workgroup: Web Authorization Protocol
Internet-Draft:
draft-ietf-oauth-selective-disclosure-jwt-01
Published: 24 October 2022
Intended Status: Standards Track
Expires: 27 April 2023
A D. Fett K. Yasuda

uyes.com Microsoft

=W S O T ot

Selective Disclosure for JWTs (SD-JWT)

Abstract
This document specifies conventions for creating JSON Web Token
(JWT) documents that support selective disclosure of JWT claim
values.

Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the Web Authorization

Protocol Working Group mailing list (oauth@ietf.org), which is
archived at https://mailarchive.ietf.org/arch/browse/oauth/.

Source for this draft and an issue tracker can be found at https://
github.com/oauth-wg/oauth-selective-disclosure-jwt.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.
Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

https://mailarchive.ietf.org/arch/browse/oauth/
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.

Table of Contents

1.

Introduction

.1. Feature Summary

1.2. Conventions and Terminology

. Terms and Definitions

Flow Diagram

Concepts

4.1. Creating an SD-JWT

4.2. Creating a Holder-Selected Disclosures JWT

4.3. Optional Holder Binding

.3.1. Optional Claim Name Blinding

Verifying a Holder-Selected Disclosures JWT
Data Formats

5.1. The Challenge of Canonicalization

5.2. Format of an SD-JWT

sd_digests Claim (Digests of Selectively Disclosable

=

=

[_IWIN

NN
[

lon

1
m
.2. Digest Derivation Function Claim
3 Holder Public Key Claim
5.3. Example 1: SD-JWT

.4. Format of an Issuer-Issued Disclosures Object
5.5. Example: Issuer-Issued Disclosures Object for the Flat SD-
in Example 1
5.6. Combined Format for Issuance
5.7. Format of a Holder-Selected Disclosures JWT

.8. Example: Holder-Selected Disclosures JWT for Example 1
5.9. Combined Format for Presentation

6. Verification and Processing
6.1. Verification by the Holder when Receiving SD-JWT and Issuer -
Issued Disclosures Object
6.2. Verification by the Verifier when Receiving SD-JWT and
Holder-Selected Disclosures JWT
6.3. Processing Model
7. Security Considerations
7.1. Mandatory digest computation of the revealed claim values by
the Verifier
7.2. Mandatory signing of the SD-JWT
7.3. Entropy of the salt
7.4. Minimum length of the salt
7.5. Choice of a digest derivation algorithm
7.6. Holder Binding
7.7. Blinding Claim Names
8. Privacy Considerations
8.1 Claim Names
8.2. Unlinkability

9. Acknowledgements
10. IANA Considerations

https://trustee.ietf.org/license-info

11. Normative References
12. Informative References
Appendix A. Additional Examples
A.1. Example 2a - Structured SD-JWT
A.2. Example 2b - Mixing SD and Non-SD Claims

A.3. Example 3 - Complex Structured SD-JWT

A.4. Example 4 - W3C Verifiable Credentials Data Model (work in
progress)

A.5. Blinding Claim Names

A.5.1. Example 5: Some Blinded Claims
A.5.2. Example 6: All Claim Names Blinded
Appendix B. Document History
Authors' Addresses

Introduction

The JSON-based representation of claims in a signed JSON Web Token
(JWT) [RFC7519] is secured against modification using JSON Web
Signature (JWS) [RFC7515] digital signatures. A consumer of a signed
JWT that has checked the signature can safely assume that the
contents of the token have not been modified. However, anyone
receiving an unencrypted JWT can read all of the claims and
likewise, anyone with the decryption key receiving an encrypted JWT
can also read all of the claims.

One of the common use cases of a signed JWT is representing a user's
identity. As long as the signed JWT is one-time use, it typically
only contains those claims the user has consented to disclose to a
specific Verifier. However, there is an increasing number of use
cases where a signed JWT is created once and then used a number of
times by the user (the "Holder" of the JWT). In such cases, the
signed JWT needs to contain the superset of all claims the user of
the signed JWT might want to disclose to Verifiers at some point.
The ability to selectively disclose a subset of these claims
depending on the Verifier becomes crucial to ensure minimum
disclosure and prevent Verifiers from obtaining claims irrelevant
for the transaction at hand.

One example of such a multi-use JWT is a verifiable credential, a
tamper-evident credential with a cryptographically verifiable
authorship that contains claims about a subject. SD-JWTs defined in
this document enable such selective disclosure of claims.

In an SD-JWT, claim values are hidden, but cryptographically
protected against undetected modification. When issuing the SD-JWT
to the Holder, the Issuer also sends a JSON object that contains a
mapping between hidden claim values and their cleartext
counterparts, the so-called Disclosures. This JSON object is
therefore called the Issuer-Issued Disclosures (II-Disclosures)
object.

The Holder decides which claims to disclose to a Verifier. This
specification defines a format for conveying the selected subset of
the II-Disclosures to the Verifier. This subset is called the
Holder-Selected Disclosures (HS-Disclosures) and is transported in a
JWT, the HS-Disclosures JWT, for presentation alongside the SD-JWT.
The Verifier can (and has to) verify that all disclosed claim values
were part of the original, Issuer-signed SD-JWT. The Verifier will

not, however, learn any claim values not disclosed in HS-
Disclosures.

While JWTs for claims describing natural persons are a common use
case, the mechanisms defined in this document can be used for many
other use cases as well.

This document also describes an optional mechanism for Holder
Binding, or the concept of binding an SD-JWT to key material
controlled by the Holder.

This specification aims to be easy to implement and to leverage
established and widely used data formats and cryptographic
algorithms wherever possible.

1.1. Feature Summary
*This specification defines
-a format enabling selective disclosure for JWTs,

-formats for associated data that enables disclosing claims,
and

-formats for the combined transport of SD-JWTs and the
associated data.

*The specification supports selectively disclosable claims in flat
data structures as well as more complex, nested data structures.

-This specification enables combining selectively disclosable
claims with clear-text claims that are always disclosed.

-Optionally, this specification allows to also hide ("blind")
the claim names, not only the claim values.

-When claim names are blinded, this specification enables
combining claims with blinded and unblinded names in the same
SD-JWT.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

base64url denotes the URL-safe base64 encoding without padding
defined in Section 2 of [RFC7515].

2. Terms and Definitions

Selective disclosure Process of a Holder disclosing to a Verifier a
subset of claims contained in a claim set issued by an Issuer.

Selectively Disclosable JWT (SD-JWT) An Issuer-created signed JWT
(JWS, [RFC7515]) that supports selective disclosure as defined in

3.

this document and can contain both regular claims and digests of
selectively-disclosable claims.

Disclosure A combination of a cleartext claim value, a cleartext
claim name, a salt, and optionally a blinded claim name value that
is used to calculate a digest for a certain claim.

Issuer-Issued Disclosures Object (II-Disclosures Object) A JSON
object created by the Issuer that contains Disclosures for all
selectively-disclosable claims in an SD-JWT.

Holder-Selected Disclosures JWT (HS-Disclosures JWT) A JWT created
by the Holder that contains the Disclosures from an Issuer-Issued
Disclosures Object that the Holder is disclosing to the Verifier.
In addition to the Disclosures, it can contain other properties
and may be signed by the Holder.

Holder Binding Ability of the Holder to prove legitimate possession
of an SD-JWT by proving control over the same private key during
the issuance and presentation. An SD-JWT with Holder Binding
contains a public key or a reference to a public key that matches
to the private key controlled by the Holder.

Claim Name Blinding Feature that enables to blind not only claim
values, but also claim names of the claims that are included in
SD-JWT but are not disclosed to the Verifier in the HS-Disclosures
JWT.

Issuer An entity that creates SD-JWTs.

Holder An entity that received SD-JWTs from the Issuer and has
control over them.

Verifier An entity that requests, checks and extracts the claims
from HS-Disclosures JWT.

Note: discuss if we want to include Client, Authorization Server for
the purpose of ensuring continuity and separating the entity from
the actor.

Flow Diagram

4.

4.

Issues SD-JWT
and Issuer-Issued Disclosures Object

Presents SD-JWT
and Holder-Selected Disclosures JWT

Figure 1: SD-JWT Issuance and Presentation Flow
Concepts
In the following, the contents of SD-JWTs and HS-Disclosures JWTs
are described at a conceptual level, abstracting from the data
formats described afterwards.
1. Creating an SD-JWT
An SD-JWT, at its core, is a digitally signed document containing

digests over the claim values with random salts and other metadata.
It MUST be digitally signed using the Issuer's private key.

SD-JWT-DOC = (METADATA, SD-CLAIMS)
SD-JWT = SD-JWT-DOC | SIG(SD-JWT-DOC, ISSUER-PRIV-KEY)

SD-CLAIMS is an object with claim names (CLAIM-NAME) mapped to the
digests over the claim values (CLAIM-VALUE) with random salts
(SALT). Digests are calculated using a digest derivation function
such as a hash function, HMAC, or other (DIGEST-DERIVATION()):

SD-CLAIMS = (

)*

CLAIM-NAME: DIGEST-DERIVATION(SALT, CLAIM-VALUE)

When an HMAC or another type of derivation function is used for
digest calculation, a secret cryptographic key or other
cryptographic secret is used instead of a salt value. However, the
term "salt" is used throughout this document for brevity.

SD-CLAIMS can also be nested deeper to capture more complex objects,
as will be shown later.

SD-JWT is sent from the Issuer to the Holder, together with the
mapping of the plain-text claim values, the salt values, and
potentially some other information.

4.2. Creating a Holder-Selected Disclosures JWT

To disclose to a Verifier a subset of the SD-JWT claim values, a
Holder creates a JWT such as the following:

HOLDER-SELECTED-DISCLOSURES-DOC
HOLDER-SELECTED-DISCLOSURES-JWT

(METADATA, SD-DISCLOSURES)
HOLDER-SELECTED-DISCLOSURES-DOC

SD-DISCLOSURES follows the structure of SD-CLAIMS and can be a
simple object with claim names mapped to values and salts:

SD-DISCLOSURES = (
CLAIM-NAME: (DISCLOSED-SALT, DISCLOSED-VALUE)

)

Just as SD-CLAIMS, SD-DISCLOSURES can be more complex as well.

HOLDER-SELECTED-DISCLOSURES-JWT is sent together with SD-JWT from
the Holder to the Verifier.

4.3. Optional Holder Binding
Some use-cases may require Holder Binding.

If Holder Binding is desired, SD-JWT must contain information about
key material controlled by the Holder:

SD-JWT-DOC = (METADATA, HOLDER-PUBLIC-KEY, SD-CLAIMS)

Note: How the public key is included in SD-JWT is out of scope of
this document. It can be passed by value or by reference.

With Holder Binding, the HOLDER-SELECTED-DISCLOSURES-JWT is signed
by the Holder using its private key. It therefore looks as follows:

HOLDER-SELECTED-DISCLOSURES = HOLDER-SELECTED-DISCLOSURES-DOC |
SIG(HOLDER-SELECTED-DISCLOSURES-DOC, HOLDER-PRIV-KEY)

4.3.1. Optional Claim Name Blinding
If Claim Name Blinding is used, SD-CLAIMS is created as follows:

SD-CLAIMS = (
CLAIM-NAME-PLACEHOLDER: DIGEST-DERIVATION(SALT,
CLAIM-VALUE, CLAIM-NAME)

)*

CLAIM-NAME-PLACEHOLDER is a placeholder used instead of the original
claim name, chosen such that it does not leak information about the
claim name (e.g., randomly).

The contents of SD-DISCLOSURES are modified as follows:

SD-DISCLOSURES = (
CLAIM-NAME-PLACEHOLDER: (DISCLOSED-SALT,
DISCLOSED-VALUE, DISCLOSED-CLAIM-NAME)

Note that blinded and unblinded claim names can be mixed in SD-
CLAIMS and accordingly in SD-DISCLOSURES.
4.4. Verifying a Holder-Selected Disclosures JWT
A Verifier checks that
*for each claim in HOLDER-SELECTED-DISCLOSURES, the digest over
the disclosed values matches the digest under the given claim

name in SD-JWT,

*if Holder Binding is used, the HOLDER-SELECTED-DISCLOSURES was
signed by the private key belonging to HOLDER-PUBLIC-KEY.

The detailed algorithm is described in Section 6.2.
5. Data Formats

This section defines data formats for SD-JWT (containing digests of
the salted claim values), Issuer-Issued Disclosures (containing the
mapping of the plain-text claim values and the salt values), and HS-
Disclosures (containing a subset of the same mapping).

5.1. The Challenge of Canonicalization

When receiving an SD-JWT with associated HS-Disclosures, a Verifier
must be able to re-compute digests of the disclosed claim values
and, given the same input values, obtain the same digest values as
signed by the Issuer.

Usually, JSON-based formats transport claim values as simple
properties of a JSON object such as this:

"family_name": "Mobius",
"address": {
"street_address": "Schulstr. 12",

"locality": "Schulpforta"
}

However, a problem arises when computation over the data need to be
performed and verified, like signing or computing digests. Common
signature schemes require the same byte string as input to the
signature verification as was used for creating the signature. In
the digest derivation approach outlined above, the same problem
exists: for the Issuer and the Verifier to arrive at the same
digest, the same byte string must be hashed.

JSON, however, does not prescribe a unique encoding for data, but
allows for variations in the encoded string. The data above, for
example, can be encoded as

"family_name": "M\u@Of6bius",
"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta"
}

or as

"family_name": "Mobius",
"address": {"locality":"Schulpforta", "street_address":"Schulstr. 12"

The two representations "M\u@Of6bius" and "Möbius" are very
different on the byte-level, but yield equivalent objects. Same for
the representations of address, varying in white space and order of
elements in the object.

