workgroup: Web Authorization Protocol
Internet-Draft:
draft-ietf-oauth-selective-disclosure-jwt-02
Published: 7 December 2022
Intended Status: Standards Track
Expires: 10 June 2023
Authors: D. Fett K. Yasuda B. Campbell

yes.com Microsoft Ping Identity

Selective Disclosure for JWTs (SD-JWT)

Abstract

This document specifies conventions for creating JSON Web Token
(JWT) documents that support selective disclosure of JWT claims.

Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the Web Authorization

Protocol Working Group mailing list (oauth@ietf.org), which is
archived at https://mailarchive.ietf.org/arch/browse/oauth/.

Source for this draft and an issue tracker can be found at https://
github.com/oauth-wg/ocauth-selective-disclosure-jwt.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 June 2023.
Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

https://mailarchive.ietf.org/arch/browse/oauth/
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.

Table of Contents

I o N

o

[e}}
‘m

00 1N
(e}
[N

Introduction

1.1

=

2.

. Feature Summary
Conventions and Terminology

Terms and Definitions

Flow Diagram
Concepts

o E
W N [P

N
IN

Creating an SD-JWT

Creating Holder-Selected Disclosures
Optional Holder Binding

Verifying Holder-Selected Disclosures

Data Formats

9]
=

(6]
N

The Challenge of Canonicalization
Format of an SD-JWT
.2.1. Selectively Disclosable Claims

.2.2. Hash Function Claim

.2.3. Holder Public Key Claim

-
(62 F- (PN I (62 BN (62 B (€)1

Example 1: SD-JWT
Combined Format for Issuance
.4.1. Example

5.5.

5

Combined Format for Presentation
.5.1. Enabling Holder Binding

5

.5.2. Example

Verification and Processing

(0]

1.
2.

Processing by the Holder
Verification by the Verifier

Enveloping the Combined Format for Issuance and Presentation

Security Considerations

—+
=
D

Mandatory digest computation of the revealed claim values by

Verifier

oo
N

[e¢]
w

[e0]
IN

[oe]
[o¢]

~N o (o1

Mandatory signing of the SD-JWT
Manipulation of Disclosures
Entropy of the salt

Minimum length of the salt
Choice of a Hash Algorithm
Holder Binding

Blinding Claim Names

https://trustee.ietf.org/license-info

9. Privacy Considerations
9.1. Confidentiality during Transport

9.2. Decoy Digests
9.3. Unlinkability
. Acknowledgements
IANA Considerations
Normative References
13. Informative References

Appendix A. Additional Examples

s
N [

A.1l Example 2a: Handling Structured Claims

A.2 Example 2b: Adding Decoys

A.3 Example 3 - Complex Structured SD-JWT

A.4 Example 4 - W3C Verifiable Credentials Data Model (work in

progress)

Appendix B. Document History
Authors' Addresses

Introduction

The JSON-based representation of claims in a signed JSON Web Token
(JWT) [REC7519] is secured against modification using JSON Web
Signature (JWS) [REC7515] digital signatures. A consumer of a signed
JWT that has checked the signature can safely assume that the
contents of the token have not been modified. However, anyone
receiving an unencrypted JWT can read all of the claims and
likewise, anyone with the decryption key receiving an encrypted JWT
can also read all of the claims.

One of the common use cases of a signed JWT is representing a user's
identity. As long as the signed JWT is one-time use, it typically
only contains those claims the user has consented to disclose to a
specific Verifier. However, there is an increasing number of use
cases where a signed JWT is created once and then used a number of
times by the user (the "Holder" of the JWT). In such cases, the
signed JWT needs to contain the superset of all claims the user of
the signed JWT might want to disclose to Verifiers at some point.
The ability to selectively disclose a subset of these claims
depending on the Verifier becomes crucial to ensure minimum
disclosure and prevent Verifiers from obtaining claims irrelevant
for the transaction at hand.

One example of such a multi-use JWT is a verifiable credential, a
tamper-evident credential with a cryptographically verifiable
authorship that contains claims about a subject. SD-JWTs defined in
this document enable such selective disclosure of claims.

In an SD-JWT, claims can be hidden, but cryptographically protected
against undetected modification. When issuing the SD-JWT to the
Holder, the Issuer also sends the cleartext counterparts of all

hidden claims, the so-called Disclosures, separate from the SD-JWT
itself.

The Holder decides which claims to disclose to a Verifier and
forwards the respective Disclosures together with the SD-JWT to the
Verifier. The Verifier has to verify that all disclosed claim values
were part of the original, Issuer-signed SD-JWT. The Verifier will
not, however, learn any claim values not disclosed in the
Disclosures.

While JWTs for claims describing natural persons are a common use
case, the mechanisms defined in this document can be used for many
other use cases as well.

This document also describes an optional mechanism for Holder
Binding, or the concept of binding an SD-JWT to key material
controlled by the Holder. The strength of the Holder Binding is
conditional upon the trust in the protection of the private key of
the key pair an SD-JWT is bound to.

This specification aims to be easy to implement and to leverage
established and widely used data formats and cryptographic
algorithms wherever possible.
1.1. Feature Summary
*This specification defines

-a format enabling selective disclosure for JWTs,

-formats for associated data that enables disclosing claims,
and

-formats for the combined transport of SD-JWTs and the
associated data.

*The specification supports selectively disclosable claims in flat
data structures as well as more complex, nested data structures.

*This specification enables combining selectively disclosable
claims with clear-text claims that are always disclosed.

*For selectively disclosable claims, claim names are always
blinded.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in

3.

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

base64url denotes the URL-safe base64 encoding without padding
defined in Section 2 of [RFC7515].

Terms and Definitions

Selective disclosure: Process of a Holder disclosing to a Verifier
a subset of claims contained in a claim set issued by an Issuer.

Selectively Disclosable JWT (SD-JWT): An Issuer-created signed JWT
(JwWS, [REC7515]) that supports selective disclosure as defined in
this document and can contain both regular claims and digests of
selectively-disclosable claims.

Disclosure: A combination of a salt, a cleartext claim name, and a
cleartext claim value, all of which are used to calculate a
digest for the respective claim.

Cryptographic Holder Binding: Ability of the Holder to prove
legitimate possession of an SD-JWT by proving control over the
same private key during the issuance and presentation. An SD-JWT
with Holder Binding contains a public key or a reference to a
public key that matches to the private key controlled by the
Holder.

Issuer: An entity that creates SD-JWTs.

Holder: An entity that received SD-JWTs from the Issuer and has
control over them.

Verifier: An entity that requests, checks and extracts the claims
from an SD-JWT and respective Disclosures.

Note: discuss if we want to include Client, Authorization Server for
the purpose of ensuring continuity and separating the entity from

the actor.

Flow Diagram

Issues SD-JWT
and Issuer-Issued Disclosures

Presents SD-JWT
and Holder-Selected Disclosures

Figure 1: SD-JWT Issuance and Presentation Flow
4. Concepts

In the following, the contents of SD-JWTs and Disclosures are
described at a conceptual level, abstracting from the data formats
described afterwards.

4.1. Creating an SD-JWT

An SD-JWT, at its core, is a digitally signed document containing
digests over the claims (per claim: a random salt, the claim name
and the claim value). It MAY further contain clear-text claims that
are always disclosed to the Verifier. It MUST be digitally signed
using the Issuer's private key.

SD-JWT-DOC = (METADATA, SD-CLAIMS, NON-SD-CLAIMS)
SD-JWT = SD-JWT-DOC | SIG(SD-JWT-DOC, ISSUER-PRIV-KEY)

SD-CLAIMS is an array of digest values that ensure the integrity of
and map to the respective Disclosures. Digest values are calculated

over the Disclosures, each of which contains the claim name (CLAIM-
NAME), the claim value (CLAIM-VALUE), and a random salt (SALT).
Digests are calculated using a hash function:

SD-CLAIMS = (
HASH(SALT, CLAIM-NAME, CLAIM-VALUE)

)*

SD-CLAIMS can also be nested deeper to capture more complex objects,
as will be shown later.

The Issuer further creates a set of Disclosures for all claims in
the SD-JWT. The Disclosures are sent to the Holder together with the
SD-JWT:

DISCLOSURES = (
(SALT, CLAIM-NAME, CLAIM-VALUE)

)*
The SD-JWT and the Disclosures are sent to the Holder by the Issuer:

COMBINED-ISSUANCE = SD-JWT | DISCLOSURES

4.2. Creating Holder-Selected Disclosures
To disclose to a Verifier a subset of the SD-JWT claim values, a
Holder selects a subset of the Disclosures and sends it to the

Verifier along with the SD-JWT.

HOLDER-SELECTED-DISCLOSURES = (
(SALT, CLAIM-NAME, CLAIM-VALUE)

)*

COMBINED-PRESENTATION = SD-JWT | HOLDER-SELECTED-DISCLOSURES

4.3. Optional Holder Binding
Some use-cases may require Holder Binding.
Cryptographic Holder Binding is an optional feature, but when it is
desired, SD-JWT must contain information about key material
controlled by the Holder:

SD-JWT-DOC = (METADATA, HOLDER-PUBLIC-KEY, SD-CLAIMS, NON-SD-CLAIMS)

Note: How the public key is included in SD-JWT is out of scope of
this document. It can be passed by value or by reference.

The Holder can then create a signed document HOLDER-BINDING-JWT
using its private key. This document contains some data provided by

the Verifier (out of scope of this document) to ensure the freshness
of the signature, for example, a nonce and an indicator of the
intended audience for the document.

HOLDER-BINDING-JWT-DOC = (NONCE, AUDIENCE)
HOLDER-BINDING-JWT = HOLDER-BINDING-JWT-DOC |
SIG(HOLDER-BINDING-JWT-DOC, HOLDER-PRIV-KEY)

The Holder Binding JWT is sent to the Verifier along with the SD-JWT
and the Holder-Selected Disclosures.

COMBINED-PRESENTATION = SD-JWT | HOLDER-SELECTED-DISCLOSURES | HOLDER-BI

Note that there may be other ways to send the Holder Binding JWT to
the Verifier or to prove Holder Binding. In these cases, inclusion
of the Holder Binding JWT in the COMBINED-PRESENTATION is not
required.

4.4. Verifying Holder-Selected Disclosures
At a high level, the Verifier

*receives the COMBINED-PRESENTATION from the Holder and verifies
the signature of the SD-JWT using the Issuer's public key,

*verifies the Holder Binding JWT, if Holder Binding is required by

the Verifier's policy, using the public key included in the SD-
JWT,

*calculates the digests over the Holder-Selected Disclosures and
verifies that each digest is contained in the SD-JWT.

The detailed algorithm is described in Section 6.2.

5. Data Formats

This section defines data formats for SD-JWTs, Disclosures, Holder
Binding JWTs and formats for combining these elements for transport.

5.1. The Challenge of Canonicalization

When receiving an SD-JWT with associated Disclosures, a Verifier
must be able to re-compute digests of the disclosed claim values
and, given the same input values, obtain the same digest values as
signed by the Issuer.

Usually, JSON-based formats transport claim values as simple
properties of a JSON object such as this:

"family_name": "Mobius",

"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta"

However, a problem arises when computation over the data need to be
performed and verified, like signing or computing digests. Common
signature schemes require the same byte string as input to the
signature verification as was used for creating the signature. In
the digest approach outlined above, the same problem exists: for the
Issuer and the Verifier to arrive at the same digest, the same byte
string must be hashed.

JSON [REC7159], however, does not prescribe a unique encoding for
data, but allows for variations in the encoded string. The data
above, for example, can be encoded as

"family_name": "M\u@Of6bius",
"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta"

or as

"family_name": "Mobius",
"address": {"locality":"Schulpforta", "street_address":"Schulstr. 12"}

The two representations "M\uGOfebius" and "Möbius" are very
different on the byte-level, but yield equivalent objects. Same for
the representations of address, varying in white space and order of
elements in the object.

The variations in white space, ordering of object properties, and
encoding of Unicode characters are all allowed by the JSON
specification, including further variations, e.g., concerning
floating-point numbers, as described in [RFEC8785]. Variations can be
introduced whenever JSON data is serialized or deserialized and
unless dealt with, will lead to different digests and the inability
to verify signatures.

There are generally two approaches to deal with this problem:

1. Canonicalization: The data is transferred in JSON format,
potentially introducing variations in its representation, but
is transformed into a canonical form before computing a digest.
Both the Issuer and the Verifier must use the same
canonicalization algorithm to arrive at the same byte string
for computing a digest.

2. Source string hardening: Instead of transferring data in a
format that may introduce variations, a representation of the
data is serialized. This representation is then used as the
hashing input at the Verifier, but also transferred to the
Verifier and used for the same digest calculcation there. This
means that the Verifier can easily compute and check the digest
of the byte string before finally deserializing and accessing
the data.

Mixed approaches are conceivable, i.e., transferring both the
original JSON data plus a string suitable for computing a digest,
but such approaches can easily lead to undetected inconsistencies
resulting in time-of-check-time-of-use type security
vulnerabilities.

In this specification, the source string hardening approach is used,
as it allows for simple and reliable interoperability without the
requirement for a canonicalization library. To harden the source
string, any serialization format that supports the necessary data
types could be used in theory, like protobuf, msgpack, or pickle. In
this specification, JSON is used and plain text values of each
Disclosure are encoded using base64url-encoding for transport. This
approach means that SD-JWTs can be implemented purely based on
widely available JWT, JSON, and Base64 encoding and decoding
libraries.

A Verifier can then easily check the digest over the source string
before extracting the original JSON data. Variations in the encoding
of the source string are implicitly tolerated by the Verifier, as
the digest is computed over a predefined byte string and not over a
JSON object.

It is important to note that the Disclosures are neither intended
nor suitable for direct consumption by an application that needs to
access the disclosed claim values after the verification by the
Verifier. The Disclosures are only intended to be used by a Verifier
to check the digests over the source strings and to extract the
original JSON data. The original JSON data is then used by the
application. See Section 6.2 for details.

5.2. Format of an SD-JWT

An SD-JWT is a JWT that MUST be signed using the Issuer's private
key. The payload of an SD-JWT MUST contain the _sd_alg claim
described in the following, MAY contain one or more selectively
disclosable claims, and MAY contain a Holder's public key or a
reference thereto, as well as further claims such as iss, iat, etc.
as defined or required by the application using SD-JWTSs.

