
Workgroup: Web Authorization Protocol

Internet-Draft:

draft-ietf-oauth-selective-disclosure-jwt-02

Published: 7 December 2022

Intended Status: Standards Track

Expires: 10 June 2023

Authors: D. Fett

yes.com

K. Yasuda

Microsoft

B. Campbell

Ping Identity

Selective Disclosure for JWTs (SD-JWT)

Abstract

This document specifies conventions for creating JSON Web Token

(JWT) documents that support selective disclosure of JWT claims.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Web Authorization

Protocol Working Group mailing list (oauth@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/oauth/.

Source for this draft and an issue tracker can be found at https://

github.com/oauth-wg/oauth-selective-disclosure-jwt.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/oauth/
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://github.com/oauth-wg/oauth-selective-disclosure-jwt
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Feature Summary

1.2. Conventions and Terminology

2. Terms and Definitions

3. Flow Diagram

4. Concepts

4.1. Creating an SD-JWT

4.2. Creating Holder-Selected Disclosures

4.3. Optional Holder Binding

4.4. Verifying Holder-Selected Disclosures

5. Data Formats

5.1. The Challenge of Canonicalization

5.2. Format of an SD-JWT

5.2.1. Selectively Disclosable Claims

5.2.2. Hash Function Claim

5.2.3. Holder Public Key Claim

5.3. Example 1: SD-JWT

5.4. Combined Format for Issuance

5.4.1. Example

5.5. Combined Format for Presentation

5.5.1. Enabling Holder Binding

5.5.2. Example

6. Verification and Processing

6.1. Processing by the Holder

6.2. Verification by the Verifier

7. Enveloping the Combined Format for Issuance and Presentation

8. Security Considerations

8.1. Mandatory digest computation of the revealed claim values by

the Verifier

8.2. Mandatory signing of the SD-JWT

8.3. Manipulation of Disclosures

8.4. Entropy of the salt

8.5. Minimum length of the salt

8.6. Choice of a Hash Algorithm

8.7. Holder Binding

8.8. Blinding Claim Names

¶

https://trustee.ietf.org/license-info

9. Privacy Considerations

9.1. Confidentiality during Transport

9.2. Decoy Digests

9.3. Unlinkability

10. Acknowledgements

11. IANA Considerations

12. Normative References

13. Informative References

Appendix A. Additional Examples

A.1. Example 2a: Handling Structured Claims

A.2. Example 2b: Adding Decoys

A.3. Example 3 - Complex Structured SD-JWT

A.4. Example 4 - W3C Verifiable Credentials Data Model (work in

progress)

Appendix B. Document History

Authors' Addresses

1. Introduction

The JSON-based representation of claims in a signed JSON Web Token

(JWT) [RFC7519] is secured against modification using JSON Web

Signature (JWS) [RFC7515] digital signatures. A consumer of a signed

JWT that has checked the signature can safely assume that the

contents of the token have not been modified. However, anyone

receiving an unencrypted JWT can read all of the claims and

likewise, anyone with the decryption key receiving an encrypted JWT

can also read all of the claims.

One of the common use cases of a signed JWT is representing a user's

identity. As long as the signed JWT is one-time use, it typically

only contains those claims the user has consented to disclose to a

specific Verifier. However, there is an increasing number of use

cases where a signed JWT is created once and then used a number of

times by the user (the "Holder" of the JWT). In such cases, the

signed JWT needs to contain the superset of all claims the user of

the signed JWT might want to disclose to Verifiers at some point.

The ability to selectively disclose a subset of these claims

depending on the Verifier becomes crucial to ensure minimum

disclosure and prevent Verifiers from obtaining claims irrelevant

for the transaction at hand.

One example of such a multi-use JWT is a verifiable credential, a

tamper-evident credential with a cryptographically verifiable

authorship that contains claims about a subject. SD-JWTs defined in

this document enable such selective disclosure of claims.

In an SD-JWT, claims can be hidden, but cryptographically protected

against undetected modification. When issuing the SD-JWT to the

Holder, the Issuer also sends the cleartext counterparts of all

¶

¶

¶

hidden claims, the so-called Disclosures, separate from the SD-JWT

itself.

The Holder decides which claims to disclose to a Verifier and

forwards the respective Disclosures together with the SD-JWT to the

Verifier. The Verifier has to verify that all disclosed claim values

were part of the original, Issuer-signed SD-JWT. The Verifier will

not, however, learn any claim values not disclosed in the

Disclosures.

While JWTs for claims describing natural persons are a common use

case, the mechanisms defined in this document can be used for many

other use cases as well.

This document also describes an optional mechanism for Holder

Binding, or the concept of binding an SD-JWT to key material

controlled by the Holder. The strength of the Holder Binding is

conditional upon the trust in the protection of the private key of

the key pair an SD-JWT is bound to.

This specification aims to be easy to implement and to leverage

established and widely used data formats and cryptographic

algorithms wherever possible.

1.1. Feature Summary

This specification defines

a format enabling selective disclosure for JWTs,

formats for associated data that enables disclosing claims,

and

formats for the combined transport of SD-JWTs and the

associated data.

The specification supports selectively disclosable claims in flat

data structures as well as more complex, nested data structures.