The variations in white space, ordering of object properties, and
encoding of Unicode characters are all allowed by the JSON
specification, including further variations, e.g., concerning
floating-point numbers, as described in [RFC8785]. Variations can be
introduced whenever JSON data is serialized or deserialized and
unless dealt with, will lead to different digests and the inability
to verify signatures.

There are generally two approaches to deal with this problem:

1. Canonicalization: The data is transferred in JSON format,
potentially introducing variations in its representation, but
is transformed into a canonical form before computing a digest.
Both the Issuer and the Verifier must use the same
canonicalization algorithm to arrive at the same byte string
for computing a digest.

2. Source string encoding: Instead of transferring data in a
format that may introduce variations, a representation of the
data is serialized. This representation is then used as the
digest input at the Verifier, but also transferred to the
Verifier and used for the same digest calculcation there. This
means that the Verifier can easily check the digest over the
byte string before finally deserializing and accessing the
data.

Mixed approaches are conceivable, i.e., transferring both the
original JSON data plus a string suitable for computing a digest,
but such approaches can easily lead to undetected inconsistencies
resulting in time-of-check-time-of-use type security
vulnerabilities.

In this specification, the source string encoding approach is used,
as it allows for simple and reliable interoperability without the

requirement for a canonicalization library. To encode the source
string, any serialization format that supports the necessary data
types could be used in theory, like protobuf, msgpack, or pickle. In
this specification, JSON is used, as it is human-readable and used
in JWTs as well. This approach means that SD-JWTs can be implemented
purely based on widely available JWT and JSON encoding and decoding
libraries.

To produce a source string to compute a digest, the data is put into
a JSON object together with the salt value, like so (non-normative
example, see Section 5.2.1 for details):

{"s": "6gMQVRL5haj", "v": "Mébius"}
Or, for the address example above:

{"s": "aliN3Zom221", "v'":
{"locality": "Schulpforta", "street_address": "Schulstr. 12"}}

(Line break and indentation of the second line for presentation
only!)

This object is then JSON-encoded and used as the source string. The
JSON-encoded value is transferred in the HS-Disclosures instead of
the original JSON data:

"family_name": "{\"s\": \"6gMQvRL5haj\", \"v\": \"M\\uo@ofebius\"}"
Or, for the address example:

"address": "{\"s\": \"aliN3zom221\", \"v\":
{\"locality\": \"Schulpforta\",
\"street_address\": \"Schulstr. 12\"}}"

(Line break and indentation of the second and third line for
presentation only!)

A Verifier can then easily check the digest over the source string
before extracting the original JSON data. Variations in the encoding
of the source string are implicitly tolerated by the Verifier, as
the digest is computed over a predefined byte string and not over a
JSON object.

Since the encoding is based on JSON, all value types that are
allowed in JSON are also allowed in the v property in the source
string. This includes numbers, strings, booleans, arrays, and
objects.

It is important to note that the HS-Disclosures object containing
the source string is neither intended nor suitable for direct
consumption by an application that needs to access the disclosed
claim values. The HS-Disclosures object is only intended to be used
by a Verifier to check the digests over the source strings and to
extract the original JSON data. The original JSON data is then used
by the application. See Section 6.3 for details.

5.

5.

2. Format of an SD-JWT

An SD-JWT is a JWT that MUST be signed using the Issuer's private
key. The payload of an SD-JWT MUST contain the sd_digests and
sd_digest_derivation_alg claims described in the following, and MAY
contain a Holder's public key or a reference thereto, as well as
further claims such as iss, iat, etc. as defined or required by the
application using SD-JWTs.

2.1. sd_digests Claim (Digests of Selectively Disclosable Claims)

The property sd_digests MUST be used by the Issuer to include
digests of the salted claim values for any claim that is intended to
be selectively disclosable.

The Issuer MUST choose a new, cryptographically random salt value
for each claim value. The salt value MUST then be encoded as a
string. It is RECOMMENDED to base64url-encode the salt value.

The Issuer MUST generate the digests over a JSON literal according
to [RFC8259] that is formed by JSON-encoding an object with the
following contents:

*REQUIRED with the key s: the salt value,

*REQUIRED with the key v: the claim value (either a string or a
more complex object, e.g., for the [0IDC] address claim),

*OPTIONAL, with the key n: the claim name (if Claim Name Blinding
is to be used for this claim).

The following is an example for a JSON literal without Claim Name
Blinding:

{"s": "6gqMQVRL5haj", "v'": "Peter"}

The following is an example for a JSON literal with Claim Name
Blinding:

{"s": "6gMQVRL5haj", "v": "Peter", "n": "given_name"}

The sd_digests claim contains an object where claim names are mapped
to the respective digests. If a claim name is to be blinded, the
digests MUST contain the n key as described above and the claim name
in sd_digests MUST be replaced by a placeholder name that does not
leak information about the claim's original name. The same
placeholder name will be used in the II-Disclosures
(sd_ii_disclosures) and HS-Disclosures (sd_hs_disclosures) described
below.

To this end, the Issuer MUST choose a random placeholder name for
each claim that is to be blinded. It is RECOMMENDED to do so by
base64url-encoding a cryptographically secure nonce. See Section 7.7
for further requirements.

5.2.1.1. Flat and Structured sd_digests objects

The sd_digests object can be a 'flat' object, directly containing
all claim names and digests without any deeper structure. The
sd_digests object can also be a 'structured' object, where some
claims and their respective digests are contained in places deeper
in the structure. It is at the Issuer's discretion whether to use a
'flat' or 'structured' sd_digests SD-JWT object, and how to
structure it such that it is suitable for the use case.

Example 1 below is a non-normative example of an SD-JWT using a
'flat' sd_digests object and Example 2a in the appendix shows a non-
normative example of an SD-JWT using a 'structured' sd_digests
object. The difference between the examples is how the address claim
is disclosed.

Appendix 2 shows a more complex example using claims from OpenID
Connect for Identity Assurance [0IDC.IDA].

5.2.2. Digest Derivation Function Claim

The claim sd_digest_derivation_alg indicates the digest derivation
algorithm used by the Issuer to generate the digests over the salts
and the claim values.

The digest derivation algorithm identifier MUST be one of the
following:

*a hash algorithm value from the "Hash Name String" column in the
IANA "Named Information Hash Algorithm" registry
[IANA.Hash.Algorithms]

*an HMAC algorithm value from the "Algorithmn Name" column in the
IANA "JSON Web Signature and Encryption Algorithms" registry
[IANA.JWS.Algorithms]

*a value defined in another specification and/or profile of this
specification

To promote interoperability, implementations MUST support the
SHA-256 hash algorithm.

See Section 7 for requirements regarding entropy of the salt,
minimum length of the salt, and choice of a digest derivation
algorithm.

5.2.3. Holder Public Key Claim

If the Issuer wants to enable Holder Binding, it MAY include a
public key associated with the Holder, or a reference thereto.

It is out of the scope of this document to describe how the Holder
key pair is established. For example, the Holder MAY provide a key
pair to the Issuer, the Issuer MAY create the key pair for the

Holder, or Holder and Issuer MAY use pre-established key material.

Note: Examples in this document use cnf Claim defined in [RFC7800]
to include raw public key by value in SD-JWT.

5.3. Example 1: SD-JWT

This example and Example 2a in the appendix use the following object
as the set of claims that the Issuer is issuing:

{
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"given_name": "John",
"family_name": "Doe",
"email": "johndoe@example.com",
"phone_number": "+1-202-555-0101",
"address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"
3
"birthdate": "1940-01-01"
}

The following non-normative example shows the payload of an SD-JWT.
The Issuer is using a flat structure, i.e., all of the claims the
address claim can only be disclosed in full.

{
"iss": "https://example.com/issuer",
"enf": {
“jWk”: {

llktyll : n RSAH ,

"n": "pm4bOHBg-0YhAYyPWzR56AWX3rUIXpll_ICDKGQgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zgl1eM2bJcOWE7PCBHWTKWYs152R7g6Jg20Vph-a8rq-q79MhKG5Qow

_mTz10QT_6H4c7PjWG1fjh8hpwWNnbP_pv6d1zSwZfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1leE7ihcw",

llell : IIAQABII

}

+

"iat": 1516239022,

"exp": 1516247022,

"sd_digest_derivation_alg": "sha-256",

"sd_digests": {
"sub": "2EDXXZ1JcE6aTcM70fZopFneYAS9-hY3lalaoLuwD1s",
"given_name": "pC56LWpTgecl18L11kps3koXapnw6S0iI@dlba34t-mY",
"family_name": "EySQc316Ln3ZGIXwiOoELWSyylm_60XV6rcL6LyPb70I1",
"email": "qHv6gGag4oFmIXyKh9Z1FjQ5r0ClS-dXHiPMZyl2Fau",
"phone_number": "jhr_PsauT4xsYZS_0OxBW8y_1MLULOovKseRvF9CEOTM",
"address": "eQXgmowgkT_ORkedogewWdOwBUy4vzkWG1vhvOjh3tl_o",
"birthdate": "qgDXxFuNpf83MkKe4GCailLulL_XZdz04pYD71QKbv4zos"

Important: Throughout the examples in this document, line breaks had
to be added to JSON strings and base64-encoded strings (as shown in

the next example) to adhere to the 72 character limit for lines in
RFCs and for readability. JSON does not allow line breaks in
strings.

The SD-JWT is then signed by the Issuer to create a JWT like the
following:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlaUJhzzBZ
UKF6VMRSZNhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHROCHM6LY91eGFtcGXx1LmNvbS9pc
3N1ZXIilLCAiY25mIjogeyJqd2si0iB7Imt@eSI6GICISUOEILCALIbiI6ICIWbTRiTONCZ
y1lvWwhBeVBXelI1NKFXWDNyVU1YCDExXX01DRGtHZ1M2VzNavVOx0cyloendJM3g2NTY10
WtnNNGhWbz1kYkdvQOpFM1pHR191YWVORTMWVWhCVUVNCEd3ckRyUW1KOXpXxcHJItYOZmc
jNxdnZrR2p0dGg4WmdsMWVNMmJIKYO93RTAQQOJIIVIRLV11zMTUyUjdnNkpnMkOWcGgtyY
ThycS1xNz1NaEtHNVFVvV19tVHOXMFFUXzZZINGM3UGpXRzFmamg4aHBXTm5iUF9wdjZkM
XpTdipmYzVmbDZ5V1JIMMERWMFYZbEdIS2UyV3FmX2VOR2pCck IMVmMt sSRFRrOC1zdFhfT
VAMY1ItRUAtWEFPdjBVQldpdFNTfZFhKSOp1LXZYSn13MTRUSFNHdXhUSUsyaHgXxcHROT
WZOOUNzdnFpbVhLZURUVTEOCVFMMWVFN210Y3CciLCA1ZSI6ICJIBUUFCIN19LCAiaWFOI
JOgMTUXNJjIZOTAYMiwgImV4cCI6GIDEIMTYYNDCcwWM]jIsICJzZF9kawdlc3RfZGVyaXxzhd
Glvbl9hbGci0iAic2hhLTIINiIsICJzZF9kawWd1lc3RzIjogeyJzdwWIiOiAiMkVEWFhaM
UpjRTZhVGNNNzBMWmOWRM51IWUFTOS10WTNSYWxhbOx1VOQxcyIsICInaxXZ1lbl9uYw1lI
jogINBDNTZMV3BUZ2VjMThMbDFrcHMza29YYXBudzZTT21IMGQXYmMEZNHQtbVKiLCAiZ
mFtawWx5X25hbWUi0iAiRX1TUWMZMTZMbjNaROpYd21VvRUXXU315bG1FNKIYV]ZyYOw2T
H1QYjdvSSISICJ1bWFpbCI6ICIXSHY2ZO0dhcTRVRm1JWH1LaDlabEZqUTVYTONsUy1kw
EhpUElaeWwyRmFVIiwgInBob251X251bwWJ1ciI6ICJIgaHIfUHNhdVQOeHNZWINTFT3hCV
zh5XzFNTFVMT292S3N1UNnZGOUNFMFRNIiwgImFkZHJ1c3Mi0iA1ZVFYZ21vd3FrVFOPU
mt1ZG9xzZVcwd0JVeTR2emt XRzFWaHZPamgzdGxfbyIsICJiaXJ@aGRhdGUiOiAicWdEe
EZ1TnBmODNNa@t INEADYW1IMdUXxfWFpkek8OCcF1EN2XRS2J2NHpvcyJ9fQ.0w8PQ_tg2K
6Q82XhXn3-Nmi7uGeXkOFFMSfp_8iMKRR1fg-HXXdoZWv8UECV1B2PIJITjH2RAZ_egY
j-dLkPopnJ-OVvIDKjKhvMCIIOOFENTV3qQct-8s6NifR2exU1lTuyF6629Jekk1V3M4Bn
KXCc6-mEf7_d1K-EfQ34dI-6XJFhO5s1_sE7ePFVLRGtj4tHHQlwWGmM7wQJgPRYtA_FO
N10jI1yFbw4B6T59TpI8ZjHgucCxF9p1IUb-RYb6P1dYF4sVdQT258jAJVCAPZz62J0RN
-CPPwV-QbpAKD7npkk7pTxkYg0OT9_iyvMcq_RdXGqgANkJIn8qgxEffwp_O0sgA

5.4. Format of an Issuer-Issued Disclosures Object
Besides the SD-JWT itself, the Holder needs to learn the raw claim

values that are contained in the SD-JWT, along with the precise
input to the digest calculation and the salts. There MAY be other

information the Issuer needs to communicate to the Holder, such as a

private key if the Issuer selected the Holder key pair.