5.2.1. Selectively Disclosable Claims

For each claim that is to be selectively disclosed, the Issuer
creates a Disclosure, hashes it, and includes the hash instead of
the original claim in the SD-JWT, as described next. The Disclosures
are then sent to the Holder.

5.2.1.1. Creating Disclosures

The Issuer MUST create a Disclosure for each selectively disclosable
claim as follows:

*Create an array of three elements in this order:

1. A salt value. See Section 8.4 and Section 8.5 for security
considerations. The salt value MUST be unique for each claim
that is to be selectively disclosed. It is RECOMMENDED to
base64url-encode the salt value, producing a string. Any
other type that is allowed in JSON MAY be used, e.g., a
number .

2. The claim name, or key, as it would be used in a regular JWT
body. This MUST be a string.

3. The claim's value, as it would be used in a regular JWT
body. The value MAY be of any type that is allowed in JSON,
including numbers, strings, booleans, arrays, and objects.

*JSON-encode the array such that an UTF-8 string is produced.

*base64url-encode the byte representation of the UTF-8 string,
producing a US-ASCII [RFCE020] string. This string is the
Disclosure.

The order is decided based on the readability considerations: salts
would have a constant length within the SD-JWT, claim names would be
around the same length all the time, and claim values would vary in
size, potentially being large objects.

The following example illustrates the steps described above.

The array is created as follows:
["_26bc4LT-ac6q2KI6cBW5es", "family_name", "Mobius"]

The resulting Disclosure would be:
WyJfMjZiYzRMVC1hYzZXxMKkt INMNCVzV1cyISICImYW1pbH1fbmFtZSISICINw7ZiaXVz
I1e

Note that the JSON encoding of the object is not canonicalized, so
variations in white space, encoding of Unicode characters, and
ordering of object properties are allowed. For example, the
following strings are all valid and encode the same claim value:

*A different way to encode the umlaut (two dots ¨ placed over
the letter):
WyJfMjZiYzRMVC1hYzZXMkt INMNCVzV1cyISICImYW1pbH1fbmFtZSISICINXHUWM
GY2YmlicyJd

*No white space:
WyJFfMjZiYzRMVC1hYzZXxMkt INMNCVzV1cyIsImZhbWlseVOuYW11IiwiTcO2Ymllc
yJd

*Newline characters between elements:
WwoiXzI2YmMOTFQtYWM2cTJILSTZjQlc1ZXMiLAoiZmFtaWx5X25hbWUiLA0iTc02Y
mllcyIKXQ

5.2.1.2. Hashing Disclosures

For embedding the Disclosures in the SD-JWT, the Disclosures are
hashed using the hash algorithm specified in the _sd_alg claim
described below. The resulting digest is then included in the SD-JWT
instead of the original claim value, as described next.

The digest MUST be taken over the US-ASCII bytes of the base64url-
encoded Disclosure. This follows the convention in JWS [REC7515] and
JWE [REC7516]. The bytes of the digest MUST then be base64url-
encoded.

It is important to note that:

*The input to the hash function is the base64url-encoded
Disclosure, not the bytes encoded by the base64url string.

*The bytes of the output of the hash function are base64url-
encoded, not the bytes making up the (often used) hex
representation of the bytes of the digest.

For example, the SHA-256 digest of the Disclosure
WyI2cU1Rd1JIMNWhhaiIsICImYW1pbH1fbmFtZSIsICINw7ZiaXVzI1l0 would be
uut1lBuYeMDyjLLTpf6JIx17yNKEF35jdywWwMnOU7b_RYY.

5.2.1.3. Decoy Digests

An Issuer MAY add additional digests to the SD-JWT that are not
associated with any claim. The purpose of such "decoy" digests is to
make it more difficult for an attacker to see the original number of
claims contained in the SD-JWT. It is RECOMMENDED to create the
decoy digests by hashing over a cryptographically secure random
number. The bytes of the digest MUST then be base64url-encoded as
above. The same digest function as for the Disclosures MUST be used.

For decoy digests, no Disclosure is sent to the Holder, i.e., the
Holder will see digests that do not correspond to any Disclosure.
See Section 9.2 for additional privacy considerations.

To ensure readability and replicability, the examples in this
specification do not contain decoy digests unless explicitly stated.

5.2.1.4. Creating an SD-JWT

An SD-JWT is a JWT that MUST be signed using the Issuer's private
key.

An SD-JWT MAY contain both selectively disclosable claims and non-
selectively disclosable claims, i.e., claims that are always
contained in the SD-JWT in plaintext and are always visible to a
Verifier.

It is the Issuer who decides which claims are selectively
disclosable and which are not. However, claims controlling the
validity of the SD-JWT, such as iss, exp, or nbf are usually
included in plaintext. End-User claims MAY be included as plaintext
as well, e.g., if hiding the particular claims from the Verifier
does not make sense in the intended use case.

Claims that are not selectively disclosable are included in the SD-
JWT in plaintext just as they would be in any other JWT.

Selectively disclosable claims are omitted from the SD-JWT. Instead,
the digests of the respective Disclosures and potentially decoy
digests are contained as an array in a new JWT claim, _sd.

The _sd claim MUST be an array of strings, each string being a
digest of a Disclosure or a decoy digest as described above.

The array MAY be empty in case the Issuer decided not to selectively
disclose any of the claims at that level. However, it is RECOMMENDED
to omit _sd claim in this case to save space.

The Issuer MUST hide the original order of the claims in the array.
To ensure this, it is RECOMMENDED to shuffle the array of hashes,

e.g., by sorting it alphanumerically or randomly. The precise method
does not matter as long as it does not depend on the original order
of elements.

Issuers MUST NOT issue SD-JWTs where

*the key _sd is already used for the purpose other than to contain
the array of digests, or

*the claim value contained in a Disclosure contains (at the top
level or nested deeper) an object with an _sd key, or

*the same Disclosure value appears more than once (in the same
array or in different arrays).

5.2.1.5. Nested Data in SD-JWTs

Just like any JWT, an SD-JWT MAY contain key value pairs where the
value is an object. For any object in an SD-JWT, the Issuer MAY
decide to either make the entire object selectively disclosable or
to make its properties selectively disclosable individually. In the
latter case, the Issuer MAY even choose to make some of the object's
properties selectively disclosable and others not.

In any case, the _sd claim MUST be included in the SD-JWT at the
same level as the original claim and therefore MAY appear multiple
times in an SD-JWT.

The following examples show some of the options an Issuer has when
producing an SD-JWT with the following End-User data.

"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta",
"region": "Sachsen-Anhalt",
"country": "DE"

Important: Throughout the examples in this document, line breaks had
to be added to JSON strings and base64-encoded strings (as shown in
the next example) to adhere to the 72 character limit for lines in
RFCs and for readability. JSON does not allow line breaks in
strings.

5.2.1.5.1. Option 1: Flat SD-JWT

The Issuer can decide to treat the address claim as a block that can
either be disclosed completely or not at all. The following example
shows that in this case, the entire address claim is treated as an
object in the Disclosure.

{
" sd": [
"VNhbLbXx6SFQIJZn51NXyrASjpaXGUT2uNGuy_gSMbw"
1
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"iss": "https://example.com/issuer",
"iat": 1516239022,
"exp": 1516247022,
"_sd_alg": "sha-256"
}

The Issuer would create the following Disclosure:
Disclosure for address:

WyJEaldaaVFLAW1SYXIzbHBmMNHFFY1INBIiwgImFkZHJ1c3MiLCB7INNOCcmV1dFOhZGRyY
ZXNzIjogI1NjaHVsc3RyLiAXMiISICJIsh2NhbG1l0eSI6ICJITY2h1bHBMb3JOYSISICJIy
ZWdpb2410iAiU2FjaHN1bilBbmhhbHQiLCAiY291bnRyeSI6GICIERSJIOXQ

Contents:

["DkwzZiQKumRar31lpf4qEbSA", "address", {"street_address": "Schulstr.
12", "locality": "Schulpforta", "region": "Sachsen-Anhalt",
"country": "DE"}]

SHA-256 Hash: VNhbLbXx6SFQIJZn51NXyrASjpaXGUT2uNGuy_gSMbw
5.2.1.5.2. Option 2: Structured SD-JWT

The Issuer may instead decide to make the address claim contents
selectively disclosable individually:

"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {

" sd": [
"7pHe1uQ5uSClgAXXdGOE6JKNBgXCcXEO1zvoQO9E5Lr4",
"9-VdSnVvRTZNDo-4BXxcp3X-VIOVtLOCRUkR60LWZQ181I",
"nTzPZ3Q68z1Ko_9a09LKOMSYXY59Y6UG6KEKQ_Bdque",
"pEtkKwoFK_JHN7yNbyOLc_Jc10BAXCm5yXJjDbvehvu"

]
iy

"iss": "https://example.com/issuer",
"iat": 1516239022,

"exp": 1516247022,

"_sd_alg": "sha-256"

In this case, the Issuer would use the following data in the
Disclosures for the address sub-claims:
Disclosure for street_address:

WyIed3dquUzlyMm4tblBxdzNpTHROTKFBIiwgInNNOcmV1dFOhZGRYZXNzIiwgI1NjaHVs
c3RyLiAXxM1Jd

Contents:

["4ww]jS9r2n-nPqw3iLttNAA", "street_address", "Schulstr. 12"]
SHA-256 Hash: pEtkKwoFK_JHN7yNbyOLc_Jc10BAXCm5yXJjDbVehvU
Disclosure for locality:

Wy JIXCEtIQmVTa3A5U2MyNVV4alF1RmMNRIiwgImxvY2FsaXR5IiwgI1NjaHVscGZvcnRh
Il1e

Contents:

["WpKHBeSkp9Sc25UxkQuFcQ", "locality", "Schulpforta"]
SHA-256 Hash: nTzPZ3Q68z1Ko_9a09LKOmSYXY5gY6UG6KEKQ_BdquUO
Disclosure for region:

WyIzS19XWGctdUwxYzdtNIFOTOhUNTINIiwgInJ1Z21vbiIsICJITYWNoc2VuLUFuaGFs
dcJd

Contents:

["3J_gXg-uL1lc7m7QhOHT52g", "region", "Sachsen-Anhalt"]

SHA-256 Hash: 9-VdSnvRTZNDo-4Bxcp3X-V9VtLOCRUKR60LWZQ181I
Disclosure for country:

Wy IwN2U3bWY2YWpTUDJjZKkQ3NmJCZE93IiwgImNvdw50cnkiLCAIREU1XQ
Contents:

["O07e7mf6ajSP2cfD76bBdOW", "country", "DE"]
SHA-256 Hash: 7pHeluQ5uSClgAxXdGOE6dKNBgXCcXE01zvoQO9ESLY4

5.2.1.5.3. Option 3: Structured SD-JWT, only some properties
selectively disclosable

The Issuer may also make one sub-claim of address non-selectively
disclosable and hide only the other sub-claims:

{
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {

"_sd": [
"ToD9fSNGo_SOCnTMOrOAaGjdHEIh4doXinCkKjR2fk4",
"bIPNnfvtg9QQSGd7WIOsrnYOVTK-sNUFz9kr1Js7XaU4E",
"xWq471kkG-K5CYfcWtHqwi9CbL9LCP3q8v5YsS1mouQ"

1

"country": "DE"

+
"iss": "https://example.com/issuer",
"iat": 1516239022,
"exp": 1516247022,
"_sd_alg": "sha-256"
}

In this case, the Issuer would issue the following Disclosures:
Disclosure for street_address:

Wy JKTWZMOXBrOVFXUUNPaj JRVDAOC21BIiwgInNOcmV1dFOhZGRYyZXNzIiwgI1NjaHVs
c3RyLiAXxM1iJd

Contents:
["dMfL9pk9QWQC0j2QTO4smA", "street_address", "Schulstr. 12"]
SHA-256 Hash: ToD9fSNGo_SOCnTMOr0AaGjdHEIh4doXinCkKjR2fk4

Disclosure for locality:

WyJsNk1kRC1FeDZ5eHFGCckODUjFNbktBIiwgImxvY2FsaXR5IiwgI1lNjaHVscGZvcnRh
Il10

Contents:

["16IdD-Ex6yxqFrOCR1IMNKA", "locality", "Schulpforta"]
SHA-256 Hash: bIPnfvtg9QQSGd7W9srnYOVTK-sNUFz9kr1Js7XaU4E
Disclosure for region:

WyI3WFB4R211dC1lvaWFoOEhDAmMU3bTJIBIiwgInJ1Z21vbiIsICITYWNoc2VuLUFuaGFs
dcad

Contents:
["7XPxGmet-oiah8HCve7m2A", '"region", "Sachsen-Anhalt"]
SHA-256 Hash: xWg471kkG-K5CYfcWtHqwi9CbL9LCP3q8v5YsS1mouQ
5.2.2. Hash Function Claim

The claim _sd_alg indicates the hash algorithm used by the Issuer to
generate the digests over the salts and the claim values.

The hash algorithm identifier MUST be a hash algorithm value from
the "Hash Name String" column in the IANA '"Named Information Hash
Algorithm" registry [IANA.Hash.Algorithms].

To promote interoperability, implementations MUST support the
SHA-256 hash algorithm.

See Section 8 for requirements regarding entropy of the salt,
minimum length of the salt, and choice of a hash algorithm.

5.2.3. Holder Public Key Claim

If the Issuer wants to enable Holder Binding, it MAY include a
public key associated with the Holder, or a reference thereto.

It is out of the scope of this document to describe how the Holder
key pair is established. For example, the Holder MAY provide a key
pair to the Issuer, the Issuer MAY create the key pair for the

Holder, or Holder and Issuer MAY use pre-established key material.

Note: Examples in this document use cnf Claim defined in [REC7800]
to include raw public key by value in SD-JWT.

5.3. Example 1: SD-JWT

This example uses the following object as the set of claims that the
Issuer is issuing:

{
"sub": "john_doe_42",
"given_name": "John",
"family _name": "Doe",
"email": "johndoe@example.com",
"phone_number": "+1-202-555-0101",
"address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"
}I
"birthdate": "1940-01-01"
}

The following non-normative example shows the payload of an SD-JWT.
The Issuer is using a flat structure in this case, i.e., all of the
claims in the address claim can only be disclosed in full.

