuth implementations are being attacked through known

implementation weaknesses and anti-patterns. Although most of

these threats are discussed in the OAuth 2.0 Threat Model and

Security Considerations [RFC6819], continued exploitation

demonstrates a need for more specific recommendations, easier to

implement mitigations, and more defense in depth.

OAuth is being used in environments with higher security

requirements than considered initially, such as Open Banking,

eHealth, eGovernment, and Electronic Signatures. Those use cases

call for stricter guidelines and additional protection.

OAuth is being used in much more dynamic setups than originally

anticipated, creating new challenges with respect to security.

Those challenges go beyond the original scope of [RFC6749],

[RFC6750], and [RFC6819].

OAuth initially assumed a static relationship between client,

authorization server and resource servers. The URLs of AS and RS

were known to the client at deployment time and built an anchor

for the trust relationship among those parties. The validation

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

whether the client talks to a legitimate server was based on TLS

server authentication (see [RFC6819], Section 4.5.4). With the

increasing adoption of OAuth, this simple model dissolved and, in

several scenarios, was replaced by a dynamic establishment of the

relationship between clients on one side and the authorization

and resource servers of a particular deployment on the other

side. This way, the same client could be used to access services

of different providers (in case of standard APIs, such as e-mail

or OpenID Connect) or serve as a frontend to a particular tenant

in a multi-tenancy environment. Extensions of OAuth, such as the

OAuth 2.0 Dynamic Client Registration Protocol [RFC7591] and

OAuth 2.0 Authorization Server Metadata [RFC8414] were developed

in order to support the usage of OAuth in dynamic scenarios.

Technology has changed. For example, the way browsers treat

fragments when redirecting requests has changed, and with it, the

implicit grant's underlying security model.

This document provides updated security recommendations to address

these challenges. It does not supplant the security advice given in

[RFC6749], [RFC6750], and [RFC6819], but complements those

documents.

1.1. Structure

The remainder of this document is organized as follows: The next

section summarizes the most important recommendations of the OAuth

working group for every OAuth implementor. Afterwards, the updated

the OAuth attacker model is presented. Subsequently, a detailed

analysis of the threats and implementation issues that can be found

in the wild today is given along with a discussion of potential

countermeasures.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "authorization

endpoint", "authorization grant", "authorization server", "client",

"client identifier" (client ID), "protected resource", "refresh

token", "resource owner", "resource server", and "token endpoint"

defined by OAuth 2.0 [RFC6749].

¶

*

¶

¶

¶

¶

¶

2. Recommendations

This section describes the set of security mechanisms the OAuth

working group recommends to OAuth implementers.

2.1. Protecting Redirect-Based Flows

When comparing client redirect URIs against pre-registered URIs,

authorization servers MUST utilize exact string matching except for

port numbers in localhost redirection URIs of native apps, see

Section 4.1.3. This measure contributes to the prevention of leakage

of authorization codes and access tokens (see Section 4.1). It can

also help to detect mix-up attacks (see Section 4.4).

Clients MUST NOT expose URLs that forward the user's browser to

arbitrary URIs obtained from a query parameter ("open redirector").

Open redirectors can enable exfiltration of authorization codes and

access tokens, see Section 4.10.1.

Clients MUST prevent Cross-Site Request Forgery (CSRF). In this

context, CSRF refers to requests to the redirection endpoint that do

not originate at the authorization server, but a malicious third

party (see Section 4.4.1.8. of [RFC6819] for details). Clients that

have ensured that the authorization server supports PKCE [RFC7636]

MAY rely the CSRF protection provided by PKCE. In OpenID Connect

flows, the nonce parameter provides CSRF protection. Otherwise, one-

time use CSRF tokens carried in the state parameter that are

securely bound to the user agent MUST be used for CSRF protection

(see Section 4.7.1).

In order to prevent mix-up attacks (see Section 4.4), clients MUST

only process redirect responses of the authorization server they

sent the respective request to and from the same user agent this

authorization request was initiated with. Clients MUST store the

authorization server they sent an authorization request to and bind

this information to the user agent and check that the authorization

request was received from the correct authorization server. Clients

MUST ensure that the subsequent token request, if applicable, is

sent to the same authorization server. Clients SHOULD use distinct

redirect URIs for each authorization server as a means to identify

the authorization server a particular response came from.

An AS that redirects a request potentially containing user

credentials MUST avoid forwarding these user credentials

accidentally (see Section 4.11 for details).

2.1.1. Authorization Code Grant

Clients MUST prevent injection (replay) of authorization codes into

the authorization response by attackers. Public clients MUST use

¶

¶

¶

¶

¶

¶

PKCE [RFC7636] to this end. For confidential clients, the use of

PKCE [RFC7636] is RECOMMENDED. With additional precautions,

described in Section 4.5.3.2, confidential clients MAY use the

OpenID Connect nonce parameter and the respective Claim in the ID

Token [OpenID] instead. In any case, the PKCE challenge or OpenID

Connect nonce MUST be transaction-specific and securely bound to the

client and the user agent in which the transaction was started.

Note: Although PKCE was designed as a mechanism to protect native

apps, this advice applies to all kinds of OAuth clients, including

web applications.

When using PKCE, clients SHOULD use PKCE code challenge methods that

do not expose the PKCE verifier in the authorization request.

Otherwise, attackers that can read the authorization request (cf.

Attacker A4 in Section 3) can break the security provided by PKCE.

Currently, S256 is the only such method.

Authorization servers MUST support PKCE [RFC7636].

Authorization servers MUST provide a way to detect their support for

PKCE. To this end, they MUST either (a) publish the element

code_challenge_methods_supported in their AS metadata ([RFC8414])

containing the supported PKCE challenge methods (which can be used

by the client to detect PKCE support) or (b) provide a deployment-

specific way to ensure or determine PKCE support by the AS.

Authorization servers MUST mitigate PKCE Downgrade Attacks by

ensuring that a token request containing a code_verifier parameter

is accepted only if a code_challenge parameter was present in the

authorization request, see Section 4.8.2 for details.

2.1.2. Implicit Grant

The implicit grant (response type "token") and other response types

causing the authorization server to issue access tokens in the

authorization response are vulnerable to access token leakage and

access token replay as described in Section 4.1, Section 4.2,

Section 4.3, and Section 4.6.

Moreover, no viable mechanism exists to cryptographically bind

access tokens issued in the authorization response to a certain

client as it is recommended in Section 2.2. This makes replay

detection for such access tokens at resource servers impossible.

In order to avoid these issues, clients SHOULD NOT use the implicit

grant (response type "token") or other response types issuing access

tokens in the authorization response, unless access token injection

in the authorization response is prevented and the aforementioned

token leakage vectors are mitigated.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Clients SHOULD instead use the response type "code" (aka

authorization code grant type) as specified in Section 2.1.1 or any

other response type that causes the authorization server to issue

access tokens in the token response, such as the "code id_token"

response type. This allows the authorization server to detect replay

attempts by attackers and generally reduces the attack surface since

access tokens are not exposed in URLs. It also allows the

authorization server to sender-constrain the issued tokens (see next

section).

2.2. Token Replay Prevention

2.2.1. Access Tokens

A sender-constrained access token scopes the applicability of an

access token to a certain sender. This sender is obliged to

demonstrate knowledge of a certain secret as prerequisite for the

acceptance of that token at the recipient (e.g., a resource server).

Authorization and resource servers SHOULD use mechanisms for sender-

constraining access tokens to prevent token replay, such as Mutual

TLS for OAuth 2.0 [RFC8705] (see Section 4.9.1.1.2).

2.2.2. Refresh Tokens

Refresh tokens MUST be sender-constrained or use refresh token

rotation as described in Section 4.13.

2.3. Access Token Privilege Restriction

The privileges associated with an access token SHOULD be restricted

to the minimum required for the particular application or use case.

This prevents clients from exceeding the privileges authorized by

the resource owner. It also prevents users from exceeding their

privileges authorized by the respective security policy. Privilege

restrictions also help to reduce the impact of access token leakage.

In particular, access tokens SHOULD be restricted to certain

resource servers (audience restriction), preferably to a single

resource server. To put this into effect, the authorization server

associates the access token with certain resource servers and every

resource server is obliged to verify, for every request, whether the

access token sent with that request was meant to be used for that

particular resource server. If not, the resource server MUST refuse

to serve the respective request. Clients and authorization servers

MAY utilize the parameters scope or resource as specified in

[RFC6749] and [I-D.ietf-oauth-resource-indicators], respectively, to

determine the resource server they want to access.

¶

¶

¶

¶

¶

¶

Additionally, access tokens SHOULD be restricted to certain

resources and actions on resource servers or resources. To put this

into effect, the authorization server associates the access token

with the respective resource and actions and every resource server

is obliged to verify, for every request, whether the access token

sent with that request was meant to be used for that particular

action on the particular resource. If not, the resource server must

refuse to serve the respective request. Clients and authorization

servers MAY utilize the parameter scope as specified in [RFC6749]

and authorization_details as specified in [I-D.ietf-oauth-rar] to

determine those resources and/or actions.

2.4. Resource Owner Password Credentials Grant

The resource owner password credentials grant MUST NOT be used. This

grant type insecurely exposes the credentials of the resource owner

to the client. Even if the client is benign, this results in an

increased attack surface (credentials can leak in more places than

just the AS) and users are trained to enter their credentials in

places other than the AS.

Furthermore, adapting the resource owner password credentials grant

to two-factor authentication, authentication with cryptographic

credentials (cf. WebCrypto [webcrypto], WebAuthn [webauthn]), and

authentication processes that require multiple steps can be hard or

impossible.

2.5. Client Authentication

Authorization servers SHOULD use client authentication if possible.

It is RECOMMENDED to use asymmetric (public-key based) methods for

client authentication such as mTLS [RFC8705] or private_key_jwt

[OpenID]. When asymmetric methods for client authentication are

used, authorization servers do not need to store sensitive symmetric

keys, making these methods more robust against a number of attacks.

2.6. Other Recommendations

Authorization servers SHOULD NOT allow clients to influence their

client_id or sub value or any other claim if that can cause

confusion with a genuine resource owner (see Section 4.14).