An Issuer-Issued Disclosures Object (II-Disclosures Object) is a
JSON object containing at least the top-level property
sd_ii disclosures. Its structure mirrors the one of sd_digests in

the SD-JWT, but the values are the inputs to the digest calculations

the Issuer used (the Disclosures), as strings.

The II-Disclosures Object MAY contain further properties, for
example, to transport the Holder private key.

5.5. Example: Issuer-Issued Disclosures Object for the Flat SD-JWT in
Example 1

The II-Disclosures Object for Example 1 is as follows:

{
"sd_ii_disclosures": {

"sub": "{\"s\": \"YZSmzeu7lFHUbZ8Z1QqH9Q\", \"v\":
\"6c5c0a49-b589-431d-bae7-219122a9ec2c\"}",

"given_name": "{\"s\": \"kHHp91-tAZt8m9E4J14XbQ\", \"v\":
\llJohn\ll}H,

"family_name": "{\"s\": \"PjIqpGW1l4eB4QroDhgQwOw\", \"v\":
\"Doe\"}",

"email": "{\"s\": \"QRamZSB5Ky®Melyz4EAleA\", \"v\":
\"johndoe@example.com\"}",

"phone_number": "{\"s\": \"XxniP4JZtNWIH-Lk_Dt-o-A\", \"v\":
\"+1-202-555-0101\"}",

"address": "{\"s\": \"KtfsxxTm2mwOYLUcKZU8tA\", \"v\":
{\"street_address\": \"123 Main St\", \"locality\":
\"Anytown\", \"region\": \"Anystate\", \"country\": \"US\"}}",

"birthdate": "{\"s\": \"0zd4wBLBwqGzJhJvTmQwdQ\", \"v\":
\"1940-01-01\"}"

Important: As described in Section 5.1, digests are calculated over
the JSON literal formed by serializing an object containing the
salt, the claim value, and optionally the claim name. This ensures
that the Issuer and Verifier use the same input to their digest
derivation algorithms and avoids issues with canonicalization of
JSON values that would lead to different digests. The II-Disclosures
Object therefore maps claim names to JSON-encoded arrays.

5.6. Combined Format for Issuance
For transporting the II-Disclosures Object together with the SD-JWT
from the Issuer to the Holder, the II-Disclosures Object is
base64url-encoded and appended to the SD-JWT using a period
character . as the separator. This means that the resulting string
consists of four dot-separated parts as follows:

<SD-JWT Header>

<SD-JWT Payload>

<SD-JWT Signature>

<II-Disclosures>
(Line breaks for presentation only.)
This is called the Combined Format for Issuance.
The II-Disclosures Object and SD-JWT are implicitly linked through
the digest values of the claims in the II-Disclosures Object that is
included in the SD-JWT. To ensure that the correct II-Disclosures
Object and SD-JWT pairings are being used, the Holder SHOULD verify
the binding between II-Disclosures Object and SD-JWT as defined in

Section 6.1.

For Example 1, the Combined Format for Issuance looks as follows:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlaUJhZzBZU
kF6VMRsSZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHROCHM6LY91eGFtcGXx1LmNvbS9pc3N
1ZXIiLCAiY25mIjogeyJdqd2si0iB7ImtOeSI6ICISUOEiILCAibiI6ICIWLbTRiITONCZY1V
WwWhBeVBXelI1INKFXWDNyVU1YCDEXXQ1DRGtHZ1M2VzNaVOx0cyloendJIM3g2NTY10WtnN
GhwWbz1lkYkdvQOpFM1pHR191YWVORTMWVWhCVUVNCEd3ckRYyUW1KOXpXxcHJtYOZmcjNxdn
ZrR2p0dGg4wmdsMWVNMmIKY®93RTAQQOJIVIRLV11zMTUYUjdnNkpnMkOwcGgtYThycS1
XNzINaEtHNVFVvV19tVHOXMFFUXzZZINGM3UGpXRzFmamg4aHBXTm51iUF9wdjZkMXpTdipm
YzVmbDZ5V1JIMMERWMFYzbEdIS2UyV3FmX2VOR2pCckIJMVmt SRFRroC1zdFhfTVAMY1ItR
UdtWEFPdjBVQldpdFNfZFhKSOp1LXZYSn13MTRUSFNHdXhUSUsyaHgXCcHROTWZOOUNzdn
FpbVhLZURUVTEOCVFMMWVFN210Y3cilLCAiZSI6ICIBUUFCIN19LCAiaWFOIjogMTUXN]I
ZOTAyMiwgImV4cCI6GIDEIMTYYNDCWMJjISICJIZZF90YXNOX2FsZyI6ICJzaGEtMjU2Iiwg
INNkX2RpZ2VzdHMi0iB7InN1YiI6ICJPTWR3a2sySFB1laUluUH1wV1VXTXhvdDFZMNnRTd
EdzTHVJYORNaktkWE1VIiwgImdpdmVuX25hbwWUi0iAiQWZLSOgOYTBIWmtpOE1GRH10aE
ZhRINfWHF6bil13UnZBTWZpeVOWallwRSISICImYW1pbH1fbmFtZSI6ICJI1VW1YbXJI5MzJ
KaUtfNzZ4TWFzYWdrQVFRc21TVmMRXNTdBamsxOHJpUOYwIiwgImVtYW1sIjogIilSY3I0
ZkR5andsTV9pdGNNeGORWKNFMVFBRXdA5TEpjawWJFCEgXMTRLaUUiLCAicGhvbmVfbnVvtyY
mVyIjogIkp2Mm53MEMxd1A1QVN1dF10QXhyVOVUYURSSXBpRjB1VFVBalVPcDhGN1kilLC
AiYWRkcmVzcyI6ICJacmpLcylSbUVBVmVBWVYN6U3C2R1BGckiwY2djdENmYUo2dD1xUwh
1ZkoOIiwgImJIpcnROZGFOZSIBICIXWFBSU1BkCE5hZWJIQOGPOYkVwTy1za0YObjd2NOFT
VGg4bOxnMG1rQWRRIN19.QgoJIn9wkjFVMIObArOhTDHLspuqdA21wWzfBRVHKASa2ck4PFD
3TCI9M1iZSi3A1iRytRbYT4ZzvkH3BSbm6vy68y629j0A60YVvZ1Z60Wxho14bxZQvelZgw3u
_1MvYj6GKiUtskypFEHU-Kd-LoDVQEpf61PQHdpsac__yQ_JL240CEB1VQRXB-T-6ZNZf
ID6JafSKNNCYQbI8nXbzIEp1LBFMOfE8eUd4G4yPY0j1SeuR6Gy92TOVAOL5QtpIAH049
0AmiSIj6DQN12cNYs74jhrBICcNZyt418H11V20wS50S3TOVvXaYD13fgmOp4iWD9cVg3HK
ShUVulEyrSbq94jIKg.eyJzZF9yZWx1YXN1IjogeyJzdwWIiOiAielwiclwiOiBcIjJHTE
MOMNNLUXZ1Q2ZHZnJ5T1J00XdcIiwgXCJI2XCI6IFwiNmM1YzBhNDktYjU40S0OMzFKLWJ
hZTctMjESMTIYYT11lYzJjXCJI9IiwgImdpdmVuX25hbwWUiOiAielwiclwiOiBcIjZJajdoe
TS1hNWIWUEdibaM1dG12VkFcIiwgXCJ2XCI6IFwiSm9oblwifSISICImYW1lpbH1fbmFtZ
SI6GICJI7XCIzXCIGIFwiUWdfTzYOenFBeGUOMTIhMTA4aXJvQVwilLCBcInZcIjogXCJIEDb2
VcInOiLCAiZWlhaWwiOiAielwiclwiOiBcI1BjMzNKTTJIMY2hjVV9sSGdndl91Z1FcIiw
gXCJ2XCI6IFwiam9obmRvZUBleGFtcGx1LmNvbVwifSIsICIwaGOuzZVoudwliZzXIi0iAl
elwiclwiOiBcImxrbHhGNWpNWWXHVFBVb3ZNTKk12QOFCcIiwgXCJI2XCI6IFwWiKzEtMjAyL
TUINSOWMTAXXCJ9IiwgImFkZHJ1c3MiOiAielwiclwi0iBcIjViUHMXSXF1Wk5hMGhrYU
Z6enpaTndcIiwgXCJ2XCIBIHtcINNOcmV1dF9hZGRYZXNzXCI6IFWiMTIZzIE1hawW4gU3R
cIiwgXCJsb2NhbGl0eVwiOiBcIkFueXRvd25cIiwgXCJyZWdpb25cIjogXCJIBbnlzdGFO
ZVwilCBcImNvdw50cnlcIjogXCIVUIwifX0iLCAiYmlydGhkYXR1IjogIntcInNcIjogX
CJISMXNWVTV3ZGZKYWhWZGd3UGATN1JIRXCISIFwidlwiOiBcIjESNDAtMDEtMDFCINOifX
(C]

(Line breaks for presentation only.)
5.7. Format of a Holder-Selected Disclosures JWT

The HS-Disclosures JWT contains the Disclosures of the claims the
Holder has consented to disclose to the Verifier. This enables the
Verifier to verify the claims received from the Holder by computing
the digests of the claim values, salts, and potentially cleartext
claim names revealed in the HS-Disclosures JWT using the digest
derivation algorithm specified in SD-JWT and comparing them to the
digests included in SD-JWT.

The Disclosures are contained in the sd_hs_disclosures object. The
structure of the sd_hs_disclosures object in the HS-Disclosures JWT
is the same as the structure of the sd_ii_disclosures object in the
II-Disclosures Object, but any claims the Holder wishes not to
disclose are omitted.

The HS-Disclosures JWT MAY contain further claims, for example, to
ensure a binding to a concrete transaction (in the example below,
the nonce and aud claims).

When the Holder sends the HS-Disclosures JWT to the Verifier, the
HS-Disclosures JWT MUST be a JWS represented as the JWS Compact
Serialization as described in Section 7.1 of [RFC7515].

If Holder Binding is desired, the HS-Disclosures JWT is signed by
the Holder. If no Holder Binding is to be used, the none algorithm
is used, i.e., the document is not signed.

Whether to check the signature of the HS-Disclosures JWT is up to
the Verifier's policy, based on the set of trust requirements such
as trust frameworks it belongs to. As described in Section 6.2, the
Verifier MUST NOT accept HS-Disclosures JWTs using "none" algorithm,
when the Verifier's policy requires a signed HS-Disclosures JWT. See
also Section 7.6.

5.8. Example: Holder-Selected Disclosures JWT for Example 1

The following is a non-normative example of the contents of a HS-
Disclosures JWT for Example 1:

{
"nonce": "XZOUcolu_gEPknxS78swWwg",
"aud": "https://example.com/verifier",
"sd_hs_disclosures": {

"given_name": "{\"s\": \"kHHp91-tAZt8m9E4J14XbQ\", \"v\":
\"JOhn\"}",

"family_name": "{\"s\": \"PjIqpGW1l4eB4QroDhgQwoOw\", \"v\":
\"Doe\“}",

"address": "{\"s\": \"KtfsxxTm2mwOYLUcKZU8tA\", \"v\":
{\"street_address\": \"123 Main St\", \"locality\":
\"Anytown\", \"region\": \"Anystate\", \"country\": \"US\"}}"

}
}

For each claim, a JSON literal that decodes to an object with the
and the claim value (plus optionally the claim name) is contained in
the sd_hs_disclosures object.

Again, the HS-Disclosures JWT follows the same structure as the
sd_digests in the SD-JWT.

Below is a non-normative example of a representation of the HS-
Disclosures JWT using JWS Compact Serialization:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkxkeVRYdOF5ZnJpcjRfVjZORzFSYZEwVThKZ
ExZVHIFQktKaF9oNwl1lfclUifQ.eyJub25jZSI6ICIYWkIVY28xdVIOnRVBrbnhTNzhzVvid
NIiwgImF1ZCI6ICJodHRwCczOoVL2V4YW1wbGUUY29tL3Z1lcmlmawVyIiwgInNkX3J1bGVh
c2Ui0iB7ImdpdmVuX25hbwWUiOiAielwiciwi0iBcIjZzJajdoOTS1hNWIWUEdibiM1dG12V
kFCcIiwgXCJ2XCI6IFwiSm9oblwifSISICImYW1pbH1fbmFtZSI6GICJI7XCIzXCI6GIFwiUW
dfTzY0enFBeGUOMTJIhMTA4aXJvQVwilLCBcInZcIjogXCJEb2VcIn®iLCALYWRkcmVzcyI
6ICJ7XCIzXCIBIFWiNWIQczFJcXVaTmEwaGthRnp6elp0diwilLCBcInZcIjogelwic3Ry
ZWVOX2FkZHJ1c3NcIjogXCIXMjMgTWFpbiBTdFwiLCBcImxvY2FsaXR5XCI6IFwiQw55d
G93b1lwilCBcINJ1Z21vblwiOiBcIKFueXNOYXRIXCISIFwiY291bnRyeVwiOiBcI1VTXC
J9fSJ9fQ. fw4dxR17mimDPCZvCTN3GOr2PgBZ- - fTKfy7s-GUEifNvzW5KsJaBBFvzdZzt
m25XGhk29uw - XWEwOOrOhyxXLBvWfAOXbDK3JIBmdpOSW1bEYyNBASHPJoeq9Xyts2IN40v
JzU2UxNaLKDaEheWf3F_E52yhHxvMLNdvZJ9FksJdSMK6ZCyGfRJadPN2GhN1tqph52sW
iFKUyUK_4RtwXmT_1F49tWOMZgtG-akNOwrBoMs1leMOSOAOBXIK10rG5CKZoSNr-u2luz
bdzZx3CFdAenagqScIkluPPcrXBZGYyX2zYUbGQs2RRXnBmox_yl6CvLbbOqTTYhDNnDEO_M
H-ZtWw

5.9. Combined Format for Presentation
The SD-JWT and the HS-Disclosures JWT can be combined into one
document using period character . as a separator. This means that
the resulting string consists of six dot-separated parts as
described below.