" sd": [
"NYCoSRKEYwXdpe5yduJXCxxhynEU8z-b4TyNiap77uUY",
"SY8n2BbkX91rY3exH1SwWPRFX0oDO9GF8a9CP0O-G8j208",
"TPSGNPYA46wmBxfv2zn0JhfdoN5Y1GkezbpaGzCT1lac",
"ZkSJIxxeGluIdYBb7CqkzZbJVmOw2V5UrReNTzAQCYBjw",
"19qIJ9JTQWLG7OLEICTFBVXmArw8Pjy65dD6mtQVG5c",
"01SAsJ33YMi009pX5VeAM11xuHF6hZW2kGdkKKBnV1o",
"qqvcqnczAMgYX7EykI6wwtspyvyvK790ge7MBbQ-Nus"

1

"iss": "https://example.com/issuer",

"iat": 1516239022,

"exp": 1516247022,

"_sd_alg": "sha-256",

"enf": {

"Jwk": {

"kty": "RSA",

"n": "pm4bOHBg-0YhAyPWzR56AWX3rUIXpll_ICDKGQS6W3ZWLts-hzwI3x65
659kg4hVo9dbGoCJIE3ZGF_eaetE3OUhBUEgPGwWrDrQiJ9zqprmcFfr3qvvkG
jtth8zgli1eM2bJcOWE7PCBHWTKWYSs152R7g6Jg20Vph-a8rq-q79MhKG5Qow
_MTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwzfc5f16yVRLODVOV31GHK
e2Wgf_eNGjBrBLVK1DTk8-stX_MWLCR-EGMXAOVOUBWitS_dXJKJu-vXJywl
ANHSGUXTIK2hx1pttMft9CsvgimXKeDTU14gQL1eE7ihcw",

"e": "AQAB"

The SD-JWT is then signed by the Issuer to create a JWT like the
following:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlauJhzzBZ
UkF6VMRsZnhOMjgwTmdIYUEifQ.eyJfc2Qi0iBbIk52Q29TUktFWXdYZHBINX1kdUpYQ
3h4aH1uRVU4ei1iNFR5Tm1lhcDc3VVKiLCAiU1k4bjICYmtYOWXYyWTN1eEhsU3dQUKZYb
OQwOUdGOGE5Q1BPLUC4ajIwOCISICJUUHNHT1BZQTQ2d21CeGZ2MNpuTOPOZmMRVTjVZM
UdrzXpicGFHWKNUMWFjIiwgIlpruOp4eGVHbHVJIZF1CYjdDcWtaYkpwbTB3M1Y1VXJSZ
U5UekFRQ11CancilLCAibD1xSU05S1RRAOXHNOOMRUIDVEZCVnhtQXJ30FBgeTY1ZEQ2b
XRRVKC1YyIsSICJVMVNBCO0zM11NaW9POXBYNVZ1QUOXbHh1SEY2aFpXMmtHZGtLSOJuV
mxvIiwgInFxdmNXxbmN6QU1nWXg3RX1rSTZ3d3RzcH12eXZLNzkwZ2U3TUJiUS10dXMiX
SwgImlzcyI6ICJodHRwCzoVL2V4YW1wbGUUY29tL21zc3V1CciISICIpYXQi0iAXNTE2M
jJM5MDIYLCA1ZXhwIjogMTUXNjIONzAYyMiwgI19zZF9hbGci0iAic2hhLTIINIISICJI]jb
mYi0iB7Imp3ayI6IHsia3R5IjogIlJTQSISICIJuIjogInBtNGIPSEIJNLWI9ZaEF5UFd6U
jU2QVdYM3JIVSVhwMTFFfSUNEa®@dnUzZXM1pXTHRzLWh6dOkzeDY1NjU5a2c@aFZvOWRiR
29DSkUzWkdGX2VhZXRFMzBVaE JVRWdwR3dyRHJRaUo5enFwcmljRmZyM3F2dmtHanR0Oa
Dhaz2wxZUeyYkpjT3dFN1BDQkhXVEtXWXMXNTJISN2c2SmcyT1ZwaClhOHJIXLXE30U1l0S
Oc1UW9XX21UejEWUVRFNkgOYzdQaldHMWZgaDhocFdObmJIQX3B2NmQxelN3WmZjNWZsN
N1WUKWWRFYWVjNSROhLZTJIXcWZfZU5HakJyQkxWa2XEVGS4LXNOWFIONVOXjUi1FR21YQ
U92MFVCV210U19KWEpLSnUtdlhKeXcxNG5IUOd1eFRISzJoeDFwWAHRNZNQ5Q3N2cWltW
Et1RFRVMTRXxUUwxZUU3aWhjdyIsICJ1IjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqgdc
g_elaIGxM6Z-RyuysglGyddR101IiE3mIk8kCpoqcRLR880opkVWN2392K_XYfAUAmMeT9
kJvisD8ZcgNcv-MQlww9s8wWaViXxBRe7EZWKWRQCQVR6]jF95XZ5H2 - _KA54P0q3L42X]
kOy5vDr8yc08Reak6vvIVviXpp-Wk6uxsdEEAKFspt_EYIVISFJIhfTuQqyhCjnawi13X3
12MSQBPwjbHN74y1lUqVL1jDvgcemxeqjh42KWJIq4C3RgNI7anA2i3FU1kB4 -KNZWsijY
7-0p49iL7BrnIBxd1AMrbHEKOGTbFWd17Ki17GHtDxxaljaxQg

The Issuer creates the following Disclosures:
Disclosure for sub:
Wy JKkCVR2WE14UzBHYTNEb2FHbmU5eDBRIiwgInN1YiIsICJgb2huX2RvZzVv80OMiJd
Contents:
["dgTvXMxS@Ga3DoaGne9x0Q", "sub", "john_doe_42"]
SHA-256 Hash: ZkSJxxeGluIdYBb7CqkZbJVmOw2V5UrReNTzAQCYBjw
Disclosure for given_name:
WyIzanFjYjY3ejl3a3MwOHp3aUs3RX1RIiwgImdpdmVuX25hbwWUilLCAiSm9obiJd
Contents:
["3jgcbh67z9wks08zwiK7EYQ", '"given_name", "John"]
SHA-256 Hash: qqvcgnczAMgYX7EykI6wwtspyvyvK790ge7MBbQ-Nus
Disclosure for family_name:

Wy JIxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImZhbwWlseVOuYW11IiwgIkRvZSJd

Contents:

["qQWmjJ1l1s1R41ghENLRrrw", "family_name", "Doe"]
SHA-256 Hash: 199IJ9JTQwWLG70LEICTFBVXmArw8Pjy65dD6mtQVG5cC
Disclosure for email:

Wy JLVXhTNWhFX1hiVmFjckdBYzdFRnd3IiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBs
ZS5jb20iXQ

Contents:

["KUXS5hE_XbVacrGAc7EFww", "email", "johndoe@example.com"]
SHA-256 Hash: 01SAsJ33YMi1009pX5VeAM11xuHF6hZW2kGdkKKBnV1o
Disclosure for phone_number:

WyIzcXZWSjFCQURWSERTUzkzOVEtUm13IiwgInBob251X251bWJ1ciIsICIrMSOYMDIt
NTU1LTAXMDE1iXQ

Contents:

["3qvVJI1BADpHDSS939Q-Riw", "phone_number", "+1-202-555-0101"]
SHA-256 Hash: SY8n2BbkX91lrY3exH1SwPRFXoDO9GF8a9CP0O-G83j208
Disclosure for address:

WyIweEd6bjNNaXFzY3RaSVOPCERSQWIRIiwgImFkZHJ1c3MiLCB7INNOcmV1dF9hZGRyY

ZXNzIjogIjEyMyBNYWIUuIFNOIiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaw9u

IjogIkFueXNOYXR1IiwgImNvdwW50cnki0iAivVMifVve

Contents:

["OxGzn3MigsctZI_OpDlAbQ", "address", {"street_address": "123 Main
St", "locality": "Anytown", "region": "Anystate", "country": "US"}]

SHA-256 Hash: TPsGNPYA46wmBxfv2zn0JhfdoN5Y1GkezbpaGZCTlac
Disclosure for birthdate:

Wy JFUKtNMENOZUZKa2FENW1UWFZfWDh3IiwgImJpcnROZGFOZSISICIXOTQWLTAXLTAX
Il0

Contents:
["ERKMOCNeFJkaD5mTXV_X8w", "birthdate", "1940-01-01"]

SHA-256 Hash: NYCOSRKEYwXdpe5yduJXCxxhynEU8z-b4TyNiap77UY

5.4.

<SD

5.4.

Combined Format for Issuance

Besides the SD-JWT itself, the Holder needs to learn the raw claim
values that are contained in the SD-JWT, along with the precise
input to the digest calculation and the salts. To this end, the
Issuer sends the Disclosure objects that were also used for the hash
calculation, as described in Section 5.2.1.1, to the Holder.

The data format for sending the SD-JWT and the Disclosures to the
Holder is as follows:

-JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>
This is called the Combined Format for Issuance.

The Disclosures and SD-JWT are implicitly linked through the digest
values of the Disclosures included in the SD-JWT.

1. Example

For Example 1, the Combined Format for Issuance looks as follows:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlauJhzzBZ
UkF6VMRsZnhOMjgwTmdIYUEifQ.eyJfc2Qi0iBbIk52Q29TUktFWXdYZHBINX1kdUpYQ
3h4aH1uRVU4ei1iNFR5Tm1lhcDc3VVKiLCAiU1k4bjICYmtYOWXYyWTN1eEhsU3dQUKZYb
OQwOUdGOGE5Q1BPLUC4ajIwOCISICJUUHNHT1BZQTQ2d21CeGZ2MNpuTOPOZmMRVTjVZM
UdrzXpicGFHWKNUMWFjIiwgIlpruOp4eGVHbHVJIZF1CYjdDcWtaYkpwbTB3M1Y1VXJSZ
U5UekFRQ11CancilLCAibD1xSU05S1RRAOXHNOOMRUIDVEZCVnhtQXJ30FBgeTY1ZEQ2b
XRRVKC1YyIsSICJVMVNBCO0zM11NaW9POXBYNVZ1QUOXbHh1SEY2aFpXMmtHZGtLSOJuV
mxvIiwgInFxdmNXxbmN6QU1nWXg3RX1rSTZ3d3RzcH12eXZLNzkwZ2U3TUJiUS10dXMiX
SwgImlzcyI6ICJodHRwCzoVL2V4YW1wbGUUY29tL21zc3V1CciISICIpYXQi0iAXNTE2M
jJM5MDIYLCA1ZXhwIjogMTUXNjIONzAYyMiwgI19zZF9hbGci0iAic2hhLTIINIISICJI]jb
mYi0iB7Imp3ayI6IHsia3R5IjogIlJTQSISICIJuIjogInBtNGIPSEIJNLWI9ZaEF5UFd6U
jU2QVdYM3JIVSVhwMTFFfSUNEa®@dnUzZXM1pXTHRzLWh6dOkzeDY1NjU5a2c@aFZvOWRiR
29DSkUzWkdGX2VhZXRFMzBVaE JVRWdwR3dyRHJRaUo5enFwcmljRmZyM3F2dmtHanR0Oa
Dhaz2wxZUeyYkpjT3dFN1BDQkhXVEtXWXMXNTJISN2c2SmcyT1ZwaClhOHJIXLXE30U1l0S
Oc1UW9XX21UejEWUVRFNkgOYzdQaldHMWZgaDhocFdObmJIQX3B2NmQxelN3WmZjNWZsN
N1WUKWWRFYWVjNSROhLZTJIXcWZfZU5HakJyQkxWa2XEVGS4LXNOWFIONVOXjUi1FR21YQ
U92MFVCV210U19KWEpLSnUtdlhKeXcxNG5IUOd1eFRISzJoeDFwWAHRNZNQ5Q3N2cWltW
Et1RFRVMTRXxUUwxZUU3aWhjdyIsICJ1IjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqgdc
g_elaIGxM6Z-RyuysglGyddR101IiE3mIk8kCpoqcRLR880opkVWN2392K_XYfAUAmMeT9
kJvisD8ZcgNcv-MQlww9s8wWaViXxBRe7EZWKWRQCQVR6]jF95XZ5H2 - _KA54P0q3L42X]
kOy5vDr8yc08Reak6vvIVviXpp-Wk6uxsdEEAKFspt_EYIVISFJIhfTuQqyhCjnawi13X3
12MSQBPwjbHN74y1lUqVL1jDvgcemxeqjh42KWJIq4C3RgNI7anA2i3FU1kB4 -KNZWsijY
7-0p49iL7BrnIBxd1AMrbHEKOGTbFWd17Ki17GHtDxxaljaxQg~WyJkcVR2WE14UzBHY
TNEb2FHbmU5eDBRIiwgINN1YiIsICJgb2huX2RvZV8OMiJd~WyIzanFjYjY3ejl3a3Mw
OHp3aUs3RX1RIiwgImdpdmVuX25hbWUiLCAiSm9obiJd~WyJxUvdtakpsMXMxUjRscWh
FTkxScnJ3IiwgImZhbwWlseVOuYW11IiwgIKkRvZSJId~WyJLVXhTNWhFX1hiVmFjckdBYz
dFRNd3IiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ~WyIzcXZWSjFCQUR
WSERTUzKkzOVEtUm13IiwgInBob251X251bWJ1ciIsICIrMSOYMDItNTULILTAXMDEiXQ~
WyIweEd6bjNNaXFzY3RaSVOPCERSQWIRIiwgImFkZHJI1c3MiLCB7INNOcmV1dF9hZGRyY
ZXNzIjogIjEyMyBNYWIuIFNO@IiwgImxvY2FsaXR5IjogIkFueXRvd24il.CAicmVnaw9u
IjogIkFueXNOYXR1IiwgImNvdW50cnki0iAiVVMifVO~WyJFUKtNMENOZUZKa2FENW1U
WFZfWDh3IiwgImJpcnROZGFOZSISICIXOTQWLTAXLTAXI1O0

(Line breaks for presentation only.)
5.5. Combined Format for Presentation

For presentation to a Verifier, the Holder sends the SD-JWT and a
selected subset of the Disclosures to the Verifier.

The data format for sending the SD-JWT and the Disclosures to the
Verifier is as follows (line break added for readability):

<SD-JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure M>~<optional Hold
This is called the Combined Format for Presentation.

The Holder MAY send any subset of the Disclosures to the Verifier,
i.e., none, multiple, or all Disclosures.