It is RECOMMENDED to use end-to-end TLS. If TLS traffic needs to be

terminated at an intermediary, refer to Section 4.12 for further

security advice.

¶

¶

¶

¶

¶

¶

¶

3. The Updated OAuth 2.0 Attacker Model

In [RFC6819], an attacker model is laid out that describes the

capabilities of attackers against which OAuth deployments must be

protected. In the following, this attacker model is updated to

account for the potentially dynamic relationships involving multiple

parties (as described in Section 1), to include new types of

attackers and to define the attacker model more clearly.

OAuth MUST ensure that the authorization of the resource owner (RO)

(with a user agent) at the authorization server (AS) and the

subsequent usage of the access token at the resource server (RS) is

protected at least against the following attackers:

(A1) Web Attackers that can set up and operate an arbitrary

number of network endpoints including browsers and servers

(except for the concrete RO, AS, and RS). Web attackers may set

up web sites that are visited by the RO, operate their own user

agents, and participate in the protocol.

Web attackers may, in particular, operate OAuth clients that are

registered at AS, and operate their own authorization and

resource servers that can be used (in parallel) by the RO and

other resource owners.

It must also be assumed that web attackers can lure the user to

open arbitrary attacker-chosen URIs at any time. In practice,

this can be achieved in many ways, for example, by injecting

malicious advertisements into advertisement networks, or by

sending legit-looking emails.

Web attackers can use their own user credentials to create new

messages as well as any secrets they learned previously. For

example, if a web attacker learns an authorization code of a user

through a misconfigured redirect URI, the web attacker can then

try to redeem that code for an access token.

They cannot, however, read or manipulate messages that are not

targeted towards them (e.g., sent to a URL controlled by a non-

attacker controlled AS).

(A2) Network Attackers that additionally have full control over

the network over which protocol participants communicate. They

can eavesdrop on, manipulate, and spoof messages, except when

these are properly protected by cryptographic methods (e.g.,

TLS). Network attackers can also block arbitrary messages.

While an example for a web attacker would be a customer of an

internet service provider, network attackers could be the internet

service provider itself, an attacker in a public (wifi) network

¶

¶

*

¶

¶

¶

¶

¶

*

¶

using ARP spoofing, or a state-sponsored attacker with access to

internet exchange points, for instance.

These attackers conform to the attacker model that was used in

formal analysis efforts for OAuth [arXiv.1601.01229]. This is a

minimal attacker model. Implementers MUST take into account all

possible attackers in the environment in which their OAuth

implementations are expected to run. Previous attacks on OAuth have

shown that OAuth deployments SHOULD in particular consider the

following, stronger attackers in addition to those listed above:

(A3) Attackers that can read, but not modify, the contents of the

authorization response (i.e., the authorization response can leak

to an attacker).

Examples for such attacks include open redirector attacks,

problems existing on mobile operating systems (where different

apps can register themselves on the same URI), mix-up attacks

(see Section 4.4), where the client is tricked into sending

credentials to a attacker-controlled AS, and the fact that URLs

are often stored/logged by browsers (history), proxy servers, and

operating systems.

(A4) Attackers that can read, but not modify, the contents of the

authorization request (i.e., the authorization request can leak,

in the same manner as above, to an attacker).

(A5) Attackers that can acquire an access token issued by AS. For

example, a resource server can be compromised by an attacker, an

access token may be sent to an attacker-controlled resource

server due to a misconfiguration, or an RO is social-engineered

into using a attacker-controlled RS. See also Section 4.9.2.

(A3), (A4) and (A5) typically occur together with either (A1) or

(A2).

Note that in this attacker model, an attacker (see A1) can be a RO

or act as one. For example, an attacker can use his own browser to

replay tokens or authorization codes obtained by any of the attacks

described above at the client or RS.

This document focusses on threats resulting from these attackers.

Attacks in an even stronger attacker model are discussed, for

example, in [arXiv.1901.11520].

4. Attacks and Mitigations

This section gives a detailed description of attacks on OAuth

implementations, along with potential countermeasures. Attacks and

¶

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

mitigations already covered in [RFC6819] are not listed here, except

where new recommendations are made.

4.1. Insufficient Redirect URI Validation

Some authorization servers allow clients to register redirect URI

patterns instead of complete redirect URIs. The authorization

servers then match the redirect URI parameter value at the

authorization endpoint against the registered patterns at runtime.

This approach allows clients to encode transaction state into

additional redirect URI parameters or to register a single pattern

for multiple redirect URIs.

This approach turned out to be more complex to implement and more

error prone to manage than exact redirect URI matching. Several

successful attacks exploiting flaws in the pattern matching

implementation or concrete configurations have been observed in the

wild . Insufficient validation of the redirect URI effectively

breaks client identification or authentication (depending on grant

and client type) and allows the attacker to obtain an authorization

code or access token, either

by directly sending the user agent to a URI under the attackers

control, or

by exposing the OAuth credentials to an attacker by utilizing an

open redirector at the client in conjunction with the way user

agents handle URL fragments.

These attacks are shown in detail in the following subsections.

4.1.1. Redirect URI Validation Attacks on Authorization Code Grant

For a client using the grant type code, an attack may work as

follows:

Assume the redirect URL pattern https://*.somesite.example/* is

registered for the client with the client ID s6BhdRkqt3. The

intention is to allow any subdomain of somesite.example to be a

valid redirect URI for the client, for example https://

app1.somesite.example/redirect. A naive implementation on the

authorization server, however, might interpret the wildcard * as

"any character" and not "any character valid for a domain name". The

authorization server, therefore, might permit https://

attacker.example/.somesite.example as a redirect URI, although

attacker.example is a different domain potentially controlled by a

malicious party.

The attack can then be conducted as follows:

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

First, the attacker needs to trick the user into opening a tampered

URL in his browser that launches a page under the attacker's

control, say https://www.evil.example (see Attacker A1.)

This URL initiates the following authorization request with the

client ID of a legitimate client to the authorization endpoint (line

breaks for display only):

The authorization server validates the redirect URI and compares it

to the registered redirect URL patterns for the client s6BhdRkqt3.

The authorization request is processed and presented to the user.

If the user does not see the redirect URI or does not recognize the

attack, the code is issued and immediately sent to the attacker's

domain. If an automatic approval of the authorization is enabled

(which is not recommended for public clients according to

[RFC6749]), the attack can be performed even without user

interaction.

If the attacker impersonated a public client, the attacker can

exchange the code for tokens at the respective token endpoint.

This attack will not work as easily for confidential clients, since

the code exchange requires authentication with the legitimate

client's secret. The attacker can, however, use the legitimate

confidential client to redeem the code by performing an

authorization code injection attack, see Section 4.5.

Note: Vulnerabilities of this kind can also exist if the

authorization server handles wildcards properly. For example, assume

that the client registers the redirect URL pattern https://

.somesite.example/ and the authorization server interprets this as

"allow redirect URIs pointing to any host residing in the domain

somesite.example". If an attacker manages to establish a host or

subdomain in somesite.example, he can impersonate the legitimate

client. This could be caused, for example, by a subdomain takeover

attack [subdomaintakeover], where an outdated CNAME record (say,

external-service.somesite.example) points to an external DNS name

that does no longer exist (say, customer-abc.service.example) and

can be taken over by an attacker (e.g., by registering as customer-

abc with the external service).

¶

¶

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13

 &redirect_uri=https%3A%2F%2Fattacker.example%2F.somesite.example

 HTTP/1.1

Host: server.somesite.example

¶

¶

¶

¶

¶

¶

4.1.2. Redirect URI Validation Attacks on Implicit Grant

The attack described above works for the implicit grant as well. If

the attacker is able to send the authorization response to a URI

under his control, he will directly get access to the fragment

carrying the access token.

Additionally, implicit clients can be subject to a further kind of

attack. It utilizes the fact that user agents re-attach fragments to

the destination URL of a redirect if the location header does not

contain a fragment (see [RFC7231], Section 9.5). The attack

described here combines this behavior with the client as an open

redirector (see Section 4.10.1) in order to get access to access

tokens. This allows circumvention even of very narrow redirect URI

patterns, but not strict URL matching.

Assume the registered URL pattern for client s6BhdRkqt3 is https://

client.somesite.example/cb?*, i.e., any parameter is allowed for

redirects to https://client.somesite.example/cb. Unfortunately, the

client exposes an open redirector. This endpoint supports a

parameter redirect_to which takes a target URL and will send the

browser to this URL using an HTTP Location header redirect 303.

The attack can now be conducted as follows:

First, and as above, the attacker needs to trick the user into

opening a tampered URL in his browser that launches a page under the

attacker's control, say https://www.evil.example.

Afterwards, the website initiates an authorization request that is

very similar to the one in the attack on the code flow. Different to

above, it utilizes the open redirector by encoding

redirect_to=https://attacker.example into the parameters of the

redirect URI and it uses the response type "token" (line breaks for

display only):

Now, since the redirect URI matches the registered pattern, the

authorization server permits the request and sends the resulting

access token in a 303 redirect (some response parameters omitted for

readability):

¶

¶

¶

¶

¶

¶

GET /authorize?response_type=token&state=9ad67f13

 &client_id=s6BhdRkqt3

 &redirect_uri=https%3A%2F%2Fclient.somesite.example

 %2Fcb%26redirect_to%253Dhttps%253A%252F

 %252Fattacker.example%252F HTTP/1.1

Host: server.somesite.example

¶

¶

At example.com, the request arrives at the open redirector. The

endpoint will read the redirect parameter and will issue an HTTP 303

Location header redirect to the URL https://attacker.example/.

Since the redirector at client.somesite.example does not include a

fragment in the Location header, the user agent will re-attach the

original fragment #access_token=2YotnFZFEjr1zCsicMWpAA&... to

the URL and will navigate to the following URL:

The attacker's page at attacker.example can now access the fragment

and obtain the access token.

4.1.3. Countermeasures

The complexity of implementing and managing pattern matching

correctly obviously causes security issues. This document therefore

advises to simplify the required logic and configuration by using

exact redirect URI matching. This means the authorization server

MUST compare the two URIs using simple string comparison as defined

in [RFC3986], Section 6.2.1. The only exception are native apps

using a localhost URI: In this case, the AS MUST allow variable port

numbers as described in [RFC8252], Section 7.3.