The last part (HSD Signature) may be empty when Holder Binding is
not used and HS-Disclosures JWT is not signed.

<SD-JWT Header>
;SD-JWT Payload>
;SD-JWT Signature>
;HSD Header>
;HSD Payload>
;HSD Signature?>
(Line breaks for presentation only.)
This is called the Combined Format for Presentation.

For Example 1, the Combined Format for Presentation looks as
follows:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlaUJhZzBZU
kF6VMRsSZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHROCHM6LY91eGFtcGXx1LmNvbS9pc3N
1ZXIiLCAiY25mIjogeyJdqd2si0iB7ImtOeSI6ICISUOEiILCAibiI6ICIWLbTRiITONCZY1V
WwWhBeVBXelI1INKFXWDNyVU1YCDEXXQ1DRGtHZ1M2VzNaVOx0cyloendJIM3g2NTY10WtnN
GhwWbz1lkYkdvQOpFM1pHR191YWVORTMWVWhCVUVNCEd3ckRYyUW1KOXpXxcHJtYOZmcjNxdn
ZrR2p0dGg4wmdsMWVNMmIKY®93RTAQQOJIVIRLV11zMTUYUjdnNkpnMkOwcGgtYThycS1
XNzINaEtHNVFVvV19tVHOXMFFUXzZZINGM3UGpXRzFmamg4aHBXTm51iUF9wdjZkMXpTdipm
YzVmbDZ5V1JIMMERWMFYzbEdIS2UyV3FmX2VOR2pCckIJMVmt SRFRroC1zdFhfTVAMY1ItR
UdtWEFPdjBVQldpdFNfZFhKSOp1LXZYSn13MTRUSFNHdXhUSUsyaHgXCcHROTWZOOUNzdn
FpbVhLZURUVTEOCVFMMWVFN210Y3cilLCAiZSI6ICIBUUFCIN19LCAiaWFOIjogMTUXN]I
ZOTAyMiwgImV4cCI6GIDEIMTYYNDCWMJjISICJIZZF90YXNOX2FsZyI6ICJzaGEtMjU2Iiwg
INNkX2RpZ2VzdHMi0iB7InN1YiI6ICJPTWR3a2sySFB1laUluUH1wV1VXTXhvdDFZMNnRTd
EdzTHVJYORNaktkWE1VIiwgImdpdmVuX25hbwWUi0iAiQWZLSOgOYTBIWmtpOE1GRH10aE
ZhRINfWHF6bil13UnZBTWZpeVOWallwRSISICImYW1pbH1fbmFtZSI6ICJI1VW1YbXJI5MzJ
KaUtfNzZ4TWFzYWdrQVFRc21TVmMRXNTdBamsxOHJpUOYwIiwgImVtYW1sIjogIilSY3I0
ZkR5andsTV9pdGNNeGORWKNFMVFBRXdA5TEpjawWJFCEgXMTRLaUUiLCAicGhvbmVfbnVvtyY
mVyIjogIkp2Mm53MEMxd1A1QVN1dF10QXhyVOVUYURSSXBpRjB1VFVBalVPcDhGN1kilLC
AiYWRkcmVzcyI6ICJacmpLcylSbUVBVmVBWVYN6U3C2R1BGckiwY2djdENmYUo2dD1xUwh
1ZkoOIiwgImJIpcnROZGFOZSIBICIXWFBSU1BkCE5hZWJIQOGPOYkVwTy1za0YObjd2NOFT
VGg4bOxnMG1rQWRRIN19.QgoJIn9wkjFVMIObArOhTDHLspuqdA21wWzfBRVHKASa2ck4PFD
3TCI9M1iZSi3A1iRytRbYT4ZzvkH3BSbm6vy68y629j0A60YVvZ1Z60Wxho14bxZQvelZgw3u
_1MvYj6GKiUtskypFEHU-Kd-LoDVQEpf61PQHdpsac__yQ_JL240CEB1VQRXB-T-6ZNZf
ID6JafSKNNCYQbI8nXbzIEp1LBFMOfE8eUd4G4yPY0j1SeuR6Gy92TOVAOL5QtpIAH049
0AmiSIj6DQN12cNYs74jhrBICcNZyt418H11V20wS50S3TOVvXaYD13fgmOp4iWD9cVg3HK
ShUVUlEyrSbq94jIKg.eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkxkeVRYdOF5ZnJpcj
RfVjZORzFSYzEwWVThKZEXxZVHIFQktKaF9oNwlfclUifQ.eyJub25jZSI6ICIYWKIVY28x
dVInRVBrbnhTNzhzV1dnIiwgImF1ZCI6ICJodHRwCczovL2V4YWiwbGUUY29tL3Z1lcmlma
WVyIiwgInNkX3J1bGVhc2Ui0iB7ImdpdmVuX25hbWUiOiAielwiclwi0iBcIjZJajdoTS
1hNW1IWUEdiba1M1dG12VkFcIiwgXCJI2XCI6IFwiSm9oblwifSISICImYW1lpbH1fbmFtZSI
6ICJ7XCIzXCI6IFwiUWdfTzY0enFBeGUOMTIhMTA4aXJvQVwilCBcInZcIjogXCJEb2Ve
INOiLCALiYWRkcmVzcyIBICJI7XCIzXCI6IFwWiNWJIQczFJcXvVaTmEwaGthRnp6elpOdiwil
CBcInZcIjogelwic3RyZWVOX2FkZHJI1c3NcIjogXCIXMjMgTWFpbiBTdFwilLCBCcImxvY2
FsaXR5XCI6IFwiQW55dG93blwilCBcInJ1Z21vblwiOiBcIKFueXNOYXRIXCISIFwiY29
1bnRyeVwi0iBcI1VTXCJ9fSJ9fQ. fwdxR17mimDPCZvCTn3GOr2PgBZ- - fTKfy7s-GuEL
fNvzW5KsJaBBFvzdZztm25XGhk29uw-XwEWOOrOhyxXLBvWFAOXbDK3JIBmdpOSW1bEYNB
dSHPJoeq9Xyts2JIN40vJIzU2UxNaLKDaEheWf3F_E52yhHxVMLNdvZJ9FksJdSMK6ZCyGf
RJadPN2GhN1ltqph52sWiFKUyUk_4RtwXmT_1F49tWOMZqtG-akN9wrBoMsleMOsSOAOBXI
K10rG5CcKZOoSNr-u2luzbdzx3CFdAenaqScIkluPPcrXBZGYyX2zYUbGQs2RRXnBmox_yl
6CvLbbOQTTYhDNDEO_MH-ZtWw

6. Verification and Processing

6.1. Verification by the Holder when Receiving SD-JWT and Issuer-
Issued Disclosures Object

The Holder SHOULD verify the binding between SD-JWT and II-
Disclosures Object by performing the following steps: 1. Check that
all the claims in the II-Disclosures Object are present in the SD-
JWT and that there are no claims in the SD-JWT that are not in the
II-Disclosures Object 2. Check that the digests of the claims in the
II-Disclosures Object match those in the SD-JWT

6.2. Verification by the Verifier when Receiving SD-JWT and Holder -
Selected Disclosures JWT

Verifiers MUST follow [RFC8725] for checking the SD-JWT and, if
signed, the HS-Disclosures JWT.

Verifiers MUST go through (at least) the following steps before
trusting/using any of the contents of an SD-JWT:

1. Determine if Holder Binding is to be checked according to the
Verifier's policy for the use case at hand. This decision MUST
NOT be based on whether the HS-Disclosures JWT is signed or
not. Refer to Section 7.6 for details.

2. Check that the presentation consists of six period-separated
(.) elements; if Holder Binding is not required, the last
element can be empty.

3. Separate the SD-JWT from the HS-Disclosures JWT.
4. Validate the SD-JWT:

1. Ensure that a signing algorithm was used that was deemed
secure for the application. Refer to [RFC8725], Sections
3.1 and 3.2 for details. none MUST NOT be accepted.

2. Validate the signature over the SD-JWT.

3. Validate the Issuer of the SD-JWT and that the signing key
belongs to this Issuer.

4. Check that the SD-JWT is valid using nbf, iat, and exp
claims, if provided in the SD-JWT.

5. Check that the claim sd_digests is present in the SD-JWT.

6. Check that the sd_digest_derivation_alg claim is present
and its value is understood and the digest derivation
algorithm is deemed secure.

5. Validate the HS-Disclosures JWT:

1. If Holder Binding is required, validate the signature over
the SD-JWT using the same steps as for the SD-JWT plus the
following steps:

1. Determine that the public key for the private key
that used to sign the HS-Disclosures JWT is bound to
the SD-JWT, i.e., the SD-JWT either contains a
reference to the public key or contains the public
key itself.

2. Determine that the HS-Disclosures JWT is bound to the
current transaction and was created for this Verifier
(replay protection). This is usually achieved by a
nonce and aud field within the HS-Disclosures JWT.

2. For each claim in sd_hs_disclosures in the HS-Disclosures
JWT:

3. Ensure that the claim is present as well in
sd_digests in the SD-JWT. If sd_digests is
structured, the claim MUST be present at the same
place within the structure.

4. Compute the base64url-encoded digest of the JSON
literal disclosed by the Holder using the
sd_digest_derivation_alg in SD-JWT.

5. Compare the digests computed in the previous step
with the one of the same claim in the SD-JWT. Accept
the claim only when the two digests match.

6. Ensure that the claim value in the HS-Disclosures JWT
is a JSON-encoded object containing at least the keys
s and v, and optionally n.

7. Store the value of the key v as the claim value. If n
is contained in the object, use the value of the key
n as the claim name.

3. Once all necessary claims have been verified, their values
can be validated and used according to the requirements of
the application. It MUST be ensured that all claims
required for the application have been disclosed.

If any step fails, the input is not valid and processing MUST be
aborted.

6.3. Processing Model

Neither an SD-JWT nor an HS-Disclosures JWT is suitable for direct
use by an application. Besides the REQUIRED verification steps
listed above, it is further RECOMMENDED that an application-
consumable format is generated from the data released in the HS-
Disclosures. The RECOMMENDED way is to merge the released claims and
any plaintext claims in the SD-JWT recursively:

*Objects from the released claims must be merged into existing
objects from the SD-JWT.

*If a key is present in both objects:
-If the value in the released claims is an object and the value
in the SD-JWT claims is an object, the two objects MUST be
merged recursively.

-Else, the value in the released claims MUST be used.

The keys sd_digests and sd_digest_derivation_alg SHOULD be removed
prior to further processing.

The processing is shown in Examples 2b and 3 in the Appendix.
7. Security Considerations

7.1. Mandatory digest computation of the revealed claim values by the
Verifier

ToDo: add text explaining mechanisms that should be adopted to
ensure that Verifiers validate the claim values received in HS-
Disclosures JWT by calculating the digests of those values and
comparing them with the digests in the SD-JWT: - create a test suite

that forces digest computation by the Verifiers, and includes
negative test cases in test vectors - use only implementations/
libraries that are compliant to the test suite - etc.

7.2. Mandatory signing of the SD-JWT

The SD-JWT MUST be signed by the Issuer to protect integrity of the
issued claims. An attacker can modify or add claims if an SD-JWT is
not signed (e.g., change the "email" attribute to take over the
victim's account or add an attribute indicating a fake academic
qualification).

The Verifier MUST always check the SD-JWT signature to ensure that
the SD-JWT has not been tampered with since its issuance. If the
signature on the SD-JWT cannot be verified, the SD-JWT MUST be
rejected.

7.3. Entropy of the salt

The security model relies on the fact that the salt is not learned
or guessed by the attacker. It is vitally important to adhere to
this principle. As such, the salt MUST be created in such a manner
that it is cryptographically random, long enough and has high
entropy that it is not practical for the attacker to guess. A new
salt MUST be chosen for each claim.

7.4. Minimum length of the salt

The RECOMMENDED minimum length of the randomly-generated portion of
the salt is 128 bits.

Note that minimum 128 bits would be necessary when SHA-256, HMAC-
SHA256, or a function of similar strength is used, but a smaller
salt size might achieve similar level of security if a stronger
iterative derivation function is used.

The Issuer MUST ensure that a new salt value is chosen for each
claim, including when the same claim name occurs at different places
in the structure of the SD-JWT. This can be seen in Example 3 in the
Appendix, where multiple claims with the name type appear, but each
of them has a different salt.

7.5. Choice of a digest derivation algorithm

For the security of this scheme, the digest derivation algorithm is
required to be preimage and collision resistant, i.e., it is
infeasible to calculate the salt and claim value that result in a
particular digest, and it is infeasible to find a different salt and
claim value pair that result in a matching digest, respectively.

Furthermore the hash algorithms MD2, MD4, MD5, RIPEMD-160, and SHA-1
revealed fundamental weaknesses and they MUST NOT be used.

7.6. Holder Binding

Verifiers MUST decide whether Holder Binding is required for a
particular use case or not before verifying a credential. This
decision can be informed by various factors including, but not

limited to the following: business requirements, the use case, the
type of binding between a Holder and its credential that is required
for a use case, the sensitivity of the use case, the expected
properties of a credential, the type and contents of other
credentials expected to be presented at the same time, etc.