A Holder MUST NOT send a Disclosure that was not included in the SD-
JWT or send a Disclosure more than once.

5.5.1. Enabling Holder Binding

The Holder MAY add an optional JWT to prove Holder Binding to the
Verifier. The precise contents of the JWT are out of scope of this
specification. Usually, a nonce and aud claim are included to show
that the proof is intended for the Verifier and to prevent replay
attacks. How the nonce or other claims are obtained by the Holder is
out of scope of this specification.

Example Holder Binding JWT payload:

{
"nonce": "XZOUcolu_gEPknxS78swwg",
"aud": "https://example.com/verifier",
"iat": 1670366430

}

Which is then signed by the Holder to create a JWT like the
following:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkxkeVRYdOF5ZnJpcjRfVjZORzFSYZEWVThK
ZEXZVHJIFQktKaF9oNWlfcluifQ.eyJub25jZSI6ICIYWkOVY28xdVInRVBrbnhTNzhzV
1dnIiwgImF1ZCI6ICJodHRwCczOVL2V4YWiwbGUUY29tL3Z1lcmlmawVyIiwgImlhdCI6I
DE2NzAzNjYOMzB9.aJ1HRh21dXP2_pMCHmkqNKaDN25aKuJGiTu2XK0egQ2xjZ_0zLu5
_6gNyOgMhJIXb28-uQc7pMpWMZgkQLV3d7HGB1iqiA71RSYYUCF-4VYrFNFb63HQXOHTC
u-nXALwbJgBShQXKjdpjOj6NrIwItQNh7_EQ3vrf7EO_exmkNoZxyOQCGgApAwUtiLtw
QDEXM9UYgms_ayPDZ3TJVcWHdOUtQTJugF4fTCInq6TQLKUUioK-KkLAbDURamnOpQ5d6
Rbz3NHWdVp3nHM6bgh_3Y0zBFdg6VsmAXvnoIN9b2jzSemNNAniAsalmd4X5pwzyK1TU
HFJIm-1ib_kFf2G7Iapw

Whether to require Holder Binding is up to the Verifier's policy,
based on the set of trust requirements such as trust frameworks it
belongs to.

Other ways of proving Holder Binding MAY be used when supported by
the Verifier, e.g., when the Combined Format for Presentation is
itself embedded in a signed JWT. See Section 7 for details.

If no Holder Binding JWT is included, the Combined Format for
Presentation ends with the ~ character after the last Disclosure.

5.5.2. Example

The following is a non-normative example of the contents of a
Presentation for Example 1, disclosing the claims given_name,
family name, and address, as it would be sent from the Holder to the

Verifier. The Holder Binding JWT as shown before is included as the

last element.

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1lVcUowY21MekQxa3pHemhlauJhzzBz
UKF6VMRSZnhOMjgwTmdIYUEifQ.eyJfc2Qi0iBbIk5ZQ29TUktFWXdYZHBINX1kdUpYQ
3h4aH1uRVU4ei1iNFR5Tm1hcDc3VVKiLCAiU1k4bjICYmtYOWXYyWTN1eEhsU3dQUkZYb
®QWOUdGOGE5Q1BPLUc4ajIwOCISICJUUHNHT1BZQTQ2d21CeGZ2MNpuTOpoZmRvTjVZM
UdrzXpicGFHWKNUMWFjIiwgIlpru@p4eGVHbHVJIZF1CYjdDcWtaYkpwWbTB3M1Y1VXJISZ
U5UekFRQ11CancilLCAibD1xSU05S1RRAOXHNOOMRUIDVEZCVnhtQXJ30FBqeTY1ZEQ2b
XRRVKc1YyISICJVMVNBCO0zM11NaW9POXBYNVZ1QUOXbHh1SEY2aFpXMmtHZGtLSOJuV
mxvIiwgInFxdmNxbmN6QU1nWXg3RX1rSTZ3d3RzcH12eXZLNzkwZ2U3TUJiUS10dXMiX
SwgImlzcyI6ICJodHRwCczovVL2V4YW1wbGUUY29tL21zc3V1ciISICIpYXQi0iAXNTE2M
jM5MDIYLCAiZXhwIjogMTUXNjIONZAYMiwgI19zZF9hbGci0iAic2hhLTIINIISICIjb
mYi0iB7Imp3ayI6IHsia3R5IjogI1JTQSISICIUIjogInBtNGIPSEINLW9ZaEF5UFd6U
jU2QVdYM3JIVSVhwMTFfSUNEa®dnUzZXM1pXTHRzLWh6dOkzeDY1NjU5a2c@aFZvOWRiR
29DSkUzWkdGX2VhZXRFMzBVaE JVRWdwR3dyRHJRaUo5enFwcmljRmZyM3F2dmtHanR0Oa
Dhaz2wxZUOyYkpjT3dFN1BDQKhXVEtXWXMXNTJISN2c2SmcyT1ZwaClhOHJIXLXE30U1l0S
0c1Uw9xX21UejEwWUVRTNkgoYzdQaldHMwWZgaDhocFdObmJQX3B2NmQxelN3WmZjNWZsN
N1WUKwWWRFYWVjNSROhLZTJIXcWZfZU5HakJyQkxWa2XEVGS4LXNOWFIONVOXjUi1lFR21YQ
U92MFVCV210U19KWEpLSnUtdlhKeXcxNG5IUOd1eFRISzJoeDFwWAHRNZNQ5Q3N2cwWltw
Et1RFRVMTRXUUwxZUU3aWhjdyIsICJ1IjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqgdc
q_elaIGxM6Z-RyuysglGyddR101IiE3mIk8kCpoqcRLR880pkVWN2392K_XYFAUAMET9
kJVisD8ZcgNcv-MQlww9s8WaViXxBRe7EZWKWRQCQVR6]jT95XZ5H2 - KA54P0Qq3L42x]
kOy5vDr8yc08Reak6vvIVvjXpp-Wk6uxsdEEAKFspt_EYIVISFJhfTuQqyhCjnawi13X3
12MSQBPwjbHN74ylUgVL1jDvqcemxeqjh42KWJq4C3RqNJI7anA2i3FU1kB4 -KNZWsijY
7-0p49iL7BrnIBxd1AMrbHEKOGTbFWd17Kil7GHtDxxaljaxQg~WyIweEd6bjNNaxXFzY
3RaSVIPCERSQWJIRIiwgImFkZHJI1c3MiLCB7INNOCMV1dFOhZGRYZXNzIjogIjEyMyBNY
WIUIFNOIiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnawWOuIljogIkFueXNOYXR1I
iwgImNvdw50cnki0iAiVVMifVO~WyJIxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImzhb
W1lseVOuYW11lIiwgIKkRvZSJd~WyIzanFjYjY3ejl3a3MwOHp3aUs3RX1RIiwgImdpdmVu
X25hbWUiLCAiSm90obiJd~eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkxkeVRYdOF5ZnJ
pcjRFVjZORzFSYZEWVThKZEXZVHIFQktKaF9oNW1fclUifQ.eyJub25jZSI6ICIYWKIV
Y28xdVOnRVBrbnhTNzhzV1dnIiwgImF1ZCI6ICJodHRwCZzOoVL2V4YW1wbGUUY29tL3Z1
cmlmawVyIiwgImlhdCI6IDE2NzAzNjYOMzB9.aJ1HRh21dXP2_pMCHmkgNKaDN25aKuJ
GiTu2XK0egQ2xjZ_0zLu5_6gNyOgMhJIXb28-uQc7pMpWMZgkQLV3d7HGBiqiA71RSYY
UCF-4VYrFNFb63HQXOHTcu-nXALwbJgBSbQXKjdpjOj6NrIwItQNh7_EQ3vrf7EQ_exm
kKNoZxy®QCGgApAwUtiLtwQDEXMIUYgms_ayPDZ3TJIVcWHAOUtQTJugF4fTCInq6TQLKuU
UioK-kLAbDuRamnOpQ5d6Rbz3NHWdVp3nHM6bgh_3Y0zBFdg6VsmAXvnoIN9b2jzSemN
NAniAsalmd4X5pwzyK1TUHFIm-ib_kFf2G7Iapw

6. Verification and Processing
6.1. Processing by the Holder

The Holder MUST perform the following (or equivalent) steps when
receiving a Combined Format for Issuance:

1. Separate the SD-JWT and the Disclosures in the Combined Format

for Issuance.

2. Hash all of the Disclosures separately.

3. Find the places in the SD-JWT where the digests of the
Disclosures are included. If any of the digests cannot be found
in the SD-JWT, the Holder MUST reject the SD-JWT.

4. Decode Disclosures and obtain plaintext of the claim values.
It is up to the Holder how to maintain the mapping between the
Disclosures and the plaintext claim values to be able to display

them to the End-User when needed.

For presentation to a Verifier, the Holder MUST perform the
following (or equivalent) steps:

1. Decide which Disclosures to release to the Verifier, obtaining
proper End-User consent if necessary.

2. If Holder Binding is required, create a Holder Binding JWT.

3. Create the Combined Format for Presentation, including the
selected Disclosures and, if applicable, the Holder Binding
JWT.

4. Send the Presentation to the Verifier.
6.2. Verification by the Verifier
Upon receiving a Presentation, Verifiers MUST ensure that

*the SD-JWT is valid, i.e., it is signed by the Issuer and the
signature is valid,

*all Disclosures are correct, i.e., their digests are referenced
in the SD-JWT, and

*if Holder Binding is required, the Holder Binding JWT is signed
by the Holder and valid.

To this end, Verifiers MUST follow the following steps (or
equivalent):

1. Determine if Holder Binding is to be checked according to the
Verifier's policy for the use case at hand. This decision MUST
NOT be based on whether a Holder Binding JWT is provided by the
Holder or not. Refer to Section 8.7 for details.

2. Separate the Presentation into the SD-JWT, the Disclosures (if
any), and the Holder Binding JWT (if provided).

3. Validate the SD-JWT:

1. Ensure that a signing algorithm was used that was deemed
secure for the application. Refer to [RFC8725], Sections
3.1 and 3.2 for details. The none algorithm MUST NOT be
accepted.

2. Validate the signature over the SD-JWT.

3. Validate the Issuer of the SD-JWT and that the signing key
belongs to this Issuer.

4. Check that the SD-JWT is valid using nbf, iat, and exp
claims, if provided in the SD-JWT, and not selectively
disclosed.

5. Check that the _sd_alg claim is present and its value is
understood and the hash algorithm is deemed secure.

4. Create a copy of the SD-JWT payload, if required for further
processing.

5. Process the Disclosures. For each Disclosure provided:

1. Calculate the digest over the base64url string as
described in Section 5.2.1.2.

2. Find all _sd keys in the SD-JWT payload that contain a
digest calculated in the previous step. Note that there
might be more than one _sd arrays in on SD-JWT.

1. If the digest cannot be found in the SD-JWT payload,
the Verifier MUST reject the Presentation.

2. If there is more than one place where the digest is
included, the Verifier MUST reject the Presentation.

3. If there is a key _sd that does not refer to an
array, the Verifier MUST reject the Presentation.

4. Otherwise, insert, at the level of the _sd claim, the
claim described by the Disclosure with the claim name
and claim value provided in the Disclosure.

1. If the Disclosure is not a JSON-encoded array of
three elements, the Verifier MUST reject the
Presentation.

2. If the claim name already exists at the same
level, the Verifier MUST reject the

Presentation. Note that this also means that if
a Holder sends the same Disclosure multiple
times, the Verifier MUST reject the
Presentation.

3. If the claim value contains an object with an
_sd key (at the top level or nested deeper), the
Verifier MUST reject the Presentation.

3. Remove all _sd claims from the SD-JWT payload.
4. Remove the claim _sd_alg from the SD-JWT payload.
6. If Holder Binding is required:

1. If Holder Binding is provided by means not defined in this
specification, verify the Holder Binding according to the
method used.

2. Otherwise, verify the Holder Binding JWT as follows:

1. If Holder Binding JWT is not provided, the Verifier
MUST reject the Presentation.

2. Determine the public key for the Holder from the SD-
JWT.

3. Ensure that a signing algorithm was used that was
deemed secure for the application. Refer to
[REC8725], Sections 3.1 and 3.2 for details. The none
algorithm MUST NOT be accepted.

4. Validate the signature over the Holder Binding JWT.

5. Check that the Holder Binding JWT is valid using nbf,
iat, and exp claims, if provided in the Holder
Binding JWT.

6. Determine that the Holder Binding JWT is bound to the
current transaction and was created for this Verifier
(replay protection). This is usually achieved by a
nonce and aud field within the Holder Binding JWT.

If any step fails, the Presentation is not valid and processing MUST
be aborted.

Otherwise, the processed SD-JWT payload can be passed to the
application to be used for the intended purpose.

7.

8.

8.

Enveloping the Combined Format for Issuance and Presentation

In some applications or transport protocols, it is desirable to put
an SD-JWT and associated Disclosures into a JWT container. For
example, an implementation may envelope all credentials and
presentations, independent of their format, in a JWT to enable
application-layer encryption during transport.

For such use cases, the SD-JWT and the respective Disclosures SHOULD
be transported as a single string using the Combined Formats for
Issuance and Presentation, respectively. Holder Binding MAY be
achieved by signing the envelope JWT instead of adding a separate
Holder Binding JWT as described in Section 5.5.1.

The claim _sd_jwt SHOULD be used when transporting a Combined Format
unless the application or protocol defines a different claim name.

The following non-normative example shows a Combined Format for
Presentation enveloped in a JWT payload:

"iss": "https://holder.example.com",

"sub": "did:example:123",

"aud": "https://verifier.example.com",

"exp": 1590000000,

"iat": 1580000000,

"nbf": 1580000000,

"jti": "urn:uuid:12345678-1234-1234-1234-123456789012",
"_sd_jwt": "eyJhbGci...emhlaUJhzZzBZ~eyJhb...dYALCGg~"

Here, eyJhbGci...emhlaUJhZzBZ represents the SD-JWT and
eyJhb...dYALCGg represents a Disclosure. The Combined Format for
Presentation does not contain a Holder Binding JWT as the outer
container can be signed instead.

Security Considerations

1. Mandatory digest computation of the revealed claim values by the

Verifier

ToDo: add text explaining mechanisms that should be adopted to
ensure that Verifiers validate the claim values received in HS-
Disclosures JWT by calculating the digests of those values and
comparing them with the digests in the SD-JWT: - create a test suite
that forces digest computation by the Verifiers, and includes
negative test cases in test vectors - use only implementations/
libraries that are compliant to the test suite - etc.