Additional recommendations:

Servers on which callbacks are hosted MUST NOT expose open

redirectors (see Section 4.10).

Browsers reattach URL fragments to Location redirection URLs only

if the URL in the Location header does not already contain a

fragment. Therefore, servers MAY prevent browsers from

reattaching fragments to redirection URLs by attaching an

arbitrary fragment identifier, for example #_, to URLs in

Location headers.

Clients SHOULD use the authorization code response type instead

of response types causing access token issuance at the

authorization endpoint. This offers countermeasures against reuse

of leaked credentials through the exchange process with the

HTTP/1.1 303 See Other

Location: https://client.somesite.example/cb?

 redirect_to%3Dhttps%3A%2F%2Fattacker.example%2Fcb

 #access_token=2YotnFZFEjr1zCsicMWpAA&...

¶

¶

HTTP/1.1 303 See Other

Location: https://attacker.example/

¶

¶

https://attacker.example/#access_token=2YotnFZFEjr1z...¶

¶

¶

¶

*

¶

*

¶

*

authorization server and token replay through sender-constraining

of the access tokens.

If the origin and integrity of the authorization request containing

the redirect URI can be verified, for example when using [I-D.ietf-

oauth-jwsreq] or [I-D.ietf-oauth-par] with client authentication,

the authorization server MAY trust the redirect URI without further

checks.

4.2. Credential Leakage via Referer Headers

The contents of the authorization request URI or the authorization

response URI can unintentionally be disclosed to attackers through

the Referer HTTP header (see [RFC7231], Section 5.5.2), by leaking

either from the AS's or the client's web site, respectively. Most

importantly, authorization codes or state values can be disclosed in

this way. Although specified otherwise in [RFC7231], Section 5.5.2,

the same may happen to access tokens conveyed in URI fragments due

to browser implementation issues as illustrated by Chromium Issue

168213 [bug.chromium].

4.2.1. Leakage from the OAuth Client

Leakage from the OAuth client requires that the client, as a result

of a successful authorization request, renders a page that

contains links to other pages under the attacker's control and a

user clicks on such a link, or

includes third-party content (advertisements in iframes, images,

etc.), for example if the page contains user-generated content

(blog).

As soon as the browser navigates to the attacker's page or loads the

third-party content, the attacker receives the authorization

response URL and can extract code or state (and potentially access

token).

4.2.2. Leakage from the Authorization Server

In a similar way, an attacker can learn state from the authorization

request if the authorization endpoint at the authorization server

contains links or third-party content as above.

4.2.3. Consequences

An attacker that learns a valid code or access token through a

Referer header can perform the attacks as described in Section

4.1.1, Section 4.5, and Section 4.6. If the attacker learns state,

¶

¶

¶

¶

*

¶

*

¶

¶

¶

the CSRF protection achieved by using state is lost, resulting in

CSRF attacks as described in [RFC6819], Section 4.4.1.8.

4.2.4. Countermeasures

The page rendered as a result of the OAuth authorization response

and the authorization endpoint SHOULD NOT include third-party

resources or links to external sites.

The following measures further reduce the chances of a successful

attack:

Suppress the Referer header by applying an appropriate Referrer

Policy [webappsec-referrer-policy] to the document (either as

part of the "referrer" meta attribute or by setting a Referrer-

Policy header). For example, the header Referrer-Policy: no-

referrer in the response completely suppresses the Referer header

in all requests originating from the resulting document.

Use authorization code instead of response types causing access

token issuance from the authorization endpoint.

Bind authorization code to a confidential client or PKCE

challenge. In this case, the attacker lacks the secret to request

the code exchange.

As described in [RFC6749], Section 4.1.2, authorization codes

MUST be invalidated by the AS after their first use at the token

endpoint. For example, if an AS invalidated the code after the

legitimate client redeemed it, the attacker would fail exchanging

this code later.

This does not mitigate the attack if the attacker manages to

exchange the code for a token before the legitimate client does

so. Therefore, [RFC6749] further recommends that, when an attempt

is made to redeem a code twice, the AS SHOULD revoke all tokens

issued previously based on that code.

The state value SHOULD be invalidated by the client after its

first use at the redirection endpoint. If this is implemented,

and an attacker receives a token through the Referer header from

the client's web site, the state was already used, invalidated by

the client and cannot be used again by the attacker. (This does

not help if the state leaks from the AS's web site, since then

the state has not been used at the redirection endpoint at the

client yet.)

Use the form post response mode instead of a redirect for the

authorization response (see [oauth-v2-form-post-response-mode]).

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

4.3. Credential Leakage via Browser History

Authorization codes and access tokens can end up in the browser's

history of visited URLs, enabling the attacks described in the

following.

4.3.1. Authorization Code in Browser History

When a browser navigates to client.example/redirection_endpoint?

code=abcd as a result of a redirect from a provider's authorization

endpoint, the URL including the authorization code may end up in the

browser's history. An attacker with access to the device could

obtain the code and try to replay it.

Countermeasures:

Authorization code replay prevention as described in [RFC6819],

Section 4.4.1.1, and Section 4.5.

Use form post response mode instead of redirect for the

authorization response (see [oauth-v2-form-post-response-mode]).

4.3.2. Access Token in Browser History

An access token may end up in the browser history if a client or a

web site that already has a token deliberately navigates to a page

like provider.com/get_user_profile?access_token=abcdef. [RFC6750]

discourages this practice and advises to transfer tokens via a

header, but in practice web sites often pass access tokens in query

parameters.

In case of the implicit grant, a URL like client.example/

redirection_endpoint#access_token=abcdef may also end up in the

browser history as a result of a redirect from a provider's

authorization endpoint.

Countermeasures:

Clients MUST NOT pass access tokens in a URI query parameter in

the way described in Section 2.3 of [RFC6750]. The authorization

code grant or alternative OAuth response modes like the form post

response mode [oauth-v2-form-post-response-mode] can be used to

this end.

4.4. Mix-Up Attacks

Mix-up is an attack on scenarios where an OAuth client interacts

with two or more authorization servers and at least one

authorization server is under the control of the attacker. This can

be the case, for example, if the attacker uses dynamic registration

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

to register the client at his own authorization server or if an

authorization server becomes compromised.

The goal of the attack is to obtain an authorization code or an

access token for an uncompromised authorization server. This is

achieved by tricking the client into sending those credentials to

the compromised authorization server (the attacker) instead of using

them at the respective endpoint of the uncompromised authorization/

resource server.

4.4.1. Attack Description

The description here closely follows [arXiv.1601.01229], with

variants of the attack outlined below.

Preconditions: For this variant of the attack to work, we assume

that

the implicit or authorization code grant are used with multiple

AS of which one is considered "honest" (H-AS) and one is operated

by the attacker (A-AS),

the client stores the AS chosen by the user in a session bound to

the user's browser and uses the same redirection endpoint URI for

each AS, and

the attacker can intercept and manipulate the first request/

response pair from a user's browser to the client (in which the

user selects a certain AS and is then redirected by the client to

that AS), as in Attacker A2.

The latter ability can, for example, be the result of a man-in-the-

middle attack on the user's connection to the client. Note that an

attack variant exists that does not require this ability, see below.

In the following, we assume that the client is registered with H-AS

(URI: https://honest.as.example, client ID: 7ZGZldHQ) and with A-AS

(URI: https://attacker.example, client ID: 666RVZJTA).

Attack on the authorization code grant:

The user selects to start the grant using H-AS (e.g., by

clicking on a button at the client's website).

The attacker intercepts this request and changes the user's

selection to "A-AS" (see preconditions).

The client stores in the user's session that the user selected

"A-AS" and redirects the user to A-AS's authorization endpoint

with a Location header containing the URL https://

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

1.

¶

2.

¶

3.

attacker.example/authorize?

response_type=code&client_id=666RVZJTA.

Now the attacker intercepts this response and changes the

redirection such that the user is being redirected to H-AS. The

attacker also replaces the client ID of the client at A-AS with

the client's ID at H-AS. Therefore, the browser receives a

redirection (303 See Other) with a Location header pointing to

https://honest.as.example/authorize?

response_type=code&client_id=7ZGZldHQ

The user authorizes the client to access her resources at H-AS.

H-AS issues a code and sends it (via the browser) back to the

client.

Since the client still assumes that the code was issued by A-

AS, it will try to redeem the code at A-AS's token endpoint.

The attacker therefore obtains code and can either exchange the

code for an access token (for public clients) or perform an

authorization code injection attack as described in Section

4.5.

Variants:

Mix-Up Without Interception: A variant of the above attack works

even if the first request/response pair cannot be intercepted,

for example, because TLS is used to protect these messages: Here,

it is assumed that the user wants to start the grant using A-AS

(and not H-AS, see Attacker A1). After the client redirected the

user to the authorization endpoint at A-AS, the attacker

immediately redirects the user to H-AS (changing the client ID to

7ZGZldHQ). Note that a vigilant user might at this point detect

that she intended to use A-AS instead of H-AS. The attack now

proceeds exactly as in Steps 3ff. of the attack description

above.

Implicit Grant: In the implicit grant, the attacker receives an

access token instead of the code; the rest of the attack works as

above.

Per-AS Redirect URIs: If clients use different redirect URIs for

different ASs, do not store the selected AS in the user's

session, and ASs do not check the redirect URIs properly,

attackers can mount an attack called "Cross-Social Network

Request Forgery". These attacks have been observed in practice.

Refer to [oauth_security_jcs_14] for details.

OpenID Connect: There are variants that can be used to attack

OpenID Connect. In these attacks, the attacker misuses features

¶

4.

¶

5.

¶

6.

¶

7.

¶

¶

*

¶

*

¶

*

¶

*

of the OpenID Connect Discovery mechanism or replays access

tokens or ID Tokens to conduct a Mix-Up Attack. The attacks are

described in detail in [arXiv.1704.08539], Appendix A, and

[arXiv.1508.04324v2], Section 6 ("Malicious Endpoints Attacks").

4.4.2. Countermeasures

In scenarios where an OAuth client interacts with multiple

authorization servers, clients MUST prevent mix-up attacks.