This can be showcased based on two scenarios for a mobile driver's
license use case for SD-JWT:

Scenario A: For the verification of the driver's license when
stopped by a police officer for exceeding a speed limit, Holder
Binding may be necessary to ensure that the person driving the car
and presenting the license is the actual Holder of the license. The
Verifier (e.g., the software used by the police officer) will ensure
that the HS-Disclosures JWT is signed by the Holder's private key.

Scenario B: A rental car agency may want to ensure, for insurance
purposes, that all drivers named on the rental contract own a
government-issued driver's license. The signer of the rental
contract can present the mobile driver's license of all named
drivers. In this case, the rental car agency does not need to check
Holder Binding as the goal is not to verify the identity of the
person presenting the license, but to verify that a license exists
and is valid.

It is important that a Verifier does not make its security policy
decisions based on data that can be influenced by an attacker or
that can be misinterpreted. For this reason, when deciding whether
Holder binding is required or not, Verifiers MUST NOT take into
account

*whether an HS-Disclosure JWT is signed or not, as an attacker can
remove the signature from any HS-Disclosure JWT and present it to
the Verifier, or

*whether a key reference is present in the SD-JWT or not, as the
Issuer might have added the key to the SD-JWT in a format/claim
that is not recognized by the Verifier.

If a Verifier has decided that Holder Binding is required for a
particular use case and the HS-Disclosure is unsigned or no
recognized key reference is present in the SD-JWT, the Verifier will
reject the presentation, as described in Section 6.2.

7.7. Blinding Claim Names

Issuers that chose to blind claim names MUST ensure not to
inadvertently leak information about the blinded claim names to
Verifiers.

It is RECOMMENDED to use cryptographically random numbers with at
least 128 bits of entropy as placeholder claim names.

The order of elements in JSON-encoded objects is generally not
relevant to applications, but it may reveal information about a
blinded claim name to the verifier. For example, assume the
following two clear-text claim sets created by the same Issuer:

(A)

"given_name": "Doe",
"secret_club_membership_no": 42

(B)

"is_secret_agent": true,
"given_name": "Doe"

When naively blinding the claim names, the order of the elements
might be preserved in the SD-JWT (depending on implementation
details of the programming language):

(A)

"given_name": "Doe",
"3D0Ogmo7w7MDZNh1Zjvmwpg" :
"OXZKGG7Ltar4vz_L7sAtWIkVXVT5r9xONFKZdyoNlco"

(B)

"CwiB46IUgi4NydIfgGTRwg" :
"4mizg70_JaidVJyjGiPpc4FXAMN16e1SBZfOM1Yg3hQ",
"given_name": "Doe"

A verifier, even if it does not learn any blinded claim names, can
distinguish what claim name has been hidden just by observing the
order of blinded and unblinded claim names. It is therefore
RECOMMENDED, if at least one claim name is blinded, to either

*randomize the order of all claims (blinded/unblinded, selectively
disclosed/not-selectively disclosed),

*or sort the claims by the property name (i.e., the placeholder
claim name for blinded claim names and the plaintext claim name
for unblinded claim names). The precise order does not matter.
For example, ordering by unicode code points or by lexicographic
order is sufficient to hide the original order of claims.

This applies to Issuers (SD-JWT and II-Disclosures document) and
Holders (HS-Disclosures JWT).

with the approach chosen in this specification, claim names of
objects that are not themselves selectively disclosable are not
blinded. This can be seen in Example 6 in the Appendix, where even
in the blinded SD-JWT, address and delivery_address are visible.
This limitation needs to be taken into account by Issuers when
creating the structure of the SD-JWT.

8.

8

8.

10.

11.

The Issuer MUST ensure that a new random placeholder name is chosen
for each claim, including when the same claim name occurs at
different places in the structure of the SD-JWT. This can be seen in
Example 6 in the Appendix, where multiple claims with same name
appear below address and delivery_address, but each of them has a
different blinded claim name. For each credential issued, new random
placeholder names MUST be chosen by the Issuer.

Privacy Considerations

.1. Claim Names

By default, claim names are not blinded in an SD-JWT. In this case,
even when the claim's value is not known to a Verifier, the claim
name can disclose some information to the Verifier. For example, if
the SD-JWT contains a claim named super_secret_club_membership_no,
the Verifier might assume that the end-user is a member of the Super
Secret Club.

Blinding claim names can help to avoid this potential privacy issue.
In many cases, however, Verifiers can already deduce this or similar
information just from the identification of the Issuer and the
schema used for the SD-JWT. Blinding claim names might not provide
additional privacy if this is the case.

Furthermore, re-using the same value to blind a claim name may limit
the privacy benefits.

2. Unlinkability

Colluding Issuer/Verifier or Verifier/Verifier pairs could link
issuance/presentation or two presentation sessions to the same user
on the basis of unique values encoded in the SD-JWT (Issuer
signature, salts, digests, etc.). More advanced cryptographic
schemes, outside the scope of this specification, can be used to
prevent this type of linkability.

Acknowledgements

We would like to thank Alen Horvat, Brian Campbell, Christian
Paquin, Fabian Hauck, Giuseppe De Marco, Kushal Das, Mike Jones, Nat
Sakimura, Pieter Kasselman, Shawn Butterfield, and Torsten
Lodderstedt for their contributions (some of which substantial) to
this draft and to the initial set of implementations.

The work on this draft was started at OAuth Security Workshop 2022
in Trondheim, Norway.

IANA Considerations
TBD
Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

12.

[RFC7515]

[RFC7519]

[RFC8174]

[RFC8259]

Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/info/rfc7519>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/
RFC8259, December 2017, <https://www.rfc-editor.org/info/
rfc8259>.

Informative References

[IANA.Hash.Algorithms] IANA, "Named Information Hash Algorithm",

<https://www.iana.org/assignments/named-information/
named-information.xhtml>.

[IANA.JWS.Algorithms] IANA, "JSON Web Signature and Encryption

[0IDC]

[0IDC.IDA]

[RFC7800]

[RFC8725]

[RFC8785]

[VC_DATA]

Algorithms", <https://www.iana.org/assignments/jose/
jose.xhtml#web-signature-encryption-algorithms>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
and C. Mortimore, "OpenID Connect Core 1.0 incorporating
errata set 1", 8 November 2014, <https://openid.net/
specs/openid-connect-core-1_0.html>,

Lodderstedt, T., Fett, D., Haine, M., Pulido, A.,
Lehmann, K., and K. Koiwai, "OpenID Connect for Identity
Assurance 1.0", <https://openid.net/specs/openid-
connect-4-identity-assurance-1_0-13.html>,

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
Possession Key Semantics for JSON Web Tokens (JWTs)", RFC
7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-
editor.org/info/rfc7800>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token
Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/
RFC8725, February 2020, <https://www.rfc-editor.org/info/
rfc8725>.

Rundgren, A., Jordan, B., and S. Erdtman, "JSON
Canonicalization Scheme (JCS)", RFC 8785, DOI 10.17487/
RFC8785, June 2020, <https://www.rfc-editor.org/info/
rfc8785>.

Sporny, M., Noble, G., Longley, D., Burnett, D. C.,
Zundel, B., and D. Chadwick, "Verifiable Credentials Data
Model 1.0", 19 November 2019, <https://www.w3.0rg/TR/
vc_data>.

https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.iana.org/assignments/named-information/named-information.xhtml
https://www.iana.org/assignments/named-information/named-information.xhtml
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://www.w3.org/TR/vc_data
https://www.w3.org/TR/vc_data

Appendix A. Additional Examples
All of the following examples are non-normative.
A.1. Example 2a - Structured SD-JWT

This non-normative example is based on the same claim values as
Example 1, but here the Issuer decided to create a structured object
for the digests. This allows for the disclosure of individual
members of the address claim separately.

{
"iss": "https://example.com/issuer",
"enf": {
Iljwkll: {

llkty": "RSA“,

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpll_ICDKGQS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgPGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zgli1eM2bJcOWE7PCBHWTKWYS152R79g6Jg20Vph-a8rq-q79MhKG5Qow
_mTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwZfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_ dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvgimXKeDTU14gQL1eE7ihcw",

llell : IIAQABII

3

iy
"iat": 1516239022,

"exp": 1516247022,
"sd_digest_derivation_alg": "sha-256",
"sd_digests": {
"sub": "p7GDm8_lnxCJUsQojBatCJQgPCZOVBGXxU-eX_luIcC4",
"given_name": "BrmUer7nGIRyk3sbHHcZk43M90y_BQar@VE3NMOGKOw",
"family_name": "8voOnlh20GGzTInd6T9-Vcu216Q4_Kc-keedo7_3vY8",
"email": "b9DpmK8_xwhR4PX_MiIsQc1TyB_1NN4©@1I5Kj8SSN14",
"phone_number": "OLFRbHdtGleze9ET1rDEtSIrPIOpoCM3JOEYBt2iwvg",
"address": {
"street_address":
"qQYDFWJIxd1l_0QDdn_1xX1-E9r5H2juwqonoWM8A76X_w",
"locality": "3mLauig@JJyjJbdMvf3jLJIGSBAItOtdvq7F_VL1ggXw",
"region": "qgRa_XKvVxCzUK8buAsxg9ylzyQlfvUgSwgATQV74z6c",
"country": "DjbYtjTT3PAQHtVkcpvrnRboYVUfXMro6Y40EGdHW_0O"
3
"birthdate": "rXv8RpBXYOy9WtYf2Bg-KId0®a3KnYGCAhL53iCsLJA"

The II-Disclosures Object for this SD-JWT is as follows:

{
"sd_ii_disclosures": {
"sub": "{\"s\": \"2iFrkb5sk0ft_gSL6BhdBg\", \"v\":
\"6c5c0a49-b589-431d-bae7-219122a9ec2c\"}",
"given_name": "{\"s\": \"AbA1MKJ10yqtff2JoFKNXA\", \"v\":
\"JOhn\"}",
"family_name": "{\"s\": \"vGk9hg40yrIlgazJn8gaKw\", \"v\":
\"Doe\"}",
"email": "{\"s\": \"6I1b1QXTN4Qdv-1gGcQdbw\", \"v\":
\"johndoe@example.com\"}",
"phone_number": "{\"s\": \"-F5a6ZAOKHwWUsYPDS383pQ\", \"v\":
\"+1-202-555-0101\"}",
"address": {
"street_address": "{\"s\": \"t6GqrdbiTFbJYh4D38aLjA\", \"v\":
\"123 Main St\"}",
"locality": "{\"s\": \"BOG5ap7hsAPIY0J21rUjgg\", \"v\":
\"Anytown\"}",
"region": "{\"s\": \"YTPFOrUHYtv1ldviDf63wXQ\", \"v\":
\"Anystate\"}",
"country": "{\"s\": \"mVZ4hCTnVdpu_GN-RbOwNw\", \"v\":
\"US\"}"
3
"birthdate": "{\"s\": \"T6-5A3xYsyy2MnwnUWbW3w\", \"v\":
\"1940-01-01\"}"

}
}
An HS-Disclosures JWT for the SD-JWT above that discloses only
region and country of the address property could look as follows:
{
"nonce": "XZOUcolu_gEPknxS78swWwg",
"aud": "https://example.com/verifier",
"sd_hs_disclosures": {
"given_name": "{\"s\": \"AbA1MKJ10yqtff2JoFKNXA\", \"v\":
\"JOhn\"}",
"family_name": "{\"s\": \"vGk9hg40yrIlgazJn8gaKw\", \"v\":
\"Doe\“}",
"birthdate": "{\"s\": \"T6-5A3xYsyy2MnwnUWbw3w\", \"v\":
\"1940-01-01\"}",
"address": {
"region": "{\"s\": \"YTPFOrUHYtvldviDf63wxQ\", \"v\":
\"Anystate\"}",
"country": "{\"s\": \"mVZ4hCTnVdpu_GN-RbOwNw\", \"v\":
\"US\”}"
}
}
}

A.2. Example 2b - Mixing SD and Non-SD Claims

In this example, a variant of Example 2a, the Issuer decided to
apply selective disclosure only to some of the claims. In
particular, the country component of the address is contained in

the

JWT as a regular claim, whereas the rest of the claims can be
disclosed selectively. Note that the processing model described in
Section 6.3 allows for merging the selectively disclosable claims
with the regular claims.