8.2. Mandatory signing of the SD-JWT

The SD-JWT MUST be signed by the Issuer to protect integrity of the
issued claims. An attacker can modify or add claims if an SD-JWT is
not signed (e.g., change the "email" attribute to take over the
victim's account or add an attribute indicating a fake academic
qualification).

The Verifier MUST always check the SD-JWT signature to ensure that
the SD-JWT has not been tampered with since its issuance. If the
signature on the SD-JWT cannot be verified, the SD-JWT MUST be
rejected.

8.3. Manipulation of Disclosures

Holders can manipulate the Disclosures by changing the values of the
claims before sending them to the Issuer. The Issuer MUST check the
Disclosures to ensure that the values of the claims are correct,
i.e., the digests of the Disclosures are actually present in the
signed SD-JWT.

A naive Verifier that extracts all claim values from the Disclosures
(without checking the hashes) and inserts them into the SD-JWT
payload is vulnerable to this attack. However, in a structured SD-
JWT, without comparing the digests of the Disclosures, such an
implementation could not determine the correct place in a nested
object where a claim needs to be inserted. Therefore, the naive
implementation would not only be insecure, but also incorrect.

The steps described in Section 6.2 ensure that the Verifier checks
the Disclosures correctly.

8.4. Entropy of the salt

The security model that conceals the plaintext claims relies on the
fact that the salt cannot be learned or guessed by the attacker. It
is vitally important to adhere to this principle. As such, the salt
MUST be created in such a manner that it is cryptographically
random, long enough and has high entropy that it is not practical
for the attacker to guess. A new salt MUST be chosen for each claim.

8.5. Minimum length of the salt

The RECOMMENDED minimum length of the randomly-generated portion of
the salt is 128 bits.

The Issuer MUST ensure that a new salt value is chosen for each
claim, including when the same claim name occurs at different places
in the structure of the SD-JWT. This can be seen in Example 3 in the

Appendix, where multiple claims with the name type appear, but each
of them has a different salt.

8.6. Choice of a Hash Algorithm

For the security of this scheme, the hash algorithm is required to
be preimage and collision resistant, i.e., it is infeasible to
calculate the salt and claim value that result in a particular
digest, and it is infeasible to find a different salt and claim
value pair that result in a matching digest, respectively.

Furthermore the hash algorithms MD2, MD4, MD5, RIPEMD-160, and SHA-1
revealed fundamental weaknesses and they MUST NOT be used.

8.7. Holder Binding

Verifiers MUST decide whether Holder Binding is required for a
particular use case or not before verifying a credential. This
decision can be informed by various factors including, but not
limited to the following: business requirements, the use case, the
type of binding between a Holder and its credential that is required
for a use case, the sensitivity of the use case, the expected
properties of a credential, the type and contents of other
credentials expected to be presented at the same time, etc.

This can be showcased based on two scenarios for a mobile driver's
license use case for SD-JWT:

Scenario A: For the verification of the driver's license when
stopped by a police officer for exceeding a speed limit, Holder
Binding may be necessary to ensure that the person driving the car
and presenting the license is the actual Holder of the license. The
Verifier (e.g., the software used by the police officer) will ensure
that a Holder Binding JWT is present and signed with the Holder's
private key.

Scenario B: A rental car agency may want to ensure, for insurance
purposes, that all drivers named on the rental contract own a
government-issued driver's license. The signer of the rental
contract can present the mobile driver's license of all named
drivers. In this case, the rental car agency does not need to check
Holder Binding as the goal is not to verify the identity of the
person presenting the license, but to verify that a license exists
and is valid.

It is important that a Verifier does not make its security policy
decisions based on data that can be influenced by an attacker or
that can be misinterpreted. For this reason, when deciding whether

8.

9.

9.

Holder binding is required or not, Verifiers MUST NOT take into
account

*whether an Holder Binding JWT is present or not, as an attacker
can remove the Holder Binding JWT from any Presentation and
present it to the Verifier, or

*whether a key reference is present in the SD-JWT or not, as the
Issuer might have added the key to the SD-JWT in a format/claim
that is not recognized by the Verifier.

If a Verifier has decided that Holder Binding is required for a
particular use case and the Holder Binding is not present, does not
fulfill the requirements (e.g., on the signing algorithm), or no
recognized key reference is present in the SD-JWT, the Verifier will
reject the presentation, as described in Section 6.2.

8. Blinding Claim Names

SD-JWT ensures that names of claims that are selectively disclosable
are always blinded. This prevents an attacker from learning the
names of the disclosable claims. However, the names of the claims
that are not disclosable are not blinded. This includes the keys of
objects that themselves are not blinded, but contain disclosable
claims. This limitation needs to be taken into account by Issuers
when creating the structure of the SD-JWT.

Privacy Considerations
1. Confidentiality during Transport

If the SD-JWT and associated Disclosures are transmitted over an
insecure channel during issuance or presentation, an adversary may
be able to intercept and read the End-User's personal data or
correlate the information with previous uses of the same SD-JWT.

Usually, transport protocols for issuance and presentation of
credentials are designed to protect the confidentiality of the
transmitted data, for example, by requiring the use of TLS.

This specification therefore considers the confidentiality of the
data to be provided by the transport protocol and does not specify
any encryption mechanism.

Implementers MUST ensure that the transport protocol provides
confidentiality, if the privacy of End-User data or correlation
attacks are a concern. Implementers MAY define an envelope format
(such as described in Section 7 or nesting the SD-JWT Combined
Format as the plaintext payload of a JWE) to encrypt the SD-JWT and
associated Disclosures when transmitted over an insecure channel.

9.

9.

10.

11.

12.

2. Decoy Digests

The use of decoy digests is RECOMMENDED when the number of claims
(or the existence of particular claims) can be a side-channel
disclosing information about otherwise undisclosed claims. In
particular, if a claim in an SD-JWT is present only if a certain
condition is met (e.g., a membership number is only contained if the
End-User is a member of a group), the Issuer SHOULD add decoy
digests when the condition is not met.

Decoy digests increase the size of the SD-JWT. The number of decoy
digests (or whether to use them at all) is a trade-off between the
size of the SD-JWT and the privacy of the End-User's data.

3. Unlinkability

Colluding Issuer/Verifier or Verifier/Verifier pairs could link
issuance/presentation or two presentation sessions to the same user
on the basis of unique values encoded in the SD-JWT (Issuer
signature, salts, digests, etc.).

To prevent these types of linkability, various methods, including
but not limited to the following ones can be used:

*Use advanced cryptographic schemes, outside the scope of this
specification.

*Issue a batch of SD-JWTs to the Holder to enable the Holder to
use a unique SD-JWT per Verifier. This only helps with Verifier/

Verifier unlinkability.

Acknowledgements

We would like to thank Alen Horvat, Arjan Geluk, Christian Paquin,

David Bakker, David Waite, Fabian Hauck, Giuseppe De Marco, Kushal
Das, Mike Jones, Nat Sakimura, Orie Steele, Pieter Kasselman,
Ryosuke Abe, Shawn Butterfield, and Torsten Lodderstedt Vittorio
Bertocci for their contributions (some of which substantial) to this

draft and to the initial set of implementations.

The work on this draft was started at OAuth Security Workshop 2022
in Trondheim, Norway.

IANA Considerations

TBD

Normative References

[RFC2119]

13.

[RFC7159]

[RFC7519]

[RFC8174]

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
March 2014, <https://www.rfc-editor.org/info/rfc7159>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/info/rfc7519>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Informative References

[IANA.Hash.Algorithms] IANA, "Named Information Hash Algorithm",

[0IDC.IDA]

[RFC0020]

[RFC7515]

[RFC7516]

[RFC7800]

[RFC8725]

<https://www.iana.org/assignments/named-information/
named-information.xhtml>.

Lodderstedt, T., Fett, D., Haine, M., Pulido, A.,
Lehmann, K., and K. Koiwai, "OpenID Connect for Identity
Assurance 1.0", <https://openid.net/specs/openid-
connect-4-identity-assurance-1_0-13.html>.

Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969, <https://
www.rfc-editor.org/info/rfc20>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JwS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://
www.rfc-editor.org/info/rfc7516>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
Possession Key Semantics for JSON Web Tokens (JWTs)", RFC
7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-
editor.org/info/rfc7800>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token
Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/
RFC8725, February 2020, <https://www.rfc-editor.org/info/
rfc8725>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8174
https://www.iana.org/assignments/named-information/named-information.xhtml
https://www.iana.org/assignments/named-information/named-information.xhtml
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725

[RFC8785]

[VC_DATA]

Appendix A.

A.

Rundgren, A., Jordan, B., and S. Erdtman,
Canonicalization Scheme (JCS)",
<https://www.rfc-editor.org/info/

"JSON
RFC 8785, DOI 10.17487/

RFC8785, June 2020,

rfc8785>.

Sporny, M., Noble, G., Longley, D.,
Zundel, B., and D. Chadwick,

Model 1.0", 19 November 2019,
vc_data>.

Additional Examples

Burnett, D. C.,
"Verifiable Credentials Data
<https://www.w3.0rg/TR/

All of the following examples are non-normative.

1. Example 2a: Handling Structured Claims

This example uses the following object as the set of claims that the
Issuer is issuing:

"sub": "6c5c0a49-b589-431d-bae7-219122a9%ec2c",
"given_name": " ",
"family_name": " ",
"email": "\"unusual email address\"@nihon.com",
"phone_number": "+81-80-1234-5678",
"address": {
"street_address": " - ",
"locality": " ",
"region": " ",
"country": "JP"
}I
"birthdate": "1940-01-01"

Note that in contrast to Example 1, here the Issuer decided to
create a structured object for the address claim, allowing for
separate disclosure of the individual members of the claim.

https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://www.w3.org/TR/vc_data
https://www.w3.org/TR/vc_data

" sd": [
"01kScKjiJMHedJfq7sJB7HQ3qomGfrELbo5gZhvKRWo",
"1h29ggQilxou-_NjVyyoChK2aswUto2UjCfF-1LahA8",
"3CoLULmMDXxxUw_LdyYETjuduXuEpGuBy4rXHotuD40X4",
"AIDyoxx1ipy45-GFpKgvc-HIbcVrlL1lrYLXmx3ev2e4",
"01lthfRoFdS-J6S820W1lro4pwWwhoeRMrH_KGP_h6EapYQ",
"r4dbpGeeia®2SyGL5gBdHY1w8IhjT3xXx05RsfyyHUk4"

]I

"address": {

" sd": [
"60KNWNGGKWXCI9QuijNAsv64u22elLS4rMdLN1gifqdip4",
"HEVMgD - NKK5SNVXPbAROrvVdODITmkUyuMpCs_m7HXnYc",
"Ugqo2nV73KObdRK23rzabmnDa408YNQZvt9ox8Lykok_Y",
"oxFRilno26UYe7kgMM4bdg8IVNMtIi6F8ptt-uiPLbM"

]

}I

"iss": "https://example.com/issuer",

"iat": 1516239022,

"exp": 1516247022,

"_sd_alg": "sha-256"

The Disclosures for this SD-JWT are as follows:

Disclosure for sub:

Wy JWb1p5VUUtN1FVQ3hVLThHe T15RTBNIiwgINN1YiIsICI2YZVjMGEOOS1iNTg5LTQz
MWQtYmF1Ny@yMTkxMj JhOwViMmMiXQ

Contents:

["VozyUE-6QoCxU-8Gy9yEGg", "sub",
"6c5c0a49-b589-431d-bae7-219122a9ec2c"]

SHA-256 Hash: AIDyoxx1ipy45-GFpKgvc-HIbcVrlL1lrYLXmx3ev2e4d
Disclosure for given_name:

WyJicjgxenVScONUCXJUWEpP4MHVOMKRRIiwgImdpdmVuX25hbwUil CAIXHU10TJhXHUS
MGN1I10

Contents:
["br81zuRsCTgrnxJxQuj2DQ", "given_name", "\u592a\u90ce"]
SHA-256 Hash: 1h29ggQiilxou-_NjVyyoChK2aswUto2UjCfF-1LahA8

Disclosure for family_name:

Wy JSdHczZUFFUES5WW]) IWTKhZSZNNRWNNIiwgImZhbWlseVOuYW11TIiwgI1x1INWM3MVx1
NzUzMCJd

Ccontents:

["Rtw3eAEPNpZ20NHYK3MEcg", "family_name", "\u5c71\u7530"]

SHA-256 Hash: 01kScKjiJMHedJfq7sJB7HQ3qomGfrELbo5gZhvKRWoO

Disclosure for email:

Wy JJITms2bkx4WGFybDF4NmVabHABOTV3IiwgImVtYWlsIiwgIlwidw51c3VhbCBlbWFp
bCBhZGRYyZXNzXCJAbmlob24uY29tI10o

Contents:

["INKk6nLxXarllix6ezZlwA95w", "email",

"\"unusual email
address\"@nihon.com"]

SHA-256 Hash: OlthfRoFdS-J6S820W1r04pwWhoeRMrH_KGP_h6EapYQ

Disclosure for phone_number:

WyJuuG9LdV9oakkyeTMtbTVnbmVkYzFBIiwgInBob251X251bWJ1ciIsICIrODEtODAtL
MTIzZNCO1Njc4Il0

Contents:

["nPoKu_hjI2y3-m5gnedclA", "phone_number", "+81-80-1234-5678"]

SHA-256 Hash: r4dbpGeeia®2SyGL5gBdHY1w8IhjT3xXx05RsfyyHUk4

Disclosure for street_address:

Wy JiLWt00GONVjg4NOFHY2RzRNQYT1RBIiwgINNOcmV1dF9hZGRYZXNzIiwgI1x1Njc3
MVXAINGVhY1Xx10TBMZFXINMUYZIXINTMzYVX10DISZFXINTE2Y1IXINTCXM1IX1ZmYXNFX1
NGUWMVX1NzZ1ZVX1ZmYXM1x1MjIxM1x1ZmYx0CJld

Contents:

["b-kN8ogVv887AGcdsFt20TA", "street_address", "\u6771\udeac\u90fd\ube
2f\u533a\u829d\u516c\u5712\uffi4\ude@1\u76ee\uff1i2\u2212\uffi8"]

SHA-256 Hash: HEVMgD-NKK5NvXPbARorvVdODITmkUyuMpCs_m7HXnYc

Disclosure for locality:

WyJnclBTdm9iLVVTbHVOSVJIUUMIVb2dBIiwgImxvY2FsaXR5IiwgI1x1Njc3MVXINGVh
Y1x10TBmzCJd

Contents:

["grPSvob-U_luNIRTRboogA", "locality", "\u6771\udeac\u90fd"]
SHA-256 Hash: 60KNwnGGKWXCI9uijNAsv64u22elLS4rMdLN1glfqdp4
Disclosure for region:

Wy JINOVY2N3VOUC1hTF91R1BOUUShMORRIiwgInJ1Z21vbiIsICIcdTZ1MmZcdTUZM2EL
XQ

Contents:

["MOV67utP-aL_eGPtQNa3DQ", "region", "\u6e2f\u533a"]
SHA-256 Hash: UqO2nV73KObdRK23rzabmnDa408YNQZvt9Ix8Lykok_Y
Disclosure for country:

Wy JZNFhNSmxXQ2Eza3hDWk4wSVVrbnlBIiwgImNvdw50cnkiLCA1S1AIXQ
Contents:

["s4XMJ1WCa3kxCZNOIUknyA", "country", "JP"]
SHA-256 Hash: oxFRilno26UYe7kqMM4bdq8IVNMtIi6F8ptt-uiPLbM
Disclosure for birthdate:

WyI1Z2NXRmxWSEM1VVEWbktrallybD1nIiwgImJpcnROZGFOZSISICIXOTQWLTAXLTAX
Ilo

Contents:
["5gCWF1VHC5UQONKk]jYr19g", "birthdate", "1940-01-01"]
SHA-256 Hash: 3CoLULmMDxXUw_LdyYETjuduXuEpGuBy4rXHotuD40X4
A Presentation for the SD-JWT that discloses only region and country

of the address property and without a Holder Binding JWT could look
as follows:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlauJhzzBZ
UKF6VMRSZnhOMjgwTmdIYUEifQ.eyJfc2Qi0iBbIjBsalNjS2ppSk1IZWRKZNE3cOpCN
OhRM3FvbuUdmckVMYm81Z1podktSV28iLCAiMWgyOWdnUWkxeG91LV90alz5ewW9DaEsyY
XN3VXRVM1V(gQ2ZGLTFMYWhBOCISICIzQ29MVUXxtRHh4VXdfTGR5WUVUanVkdVh1RXBHd
UJ5NHJYSG90dUQOMFgOIiwgIkFJIRH1veHgxaXB5NDUtROZWS2d2Yy1ISWIjVnISTGXyW
UXYbXgzZXYyZTQiLCAiT2x0aGZSh0ZkUy1KNIM4Mk9XbHIPNHBXaG91lUk1ySF9LR1Bfa
DZFYXBZUSISICJYNGRicEd1ZW1hMDJTeUdMNWdCZEhZMXc4SWhqVDN4eDA1UNNmeX1IV
WsOI10sICIhZGRYyZXNzIjogeyJfc2Qi0iBbIjzPS053bkdHS1dYQOk5dwlqTkFzdjYed
TIYyZUXTNHINZEXObGCXZNFKcDQiLCAISEVWTWAELUS5LSZzVOd1hQYKFSh3JWZE9ESVRta
1V5dU1wQ3NTbTdIWG5ZYYyISICIVCTAYblY3MOSwWYMRSSzIzcnphYm1uRGEOTzhZT1Fad
nQ5eDhMeWtval9ZIiwgIm94R1JIpbG5vMjZVWWU3a3FNTTR1ZHE4SXZ0TXRJaTZGOHBOd
C11aVBMYKOiXX0sICJpc3MiOiAiaHROCHM6LY91eGFtcGX1LmNvbS9pc3N1ZXIiLCAia
WFOIjogMTUXNjIZOTAyMiwgImV4cCIGIDEIMTYYNDCWMjIsICJIfc2RFYWxnIjogInNoY
SOYNTYifQ.MDBugNanBUtQtvIOW18zYI7nXqys-EgkEeuMjDFehYkzwWifFYI8qbIb-vD
keV6TvMUCc3tiV5FWMgoF_1UNVG6mMsjLIMLCOztXcIqtEJOMpAXOW13Jaxv4QOTy6NXKI
-DNKXINXFp6F7Fd31xaYzVzGFHfTo9AzTfy5ZrNgvVmfbgCU40xghROX]jjgm1CsFnOd1l8
ib2S-CgxcdYUkpKWp2G9eqXkUcwWQ55bguQQdgPTCpGoalads8bcdki5elvD2eDsfquDy
_JL48rwIJWBELtihJIxeT7plnARgKyJk88915VBXb4Qyr5QZErcgozZVIi6bxygzuVeYoKI
18STyHOT85wQ~Wy JSdHCczZUFFUESWWj IWTKhZSZNNRWNNIiwgImZhbwlseVOuYW11lIiw
gI1xINWM3MVX1NzUzMCJId~WyJicjgxenVScONUCXJUWEP4MHVQMKRRIiwgImdpdmVuX2
5hbWUiLCAiXHU10TJIJhXHUSMGN1I10~WyI1Z2NXRmMXWSEM1VVEwWbktrallybD1lnIiwgIm
JPCNROZGFOZSISICIXOTQWLTAXLTAXI1O~WyJJITms2bkx4WGFybDF4ANmVabHdBOTV3Ii
wgImVtYWlsTiwgIlwidwW51c3VhbCBlbWFpbCBhZGRYZXNzXCJAbmlob24uY29tI10~Wy
JNOVY2N3VOUC1hTF91R1BOUUShMORRIiwgInJ1Z21vbiIsICJcdTZ1MmZcdTUZM2EiXQ
~Wy JZNFhNSmxXQ2Eza3hDWk4wSVVrbnlBIiwgImNvdw50cnkiLCA1S1AiXQ~

A.2. Example 2b: Adding Decoys

This example is based on the same set of user data as Example 2a,
but here, the Issuer decided to add decoy digests to the SD-JWT.

The SD-JWT payload is as follows:

" sd": [
"2GFPzomyvOLvVsSNqQVNq9EWKkojSdmn8xYhEW6PUF166aE",
"723eL1tWNgkOk600EC2jbjgioLg09hp_qr5BL20omASwW",
"ABOPJOUWDrrY0j3XF9F1ldPk4gniliHktfCofaS2nEDK",
"Lccl25w97vsyfqBTCOMXAtvCt_8f4BlgDUBhrvdS2vi",
"QSBjKkY_KqFtGhL7--yjUUGBTbOQKXXEKTzmoVAzCUhY",
"iVw--s-TwoFGMsvldhoqlsBsjrBKyKtJoQ5DZu30q1I",
"nGzC_ytvNpNRhxNqUJ8yGd3DtGv-3u6goHM7JgqsRzCw",
"skyXccgGkjo2BK4p19vDmb1l2JsnKBdbiVBhqV5b_RXk",
"wOMSAJhXWETDjavMSyNVyu62nyy9PzFfZw91lz5yfCc4u"

1

"address": {

" sd": [
"1nY2u90v7ur8X8mniVZ2tSRNRh6DPNLBYtDEtRSOzM8",
"F_XLpiE-04hv3QPy7WpIyQJYEhYVVv1GOb5PguzbG64A",
"0s3GWFP8wcr101HgFG3EQgX41LSeGSWCcL1iHH2Nr4wQ",
"nQj9x2LdAW4uGv9z18T3E1Zmbf_XScaN8maE-K6kG00O",
"opzyobnErA3GpoURHpKHGUpmMNVGT74GXPOPrdyS1xAA",
"q2Mq7M5Lb6u7gbteQFOBzN6gqs_CbP9bx22xoLjbx2w",
"xuJuhqlaJgqiYgdIXMRmMMINTBkzivgvV9zZk4jmmJYSkk"

]

+

"iss": "https://example.com/issuer",

"iat": 1516239022,

"exp": 1516247022,

" _sd_alg": "sha-256"

Since the Disclosures or Presentation are not affected by the decoy
digests (other than a slightly larger SD-JWT), they are omitted
here.

A.3. Example 3 - Complex Structured SD-JWT

In this example, an SD-JWT with a complex object is demonstrated.
Here, the data structures defined in OIDC4IDA [0OIDC.IDA] are used.

The Issuer is using the following user data:

"verified_claims": {
"verification": {
"trust_framework":
"time":
"verification_process":
"evidence": [
{
"type": "document",
"method": "pipp",
"time":
"document": {
"type": "idcard",
"issuer": {
"name":
"country":

iy

"number" :

"date_of_expiry":

]
}I
"claims": {
"given_name":
"family_name":
"nationalities": [
IIDEII

“MaX” ,

1
"birthdate":

"place_of_birth": {
"country": "IS",
"locality":

3

"address": {
"locality":
"postal_code":
"country": "DE",
"street_address":

3
+
"birth_middle_name":
"salutation": "Dr.",
"msisdn": "49123456789"

"Miller™,

"de_aml",
"2012-04-23T18:252",

"f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",

"'2012-04-22T11:30Z2",

"Stadt Augsburg",
|IDEI|

"53554554",
"date_of_issuance":

"2010-03-23",
"2020-03-22"

"1956-01-28",

"pykkvabajarklaustur"

"Maxstadt",

"'12344",

"WeidenstraRe 22"

"Timotheus",

The Issuer in this example sends the two claims birthdate and
place_of_birth in the claims element in plain text. The following
shows the resulting SD-JWT payload:

" sd": [
"OfGhQf6NEVYHISTCcCtkXCFAVKp9qAYDVMFsSXADWJIsio",
"HOZuxXsa39gwxHQOCK_HQAIKjw4t11YwMOGy_1guluu",
"gXzq9tVKaddfQvt94rivze6G1lZziw35ItiMngC5p_hXE"

1

"verified_claims": {

"verification": {

"_sd": [
"ANQI4-y9wtJIvyCs2WttyLmITYO2K5WBMKKT1gKeEhHE",
"Zvx3GXqsjB1cR5rmxrlv3xQuTykWDzZ71K1lmaxtBVYoQ",
"cCzobgUalOu_DnOPengU8YcZfv_R3xhOMW1KO10kglo"

]I

"evidence": [

{

" sd": [
"1806apk_mELe_RawWjI10m877h9_Jky5dpgzuBBN1l-dQ",
"Ed7fTsdbgv2EZ5uGSuUAk5YBaMtCfvTFkmZZszVRIpk",
"rvJd0i2J6gFeNIvCdgIprrjmilrKTD_Ru96di5FS7i4"

1

"document": {

" sd": [
"BiKOIkmtJfr7IpwWsn8_X4hc6FyggaeQPujoVuXAHnwWQ",
"F1vtjNyR7vaY8b06CHAFr9tAje0ltSLe7bIFY1pNwW7s",
"HXyhyliGWAP8uvBf3JhdGSh9Pbg3KNu969581e8MzZPo",
"SVzZUIXAzzMWOETfIwZyL23xwee3874u3a7iXcWyZhwp4"

1

"issuer": {

" sd": [
"ClsaJVvc21n1Y102s4yaOuUYJabTAoGyg__Q390fyjqSM",
"Li9BJSO7AFCKVTlrLz6ip6t82ngqIt2qrXc3wp6rColM"

3
"claims": {

"_sd": [
"1gb26tNg60ZuzZyVDYwK4 - -mQxXbZqwcQbhUxGHrXeLM",
"AHXOEgNpd_wak@71K8HX2izDNntsUzZojuzyEwd2GJdk",
"FwzTzOTHaEOzexgEzLRXu-zsTPND7by3aBF57AwWKCZI",
"XKbTM10SjFjkJIJw8kAMZAyhEfqgbaqg2b-klaPK8srpgvs"

1

"birthdate": "1956-01-28",

"place_of_birth": {

"country": "IS",
"locality": "pykkvabajarklaustur"

}
}I
"iss": "https://example.com/issuer",
"iat": 1516239022,
"exp": 1516247022,
" _sd_alg": "sha-256"

wWith the following Disclosures:
Disclosure for trust_framework:

WyI2eUNER1RSb1BzUHowS3RxSVh3cjhRIiwgInRydXNOX2ZyYW1ld29yayIsICJIkzZVOh
bWwiXQ

Contents:

["6yCDGTRNPsPzOKtqIXwr8Q", "trust_framework", "de_aml"]
SHA-256 Hash: Zvx3GXqsjB1cR5rmxrlv3xQuTykWDZ71KlmaxtBVYo0
Disclosure for time:

WyI2T1pFYWOFUMVmMdzJ2YT13VWZDS1IBIiwgInRpbWUiLCAiMjAXMiOWNCOYM1Qx0Doy
NVoiXQ

Contents:

["6NZEaoERefw2vaQwUTfCJIRA", "time", "2012-04-23T18:25Z"]
SHA-256 Hash: cCzobgUal@u_Dn@OPenguU8YczZfv_R3xhOMW1KO10kglo
Disclosure for verification_process:

Wy JTWVhaS291anJdYdXzZPz3hjbnvzS1J3IiwgInZlcmlmawWNhdGlvb1l9wem9jZXNzIiwg
ImYYNGM2Zi02ZDNmLTR1YzUtOTczZS1iMGQ4NTA2ZjNiYzciXQ

Contents:

["SYXZKoujrXuvOogxcnuYKRw", "verification_process",
"f24c6T-6d3f-4ec5-973e-b0d8506F3bc7"]

SHA-256 Hash: 4nQI4-y9wtJvyCs2WttyLmITYO2K5WBMKKT1qKeEhHE
Disclosure for type:
WyJyNE1Td1ZEY1hQMF1FSmNsd1BJTMRNIiwgInR5cGUiLCAiIZG9jdW11bnQiXQ
Contents:
["r4MSvVDcXPOYEJc1wPINdg", "type", "document"]
SHA-256 Hash: rvJd0i2J6gFeNIvCdgIprrjmilrKTD_Ru96di5FS7i4
Disclosure for method:
Wy JVYmI4MGZRYNdOOWXOSOXYCcORvbkdnIiwgIm11ldGhvZCIsSICJIwaXBwIl0

Contents:

["Ubb80fQbwN91tKLXsDonGg", "method", "pipp"]
SHA-256 Hash: 18o06apk_mELe_RaWjI10m877h9_Jky5dpgzuBBN1-dQ
Disclosure for time:

Wy JaRW1VvWTCcOZ1INVUXdXOF1IWMkXGMmMt3IiwgInRpbWUiLCAiMjAXMiOWNCOYM1QXMToz
MFoiXQ

Contents:

["ZEmoY74fSoQwq8YV2LF2kw", "time", "2012-04-22T11:30Z"]
SHA-256 Hash: Ed7fTsdbgv2EZ5uGsuUAk5YBaMtCfvTFkmZZszVRIpk
Disclosure for type:

WyJtanBjRGkweHFZbTF4aFJyQ31CeGZnIiwgInR5cGUiLCAiaWRjYXJIKI1O
Contents:

["mjpcDidxqYmixhRrCyBxfg", "type", "idcard"]

SHA-256 Hash: F1vtjNyR7vaY8bO6CHAFr9tAje0ltSLe7bIFY1pNW7s

Disclosure for name:

Wy JEYOIzOXRwcHBgbGhjVFctLUhKYVJI3IiwgIm5hbWUiLCAiU3RhZHQgQXVnc2Jicmeci
XQ

Contents:

["DcB39tpppjlhcTwW--HJaRw", "name", "Stadt Augsburg"]
SHA-256 Hash: Li9BJSO7AFcKVTlrLz6ip6t82nqlt2qrXc3wp6rColM
Disclosure for country:

Wy JGbWUOVVdmeDZBVOgINS1BOHIXRF93IiwgImNvdwW50cnkiLCAIREU1XQ
Contents:

["Fme4UWfx6AWH55-A8rWD_w", "country", "DE"]
SHA-256 Hash: ClsaJVc21n1Y102s4ya@UYJabTAoGyg__Q390fyjqSM
Disclosure for number:

WyIzZ3NJRUSONWM4bkZaTO9YbWIELVRBIiwgIm51bWJ1ciIsICI1IMzUINDUINCI

Contents:

["39gSIEK45c8nFZ00XmbD-TA", "number", "53554554"]
SHA-256 Hash: BiKOIkmtJfr7IpwWsn8_X4hc6FyggaeQPujoVuXAHNWQ
Disclosure for date_of_issuance:

WyJrN1ZGSOI3V29xeWZXT1MORVZqU3d3IiwgImRhdGVfb2ZfaXNzdwWFuY2UiLCAiMjAX
MCOWMyQyMyJd

Contents:

["k6VFKB7WoqyfWOS4EVjSww", "date_of_issuance", "2010-03-23"]
SHA-256 Hash: HXyhyliGWAP8uvBf3JhdGSh9Pbg3KNu969581e8MZPo
Disclosure for date_of_expiry:

WyJQTEtGZ1FYQk5FdHRFRzR1UGV6cn1nIiwgImRhdGVfb2ZfzZXhwaXJ5IiwgIjIwMjAt
MDMtMjIiXQ

Contents:

["JLKFfQXBNEttEG4uPezryg", "date_of_expiry", "2020-03-22"]
SHA-256 Hash: sVzUIXAzzMwOEfIwZyL23xwee3874u3a7iXcWyzZhwp4
Disclosure for given_name:

Wy J2WmN5ZDRDTDhFeDFBUG1SbOtVVFB3IiwgImdpdmVuX25hbWUiLCALiTWF4I10
Contents:

["vZcyd4CLBEX1APiROKUTPwW", '"given_name", "Max"]

SHA-256 Hash: xKbTM10SjFjkJw8kAMZAyhEfgbaqg2b-klaPK8srpgvs
Disclosure for family_name:

WyJodO1FTk1DMWwtQLlRUZNNFMNZQV2ZBIiwgImZhbWlseVouYw1lIiwgIkicdTAwZmNs
bGVyIl0

Contents:

["hwIENIC11-BTnfs_2vPWfA", "family_name", "M\uGOfcller"]
SHA-256 Hash: 1gb26tNg60ZuzZyVDYwK4 - -mQxXbZqwcQbhUxXGHrXeLM
Disclosure for nationalities:

Wy JHRFhMLTBfWW1VvYUXNU110RzdCdkxnIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFI11d

Contents:
["GDXL-0_YioalLMSYtG7BvLg", "nationalities", ["DE"]]
SHA-256 Hash: FwzTzOTHaEOzexgEzLRXu-zsSTPND7by3aBF57AwKCZI
Disclosure for address:
WyJVUjZsSC1ljbUtIenh5VGlhazRmRVVRIiwgImFkZHJI1c3MiLCB7ImxVvY2FsaXR5Ijog

Ik1heHNOYWROIiwgInBvc3RhbF9jb2R1IjogIjEYMzQOIiwgImNvdw50cnki0iAiREUL
LCAic3RyZWVOX2FkZHJI1c3Mi0iAiV2VpZGVuc3RyYVXIMDBKZMUGM] IifVe

Contents:
["UR61H-cmKHzxyTiak4fEUQ", "address", {"locality": "Maxstadt",
"postal_code": "12344", "country": "DE", "street_address":
"Weidenstra\ueedfe 22"}]

SHA-256 Hash: AHXOEgNpd_wak0®71K8HX2izDNntsUZojuzyEWd2GJdk

Disclosure for birth_middle_name:

Wy JuNV9BU31pa2FSNHBZMzRrVGOYT1BRIiwgImIpcnRoX21pZGRsZVOuYW11IiwgI1Rp
bw9oaGvicyJd

Contents:
["n5_ASyikaR4pY34kToXNPQ", "birth_middle_name", "Timotheus"]

SHA-256 Hash: gXzq9tVKaddfQvt94rivze6G1lZziw35ItiMngC5p_hXE

Disclosure for salutation:

WyJFSGh2d1dnWGg2VUZKcVRmMRjVRaE93IiwgINNhbHVOYXRpb24iLCALIRHIUI10

Contents:
["EHhvwWgXh6UFJgTfF5Qh0ow", "salutation", "Dr."]

SHA-256 Hash: HOZuxXsa39gwxHQOCK_HQAIKjw4t11YwMOGY_1gUluU

Disclosure for msisdn:

WyJTMzF2RjdWZHNpUDhRTXBOb21PZW1BIiwgIm1zaXNkbiIsICIOOTEYMzQ1Njc40SJd

Contents:
["S31vF7VdsiP8QMptomOemA", "msisdn", "49123456789"]

SHA-256 Hash: OfGhQf6nEVYH9sTcCtkxCFAVKp9QAYDVmMFsXADWJIsio

The Verifier would receive the Issuer-signed SD-JWT together with a
selection of the Disclosures. The Presentation in this example would

look as follows:

eyJhbGci0iAiUIMyNTYiLCAia21kIjogImNBRU1VcUowY21MekQxa3pHemhlaUJhzzBZ
UKF6VMRSZnhOMjgwTmdIYUEifQ.eyJfc2Qi0iBbIjBmR2hRZjZuRXZZSD1zVGNDAGt4Q
2ZBVktwOXFBWURWbUZzeEFEVOpzaW8ilLCAiSDBadXhYc2EzOWd3eEhRMGNLXOhRQUlLa
1cOdDEXWXANMEd5XZFNVWX1VSISICINWHpXOXRWS2FKkZGZRANQ5NHIpVnpINkdswWm1XM
zVJdGINbmdDNXBfaFhFI10sICJ2ZXJIpZml11ZF9jbGFpbXMi0iB7InZ1lcmlmaWNhdGlvb
1I6IHsiX3NkIjogWyIOblFINC150XdOSnZ5Q3MyV3ROeUxtSVRZMDILNVACTUtLVDFXS
2VFaEhFIiwgIlp2eDNHWHFzakIxY1I1icmil4cmx2M3hRdVR5al1dEWjdsS2xtYXheQlzzhb
ZAiLCAiYON6b2InVWFSMHVTRG4WUGVUZ1U4WWNaznZfUjN4aDBNVzFLMDFPa2cxbyJdL
CA1ZXZpZGVuY2Ui0iBbeyJfc2Qi0iBbIjE4bzZhcGtfbUVMZVISYVAqSTFPbTg3N2g5X
OpreTVkcGd6dUJCTmwtZFELILCAIRWQ3Z1RzZGJINdjIFWjVIR3N1VUFrNV1CYU10Q2Z2V
EZrbVpac3pwWUkpwayIsICJydkpkT2kySjZnRmVOSXZDZGdJcHJyam1pMXJLVERTUNUSN
MRPNUZTN2kOI10sICJIkb2N1bWVudCI6IHsiX3NkIjogwWyJCaUtPSWttdEpmcjdJcFdzb
jhfWDRoYzZGeWdXYWVRUHVQb1Z1WEFIb1dRIiwgIkYXdnRqQTN1SN3ZhWThiTzZDSGRGC
j10QWp1MGXOUOX1IN2JJIR11sCcESXN3MiLCAiSFh5aHlsaUdXQVA4dXZCZjNKaGRHU2g5U
GJINMOt0dTk20TU4MWU4TVpPQbyISICJIzVnpVSVhBenpNdzBFZk13Wn1MMjN4d2V1Mzg3N
HUZYTdpWGNXeVpod3AOI10sICIpc3N1ZXIi0iB7I19zZCI6IFsiQzFzYUpWYzIxbjFZM
U8yczR5YTBVWUphY1RBbOd5Z19fUTM5T2Z5anFTTSISICIMaT1CSINVNOFGYOtWVGXYT
Ho2aXA2dDgybnFJdDJIxc1lhjM3dwNnJIDb2XNI119fX1dfSwgImNsYWltcyI6IHsiX3NkI
jogWyIXcWIyNnROZzZPWnVaeVZEWXdLNCOtbVF4WGJacXdjUWJOVXhHSHIYZUXNIiwgI
KFIWDBFZO5wWZF93YWSWN2XxLOEhYMm16RESudHNVWM9qdXp5RVAkMkdKZGsiLCAiRnd6V
HOowVEhhRU96ZXhnRXpMU1h1LXpzVFBORDAieTNhQKY1NOF3SONaSSISICJ4S2JUTWXPU
2pGamtKdzhrQUiaQX1loRWZxYmFxMmIta2xhUEs4c3JIwZ3ZzI10sICJiaXJ0aGRhdGUi0
1AiMTKk1INiOWMSOYOCISICJIwbhGFjZV9vZ19iaXJ0aCI6IHsiY291bnRyeSI6ICIJUYISI
CJsb2NhbG1leeSI6ICIcdTAWZGV5a2t2YWICcATAWZTZqYXJIrbGF1c3R1ciJ9fXOsICIpc
3Mi0iAiaHROCHM6LY91eGFtcGx1LmNvbS9pc3N1ZXIiLCAiaWFOIjogMTUXN]jIzOTAYM
iwgImV4cCIBIDEIMTYYNDCWMjISICIFc2RFYWXxnIjogInNoYSOYNTYifQ.a7ChaalKrV
16ThnmWDNRXEKdjess03TWHjzgplaUoj2JIXD97DwePyKglK-DBgJehOtU6k7tdcrwIMq
zLNQWDMukCNyT - hBkxZ83jAr tB4S5hyDLdel-B5toMVBGF-nv20q0TqBVIF1Tg884zAPS
WCEsvO0YDDNnj5b0OpLD5cHCkCc3IREKGSCB3CcO7G6beDakS2_QPLZ763Uz3bYXOXFPMDV
723xC6vQqzUXyKL76_ENQyzyArC8a5e30egQQ5RY7mdm9zJUUzi-rn_QnTambpiyh9ux-
41ABwf8vHgCe953EBqDIKINh7ZvQcOstUFEzqV610SU3gquy2UhZUfXRDSCw~WyI2eUN
ER1RSb1BzUHOWS3RxSVh3cjhRIiwgInRydXNOX2ZyYW11d29yayIsICIkZVOhbWwiXQ~
WyI2T1pFYWOFUMVmMdzJ2YT13VWZDS1JIBIiwgInRpbWUiLCAiMjAXMiOWNCOYM1Qx0Doy
NVoiXQ~WyJyNE1Td1ZEY1hQMF1FSmMNsd1BJTmMRNIiwgINR5cGUiLCAiZG9jdw1lbnQiX
Q~WyJodO1FTKk1DMWwtQlRuZnNNfMnZQV2ZBIiwgImZhbWlseVOuYW11lIiwgIklicdTAwZm
NsbGVYyIlO~WyJVUjZsSC1jbUtIenh5VGlhazRmRVVRIiwgImFkZHJ1c3MiLCB7ImxvY2
FsaXR5IjogIk1heHNOYWROIiwgInBvc3RhbF9jb2R1IjogIjEYMzQOIiwgImNvdwW50cn
ki0iAiREUiLCAic3RyZWVOX2FkZHJ1c3Mi0iA1V2VpZGVuc3RyYVX1MDBkZmUgMjIifV
0~Wy J2WmN5ZDRDTDhFeDFBUG1SbOtVVFB3IiwgImdpdmVuX25hbWUiLCAiTWF4I10~

After the verification of the data, the Verifier will pass the
following result on to the application for further processing:

"verified_claims": {
"verification": {
"evidence": [

{
"document": {
"issuer": {}
+
"type": "document"
}
1
"trust_framework": "de_aml",

"time": "2012-04-23T18:252"
3
"claims": {
"birthdate": "1956-01-28",
"place_of_birth": {
"country": "IS",
"locality": "bykkvabajarklaustur"
3
"family_name": "Miuller",
"address": {
"locality": "Maxstadt",
"postal_code": "12344",
"country": "DE",

"street_address": "WeidenstralRe 22"
3
"given_name": "Max"
}
+
"iss": "https://example.com/issuer",

"iat": 1516239022,
"exp": 1516247022,
" _sd_alg": "sha-256"

A.4. Example 4 - W3C Verifiable Credentials Data Model (work in
progress)

This example illustrates how the artifacts defined in this
specification can be represented using W3C Verifiable Credentials
Data Model as defined in [VC_DATA].

SD-JWT is equivalent to an Issuer-signed W3C Verifiable Credential
(W3C VC). Disclosures are sent alongside a VC.

A Presentation with a Holder Binding JWT is equivalent to a Holder-
signed W3C Verifiable Presentation (W3C VP).

Holder Binding is applied and the Holder Binding JWT is signed using
a raw public key passed in a cnf Claim in a W3C VC (SD-JWT).

Below is a non-normative example of an SD-JWT represented as a
verifiable credential encoded as JSON and signed as JWS compliant to
[VC_DATA].