To this end, clients SHOULD use distinct redirect URIs for each AS

(with alternatives listed below). Clients MUST store, for each

authorization request, the AS they sent the authorization request to

and bind this information to the user agent. Clients MUST check that

the authorization request was received from the correct

authorization server and ensure that the subsequent token request,

if applicable, is sent to the same authorization server.

Unfortunately, distinct redirect URIs per AS do not work for all

kinds of OAuth clients. They are effective for web and JavaScript

apps and for native apps with claimed URLs. Attacks on native apps

using custom schemes or redirect URIs on localhost cannot be

prevented this way.

If clients cannot use distinct redirect URIs for each AS, the

following options exist:

Authorization servers can be configured to return an AS

identitifier (iss) as a non-standard parameter in the

authorization response. This enables complying clients to compare

this data to the iss identifier of the AS it believed it sent the

user agent to.

In OpenID Connect, if an ID Token is returned in the

authorization response, it carries client ID and issuer. It can

be used in the same way as the iss parameter.

4.5. Authorization Code Injection

In an authorization code injection attack, the attacker attempts to

inject a stolen authorization code into the attacker's own session

with the client. The aim is to associate the attacker's session at

the client with the victim's resources or identity.

This attack is useful if the attacker cannot exchange the

authorization code for an access token himself. Examples include:

The code is bound to a particular confidential client and the

attacker is unable to obtain the required client credentials to

redeem the code himself.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

The attacker wants to access certain functions in this particular

client. As an example, the attacker wants to impersonate his

victim in a certain app or on a certain web site.

The authorization or resource servers are limited to certain

networks that the attacker is unable to access directly.

In the following attack description and discussion, we assume the

presence of a web (A1) or network attacker (A2).

4.5.1. Attack Description

The attack works as follows:

The attacker obtains an authorization code by performing any of

the attacks described above.

He starts a regular OAuth authorization process with the

legitimate client from his device.

The attacker injects the stolen authorization code in the

response of the authorization server to the legitimate client.

Since this response is passing through the attacker's device,

the attacker can use any tool that can intercept and manipulate

the authorization response to this end. The attacker does not

need to control the network.

The legitimate client sends the code to the authorization

server's token endpoint, along with the client's client ID,

client secret and actual redirect_uri.

The authorization server checks the client secret, whether the

code was issued to the particular client, and whether the

actual redirect URI matches the redirect_uri parameter (see

[RFC6749]).

All checks succeed and the authorization server issues access

and other tokens to the client. The attacker has now associated

his session with the legitimate client with the victim's

resources and/or identity.

4.5.2. Discussion

Obviously, the check in step (5.) will fail if the code was issued

to another client ID, e.g., a client set up by the attacker. The

check will also fail if the authorization code was already redeemed

by the legitimate user and was one-time use only.

An attempt to inject a code obtained via a manipulated redirect URI

should also be detected if the authorization server stored the

*

¶

*

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

complete redirect URI used in the authorization request and compares

it with the redirect_uri parameter.

[RFC6749], Section 4.1.3, requires the AS to "... ensure that the

redirect_uri parameter is present if the redirect_uri parameter was

included in the initial authorization request as described in

Section 4.1.1, and if included ensure that their values are

identical.". In the attack scenario described above, the legitimate

client would use the correct redirect URI it always uses for

authorization requests. But this URI would not match the tampered

redirect URI used by the attacker (otherwise, the redirect would not

land at the attackers page). So the authorization server would

detect the attack and refuse to exchange the code.

Note: This check could also detect attempts to inject an

authorization code which had been obtained from another instance of

the same client on another device, if certain conditions are

fulfilled:

the redirect URI itself needs to contain a nonce or another kind

of one-time use, secret data and

the client has bound this data to this particular instance of the

client.

But this approach conflicts with the idea to enforce exact redirect

URI matching at the authorization endpoint. Moreover, it has been

observed that providers very often ignore the redirect_uri check

requirement at this stage, maybe because it doesn't seem to be

security-critical from reading the specification.

Other providers just pattern match the redirect_uri parameter

against the registered redirect URI pattern. This saves the

authorization server from storing the link between the actual

redirect URI and the respective authorization code for every

transaction. But this kind of check obviously does not fulfill the

intent of the specification, since the tampered redirect URI is not

considered. So any attempt to inject an authorization code obtained

using the client_id of a legitimate client or by utilizing the

legitimate client on another device will not be detected in the

respective deployments.

It is also assumed that the requirements defined in [RFC6749],

Section 4.1.3, increase client implementation complexity as clients

need to store or re-construct the correct redirect URI for the call

to the token endpoint.

This document therefore recommends to instead bind every

authorization code to a certain client instance on a certain device

¶

¶

¶

*

¶

*

¶

¶

¶

¶

(or in a certain user agent) in the context of a certain transaction

using one of the mechanisms described next.

4.5.3. Countermeasures

There are two good technical solutions to achieve this goal,

outlined in the following.

4.5.3.1. PKCE

The PKCE parameter code_challenge along with the corresponding

code_verifier as specified in [RFC7636] can be used as a

countermeasure. When the attacker attempts to inject an

authorization code, the verifier check fails: the client uses its

correct verifier, but the code is associated with a challenge that

does not match this verifier. PKCE is a deployed OAuth feature,

although its originally intended use was solely focused on securing

native apps, not the broader use recommended by this document.

4.5.3.2. Nonce

OpenID Connect's existing nonce parameter can be used for the same

purpose. The nonce value is one-time use and created by the client.

The client is supposed to bind it to the user agent session and

sends it with the initial request to the OpenID Provider (OP). The

OP binds nonce to the authorization code and attests this binding in

the ID Token, which is issued as part of the code exchange at the

token endpoint. If an attacker injected an authorization code in the

authorization response, the nonce value in the client session and

the nonce value in the ID token will not match and the attack is

detected. The assumption is that an attacker cannot get hold of the

user agent state on the victim's device, where he has stolen the

respective authorization code.

It is important to note that this countermeasure only works if the

client properly checks the nonce parameter in the ID Token and does

not use any issued token until this check has succeeded. More

precisely, a client protecting itself against code injection using

the nonce parameter,

MUST validate the nonce in the ID Token obtained from the token

endpoint, even if another ID Token was obtained from the

authorization response (e.g., response_type=code+id_token), and

MUST ensure that, unless and until that check succeeds, all

tokens (ID Tokens and the access token) are disregarded and not

used for any other purpose.

¶

¶

¶

¶

¶

1.

¶

2.

¶

4.5.3.3. Other Solutions

Other solutions, like binding state to the code, using token binding

for the code, or per-instance client credentials are conceivable,

but lack support and bring new security requirements.

PKCE is the most obvious solution for OAuth clients as it is

available today (originally intended for OAuth native apps) whereas

nonce is appropriate for OpenID Connect clients.

4.5.4. Limitations

An attacker can circumvent the countermeasures described above if he

can modify the nonce or code_challenge values that are used in the

victim's authorization request. The attacker can modify these values

to be the same ones as those chosen by the client in his own session

in Step 2 of the attack above. (This requires that the victim's

session with the client begins after the attacker started his

session with the client.) If the attacker is then able to capture

the authorization code from the victim, the attacker will be able to

inject the stolen code in Step 3 even if PKCE or nonce are used.

This attack is complex and requires a close interaction between the

attacker and the victim's session. Nonetheless, measures to prevent

attackers from reading the contents of the authorization response

still need to be taken, as described in Section 4.1, Section 4.2,

Section 4.3, Section 4.4, and Section 4.10.

4.6. Access Token Injection

In an access token injection attack, the attacker attempts to inject

a stolen access token into a legitimate client (that is not under

the attacker's control). This will typically happen if the attacker

wants to utilize a leaked access token to impersonate a user in a

certain client.

To conduct the attack, the attacker starts an OAuth flow with the

client using the implicit grant and modifies the authorization

response by replacing the access token issued by the authorization

server or directly makes up an authorization server response

including the leaked access token. Since the response includes the

state value generated by the client for this particular transaction,

the client does not treat the response as a CSRF attack and uses the

access token injected by the attacker.

4.6.1. Countermeasures

There is no way to detect such an injection attack on the OAuth

protocol level, since the token is issued without any binding to the

transaction or the particular user agent.

¶

¶

¶

¶

¶

¶

¶

The recommendation is therefore to use the authorization code grant

type instead of relying on response types issuing acess tokens at

the authorization endpoint. Authorization code injection can be

detected using one of the countermeasures discussed in Section 4.5.

4.7. Cross Site Request Forgery

An attacker might attempt to inject a request to the redirect URI of

the legitimate client on the victim's device, e.g., to cause the

client to access resources under the attacker's control. This is a

variant of an attack known as Cross-Site Request Forgery (CSRF).

4.7.1. Countermeasures

The traditional countermeasure are CSRF tokens that are bound to the

user agent and passed in the state parameter to the authorization

server as described in [RFC6819]. The same protection is provided by

PKCE or the OpenID Connect nonce value.

When using PKCE instead of state or nonce for CSRF protection, it is

important to note that:

Clients MUST ensure that the AS supports PKCE before using PKCE

for CSRF protection. If an authorization server does not support

PKCE, state or nonce MUST be used for CSRF protection.

If state is used for carrying application state, and integrity of

its contents is a concern, clients MUST protect state against

tampering and swapping. This can be achieved by binding the

contents of state to the browser session and/or signed/encrypted

state values [I-D.bradley-oauth-jwt-encoded-state].

AS therefore MUST provide a way to detect their support for PKCE

either via AS metadata according to [RFC8414] or provide a

deployment-specific way to ensure or determine PKCE support.

4.8. PKCE Downgrade Attack

An authorization server that supports PKCE but does not make its use

mandatory for all flows can be susceptible to a PKCE downgrade

attack.

The first prerequisite for this attack is that there is an attacker-

controllable flag in the authorization request that enables or

disables PKCE for the particular flow. The presence or absence of

the code_challenge parameter lends itself for this purpose, i.e.,

the AS enables and enforces PKCE if this parameter is present in the

authorization request, but does not enforce PKCE if the parameter is

missing.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

The second prerequisite for this attack is that the client is not

using state at all (e.g., because the client relies on PKCE for CSRF

prevention) or that the client is not checking state correctly.