The JSON-payload of the SD-JWT that contains both selectively
disclosable claims in the sd_digests object and not-selectively
disclosable claims in a top-level JWT claim would look as follows:

"iss": "https://example.com/issuer",
"enf": {
lljwkll : {
"kty": ”RSA",

"n": "pm4bOHBg-0YhAYPWzR56AWX3rUIXpll_ICDKGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8ZglieM2bJcOWE7PCBHWTKWYS152R7g6Jg20Vph-a8rq-q79MhKG5Qow
_mTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwZfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1IDTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1leE7ihcw",

"e": "AQAB"

}

iy
"iat": 1516239022,

"exp": 1516247022,
"sd_digest_derivation_alg": "sha-256",
"sd_digests": {
"sub": "m6f849XozrOuldDvaoGfzp_FwJOJpcm8LBt8Bezdxkc",
"given_name": "CEBrXkruUzZcZ3njZE46q_CEdSASAcCEPOqoGrjNcPJIx8g",
"family_name": "j5ZcRWCSTbdtevKIp8L1XMunNHXZHOEDLtkJ3By4rms",
"email": "AXm5JzGXUAfQaqTAz5hZGrhL7ZEM_J31jKRK4wSpRvU",
"phone_number": "Vkehj3wl-X9Ssz96twWl8lvap8Ealy9pi9q4qwWzwWAWNO",
"address": {
"street_address":
"MV1dFr-b-NKmQSLyHbnnq9ciMFGcbhb4GuhLtKLtmmnwk",
"locality": "aAusTIjJS8e9QwaGs530aHqngMZ142uDScfW41hgFme",
"region": "06d8Kv-x0OL3fidw5t@QF1StAIlw5YLSN3RcolaHsiwng"

3
"birthdate": "_12Sr5D08premyjfkmrnxMvV6aFnEH8gqMXme®BFGFGgk"

+
"address": {
"country": "us"

}

The Holder can now, for example, release the rest of the components
of the address claim in the HS-Disclosures:

{
"nonce": "XZOUcolu_gEPknxS78swWwg",

"aud": "https://example.com/verifier",
"sd_hs_disclosures": {
"given_name": "{\"s\": \"jufOVRMI_5aHaGzZQf1505A\", \"v\":
\"JOhn\"}",
"family_name": "{\"s\": \"mIXFsX6E6IvqR6vMd_un5A\", \"v\":
\"Doe\“}",
"birthdate": "{\"s\": \"vnc31gtRYVh_zW8RrqgSbaw\", \"v\":
\"1940-01-01\"}",
"address": {
"region": "{\"s\": \"4mt7paa9SIEuEgWIm-10kg\", \"v\":
\"Anystate\"}",
"street_address": "{\"s\": \"4r1Y7ivPIQzkp8rKF_BUTQ\", \"v\":
\"123 Main St\"}",
"locality": "{\"s\": \"v5I5nfxYin®@IB2mwWP10j6Q\", \"v\":
\"Anytown\"}"

3
3
}
The Verifier, after verifying the SD-JWT and applying the HS-
Disclosures, would process the result according to Section 6.3 and
pass the following data to the application:
{
""given_name": "John",
"family_name": "Doe",
"pbirthdate": "1940-01-01",
"address": {
"region": "Anystate",
"street_address": "123 Main St",
"locality": "Anytown",
"country": "us"
3
"iss": "https://example.com/issuer",
llcnfll : {
"jWk": {

"kty": "RSA",

"n": "pm4bOHBg-0YhAYyPWzR56AWX3rUIXpll_ICDkGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE30UhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zgli1eM2bJcOWE7PCBHWTKWYS152R7g6Jg20Vph-a8rq-q79MhKG5QowW
_MmTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw",

llell : IIAQABII

3
+

"iat": 1516239022,
"exp": 1516247022

}

A.3. Example 3 - Complex Structured SD-JWT

In this example, a complex object such as those defined in OIDC4IDA
[OIDC.IDA] is used. Here, the Issuer is using the following user
data:

"verified_claims": {
"verification": {
"trust_framework": "de_aml",
"time": "2012-04-23T18:25Z2",
"verification_process": "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",
"evidence": [
{
"type": "document",
"methodﬂ: ||pipp||,
"time": "2012-04-22T11:302",
"document": {
"type": "idcard",
"issuer": {
"name": "Stadt Augsburg",
"country": "DE"
I
"number": "53554554",
"date_of_issuance": "2010-03-23",
"date_of_expiry": "2020-03-22"
3
}
]
i
"claims": {
"given_name": "Max",
"family_name": "Meier",
"nationalities": [
IIDEII
1
"address": {
"locality": "Maxstadt",
"postal_code": "12344",
"country": "DE",
"street_address": "An der Weide 22"
3
3
iy
"birth_middle_name": "Timotheus",
"salutation": "Dr.",
"msisdn": "49123456789"

The Issuer in this example further adds the two claims birthdate and
place_of_birth to the claims element in plain text. The following
shows the resulting SD-JWT payload:

{

"iss": "https://example.com/issuer",
"enf": {
"jWk" : {
llktyll: IIRSAH,

iy

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpl1l_ICDkGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zZgl1eM2bJcOWE7PCBHWTKWYS152R796Jg20Vph-a8rq-q79MhKG5QowW
_MmTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw",

llell : IIAQABII

}

"iat": 1516239022,

"exp": 1516247022,
"sd_digest_derivation_alg": "sha-256",
"sd_digests": {

"verified_claims": {
"verification": {
"trust_framework":
"fkIW-4iUZgTeleDg_Z 60FHU-wyWwazSpuaiQbc5QKw",
"time": "VRF-G_LfTzSaYkLelVzry8211zQxGwk1RfGcnUUWukc",
"verification_process":
"90pDm14eRBM6USTk3MF217kB11xGGkzPg5Ncs1imvbPo",
"evidence": [
{
"type": "HucanHhQwb-TJINg_rVpaonNSDtzPrCEebb3LfXTuLSM",
"method": "aU7I0700T8VArMkgqpOfkIA1Kw8BNcfRyw3NXs32S128",
"time": "LHCcH98bV3-ZNUa®OHNNnqOf8W5IdijYlaEnpVzDNVBwWA",
"document": {
"type": "SITI1fkbUIONveviEJBw-_VEaGiPtCDcXy9uD9orWFA",
"issuer": {
"name":
"AY7wW63Vbcd7RnNKDb39sSXpLgyiVNxWgoRnV6xZD5C8",
"country":
"Kd3aUmm6XHjpWp60YiJeEZUrD5J7nIRU3S1Tc-E53gs"”
I
"number":
"8gKpks1l66fN9F2Zxs1PRPgD8kHi8dGC2JzpqtrPZavs",
"date_of_issuance":
"GFIEhOGWwe8J71x6HSAPPC-Qvx0ihwWkEE®_LZ-r_DI",
"date_of_expiry":
" _fdljKRdp5wptGi7DwKNZESSX6AnNiVgmDEO®aSznH74"
}

}
]
3
"claims": {
"given_name": "sx4wGd6-ONAsiq7dN16GHeg4RAyOshRBAoXWE_E751w",
"family_name":
"Ldbea®0SibAQDiZJ1BigptwWXZ9QA8a0dKK7jipSn2K8",
"nationalities":
"tr8SXHdYSOrzAio_IhFp2lzltad4kDzKCM7hUxItCcu2u",
"address": {
"locality": "VFgKHPXnNrZHeoBwcu61b5VCoFVX0OrQjtH5a0iilLz0OE",
"postal_code":
"G8XHi8sCPc45WATery6RSvnEcdypnrjypjBl4LBd5YE",

"country": "YyG4Nhyfjitpo6-yMDRTARSVANZNvkYQRY3XepoQ_j8",
"street_address":
"NwAKfAtjQcN_XbV3kuHt3gbUMvQ83n02C1EexI9R02A"
}
}
3
"pbirth_middle_name":
"M5GhkVvNCGJjGONRey2pRORuUL2yCfYz5j00XqF6KOtUWK",
"salutation": "8mO-sBNA8I88_LDcO5C7gE31pTm_CXQfewiwllL1SniY",
"msisdn": "dLQVMDIKEHNmMPVVUHNYiv7WwAQqGE7mbyJMh5EfbjM1Q"
+
"verified_claims": {
"claims": {
"birthdate": "1956-01-28",
"place_of_birth": {
"country": "DE",
"locality": "Musterstadt"
}
}
}
}

The SD-JWT is then signed by the Issuer to create a document like
the following:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlauUJhzzBZ
UKF6VMRSZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHROCHM6LY91eGFtcGx1LmNvbS9pc
3N1ZXIiLCAiY25mIjogeyJqd2si0iB7Imt@eSI6GICISUOEILCALIbiI6ICIWbTRiITONCZ
ylviWwwhBeVBXelI1NkFXWDNyVU1YCcDExXXQ1DRGtHZ1M2VzNaveOx0cyloendIM3g2NTY10
WtnNGhWbz1kYkdvQOpFM1pHR191YWVORTMWVWhCVUVNCEd3ckRyUW1KOXpxcHJtYOZmc
jNxdnZrR2p0dGg4wmd sMWWNMMIKYO93RTAQQOJIIVIRLV11zMTUyUjdnNkpnMkOWcGgtY
ThycS1xNz1NaEtHNVFVV19tVHOXMFFUXZZINGM3UGpXRzFmamg4aHBXTm5iUF9wdjZkM
XpTdipmYzVmbDZ5V1JIMMERWMFYZzbEdIS2UyV3FmX2VOR2pCck IMVMt sSRFRrOC1zdFhfT
VAMY1ItRUAtWEFPdjBVQldpdFNfZFhKSOp1LXZYSn13MTRUSFNHdXhUSUsyaHgxcHROT
WZOOUNzdnFpbVhLZURUVTEOCVFMMWVFN210Y3CciLCAiZSI6ICJBUUFCIN19LCAiaWFOI
JOgMTUXNJjIZOTAYMiwgImV4cCI6GIDEIMTYYNDCcwWMjISICJzZF9kawd1lc3RfZGVyaxzhd
Glvb1l9hbGci0iAic2hhLTIINiISICJzZF9kaWd1lc3RzIjogeyJd2ZXJIpZmllZF9jbGFpb
XMi0iB7InzZlcmlmaWNhdGlvbiI6IHsidHJ1c3RfZnJIhbwWV3b3JrIjogImZrSVctNGLVW
mdUZU11RGATfW182b0ZIVS13eVd3YXpTcHVhaVFiYzVRS3ciLCAidG1ltZSI6ICIWUKYtR
19MZ1R6U2FZa®x1bFZ6cnk4MmwxelF4R3drMVImR2NuVVVXdwWt jIiwgInZlcmlmawNhd
Glvbl9wcm9jZXNzIjogIj1PcERtbDRIUKJINN1VZzZmszTUYyaTdrQmwxeEdHa3pQcTVOY
3MxbXZiUG8iLCA1ZXZpZGVuY2Ui0iBbeyJ@eXBlIjogIkhlY2FuSGhRdA2ItVEpPOZ19yV
nBhb250UORGe1BYyQOV1YMIZTGZYVHVMUOOiLCAibWVOaGI9KkIjogImFVNO1PN29vVDh2Q
XINa3FwT2ZrSUFsS3c4Qk5jZ21J5dzNOWHMZWIMXMjgilLCA1dG1tZSI6ICIMSGNIOThiV
JMEtWk5VYTAWSE5ucU9mMOFc1SWRpalkxYUVUcFZ6RESWQNdBIiwgImRVY3VtZW50Ijoge
yJO0eXB1lIjogIjNJIVElsZmtiVUkwTnZ1ldmlFSkJ3LVOWRWFHaVBOQORjWHk5dUQ5b3JIXR
KEiLCAiaXNzdwVyIjogeyJuYW11lIjogIKFZN3dXNjNWYmMNKN1JuSORiMz1zU1lhwTGd5a
VZ0eFdnb1JuVjZ4wkQ1QzgiLCAi1Y291bnRyeSI6ICILZDNhVW1tN1hIanBXcDZPWW1KZ
UVaVXJENU03bk1SVTNTbFRjLUU1IM2dzINOSICIJudW1iZXIi0iAi0GdLcGtzbDY2Zk45R
jJaeHMxUFJQZ0Q4a0hpOGRHQzIKenBxdHIQWMF2cyISICJIkYXR1X29mX21zc3VhbmN1I
jogIkdmSUVoTOdXd2U4SjdseDZIUOFQCEMtUXZ4MGlod1drRUUWXOxaLXJfREKiILCALZ
GFOZV9vZz191leHBpcnki0iAiX2ZkbGpLUMRWNXdwdEdpNOR3SO5aRXNTWDZBbm5pVnFtR
EUWYVN6bkg3NCJI9fV19LCAiY2xhaWlzIjogeyJnaXZ1lb19uYW11IjogInN4NHAHZDYtT
O5BCc21xN2ROMTZHSGVNNFJIBeU9zaFJCZGOYVOVFRTCc1IMXciLCAiZmFtawx5X25hbwUi0
1AiTGRiZWEwWU211iQVFEaVpKbEJpz3BOd1dYWj1lRQThhMGRLSzdgaXBTbhjJLOCISICJuY
XRpb25hbG1l0awVvzIjogInRyOFNYSGRZUzByekFpb19JaEZwMmx6bHRhNGtEektDTTdoV
XhJdENVM1UiLCAiYWRKkcmVzcyI6IHsSibG9jYWxpdHki0iAiVkZnSOhQWG50c1pIZw9oCd
2NINjFiNVZDbOZWWDBYUWpOSDVhT21pTHOWRSISICIWb3NOYWXxTFY29kZSI6ICJIJHOFhIa
ThzQ1BjNDVXQVR1cnk2U1N2bkVjZH1wbnJlqeXBgQmwOTEJKNVIFIiwgImNvdw50cnkiO
1AiWX1HNE50eWZgaXRwbzYteU1EUIRBUINWQW5aTnZrWXFSWTNYZXBvUV9qOCIsICJzd
HJ1ZXRfYWRkcmVzcyI6ICJOdOFLZKFOalFjT19YY1lYza3VIdDNNY1VNd1E4M24wMKMXR
WV4ST1SbzJIBIN19fSwgImIpcnRoX21pZGRsZVIuYW11lIjogIk@1R2hrdk5jR2pHTO5SZ
XkycFJPUNVMMN1DZ116NWpVvMFhXRjZLMHRVV2silLCAic2FsdXRhdGlvbiI6ICI4bTAtcC
0JO0QThJODhfTERjMDVDN2dFMzFWVG1fQ1hRZmV3aXdsTDFTbjFZIiwgImlzaXNkbiI6I
CIKTFFWTURJa0VIbm1QVnZ1SE5ZaXY3V3dBcUdFN21ieUpNaDVFZmJqQTTFRINESICJ2Z
XJpZm11ZF9jbGFpbXMi0iB7IMNsYW1tcyI6IHsiYmlydGhkYXR1IjogIjESNTYtMDEM
jgiLCAicGxhY2Vfb2ZfYmlydGgi0iB7ImNvdw50cnki0iAiREUiLCA1bGOjYWxpdHki0
1AiTXVzdGVyc3RhZHQifX19fQ.57pncJcJI6cQt2fSARbQL1j6e6nYMpWOHNVI2Ep45Wm
NGuTtI3htmodK8svpgbrT-RaLL25WF7J3CqP1E1zpZSgVFs2VXCXGXgnTG6dQIvk2qPP
fP-45hrZiMWyiwRFBr7Di68J01N90YFGbsMH5hh8kGGFNCpTSQwvk - -6aG_0310nGmL
DjOFyauCF_T1-S10HzNGYoP3M0O0OX9jU25T8z2e3EmMLVLTa5KEMNisOGbpfSHUthbtZCC
Taqg-bSYaPDUH122ZNgeoW1Y4v8nSaNIyrVOIXfPINb37kYN6NLN5zwI33sxXE_nCd8wOx
vuIOrtFtmpS_-DNgwPTnLphzUNKA