The following data will be used in this example:

"iss": "https://example.com",
"jti": "http://example.com/credentials/3732",
"nbf": 1541493724,
"iat": 1541493724,
"enf": {
"Jwk": {

"kty": "RSA",

"n": "Ovx7agoebGcQSuuPiLJIXZptN9nndrQmbXEps2aiAFbWhM78Lhwx4cbbf
AAtVT86zwulRK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst
n64tZ_2W-5JsGY4Hc5n9yBXArwl9o31qt7_RN5w6CTOh4QyQ5v-65YGjQRO_F
DW2QvzqY368QQMicAtaSqzs8KJIZgnYb9c7d0zgdAZHzu6gqMQVvRL5hajrning
1CbOpbISDO8NLYrdkt -bFTWhAI4vMQFh6WeZu®fM41Fd2NcRwr3XPksINHa
Q-G_xBniIgbwOLs1jF44-csFCur-kEgU8awapJzKngDKgw",

"e": "AQAB"

}

3
"type": "IdentityCredential",

"credentialSubject": {

"given_name": "John",
"family_name": "Doe",
"email": "johndoe@example.com",

"phone_number": "+1-202-555-0101",
"address": {
"street_address": "123 Main St",
"locality": "Anytown",
"region": "Anystate",
"country": "us"
3
"birthdate": "1940-01-01",
"is_over_18": true,
"is_over_21": true,
"is_over_65": true

The encoded SD-JWT looks as follows:

Header:

"typ": "sd-jwt-vc",
"alg": "RS256",
"kid": "CcAEIUqJOcmLzD1kzGzheiBag0@YRAzVdA1fxN28ONgHaA"

Body:

"https://example.com/issuer",
"jti": "http://example.com/credentials/3732",
"nbf": 1541493724,
"iat": 1516239022,
"enf": {
"Jwk": {

"kty": "RSA",

"n": "Ovx7agoebGcQSuuPiLJIXZptN9nndrQmbXEps2aiAFbWhM78Lhwx4cbbf
AAtVT86zwulRK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst
n64tZ_2W-5JsGY4Hc5n9yBXArwl931qt7_RN5w6CT0Oh4QyQ5v-65YGjQRO_F
DW2QvzqY368QQMicAtaSqzs8KJIZgnYb9c7d0zgdAZHzu6qMQVvRL5hajrning
1CbOpbISDE8gNLYrdkt-bFTWhAI4vMQFh6WeZu®fM41Fd2NcRwr3XPksINHa
Q-G_xBniIgbwOLs1jF44-csFCur-kEgU8awapJzKngDKgw",

"e": "AQAB"

}

3
"type": "IdentityCredential",

"credentialSubject": {

" sd": [
"8BCcr2ZGImJ9F1sBNmGiLgj7XmHm-g8Q0uYVSX0OwWoM58",
"8wawaYT3XN1nlezUdP8Xril252yHK6pjgr8JInBzMQg",
"NVTo40QvIOkuqdMYeb6M_sp_ByUY7d4zcLfHB483avY",
"UQ6IHUAtHgW8Xcik7GgqVikWtoviseS4BKjvCmmon6xA",
"Um7LRM60151wJZLobMeREW6HSMYy03DCCHNWtaikD-40",
"JIjo9E1Q4Ng2mMzsOSowqg2molpyUBOOE_LENjk2Ha_8",
"w9rrwnA1RQ5dUOBaJDKGfAgtiwl2obiljoeF_oLTazo",
"z0JJISAmcBOOgPmMFk0ZebY70hHI3GpJC1x4beJRtIPLM"

1

"address": {

" sd": [
"OMcZNzONIGNYBI4WgKJIFx9mjaaB1lOE59Bc_pefmm544",
"4zIfrBGK3TStRDz_wlxi4VgYDza81mBs_zeJl84czsS4",
"H1_wpSSSagpXtSk_rGoE-xkYGVNnIHBO-ZzhuUwchy8bo",
"ySOQUT3J1KF5NdTPMWzm1lDamB4TY2EMMGCgrzzJziho"

}

3
"exp": 1516247022,

"_sd_alg": "sha-256"

Disclosures:
Disclosure for given_name:
WyI5SO5NMUXWCULIPVXR6RK91SFV4Q2J3IiwgImdpdmVuX25hbwWUilLCAiSm9obiJd
Contents:
["9KNM1LVgMOUtzFObHUXxCbw", '"given_name", "John"]
SHA-256 Hash: jIjo9E1Q4Ng2mMzs0SowWqg2molpyU8OOE_LENjk2Ha_8
Disclosure for family_name:
Wy JJeC1jVTQzcXpBUFhvU2xZc1F3RnRNIiwgImZhbwWlseVOuYW11IiwgIkRvZSJd
Contents:
["Ix-cU43qzAPXoS1lYrQwFtg", "family_name", "Doe"]
SHA-256 Hash: w9rrWnA1RQ5dUOBaJDKGfAgtiwl2obiljoeF_oLTaz0
Disclosure for email:

Wy JrbnFPOXJYY1ldqc2110Et TMkJJISKFRIiwgImVtYWlsIiwgImpvaGskb2VAZXhhbXBs
ZS5jb201XQ

Contents:

["kngO9rXbWjsie8KS2BIJAQ", "email", "johndoe@example.com"]
SHA-256 Hash: NVTo40QvIOkuqdMYeb6M_sp_ByUY7d4zcLfHB483avyY
Disclosure for phone_number:

Wy JSbVdDWEhxaE41TDg2S11q0UdYNOh3IiwgInBob251X251bWJ1ciIsICIrMSOYMDIt
NTU1LTAXMDEiXQ

Contents:

["RmMWCXHghN5L86JYj9GX7HwW", "phone_number", "+1-202-555-0101"]
SHA-256 Hash: z0JJSAmcBOOgPmFk0ZebY70hHI3GpJC1x4beJRtIPbM
Disclosure for street_address:

WyJjTE84ZnZpN1VHYUstbF91QmFJYTVRIiwgInNOcmV1dFOhZGRYZXNZzIiwgIjEyMyBN
YWLUIFNOIL10

Contents:

["cLO8fvibUGaK-1_uBaIa5Q", "street_address", "123 Main St"]
SHA-256 Hash: H1_wpSSSagpXtSk_rGoE-xkYGVNIHBO-ZzhUWchy8bo
Disclosure for locality:

Wy JO0SzBZQU1MWUwtLXRVdilEdGNoaU1RIiwgImxvY2FsaXR5IiwgIkFueXRvd24iXQ
Contents:

["NKOYAMLYL - -tUv-DtchiMQ", "locality", "Anytown"]

SHA-256 Hash: 4zIfrBGk3TStRDz_wlxi4VgYDza81mBs_zeJ84czsS4
Disclosure for region:

WyI3c3FoSUlaMlkzOHM4awxaY®12c2RRIiwgInJ1Z21vbiIsICJIBbnlzdGF0ZSJd
Contents:

["7sghIMZ2Y38s8ilzcMvsdQ", "region", "Anystate"]

SHA-256 Hash: ySoQUT3J1KF5NdTPMWzmlDamB4TY2EMMGCQrzzJzih0
Disclosure for country:

Wy JISX1PZXkzNXEzXOZThDRVVOQg2MM5BIiwgImNvdwW50cnkiLCA1VVMiXQ
Contents:

["HIyOey35q3_FS14UWH62nA", "country", "US"]

SHA-256 Hash: OmcZNzOnIGNYBI4WgKJFx9mjaaBlOE59Bc_pefmm544
Disclosure for birthdate:

Wy JpUUSVWU9tb1lo1N1Z5VHBRaGZnV21nIiwgImJpCnROZGFOZSISICIXOTQWLTAXLTAX
I1e

Contents:

["iQNUYOmMNnZ57VyTpQhfgwig", "birthdate", "1940-01-01"]
SHA-256 Hash: Um7LRM60151wJZLobMeREW6HSMyO3DCCHnWtaikD-40
Disclosure for is_over_18:

Wy JOCcmNEb1BJUDVZzeWSwWFhZUOdFCOFRIiwgImlzX292ZXJfMTgiLCBOcnV1XQ

Contents:

["trcDoPIP5synpXXYSGESAQ", "is_over_18", true]
SHA-256 Hash: 8wawaYT3XN1lnlOzUdP8Xril252yHK6pjgr8JInBzMQg
Disclosure for is_over_21:
Wy JRMnhzRWpnUNBhSE5rdUdEM2tUNUpNIiwgImlzX292ZXJfMJjEiLCBOCcnV1XQ
Contents:
["Q2xsEjgRpaHNkuGD3kT5Jg", "is_over_21", true]
SHA-256 Hash: UQ6IHUAtHqW8Xcik7GqVikWtoviseS4BKjvCmmon6xA
Disclosure for is_over_65:
WyIORDA2N1IWTTh2THUWNOtRVUJIQOFORIiwgImlzX292ZXJfNjUiLCBOcnV1XQ
Contents:
["4D7v7RVM8VLUO7KQUB]j8_Q", "is_over_65", true]
SHA-256 Hash: 8Bcr2zZGImJ9F1sBNmGilLgj7XmHm-g8Q0OuYVSXOWoM58
Appendix B. Document History
[[To be removed from the final specification]]
-03

*Disclosures are now delivered not as a JWT but as separate
base64url-encoded JSON objects.

*In the SD-JWT, digests are collected under a _sd claim per level.

*Terms "II-Disclosures" and "HS-Disclosures" are replaced with
"Disclosures".

*Holder Binding is now separate from delivering the Disclosures
and implemented, if required, with a separate JWT.

*Examples updated and modified to properly explain the specifics
of the new SD-JWT format.

*Examples are now pulled in from the examples directory, not
inlined.

*Updated and automated the W3C VC example.

*Added examples with multibyte characters to show that the
specification and demo code work well with UTF-8.

*reverted back to hash alg from digest derivation alg (renamed to
_sd_alg)

-02
*reformatted
-01
*introduced blinded claim names
*explained why JSON-encoding of values is needed
*explained merging algorithm ("processing model")

*generalized hash alg to digest derivation alg which also enables
HMAC to calculate digests

*_sd_hash_alg renamed to sd_digest_derivation_alg

*Salt/Value Container (SVC) renamed to Issuer-Issued Disclosures
(II-Disclosures)

*SD-JWT-Release (SD-JWT-R) renamed to Holder-Selected Disclosures
(HS-Disclosures)

*sd_disclosure in II-Disclosures renamed to sd_ii disclosures
*sd_disclosure in HS-Disclosures renamed to sd_hs_disclosures
*clarified relationship between sd_hs_disclosure and SD-JWT
*clarified combined formats for issuance and presentation
*clarified security requirements for blinded claim names

*improved description of Holder Binding security considerations -
especially around the usage of "alg=none".

*updated examples
*text clarifications
*fixed cnf structure in examples
*added feature summary
-00

*Upload as draft-ietf-oauth-selective-disclosure-jwt-00

[[pre Working Group Adoption:]]
-02
*Added acknowledgements
*Improved Security Considerations
*Stressed entropy requirements for salts
*Python reference implementation clean-up and refactoring
*hash_alg renamed to _sd_hash_alg
-01
*Editorial fixes
*Added hash_alg claim
*Renamed _sd to sd_digests and sd_release
*Added descriptions on Holder Binding - more work to do
*Clarify that signing the SD-JWT is mandatory
-00

*Renamed to SD-JWT (focus on JWT instead of JWS since signature is
optional)

*Make Holder Binding optional

*Rename proof to release, since when there is no signature, the
term "proof" can be misleading

*Improved the structure of the description
*Described verification steps
*All examples generated from python demo implementation
*Examples for structured objects
Authors' Addresses

Daniel Fett
yes.com

Email: mail@danielfett.de
URI: https://danielfett.de/

mailto:mail@danielfett.de
https://danielfett.de/

Kristina Yasuda
Microsoft

Email: Kristina.Yasuda@microsoft.com

Brian Campbell
Ping Identity

Email: bcampbell@pingidentity.com

mailto:Kristina.Yasuda@microsoft.com
mailto:bcampbell@pingidentity.com

	Selective Disclosure for JWTs (SD-JWT)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Feature Summary
	1.2. Conventions and Terminology

	2. Terms and Definitions
	3. Flow Diagram
	4. Concepts
	4.1. Creating an SD-JWT
	4.2. Creating Holder-Selected Disclosures
	4.3. Optional Holder Binding
	4.4. Verifying Holder-Selected Disclosures

	5. Data Formats
	5.1. The Challenge of Canonicalization
	5.2. Format of an SD-JWT
	5.2.1. Selectively Disclosable Claims
	5.2.1.1. Creating Disclosures
	5.2.1.2. Hashing Disclosures
	5.2.1.3. Decoy Digests
	5.2.1.4. Creating an SD-JWT
	5.2.1.5. Nested Data in SD-JWTs
	5.2.1.5.1. Option 1: Flat SD-JWT
	5.2.1.5.2. Option 2: Structured SD-JWT
	5.2.1.5.3. Option 3: Structured SD-JWT, only some properties selectively disclosable

	5.2.2. Hash Function Claim
	5.2.3. Holder Public Key Claim

	5.3. Example 1: SD-JWT
	5.4. Combined Format for Issuance
	5.4.1. Example

	5.5. Combined Format for Presentation
	5.5.1. Enabling Holder Binding
	5.5.2. Example

	6. Verification and Processing
	6.1. Processing by the Holder
	6.2. Verification by the Verifier

	7. Enveloping the Combined Format for Issuance and Presentation
	8. Security Considerations
	8.1. Mandatory digest computation of the revealed claim values by the Verifier
	8.2. Mandatory signing of the SD-JWT
	8.3. Manipulation of Disclosures
	8.4. Entropy of the salt
	8.5. Minimum length of the salt
	8.6. Choice of a Hash Algorithm
	8.7. Holder Binding
	8.8. Blinding Claim Names

	9. Privacy Considerations
	9.1. Confidentiality during Transport
	9.2. Decoy Digests
	9.3. Unlinkability

	10. Acknowledgements
	11. IANA Considerations
	12. Normative References
	13. Informative References
	Appendix A. Additional Examples
	A.1. Example 2a: Handling Structured Claims
	A.2. Example 2b: Adding Decoys
	A.3. Example 3 - Complex Structured SD-JWT
	A.4. Example 4 - W3C Verifiable Credentials Data Model (work in progress)

	Appendix B. Document History
	Authors' Addresses