Roughly speaking, this attack is a variant of a CSRF attack. The

attacker achieves the same goal as in the attack described in

Section 4.7: He injects an authorization code (and with that, an

access token) that is bound to his resources into a session between

his victim and the client.

4.8.1. Attack Description

The user has started an OAuth session using some client at an

AS. In the authorization request, the client has set the

parameter code_challenge=sha256(abc) as the PKCE code

challenge. The client is now waiting to receive the

authorization response from the user's browse.

To conduct the attack, the attacker uses his own device to

start an authorization flow with the targeted client. The

client now uses another PKCE code challenge, say

code_challenge=sha256(xyz), in the authorization request. The

attacker intercepts the request and removes the entire

code_challenge parameter from the request. Since this step is

performed on the attacker's device, the attacker has full

access to the request contents, for example using browser debug

tools.

If the authorization server allows for flows without PKCE, it

will create a code that is not bound to any PKCE code

challenge.

The attacker now redirects the user's browser to an

authorization response URL which contains the code for the

attacker's session with the AS.

The user's browser sends the authorization code to the client,

which will now try to redeem the code for an access token at

the AS. The client will send code_verifier=abc as the PKCE code

verifier in the token request.

Since the authorization server sees that this code is not bound

to any PKCE code challenge, it will not check the presence or

contents of the code_verifier parameter. It will issue an

access token that belongs to the attacker's resource to the

client under the user's control.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

4.8.2. Countermeasures

Using state properly would prevent this attack. However, practice

has shown that many OAuth clients do not use or check state

properly.

Therefore, AS MUST take precautions against this threat.

Note that from the view of the AS, in the attack described above, a

code_verifier parameter is received at the token endpoint although

no code_challenge parameter was present in the authorization request

for the OAuth flow in which the authorization code was issued.

This fact can be used to mitigate this attack. [RFC7636] already

mandates that

an AS that supports PKCE MUST check whether a code challenge is

contained in the authorization request and bind this information

to the code that is issued; and

when a code arrives at the token endpoint, and there was a

code_challenge in the authorization request for which this code

was issued, there must be a valid code_verifier in the token

request.

Beyond this, to prevent PKCE downgrade attacks, the AS MUST ensure

that if there was no code_challenge in the authorization request, a

request to the token endpoint containing a code_verifier is

rejected.

Note: AS that mandate the use of PKCE in general or for particular

clients implicitly implement this security measure.

4.9. Access Token Leakage at the Resource Server

Access tokens can leak from a resource server under certain

circumstances.

4.9.1. Access Token Phishing by Counterfeit Resource Server

An attacker may setup his own resource server and trick a client

into sending access tokens to it that are valid for other resource

servers (see Attackers A1 and A5). If the client sends a valid

access token to this counterfeit resource server, the attacker in

turn may use that token to access other services on behalf of the

resource owner.

This attack assumes the client is not bound to one specific resource

server (and its URL) at development time, but client instances are

provided with the resource server URL at runtime. This kind of late

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

binding is typical in situations where the client uses a service

implementing a standardized API (e.g., for e-Mail, calendar, health,

or banking) and where the client is configured by a user or

administrator for a service which this user or company uses.

4.9.1.1. Countermeasures

There are several potential mitigation strategies, which will be

discussed in the following sections.

4.9.1.1.1. Metadata

An authorization server could provide the client with additional

information about the location where it is safe to use its access

tokens.

In the simplest form, this would require the AS to publish a list of

its known resource servers, illustrated in the following example

using a non-standard metadata parameter resource_servers:

The AS could also return the URL(s) an access token is good for in

the token response, illustrated by the example and non-standard

return parameter access_token_resource_server:

¶

¶

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

{

 "issuer":"https://server.somesite.example",

 "authorization_endpoint":

 "https://server.somesite.example/authorize",

 "resource_servers":[

 "email.somesite.example",

 "storage.somesite.example",

 "video.somesite.example"

]

 ...

}

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "access_token_resource_server":

 "https://hostedresource.somesite.example/path1",

...

}

¶

This mitigation strategy would rely on the client to enforce the

security policy and to only send access tokens to legitimate

destinations. Results of OAuth related security research (see for

example [oauth_security_ubc] and [oauth_security_cmu]) indicate a

large portion of client implementations do not or fail to properly

implement security controls, like state checks. So relying on

clients to prevent access token phishing is likely to fail as well.

Moreover given the ratio of clients to authorization and resource

servers, it is considered the more viable approach to move as much

as possible security-related logic to those entities. Clearly, the

client has to contribute to the overall security. But there are

alternative countermeasures, as described in the next sections,

which provide a better balance between the involved parties.

4.9.1.1.2. Sender-Constrained Access Tokens

As the name suggests, sender-constrained access token scope the

applicability of an access token to a certain sender. This sender is

obliged to demonstrate knowledge of a certain secret as prerequisite

for the acceptance of that token at a resource server.

A typical flow looks like this:

The authorization server associates data with the access token

that binds this particular token to a certain client. The

binding can utilize the client identity, but in most cases the

AS utilizes key material (or data derived from the key

material) known to the client.

This key material must be distributed somehow. Either the key

material already exists before the AS creates the binding or

the AS creates ephemeral keys. The way pre-existing key

material is distributed varies among the different approaches.

For example, X.509 Certificates can be used in which case the

distribution happens explicitly during the enrollment process.

Or the key material is created and distributed at the TLS

layer, in which case it might automatically happen during the

setup of a TLS connection.

The RS must implement the actual proof of possession check.

This is typically done on the application level, often tied to

specific material provided by transport layer (e.g., TLS). The

RS must also ensure that replay of the proof of possession is

not possible.

There exist several proposals to demonstrate the proof of possession

in the scope of the OAuth working group:

OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound

Access Tokens ([RFC8705]): The approach as specified in this

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

*

document allows the use of mutual TLS (mTLS) for both client

authentication and sender-constrained access tokens. For the

purpose of sender-constrained access tokens, the client is

identified towards the resource server by the fingerprint of its

public key. During processing of an access token request, the

authorization server obtains the client's public key from the TLS

stack and associates its fingerprint with the respective access

tokens. The resource server in the same way obtains the public

key from the TLS stack and compares its fingerprint with the

fingerprint associated with the access token.

DPoP ([I-D.ietf-oauth-dpop]): DPoP (Demonstration of Proof-of-

Possession at the Application Layer) outlines an application-

level sender-constraining for access and refresh tokens that can

be used in cases where neither mTLS nor OAuth Token Binding (see

below) are available. It uses proof-of-possession based on a

public/private key pair and application-level signing. DPoP can

be used with public clients and, in case of confidential clients,

can be combined with any client authentication method.

OAuth Token Binding ([I-D.ietf-oauth-token-binding]): In this

approach, an access token is, via the token binding ID, bound to

key material representing a long term association between a

client and a certain TLS host. Negotiation of the key material

and proof of possession in the context of a TLS handshake is

taken care of by the TLS stack. The client needs to determine the

token binding ID of the target resource server and pass this data

to the access token request. The authorization server then

associates the access token with this ID. The resource server

checks on every invocation that the token binding ID of the

active TLS connection and the token binding ID of associated with

the access token match. Since all crypto-related functions are

covered by the TLS stack, this approach is very client developer

friendly. As a prerequisite, token binding as described in

[RFC8473] (including federated token bindings) must be supported

on all ends (client, authorization server, resource server).

Signed HTTP Requests ([I-D.ietf-oauth-signed-http-request]): This

approach utilizes [I-D.ietf-oauth-pop-key-distribution] and

represents the elements of the signature in a JSON object. The

signature is built using JWS. The mechanism has built-in support

for signing of HTTP method, query parameters and headers. It also

incorporates a timestamp as basis for replay prevention.

JWT Pop Tokens ([I-D.sakimura-oauth-jpop]): This draft describes

different ways to constrain access token usage, namely TLS or

request signing. Note: Since the authors of this draft

contributed the TLS-related proposal to [RFC8705], this document

only considers the request signing part. For request signing, the

¶

*

¶

*

¶

*

¶

*

draft utilizes [I-D.ietf-oauth-pop-key-distribution] and

[RFC7800]. The signature data is represented in a JWT and JWS is

used for signing. Replay prevention is provided by building the

signature over a server-provided nonce, client-provided nonce and

a nonce counter.

At the time of writing, OAuth Mutual TLS is the most widely

implemented and the only standardized sender-constraining method.

The use of OAuth Mutual TLS therefore is RECOMMENDED.

Note that the security of sender-constrained tokens is undermined

when an attacker gets access to the token and the key material. This

is in particular the case for corrupted client software and cross-

site scripting attacks (when the client is running in the browser).

If the key material is protected in a hardware or software security

module or only indirectly accessible (like in a TLS stack), sender-

constrained tokens at least protect against a use of the token when

the client is offline, i.e., when the security module or interface

is not available to the attacker. This applies to access tokens as

well as to refresh tokens (see Section 4.13).

4.9.1.1.3. Audience Restricted Access Tokens

Audience restriction essentially restricts access tokens to a

particular resource server. The authorization server associates the

access token with the particular resource server and the resource

server SHOULD verify the intended audience. If the access token

fails the intended audience validation, the resource server must

refuse to serve the respective request.

In general, audience restrictions limit the impact of token leakage.

In the case of a counterfeit resource server, it may (as described

below) also prevent abuse of the phished access token at the

legitimate resource server.

The audience can be expressed using logical names or physical

addresses (like URLs). In order to prevent phishing, it is necessary

to use the actual URL the client will send requests to. In the

phishing case, this URL will point to the counterfeit resource

server. If the attacker tries to use the access token at the

legitimate resource server (which has a different URL), the resource

server will detect the mismatch (wrong audience) and refuse to serve

the request.

In deployments where the authorization server knows the URLs of all

resource servers, the authorization server may just refuse to issue

access tokens for unknown resource server URLs.

The client SHOULD tell the authorization server the intended

resource server. The proposed mechanism [I-D.ietf-oauth-resource-

¶

¶

¶

¶

¶

¶

¶

indicators] could be used or by encoding the information in the

scope value.