An HS-Disclosures JWT for some of the claims may look as follows:

{

"nonce": "XZOUcolu_gEPknxS78swWwg",
"aud": "https://example.com/verifier",
"sd_hs_disclosures": {
"verified_claims": {
"verification": {
"trust_framework": "{\"s\": \"SJKr-Pydh8RqHomXCOiVvwQ\",
\"v\": \"de_aml\"}",
"time": "{\"s\": \"CrxH2Ez8uu2t7tEPQqwzig\", \"v\":
\"2012-04-23T18:25Z\"}",
"evidence": [

{

"type": "{\"s\": \"sPCCbzZt0djnQjfOiPBxOYA\", \"v\":
\"document\"}"

}
]
3
"claims": {
"given_name":
\"MaX\"}",
"family_name":
\"Meier\"}"

"{\"s\": \"kqwnbB6oHhaBD3F3t-KUGwW\", \"v\":

"{\"s\": \"_6D0o5glcgEQDMVJIOPArGSA\", \"v\":

After verifying the SD-JWT and HS-Disclosures, the Verifier merges
the selectively disclosed claims into the other data contained in
the JWT. The Verifier will then pass the result on to the
application for further processing:

{
"verified_claims": {
"verification": {

"trust_framework": "de_aml",

"time": "2012-04-23T18:252",

"evidence": [

{
"type": "document"
}
]
I
"claims": {

"given_name": "Max",

"family_name": "Meier",

"birthdate": "1956-01-28",

"place_of_birth": {

"country": "DE",
"locality": "Musterstadt"
}
3
3
"iss": "https://example.com/issuer",
llcnfll : {
“jWk”: {

"kty": "RSA",

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpll_ICDkGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zgli1eM2bJcOWE7PCBHWTKWYS152R7g6Jg20Vph-a8rq-q79MhKG5QoW
_MmTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1IDTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw",

llell : "AQAB"

3

iy
"iat": 1516239022,

"exp": 1516247022
}

A.4. Example 4 - W3C Verifiable Credentials Data Model (work in
progress)

This example illustrates how the artifacts defined in this
specification can be represented using W3C Verifiable Credentials
Data Model as defined in [VC_DATA].

SD-JWT is equivalent to an Issuer-signed W3C Verifiable Credential
(W3C VvC). II-Disclosures Object is sent alongside a VC.

HS-Disclosures JWT is equivalent to a Holder-signed W3C Verifiable
Presentation (W3C VP).

Holder Binding is applied and HS-Disclosures JWT is signed using a
raw public key passed in a cnf Claim in a W3C VC (SD-JWT).

HS-Disclosures JWT as a W3C VP contains a verifiableCredential claim
inside a vp claim that is a string array of an SD-JWT as a W3C VC
using JWT compact serialization.

Below is a non-normative example of an SD-JWT represented as a
verifiable credential encoded as JSON and signed as JWS compliant to
[VC_DATA].

ITI-Disclosures Object is the same as in Example 1.

"sub": "urn:ietf:params:oauth:jwk-thumbprint:sha-256:NzbLsXh8uDCc
d- 6MNwWXF4W_7noWXFZATHkxZsRGC9Xs",

"jti": "http://example.edu/credentials/3732",

"iss": "https://example.com/keys/foo.jwk",

"nbf": 1541493724,

"iat": 1541493724,

"exp": 1573029723,

llcnfll : {

"jWk": {

"kty":"RSA",

"n": "Ovx7agoebGcQSuuPiLIXZptN9nndrQmbXEps2aiAFbWhM78Lhwx
4cbbfAAtVT86zwulRK7aPFFXuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
tn64tZ_2W-5J3sGY4Hc5n9yBXArwl931qt7_RN5w6CTfOh4QyQ5v-65YGjQRO_FDW2
QvzqY368QQMicAtaSqzs8KJIZgnYb9c7d0zgdAZHzu6gMQvRL5hajrnin91ChOpbI
SDO8gNLYyrdkt-bFTWhAI4vMQFh6WeZu®fM41Fd2NcRwr3XPksINHaQ-G_xBniIqb
wOLs1jF44-csFCur-kEgU8awapJzKngDKgw",

llell : HAQABH

}

I

"VC”: {
"@context": [

"https://www.w3.0rg/2018/credentials/v1"
1
Iltypell : I:

"VerifiableCredential",

"UniversityDegreeCredential"

1,

"credentialSubject": {

"first_name": "Jane",
"last_name": "Doe"
}
3
"sd_digests": {
"ve": {
"credentialSubject": {
"email": "-Rcr4fDyjwlM_itcMx0QZCE1QAEwyLJcibEpH114KiE",
"phone_number": "Jv2nwOC1lwP5ASutYNAXrWEnaDRIpiFOeTUAKUOp8F6Y",
"address": "ZrjKs-RmEAVeAYSzSw6GPFrMpcgctCfalétoqQhbfi4",
"birthdate": "gXPRRPdpNaebP8jtbEpO-skF4n7v7ASTh8oLgOmkAdQ"
}
}

Below is a non-normative example of a HS-Disclosures JWT represented
as a verifiable presentation encoded as JSON and signed as a JWS
compliant to [VC_DATA].

{
"alg": "RS256",

lltypll : "JWT”,
ijkll : {

Ilktyll : "RSA”,

"n": "Ovx7agoebGcQSuuPiLIXZptN9nndrQmbXEps2aiAFbWhM78Lhwx
4cbbfAAtVT86zwulRK7aPFFXuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
tn64tZ_2W-5JsGY4Hc5n9yBXArwl931qt7_RN5w6CTfOh4QyQ5v-65YGjQRO_FDW2
QvzqY368QQMicAtaSqzs8KJIZgnYb9c7d0zgdAZHzu6gMQvRL5hajrnin91ChOpbI
SDO8gNLyrdkt-bFTWhAI4vMQFh6WeZu®fM41Fd2NcRwr3XPksINHaQ-G_xBniIqb
wOLs1jF44-csFCur-kEgU8awapJzKngDKgw",

llell : HAQABH

}
A
"iss": "urn:ietf:params:oauth:jwk-thumbprint:sha-256:NzbLsXh8uDCc
d-6MNwXF4W_7noWXFZATHkxZsRGC9Xs",
"aud": "s6BhdRkqt3",
"nbf": 1560415047,
"iat": 1560415047,
"exp": 1573029723,
"nonce": "660!6345FSer",
"Vp”: {
"@context": [
"https://www.w3.0rg/2018/credentials/v1"
1
||typell : [
"VerifiablePresentation"

1
"verifiableCredential": ["eyJhb...npyXw"]

I
"sd_hs_disclosures": {
“VC" : {
"credentialSubject": {

"email": "{\"s\": \"Pc33JM2LchcU_lHggv_ufQ\", \"v\":
\"johndoe@example.com\"}",

"phone_number": "{\"s\": \"1klxF5jMY1GTPUoVMNIVCA\", \"v\":
\"+1-202-555-0101\"}",

"address": "{\"s\": \"5bPsliIquzNa®hkaFzzzzZNw\", \"v\":
{\"street_address\": \"123 Main St\", \"locality\":
\"Anytown\", \"region\": \"Anystate\", \'"country\":
\"US\"}}",

"birthdate": "{\"s\": \"yilsVU5wdfJahvdgwPgS7RQ\", \"v\":
\"1940-01-01\"}"

A.5. Blinding Claim Names

The following examples show the use of blinded claim names.

A.5.1. Example 5: Some Blinded Claims

The following shows the user information used in this example,
included a claim named secret_club_membership_no:

{
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"given_name": "John",
"family_name": "Doe",
"email": "johndoe@example.com",
"phone_number": "+1-202-555-0101",
"secret_club_membership_no": "23",
"other_secret_club_membership_no": "42",
"address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"
+
"birthdate": "1940-01-01"
}

Hiding just the claim secret_club_membership_no, the SD-JWT payload
shown in the following would result. Note that the claims are sorted
(here by unicode code point numbers) as described in Section 7.7.

"enf": {

Iljwkll: {
llell: "AQAB”,
llktyll : IIRSAH ,

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpl1l_ICDkGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zZgl1eM2bJcOWE7PCBHWTKWYS152R796Jg20Vph-a8rq-q79MhKG5QowW
_MmTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw"

}

+
"exp": 1516247022,

"iat": 1516239022,
"iss": "https://example.com/issuer",
"sd_digest_derivation_alg": "sha-256",
"sd_digests": {
"HS4QoeE9ty-I8BZTEUpSzW":
"emp2ghunGPulOGvtgor5dFwNSasDewLqNdgXCkY14Nw",
"address": {
"country": "Bktf3gG1tXbn®X0brzT53RUr_1xMLZGEguLYwCvsaIg",
"locality": "NeWRh4B9JLRfEODwNo3UOXg9Pg3gtZEo45cK9prdezk",
"region": "qpgFbdX1Az4Hm_E63K3J940MzazHLCqqFbODamo2eFE",
"street_address":
"6Ex8b2gEeACuMal74_0OBH_ROVNM7wvzjSckO8EC9eSs"
3
"pbirthdate": "1IjwWwzdrXEs7iXUbsahdx_-8CIJsz2bcHHH_ccwgTBg",
"email": "gszmttjNfSw7_ulL31KyJRvWgL1gHM603LFAZzgqx1luwDQ",
"family_name": "Xbz5qK4Fqg-bS_CdwQYd_7gqiNS9W810mRn42-FTHMPO",
"given_name": "asBCBSyK-B45q79qxGMe6j4MijK41ZsHHCD80_jsDdc",
"other_secret_club_membership_no":
"3RP5qguzZWamNuvdrFS-sqqYq_MaCIzx6Zn_b0OZyE9BY",
"phone_number": "1B98F2RApo-ifhA31wJGdqV-PAURKkstN-oHmMCv4LmxA",
"sub": "sJ88WF6Q05a2eyPnLJHXzZ8bbiQXW1X144Nss7YwWKOE"

In the II-Disclosures Object, it can be seen that the blinded
claim's original name is secret_club_membership_no. Note that the
claims are sorted alphabetically as described in Section 7.7.

{
"sd_ii_disclosures": {
"HS4QoeE9ty-I8BZTEupSzw": "{\"s\": \"ig6rolXFOSywSsdCeaETNg\",
N"wvA" N"23\", \"n\": \"secret_club_membership_no\"}",
"address": {
"country": "{\"s\": \"1-6D1G1N1loOsAU1BhMOt_Q\", \"v\":
\"US\”}",
"locality": "{\"s\": \"c6kc69GmhO4VVNPR1hOV_g\", \"v\":
\"Anytown\"}",
"region": "{\"s\": \'"gwybxKQUee9AOmMMhzGC-Pg\", \"v\":
\"Anystate\"}",
"street_address": "{\"s\": \"gNsw9KO5ZngcEgXLEGalHA\", \"v\":
\"123 Main St\"}"
3
"birthdate": "{\"s\": \"OErzfd2Gy6jwlatlcCpr6A\", \"v\":
\"1940-01-01\"}",
"email": "{\"s\": \"woZIMokulfwyF_dolczRaA\", \"v\":
\"johndoe@example.com\"}",
"family name": "{\"s\": \"ZXPEdf3K8mtRBKDAMjEcBQ\", \"v\":

\"Doe\“}",

"given_name": "{\"s\": \"btsLJCwSbOB7gtVLPMjjqgA\", \"v\":
\"JOhn\”}",

"other_secret_club_membership_no": "{\"s\":

\"Fj8RxKoVNno-9SOVOEUoMpw\", \"v\": \"42\"}",
"phone_number": "{\"s\": \"YJSPlYyo_aenthOCkapFRTg\", \"v\":
\"+1-202-555-0101\"}",
"sub": "{\"s\": \"Rj94TRXr3nvOw2WKtujLSA\", \"v\":
\"6c5c0a49-b589-431d-bae7-219122a9ec2c\"}"

}
}
The Verifier would learn this information via the HS-Disclosures
JWT:
{
"nonce": "XZOUcolu_gEPknxS78swWwg",
"aud": "https://example.com/verifier",
"sd_hs_disclosures": {
"given_name": "{\"s\": \"btsLJCwSbOB7gtVLPMjjgA\", \"v\":
\"JOhn\”}",
"family_name": "{\"s\": \"ZXPEdf3K8mtRBKDAMJjEcBQ\", \"v\":
\"Doe\“}",
"birthdate": "{\"s\": \"OErzfd2Gy6jwlatlcCpr6A\", \"v\":
\"1940-01-01\"}",
"address": {
"region": "{\"s\": \'"gwybxKQUee9AOmMMhzGC-Pg\", \"v\":
\"Anystate\"}",
"country": "{\"s\": \"1-6D1G1N1loOsAU1BhMOt_Q\", \"v\":
\"US\”}"
3
"HS4QoeE9ty-I8BZTEupSzw": "{\"s\": \"ig6rolXFOSywSsdCeaETNg\",
\"VA" N"23\", \"n\": \"secret_club_membership_no\"}"
}