Instead of the URL, it is also possible to utilize the fingerprint

of the resource server's X.509 certificate as audience value. This

variant would also allow to detect an attempt to spoof the

legitimate resource server's URL by using a valid TLS certificate

obtained from a different CA. It might also be considered a privacy

benefit to hide the resource server URL from the authorization

server.

Audience restriction may seem easier to use since it does not

require any crypto on the client-side. Still, since every access

token is bound to a specific resource server, the client also needs

to obtain a single RS-specific access token when accessing several

resource servers. (Resource indicators, as specified in [I-D.ietf-

oauth-resource-indicators], can help to achieve this.) [I-D.ietf-

oauth-token-binding] has the same property since different token

binding ids must be associated with the access token. Using

[RFC8705], on the other hand, allows a client to use the access

token at multiple resource servers.

It shall be noted that audience restrictions, or generally speaking

an indication by the client to the authorization server where it

wants to use the access token, has additional benefits beyond the

scope of token leakage prevention. It allows the authorization

server to create different access token whose format and content is

specifically minted for the respective server. This has huge

functional and privacy advantages in deployments using structured

access tokens.

4.9.2. Compromised Resource Server

An attacker may compromise a resource server to gain access to the

resources of the respective deployment. Such a compromise may range

from partial access to the system, e.g., its log files, to full

control of the respective server.

If the attacker were able to gain full control, including shell

access, all controls can be circumvented and all resources be

accessed. The attacker would also be able to obtain other access

tokens held on the compromised system that would potentially be

valid to access other resource servers.

Preventing server breaches by hardening and monitoring server

systems is considered a standard operational procedure and,

therefore, out of the scope of this document. This section focuses

on the impact of OAuth-related breaches and the replaying of

captured access tokens.

¶

¶

¶

¶

¶

¶

¶

The following measures should be taken into account by implementers

in order to cope with access token replay by malicious actors:

Sender-constrained access tokens as described in Section

4.9.1.1.2 SHOULD be used to prevent the attacker from replaying

the access tokens on other resource servers. Depending on the

severity of the penetration, sender-constrained access tokens

will also prevent replay on the compromised system.

Audience restriction as described in Section 4.9.1.1.3 SHOULD be

used to prevent replay of captured access tokens on other

resource servers.

The resource server MUST treat access tokens like any other

credentials. It is considered good practice to not log them and

not store them in plain text.

The first and second recommendation also apply to other scenarios

where access tokens leak (see Attacker A5).

4.10. Open Redirection

The following attacks can occur when an AS or client has an open

redirector. An open redirector is an endpoint that forwards a user's

browser to an arbitrary URI obtained from a query parameter.

4.10.1. Client as Open Redirector

Clients MUST NOT expose open redirectors. Attackers may use open

redirectors to produce URLs pointing to the client and utilize them

to exfiltrate authorization codes and access tokens, as described in

Section 4.1.2. Another abuse case is to produce URLs that appear to

point to the client. This might trick users into trusting the URL

and follow it in their browser. This can be abused for phishing.

In order to prevent open redirection, clients should only redirect

if the target URLs are whitelisted or if the origin and integrity of

a request can be authenticated. Countermeasures against open

redirection are described by OWASP [owasp_redir].

4.10.2. Authorization Server as Open Redirector

Just as with clients, attackers could try to utilize a user's trust

in the authorization server (and its URL in particular) for

performing phishing attacks. OAuth authorization servers regularly

redirect users to other web sites (the clients), but must do so in a

safe way.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

[RFC6749], Section 4.1.2.1, already prevents open redirects by

stating that the AS MUST NOT automatically redirect the user agent

in case of an invalid combination of client_id and redirect_uri.

However, an attacker could also utilize a correctly registered

redirect URI to perform phishing attacks. The attacker could, for

example, register a client via dynamic client registration [RFC7591]

and intentionally send an erroneous authorization request, e.g., by

using an invalid scope value, thus instructing the AS to redirect

the user agent to its phishing site.

The AS MUST take precautions to prevent this threat. Based on its

risk assessment, the AS needs to decide whether it can trust the

redirect URI and SHOULD only automatically redirect the user agent

if it trusts the redirect URI. If the URI is not trusted, the AS MAY

inform the user and rely on the user to make the correct decision.

4.11. 307 Redirect

At the authorization endpoint, a typical protocol flow is that the

AS prompts the user to enter her credentials in a form that is then

submitted (using the HTTP POST method) back to the authorization

server. The AS checks the credentials and, if successful, redirects

the user agent to the client's redirection endpoint.

In [RFC6749], the HTTP status code 302 is used for this purpose, but

"any other method available via the user-agent to accomplish this

redirection is allowed". When the status code 307 is used for

redirection instead, the user agent will send the user credentials

via HTTP POST to the client.

This discloses the sensitive credentials to the client. If the

relying party is malicious, it can use the credentials to

impersonate the user at the AS.

The behavior might be unexpected for developers, but is defined in

[RFC7231], Section 6.4.7. This status code does not require the user

agent to rewrite the POST request to a GET request and thereby drop

the form data in the POST request body.

In the HTTP standard [RFC7231], only the status code 303

unambigiously enforces rewriting the HTTP POST request to an HTTP

GET request. For all other status codes, including the popular 302,

user agents can opt not to rewrite POST to GET requests and

therefore to reveal the user credentials to the client. (In

practice, however, most user agents will only show this behaviour

for 307 redirects.)

AS which redirect a request that potentially contains user

credentials therefore MUST NOT use the HTTP 307 status code for

¶

¶

¶

¶

¶

¶

¶

¶

redirection. If an HTTP redirection (and not, for example,

JavaScript) is used for such a request, AS SHOULD use HTTP status

code 303 "See Other".

4.12. TLS Terminating Reverse Proxies

A common deployment architecture for HTTP applications is to hide

the application server behind a reverse proxy that terminates the

TLS connection and dispatches the incoming requests to the

respective application server nodes.

This section highlights some attack angles of this deployment

architecture with relevance to OAuth and gives recommendations for

security controls.

In some situations, the reverse proxy needs to pass security-related

data to the upstream application servers for further processing.

Examples include the IP address of the request originator, token

binding ids, and authenticated TLS client certificates. This data is

usually passed in custom HTTP headers added to the upstream request.

If the reverse proxy would pass through any header sent from the

outside, an attacker could try to directly send the faked header

values through the proxy to the application server in order to

circumvent security controls that way. For example, it is standard

practice of reverse proxies to accept X-Forwarded-For headers and

just add the origin of the inbound request (making it a list).

Depending on the logic performed in the application server, the

attacker could simply add a whitelisted IP address to the header and

render a IP whitelist useless.

A reverse proxy must therefore sanitize any inbound requests to

ensure the authenticity and integrity of all header values relevant

for the security of the application servers.

If an attacker was able to get access to the internal network

between proxy and application server, the attacker could also try to

circumvent security controls in place. It is, therefore, essential

to ensure the authenticity of the communicating entities.

Furthermore, the communication link between reverse proxy and

application server must be protected against eavesdropping,

injection, and replay of messages.

4.13. Refresh Token Protection

Refresh tokens are a convenient and user-friendly way to obtain new

access tokens after the expiration of access tokens. Refresh tokens

also add to the security of OAuth since they allow the authorization

server to issue access tokens with a short lifetime and reduced

scope thus reducing the potential impact of access token leakage.

¶

¶

¶

¶

¶

¶

¶

¶

4.13.1. Discussion

Refresh tokens are an attractive target for attackers since they

represent the overall grant a resource owner delegated to a certain

client. If an attacker is able to exfiltrate and successfully replay

a refresh token, the attacker will be able to mint access tokens and

use them to access resource servers on behalf of the resource owner.

[RFC6749] already provides a robust baseline protection by requiring

confidentiality of the refresh tokens in transit and storage,

the transmission of refresh tokens over TLS-protected connections

between authorization server and client,

the authorization server to maintain and check the binding of a

refresh token to a certain client (i.e., client_id),

authentication of this client during token refresh, if possible,

and

that refresh tokens cannot be generated, modified, or guessed.

[RFC6749] also lays the foundation for further (implementation

specific) security measures, such as refresh token expiration and

revocation as well as refresh token rotation by defining respective

error codes and response behavior.

This specification gives recommendations beyond the scope of

[RFC6749] and clarifications.

4.13.2. Recommendations

Authorization servers SHOULD determine, based on a risk assessment,

whether to issue refresh tokens to a certain client. If the

authorization server decides not to issue refresh tokens, the client

MAY refresh access tokens by utilizing other grant types, such as

the authorization code grant type. In such a case, the authorization

server may utilize cookies and persistent grants to optimize the

user experience.

If refresh tokens are issued, those refresh tokens MUST be bound to

the scope and resource servers as consented by the resource owner.

This is to prevent privilege escalation by the legitimate client and

reduce the impact of refresh token leakage.

For confidential clients, [RFC6749] already requires that refresh

tokens can only be used by the client for which they were issued.

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

Authorization server MUST utilize one of these methods to detect

refresh token replay by malicious actors for public clients:

Sender-constrained refresh tokens: the authorization server

cryptographically binds the refresh token to a certain client

instance by utilizing [RFC8705] or [I-D.ietf-oauth-token-

binding].

Refresh token rotation: the authorization server issues a new

refresh token with every access token refresh response. The

previous refresh token is invalidated but information about the

relationship is retained by the authorization server. If a

refresh token is compromised and subsequently used by both the

attacker and the legitimate client, one of them will present an

invalidated refresh token, which will inform the authorization

server of the breach. The authorization server cannot determine

which party submitted the invalid refresh token, but it will

revoke the active refresh token. This stops the attack at the

cost of forcing the legitimate client to obtain a fresh

authorization grant.

Implementation note: the grant to which a refresh token belongs

may be encoded into the refresh token itself. This can enable an

authorization server to efficiently determine the grant to which

a refresh token belongs, and by extension, all refresh tokens

that need to be revoked. Authorization servers MUST ensure the

integrity of the refresh token value in this case, for example,

using signatures.

Authorization servers MAY revoke refresh tokens automatically in

case of a security event, such as:

password change

logout at the authorization server

Refresh tokens SHOULD expire if the client has been inactive for

some time, i.e., the refresh token has not been used to obtain fresh

access tokens for some time. The expiration time is at the

discretion of the authorization server. It might be a global value

or determined based on the client policy or the grant associated

with the refresh token (and its sensitivity).

4.14. Client Impersonating Resource Owner

Resource servers may make access control decisions based on the

identity of the resource owner as communicated in the sub claim

returned by the authorization server in a token introspection

response [RFC7662] or other mechanisms. If a client is able to

choose its own client_id during registration with the authorization

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

¶

server, then there is a risk that it can register with the same sub

value as a privileged user. A subsequent access token obtained under

the client credentials grant may be mistaken for an access token

authorized by the privileged user if the resource server does not

perform additional checks.

4.14.1. Countermeasures

Authorization servers SHOULD NOT allow clients to influence their

client_id or sub value or any other claim if that can cause

confusion with a genuine resource owner. Where this cannot be

avoided, authorization servers MUST provide other means for the

resource server to distinguish between access tokens authorized by a

resource owner from access tokens authorized by the client itself.

4.15. Clickjacking

As described in Section 4.4.1.9 of [RFC6819], the authorization

request is susceptible to clickjacking. An attacker can use this

vector to obtain the user's authentication credentials, change the

scope of access granted to the client, and potentially access the

user's resources.

Authorization servers MUST prevent clickjacking attacks. Multiple

countermeasures are described in [RFC6819], including the use of the

X-Frame-Options HTTP response header field and frame-busting

JavaScript. In addition to those, authorization servers SHOULD also

use Content Security Policy (CSP) level 2 [CSP-2] or greater.

To be effective, CSP must be used on the authorization endpoint and,

if applicable, other endpoints used to authenticate the user and

authorize the client (e.g., the device authorization endpoint, login

pages, error pages, etc.). This prevents framing by unauthorized

origins in user agents that support CSP. The client MAY permit being

framed by some other origin than the one used in its redirection

endpoint. For this reason, authorization servers SHOULD allow

administrators to configure allowed origins for particular clients

and/or for clients to register these dynamically.

Using CSP allows authorization servers to specify multiple origins

in a single response header field and to constrain these using

flexible patterns (see [CSP-2] for details). Level 2 of this

standard provides a robust mechanism for protecting against

clickjacking by using policies that restrict the origin of frames

(using frame-ancestors) together with those that restrict the

sources of scripts allowed to execute on an HTML page (by using

script-src). A non-normative example of such a policy is shown in

the following listing:

¶

¶

¶

¶

¶

¶

[RFC8252]

[RFC6750]

[RFC8414]

[OpenID]

Because some user agents do not support [CSP-2], this technique

SHOULD be combined with others, including those described in

[RFC6819], unless such legacy user agents are explicitly unsupported

by the authorization server. Even in such cases, additional

countermeasures SHOULD still be employed.

5. Acknowledgements

We would like to thank Jim Manico, Phil Hunt, Nat Sakimura,

Christian Mainka, Doug McDorman, Johan Peeters, Joseph Heenan, Brock

Allen, Vittorio Bertocci, David Waite, Nov Matake, Tomek Stojecki,

Dominick Baier, Neil Madden, William Dennis, Dick Hardt, Petteri

Stenius, Annabelle Richard Backman, Aaron Parecki, George Fletscher,

Brian Campbell, Konstantin Lapine, Tim Würtele, Guido Schmitz,

Hans Zandbelt, Jared Jennings, Michael Peck, Pedram Hosseyni,

Michael B. Jones, and Travis Spencer for their valuable feedback.

6. IANA Considerations

This draft includes no request to IANA.

7. Security Considerations

All relevant security considerations have been given in the

functional specification.

8. Normative References

Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",

BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

<https://www.rfc-editor.org/info/rfc8252>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0 incorporating

HTTP/1.1 200 OK

Content-Security-Policy: frame-ancestors https://ext.example.org:8000

Content-Security-Policy: script-src 'self'

X-Frame-Options: ALLOW-FROM https://ext.example.org:8000

...

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8252
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414

[RFC7231]

[RFC3986]

[oauth-v2-form-post-response-mode]

[RFC6749]

[RFC6819]

[RFC7662]

[RFC8705]

[CSP-2]

[RFC8174]

[arXiv.1901.11520]

errata set 1", 8 November 2014, <http://openid.net/specs/

openid-connect-core-1_0.html>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Jones, M. and B. Campbell, "OAuth

2.0 Form Post Response Mode", 27 April 2015, <http://

openid.net/specs/oauth-v2-form-post-response-

mode-1_0.html>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth

2.0 Threat Model and Security Considerations", RFC 6819,

DOI 10.17487/RFC6819, January 2013, <https://www.rfc-

editor.org/info/rfc6819>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", February 2020,

<https://www.rfc-editor.org/info/rfc8705>.

9. Informative References

West, M., Barth, A., and D. Veditz, "Content Security

Policy Level 2", July 2015, <https://www.w3.org/TR/CSP2>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fett, D., Hosseyni, P., and R. Küsters, "An

Extensive Formal Security Analysis of the OpenID

Financial-grade API", 31 January 2019, <http://arxiv.org/

abs/1901.11520/>.

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8705
https://www.w3.org/TR/CSP2
https://www.rfc-editor.org/info/rfc8174
http://arxiv.org/abs/1901.11520/
http://arxiv.org/abs/1901.11520/

[I-D.ietf-oauth-jwsreq]

[oauth_security_ubc]

[oauth_security_cmu]

[RFC7800]

[I-D.ietf-oauth-dpop]

[I-D.ietf-oauth-signed-http-request]

[RFC7591]

[I-D.ietf-oauth-rar]

[bug.chromium]

Sakimura, N., Bradley, J., and M. Jones, "The OAuth 2.0

Authorization Framework: JWT Secured Authorization

Request (JAR)", Work in Progress, Internet-Draft, draft-

ietf-oauth-jwsreq-30, 10 September 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-jwsreq-30>.

Sun, S.-T. and K. Beznosov, "The Devil is in

the (Implementation) Details: An Empirical Analysis of

OAuth SSO Systems", October 2012, <http://

passwordresearch.com/papers/paper267.html>.

Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher,

R., and P. Tague, "OAuth Demystified for Mobile

Application Developers", November 2014, <http://

css.csail.mit.edu/6.858/2012/readings/oauth-sso.pdf>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

Fett, D., Campbell, B., Bradley, J.,

Lodderstedt, T., Jones, M., and D. Waite, "OAuth 2.0

Demonstration of Proof-of-Possession at the Application

Layer (DPoP)", Work in Progress, Internet-Draft, draft-

ietf-oauth-dpop-01, 1 May 2020, <https://tools.ietf.org/

html/draft-ietf-oauth-dpop-01>.

Richer, J., Bradley, J., and H. Tschofenig, "A Method for

Signing HTTP Requests for OAuth", Work in Progress,

Internet-Draft, draft-ietf-oauth-signed-http-request-03,

8 August 2016, <https://tools.ietf.org/html/draft-ietf-

oauth-signed-http-request-03>.

Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,

and P. Hunt, "OAuth 2.0 Dynamic Client Registration

Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015,

<https://www.rfc-editor.org/info/rfc7591>.

Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0

Rich Authorization Requests", Work in Progress, Internet-

Draft, draft-ietf-oauth-rar-02, 21 August 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-rar-02>.

"Referer header includes URL fragment when opening

link using New Tab", <https://bugs.chromium.org/p/

chromium/issues/detail?id=168213/>.

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
http://passwordresearch.com/papers/paper267.html
http://passwordresearch.com/papers/paper267.html
http://css.csail.mit.edu/6.858/2012/readings/oauth-sso.pdf
http://css.csail.mit.edu/6.858/2012/readings/oauth-sso.pdf
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://tools.ietf.org/html/draft-ietf-oauth-dpop-01
https://tools.ietf.org/html/draft-ietf-oauth-dpop-01
https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-03
https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-03
https://www.rfc-editor.org/info/rfc7591
https://tools.ietf.org/html/draft-ietf-oauth-rar-02
https://tools.ietf.org/html/draft-ietf-oauth-rar-02
https://bugs.chromium.org/p/chromium/issues/detail?id=168213/
https://bugs.chromium.org/p/chromium/issues/detail?id=168213/

[I-D.bradley-oauth-jwt-encoded-state]

[RFC7636]

[webauthn]

[I-D.sakimura-oauth-jpop]

[webcrypto]

[I-D.ietf-oauth-par]

[webappsec-referrer-policy]

[arXiv.1704.08539]

[RFC2119]

Bradley, J., Lodderstedt, T., and H. Zandbelt, "Encoding

claims in the OAuth 2 state parameter using a JWT", Work

in Progress, Internet-Draft, draft-bradley-oauth-jwt-

encoded-state-09, 4 November 2018, <https://

tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-

state-09>.

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof

Key for Code Exchange by OAuth Public Clients", RFC 7636,

DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>.

Balfanz, D., Czeskis, A., Hodges, J., Jones, J.C., Jones,

M.B., Kumar, A., Liao, A., Lindemann, R., and E.

Lundberg, "Web Authentication: An API for accessing

Public Key Credentials Level 1", 4 March 2019, <https://

www.w3.org/TR/2019/REC-webauthn-1-20190304/>.

Sakimura, N., Li, K., and J. Bradley, "The OAuth 2.0

Authorization Framework: JWT Pop Token Usage", Work in

Progress, Internet-Draft, draft-sakimura-oauth-jpop-05,

22 July 2019, <https://tools.ietf.org/html/draft-

sakimura-oauth-jpop-05>.

Watson, M., "Web Cryptography API", 26 January 2017,

<https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/>.

Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,

and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",

Work in Progress, Internet-Draft, draft-ietf-oauth-

par-04, 18 September 2020, <https://tools.ietf.org/html/

draft-ietf-oauth-par-04>.

Eisinger, J. and E. Stark, "Referrer

Policy", 20 April 2017, <https://w3c.github.io/webappsec-

referrer-policy>.