The Verifier would decode the data as follows:

"given_name": "John",
"family_name": "Doe",
"birthdate": "1940-01-01",
"address": {
"region": "Anystate",
"country": "us"

iy

"secret_club_membership_no": "23"

.5.2. Example 6: All Claim Names Blinded

In this example, all claim names are blinded. The user data includes
a non-standard delivery_address claim to show that even though the
same claim name appears at different places within the structure,
different salts and blinded claim names are used for them:

"sub": "6c5c0a49-b589-431d-bae7-219122a9%ec2c",
""given_name": "John",
"family_name": "Doe",
"email": "johndoe@example.com",
"phone_number": "+1-202-555-0101",
"secret_club_membership_no": "23",
"address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"
+
"delivery_address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"

iy
"pirthdate": "1940-01-01"

The resulting SD-JWT payload:

"enf": {

Iljwkll: {
llell: "AQAB”,
llktyll : IIRSAH ,

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpl1l_ICDkGgS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgpGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zZgl1eM2bJcOWE7PCBHWTKWYS152R796Jg20Vph-a8rq-q79MhKG5QowW
_MmTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw"

}
+
"exp": 1516247022,
"iat": 1516239022,
"iss": "https://example.com/issuer",
"sd_digest_derivation_alg": "sha-256",
"sd_digests": {
"21rQaXAeV85isgBjuHAOTwW" :
"2kT20hIPzxb8Mt2aa8YJ7Rj_SmTUrSIfzCz8zVXix5E",
"HTQVLIU4zz7NKMr5p4KDWw" :
"4Hyw9wnR-UEVbJIPSYyQdrzMz6JY99mLqR_9m_1ntD4_s",
"HmMNQx16SFAX_Su6uDR941g":
"tmuay_zrl123ZdDX1hIyI48a4huCiTf70chBEVA12Qf0",
" _ZzazarEQUrZHTv3BnHJ1w":
"uwW7QffEKT_Hw4q_LrsIDV5vcQGh7ubQdKS0Jc5qXRiQ",
"address": {
"MXDpEmt5SRXRx1Dw8YAdTA" :
"9Lu5UyimpvSrpJU9R80aEpzemufK8eRH5QEK05xLJjo",
"SdQneYafbrvTMuPyyQhj2A":
"f54HJqBhU7gC1MHPaMYzz1r9vg96qE3e04kP2zX0KTc",
"abIR4EGTTgQKNXnmxoY5qA" :
"QDUYK4ACXOMVPTCm7uVQFwbBPN06_xI6-3fHZaHEQWO",
"zno2BBCk2a7pk49dczZYngw" :
"Ho4wYzUNdQow3TBdPmH5Fbq-4Me_fx8pECOKk3NIMFFEM"
3
"agdL1loEIUy4FVDdmmS048w" :
"C5XJJFNU9CX-k_xIo7gxX_CsLKcR5GDqJJ3MBy_o1zg",
"cIsqMhsylJDPtEpoqVGLVQ":
"WWRAGNiwmcPPbTfuIwphr3j4Vvs95TCjUzytdiPC7434",
"delivery_address": {
"Q7vBVGQFVCw8keOQLY1SVg":
"sPeIeivTQeApuZ2piXouwWMEm1xA_liTae8BsSE0Q7z9M",
"bMMGdJIMOQO_zgVo75zuniw":
"XTM20jec5bxvHY6s0t5c47LeMErCR7TSc1tJ51v28tQ",
"bxNsq8p-Jobl47INKhNOMA™" :
"AF3X_wkKrY4KHiajz5vhv7CzUp-ATXe-Jt15x7QUAcg",
"KR7kfLZF-3YiQ5VRgsY3yA":
"crbT6qlk8nmEkwq0_GsFUUQHNQ7DxoU®ziMh22Cxe7M"
3
"VEAQi15_1JvuDfS7hH7TWZwW" :
"d9Wa_qCEbikmrXt_1refkreitUPIbZWNn5miQGZWPKg"

The II-Disclosures Object: {#example-simplestructuredallblinded-
iidpayload}

{
"sd_ii_disclosures": {
"21rQaXAeVv85isgBjuHAOfw": "{\"s\": \"PdxYwdt_MFsC6qce2uiVLQ\",
\N"VvA" \"+1-202-555-0101\", \"n\": \"phone_number\"}",
"HTQVLIU4zz7NKMr5p4KDWw": "{\"s\": \"353CLP3ZZFmxJQ6azZ_HDYg\",
\"VvA": \"John\", \"n\": \"given_name\"}",
"HmMNQx16SFAX_Su6uDR941g": "{\"s\": \"Qb5pmhvwzr4aRd7g7QVckA\",
N"WA" N"23\", \"n\": \"secret_club_membership_no\"}",
"_ZzazarEQUrZHTv3BnHJ1w": "{\"s\": \"yL66N684FNAao5hwfBqc6A\",
\"VvA": \"1940-01-01\", \"n\": \"birthdate\"}",
"address": {
"MXDpEmMt5sRXRx1DwW8YAdTA": "{\"s\": \"3VzdS104wRgglXFk_ENJ2g\",
\"VA": \"Anytown\", \"n\": \"locality\"}",
"sdQneYafbrvTMuPyyQhj2A™: "{\"s\": \"VQz3c8LhaQCy7hgEsusPPA\",
A"V N"US\Y, \"n\": \"country\"}",
"abIR4EGTTgQKNXNmxoY5gA": "{\"s\": \"BhX1rStOsN3_vk_Kx4IgOg\",
\"v\": \"Anystate\", \"n\": \'"region\"}",
"zno2BBCk2a7pk49dczyngw": "{\"s\": \"u2jvKsy0g-inkL3RAcpssw\",
\"VvA": \"123 Main St\", \"n\": \"street_address\"}"
3
"aqdL1loEIUy4FVDdmmSo48w": "{\"s\": \"Y3d_N7vZNfNp7KWDmCpJ1A\",
\"VvA": \"Doe\", \"n\": \"family name\"}",
"cIsgMhsylJDPtEpoqVGLVvQ": "{\"s\": \"bbdw6Rtr4YEaDvydH4Yerw\",
\"V\": \"johndoe@example.com\", \"n\": \"email\"}",
"delivery_address": {
"Q7vBVvGQFVCw8keOQLY1SvVg": "{\"s\": \"nBOOpTNOCCScA_ MHr9P9SQ\",
\"v\": \"Anystate\", \"n\": \'"region\"}",
"bMMGdJIMOQO_zqVo75zundiw": "{\"s\": \"urI5m4JPtDbe9rRQbXgtEg\",
A"vA" D N"US\", \"n\": \"country\"}",
"bxNsq8p-Job147INKhNOMA™: "{\"s\": \"LojbKO3mpEE6GWTgSL5EzMg\",
\"v\": \"123 Main St\", \"n\": \'"street_address\"}",
"KR7kfLZF-3YiQ5VRgsY3yA": "{\"s\": \"e925I1ajysz2xx9kzyzveg\",
\"VA": \"Anytown\", \"n\": \"locality\"}"
3
"VEAOi5_1JvuDfS7hH7TwWZw": "{\"s\": \"i_rQHJJUVGFdOgVVM8H8Ww\",
\"v\": \"6c5c0a49-b589-431d-bae7-219122a9ec2c\", \"n\":
\"SUb\"}"
}
}

Here, the Holder decided only to disclose a subset of the claims to
the Verifier:

{
"nonce": "XZOUcolu_gEPknxS78swWwg",

"aud": "https://example.com/verifier",
"sd_hs_disclosures": {
"HTQVLIU4zz7NkMr5p4KDww": "{\"s\": \"353CLP3ZZFmxJQ6aZ_HDYg\",
\N"VvA": \"John\", \"n\": \"given_name\"}",
"agdL1oEIUy4FVDdmmSo48w": "{\"s\": \"Y3d_N7vZNFfNp7KwWDmCpJ1A\",
\"VvA": \"Doe\", \"n\": \"family name\"}",
" _ZzazarEQUrZHTv3BnHJ1w": "{\"s\": \"yL66N684FNAao5hwWfBgqc6A\",
\"VvA": \"1940-01-01\", \"n\": \"birthdate\"}",
"address": {
"abIR4EGTTgQKNXnmxoY5gA": "{\"s\": \"BhX1rStOsN3_vk_Kx4Igog\",
\"vA": \"Anystate\", \"n\": \"region\"}",
"SdQneYafbrvTMuPyyQhj2A": "{\"s\": \"VQz3c8LhaQCy7hqEsusPPA\",
A"V N"USNY, \"n\": \"country\"}"

}
}
}
The Verifier would decode the HS-Disclosures JWT and SD-JWT as
follows:
{
"given_name": "John",
"family_name": "Doe",
"birthdate": "1940-01-01",
"address": {
"region": "Anystate",
"country": "us"
}
}

Appendix B. Document History
[[To be removed from the final specification]]
-01
*introduce blinded claim names
*explain why JSON-encoding of values is needed
*explain merging algorithm ("processing model")

*generalized hash alg to digest derivation alg which also enables
HMAC to calculate digests

*sd_digest_derivation_alg renamed to sd_digest_derivation_alg

*Salt/Value Container (SVC) renamed to Issuer-Issued Disclosures
(II-Disclosures)

*SD-JWT-Release (SD-JWT-R) renamed to Holder-Selected Disclosures
(HS-Disclosures)

*sd_disclosure in II-Disclosures renamed to sd_ii_disclosures
*sd_disclosure in HS-Disclosures renamed to sd_hs_disclosures
*clarified relationship between sd_hs_disclosure and SD-JWT
*clarified combined formats for issuance and presentation
*clarified security requirements for blinded claim names

*improved description of Holder Binding security considerations -
especially around the usage of "alg=none".

*updated examples
*text clarifications
*fix cnf structure in examples
*added feature summary
-00
*Upload as draft-ietf-oauth-selective-disclosure-jwt-00
[[pre Working Group Adoption:]]
-02
*Added acknowledgements
*Improved Security Considerations
*Stressed entropy requirements for salts
*Python reference implementation clean-up and refactoring
*hash_alg renamed to sd_hash_alg
-01
*Editorial fixes
*Added hash_alg claim
*Renamed _sd to sd_digests and sd_release
*Added descriptions on Holder Binding - more work to do
*Clarify that signing the SD-JWT is mandatory
-00

*Renamed to SD-JWT (focus on JWT instead of JWS since signature is
optional)

*Make Holder Binding optional

*Rename proof to release, since when there is no signature, the
term "proof" can be misleading

*Improved the structure of the description
*Described verification steps
*All examples generated from python demo implementation
*Examples for structured objects
Authors' Addresses

Daniel Fett
yes.com

Email: mail@danielfett.de
URI: https://danielfett.de/

Kristina Yasuda
Microsoft

Email: Kristina.Yasuda@microsoft.com

mailto:mail@danielfett.de
https://danielfett.de/
mailto:Kristina.Yasuda@microsoft.com

	Selective Disclosure for JWTs (SD-JWT)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Feature Summary
	1.2. Conventions and Terminology

	2. Terms and Definitions
	3. Flow Diagram
	4. Concepts
	4.1. Creating an SD-JWT
	4.2. Creating a Holder-Selected Disclosures JWT
	4.3. Optional Holder Binding
	4.3.1. Optional Claim Name Blinding

	4.4. Verifying a Holder-Selected Disclosures JWT

	5. Data Formats
	5.1. The Challenge of Canonicalization
	5.2. Format of an SD-JWT
	5.2.1. sd_digests Claim (Digests of Selectively Disclosable Claims)
	5.2.1.1. Flat and Structured sd_digests objects

	5.2.2. Digest Derivation Function Claim
	5.2.3. Holder Public Key Claim

	5.3. Example 1: SD-JWT
	5.4. Format of an Issuer-Issued Disclosures Object
	5.5. Example: Issuer-Issued Disclosures Object for the Flat SD-JWT in Example 1
	5.6. Combined Format for Issuance
	5.7. Format of a Holder-Selected Disclosures JWT
	5.8. Example: Holder-Selected Disclosures JWT for Example 1
	5.9. Combined Format for Presentation

	6. Verification and Processing
	6.1. Verification by the Holder when Receiving SD-JWT and Issuer-Issued Disclosures Object
	6.2. Verification by the Verifier when Receiving SD-JWT and Holder-Selected Disclosures JWT
	6.3. Processing Model

	7. Security Considerations
	7.1. Mandatory digest computation of the revealed claim values by the Verifier
	7.2. Mandatory signing of the SD-JWT
	7.3. Entropy of the salt
	7.4. Minimum length of the salt
	7.5. Choice of a digest derivation algorithm
	7.6. Holder Binding
	7.7. Blinding Claim Names

	8. Privacy Considerations
	8.1. Claim Names
	8.2. Unlinkability

	9. Acknowledgements
	10. IANA Considerations
	11. Normative References
	12. Informative References
	Appendix A. Additional Examples
	A.1. Example 2a - Structured SD-JWT
	A.2. Example 2b - Mixing SD and Non-SD Claims
	A.3. Example 3 - Complex Structured SD-JWT
	A.4. Example 4 - W3C Verifiable Credentials Data Model (work in progress)
	A.5. Blinding Claim Names
	A.5.1. Example 5: Some Blinded Claims
	A.5.2. Example 6: All Claim Names Blinded

	Appendix B. Document History
	Authors' Addresses