Fett, D., Küsters, R., and G. Schmitz, "The Web

SSO Standard OpenID Connect: In-Depth Formal Security

Analysis and Security Guidelines", 27 April 2017,

<http://arxiv.org/abs/1704.08539/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

https://tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-state-09
https://tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-state-09
https://tools.ietf.org/html/draft-bradley-oauth-jwt-encoded-state-09
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://tools.ietf.org/html/draft-sakimura-oauth-jpop-05
https://tools.ietf.org/html/draft-sakimura-oauth-jpop-05
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
https://tools.ietf.org/html/draft-ietf-oauth-par-04
https://tools.ietf.org/html/draft-ietf-oauth-par-04
https://w3c.github.io/webappsec-referrer-policy
https://w3c.github.io/webappsec-referrer-policy
http://arxiv.org/abs/1704.08539/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[I-D.ietf-oauth-resource-indicators]

[I-D.ietf-oauth-token-binding]

[arXiv.1601.01229]

[subdomaintakeover]

[owasp_redir]

[oauth_security_jcs_14]

[arXiv.1508.04324v2]

[RFC8473]

[I-D.ietf-oauth-pop-key-distribution]

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", Work in Progress, Internet-

Draft, draft-ietf-oauth-resource-indicators-08, 11

September 2019, <https://tools.ietf.org/html/draft-ietf-

oauth-resource-indicators-08>.

Jones, M., Campbell, B., Bradley, J., and W. Denniss,

"OAuth 2.0 Token Binding", Work in Progress, Internet-

Draft, draft-ietf-oauth-token-binding-08, 19 October

2018, <https://tools.ietf.org/html/draft-ietf-oauth-

token-binding-08>.

Fett, D., Küsters, R., and G. Schmitz, "A

Comprehensive Formal Security Analysis of OAuth 2.0", 6

January 2016, <http://arxiv.org/abs/1601.01229/>.

Liu, D., Hao, S., and H. Wang, "All Your DNS

Records Point to Us: Understanding the Security Threats

of Dangling DNS Records", 24 October 2016, <https://

www.eecis.udel.edu/~hnw/paper/ccs16a.pdf>.

"OWASP Cheat Sheet Series - Unvalidated Redirects and

Forwards", <https://cheatsheetseries.owasp.org/

cheatsheets/

Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html>.

Bansal, C., Bhargavan, K., Delignat-Lavaud,

A., and S. Maffeis, "Discovering concrete attacks on

website authorization by formal analysis", 23 April 2014,

<https://www.doc.ic.ac.uk/~maffeis/papers/jcs14.pdf>.

Mladenov, V., Mainka, C., and J. Schwenk, "On

the security of modern Single Sign-On Protocols: Second-

Order Vulnerabilities in OpenID Connect", 7 January 2016,

<http://arxiv.org/abs/1508.04324v2/>.

Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N.,

and J. Hodges, "Token Binding over HTTP", RFC 8473, DOI

10.17487/RFC8473, October 2018, <https://www.rfc-

editor.org/info/rfc8473>.

Bradley, J., Hunt, P., Jones, M., Tschofenig, H., and M.

Meszaros, "OAuth 2.0 Proof-of-Possession: Authorization

Server to Client Key Distribution", Work in Progress,

Internet-Draft, draft-ietf-oauth-pop-key-distribution-07,

27 March 2019, <https://tools.ietf.org/html/draft-ietf-

oauth-pop-key-distribution-07>.

https://tools.ietf.org/html/draft-ietf-oauth-resource-indicators-08
https://tools.ietf.org/html/draft-ietf-oauth-resource-indicators-08
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
http://arxiv.org/abs/1601.01229/
https://www.eecis.udel.edu/~hnw/paper/ccs16a.pdf
https://www.eecis.udel.edu/~hnw/paper/ccs16a.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://www.doc.ic.ac.uk/~maffeis/papers/jcs14.pdf
http://arxiv.org/abs/1508.04324v2/
https://www.rfc-editor.org/info/rfc8473
https://www.rfc-editor.org/info/rfc8473
https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-07
https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-07

Appendix A. Document History

[[To be removed from the final specification]]

-16

Make MTLS a suggestion, not RECOMMENDED.

Add important requirements when using nonce for code injection

protection.

Highlight requirements for refresh token sender-constraining.

Make PKCE a MUST for public clients.

Describe PKCE Downgrade Attacks and countermeasures.

Allow variable port numbers in localhost redirect URIs as in

RFC8252, Section 7.3.

-15

Update reference to DPoP

Fix reference to RFC8414

Move to xml2rfcv3

-14

Added info about using CSP to prevent clickjacking

Changes from WGLC feedback

Editorial changes

AS MUST announce PKCE support either in metadata or using

deployment-specific ways (before: SHOULD)

-13

Discourage use of Resource Owner Password Credentials Grant

Added text on client impersonating resource owner

Recommend asymmetric methods for client authentication

Encourage use of PKCE mode "S256"

PKCE may replace state for CSRF protection

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

AS SHOULD publish PKCE support

Cleaned up discussion on auth code injection

AS MUST support PKCE

-12

Added updated attacker model

-11

Adapted section 2.1.2 to outcome of consensus call

more text on refresh token inactivity and implementation note on

refresh token replay detection via refresh token rotation

-10

incorporated feedback by Joseph Heenan

changed occurrences of SHALL to MUST

added text on lack of token/cert binding support tokens issued in

the authorization response as justification to not recommend

issuing tokens there at all

added requirement to authenticate clients during code exchange

(PKCE or client credential) to 2.1.1.

added section on refresh tokens

editorial enhancements to 2.1.2 based on feedback

-09

changed text to recommend not to use implicit but code

added section on access token injection

reworked sections 3.1 through 3.3 to be more specific on implicit

grant issues

-08

added recommendations re implicit and token injection

uppercased key words in Section 2 according to RFC 2119

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

-07

incorporated findings of Doug McDorman

added section on HTTP status codes for redirects

added new section on access token privilege restriction based on

comments from Johan Peeters

-06

reworked section 3.8.1

incorporated Phil Hunt's feedback

reworked section on mix-up

extended section on code leakage via referrer header to also

cover state leakage

added Daniel Fett as author

replaced text intended to inform WG discussion by recommendations

to implementors

modified example URLs to conform to RFC 2606

-05

Completed sections on code leakage via referrer header, attacks

in browser, mix-up, and CSRF

Reworked Code Injection Section

Added reference to OpenID Connect spec

removed refresh token leakage as respective considerations have

been given in section 10.4 of RFC 6749

first version on open redirection

incorporated Christian Mainka's review feedback

-04

Restructured document for better readability

Added best practices on Token Leakage prevention

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

-03

Added section on Access Token Leakage at Resource Server

incorporated Brian Campbell's findings

-02

Folded Mix up and Access Token leakage through a bad AS into new

section for dynamic OAuth threats

reworked dynamic OAuth section

-01

Added references to mitigation methods for token leakage

Added reference to Token Binding for Authorization Code

incorporated feedback of Phil Hunt

fixed numbering issue in attack descriptions in section 2

-00 (WG document)

turned the ID into a WG document and a BCP

Added federated app login as topic in Other Topics

Authors' Addresses

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

John Bradley

Yubico

Email: ve7jtb@ve7jtb.com

Andrey Labunets

Email: isciurus@gmail.com

Daniel Fett

yes.com

Email: mail@danielfett.de

¶

* ¶

* ¶

¶

*

¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

mailto:torsten@lodderstedt.net
mailto:ve7jtb@ve7jtb.com
mailto:isciurus@gmail.com
mailto:mail@danielfett.de

	OAuth 2.0 Security Best Current Practice
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Structure
	1.2. Conventions and Terminology

	2. Recommendations
	2.1. Protecting Redirect-Based Flows
	2.1.1. Authorization Code Grant
	2.1.2. Implicit Grant

	2.2. Token Replay Prevention
	2.2.1. Access Tokens
	2.2.2. Refresh Tokens

	2.3. Access Token Privilege Restriction
	2.4. Resource Owner Password Credentials Grant
	2.5. Client Authentication
	2.6. Other Recommendations

	3. The Updated OAuth 2.0 Attacker Model
	4. Attacks and Mitigations
	4.1. Insufficient Redirect URI Validation
	4.1.1. Redirect URI Validation Attacks on Authorization Code Grant
	4.1.2. Redirect URI Validation Attacks on Implicit Grant
	4.1.3. Countermeasures

	4.2. Credential Leakage via Referer Headers
	4.2.1. Leakage from the OAuth Client
	4.2.2. Leakage from the Authorization Server
	4.2.3. Consequences
	4.2.4. Countermeasures

	4.3. Credential Leakage via Browser History
	4.3.1. Authorization Code in Browser History
	4.3.2. Access Token in Browser History

	4.4. Mix-Up Attacks
	4.4.1. Attack Description
	4.4.2. Countermeasures

	4.5. Authorization Code Injection
	4.5.1. Attack Description
	4.5.2. Discussion
	4.5.3. Countermeasures
	4.5.3.1. PKCE
	4.5.3.2. Nonce
	4.5.3.3. Other Solutions

	4.5.4. Limitations

	4.6. Access Token Injection
	4.6.1. Countermeasures

	4.7. Cross Site Request Forgery
	4.7.1. Countermeasures

	4.8. PKCE Downgrade Attack
	4.8.1. Attack Description
	4.8.2. Countermeasures

	4.9. Access Token Leakage at the Resource Server
	4.9.1. Access Token Phishing by Counterfeit Resource Server
	4.9.1.1. Countermeasures
	4.9.1.1.1. Metadata
	4.9.1.1.2. Sender-Constrained Access Tokens
	4.9.1.1.3. Audience Restricted Access Tokens

	4.9.2. Compromised Resource Server

	4.10. Open Redirection
	4.10.1. Client as Open Redirector
	4.10.2. Authorization Server as Open Redirector

	4.11. 307 Redirect
	4.12. TLS Terminating Reverse Proxies
	4.13. Refresh Token Protection
	4.13.1. Discussion
	4.13.2. Recommendations

	4.14. Client Impersonating Resource Owner
	4.14.1. Countermeasures

	4.15. Clickjacking

	5. Acknowledgements
	6. IANA Considerations
	7. Security Considerations
	8. Normative References
	9. Informative References
	Appendix A. Document History
	Authors' Addresses