This specification enables combining selectively disclosable

claims with clear-text claims that are always disclosed.

For selectively disclosable claims, claim names are always

blinded.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

¶

* ¶

- ¶

-

¶

-

¶

*

¶

*

¶

*

¶

Selective disclosure:

Selectively Disclosable JWT (SD-JWT):

Disclosure:

Cryptographic Holder Binding:

Issuer:

Holder:

Verifier:

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

base64url denotes the URL-safe base64 encoding without padding

defined in Section 2 of [RFC7515].

2. Terms and Definitions

Process of a Holder disclosing to a Verifier

a subset of claims contained in a claim set issued by an Issuer.

An Issuer-created signed JWT

(JWS, [RFC7515]) that supports selective disclosure as defined in

this document and can contain both regular claims and digests of

selectively-disclosable claims.

A combination of a salt, a cleartext claim name, and a

cleartext claim value, all of which are used to calculate a

digest for the respective claim.

Ability of the Holder to prove

legitimate possession of an SD-JWT by proving control over the

same private key during the issuance and presentation. An SD-JWT

with Holder Binding contains a public key or a reference to a

public key that matches to the private key controlled by the

Holder.

An entity that creates SD-JWTs.

An entity that received SD-JWTs from the Issuer and has

control over them.

An entity that requests, checks and extracts the claims

from an SD-JWT and respective Disclosures.

Note: discuss if we want to include Client, Authorization Server for

the purpose of ensuring continuity and separating the entity from

the actor.

3. Flow Diagram

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: SD-JWT Issuance and Presentation Flow

4. Concepts

In the following, the contents of SD-JWTs and Disclosures are

described at a conceptual level, abstracting from the data formats

described afterwards.

4.1. Creating an SD-JWT

An SD-JWT, at its core, is a digitally signed document containing

digests over the claims (per claim: a random salt, the claim name

and the claim value). It MAY further contain clear-text claims that

are always disclosed to the Verifier. It MUST be digitally signed

using the Issuer's private key.

SD-CLAIMS is an array of digest values that ensure the integrity of

and map to the respective Disclosures. Digest values are calculated

 +------------+

 | |

 | Issuer |

 | |

 +------------+

 |

 Issues SD-JWT

 and Issuer-Issued Disclosures

 |

 v

 +------------+

 | |

 | Holder |

 | |

 +------------+

 |

 Presents SD-JWT

 and Holder-Selected Disclosures

 |

 v

 +-------------+

 | |+

 | Verifiers ||+

 | |||

 +-------------+||

 +-------------+|

 +-------------+

¶

¶

SD-JWT-DOC = (METADATA, SD-CLAIMS, NON-SD-CLAIMS)

SD-JWT = SD-JWT-DOC | SIG(SD-JWT-DOC, ISSUER-PRIV-KEY)

¶

over the Disclosures, each of which contains the claim name (CLAIM-

NAME), the claim value (CLAIM-VALUE), and a random salt (SALT).

Digests are calculated using a hash function:

SD-CLAIMS can also be nested deeper to capture more complex objects,

as will be shown later.

The Issuer further creates a set of Disclosures for all claims in

the SD-JWT. The Disclosures are sent to the Holder together with the

SD-JWT:

The SD-JWT and the Disclosures are sent to the Holder by the Issuer:

4.2. Creating Holder-Selected Disclosures

To disclose to a Verifier a subset of the SD-JWT claim values, a

Holder selects a subset of the Disclosures and sends it to the

Verifier along with the SD-JWT.

4.3. Optional Holder Binding

Some use-cases may require Holder Binding.

Cryptographic Holder Binding is an optional feature, but when it is

desired, SD-JWT must contain information about key material

controlled by the Holder:

Note: How the public key is included in SD-JWT is out of scope of

this document. It can be passed by value or by reference.

The Holder can then create a signed document HOLDER-BINDING-JWT

using its private key. This document contains some data provided by

¶

SD-CLAIMS = (

 HASH(SALT, CLAIM-NAME, CLAIM-VALUE)

)*

¶

¶

¶

DISCLOSURES = (

 (SALT, CLAIM-NAME, CLAIM-VALUE)

)*

¶

¶

COMBINED-ISSUANCE = SD-JWT | DISCLOSURES¶

¶

HOLDER-SELECTED-DISCLOSURES = (

 (SALT, CLAIM-NAME, CLAIM-VALUE)

)*

¶

COMBINED-PRESENTATION = SD-JWT | HOLDER-SELECTED-DISCLOSURES¶

¶

¶

SD-JWT-DOC = (METADATA, HOLDER-PUBLIC-KEY, SD-CLAIMS, NON-SD-CLAIMS)¶

¶

the Verifier (out of scope of this document) to ensure the freshness

of the signature, for example, a nonce and an indicator of the

intended audience for the document.

The Holder Binding JWT is sent to the Verifier along with the SD-JWT

and the Holder-Selected Disclosures.

Note that there may be other ways to send the Holder Binding JWT to

the Verifier or to prove Holder Binding. In these cases, inclusion

of the Holder Binding JWT in the COMBINED-PRESENTATION is not

required.

4.4. Verifying Holder-Selected Disclosures

At a high level, the Verifier

receives the COMBINED-PRESENTATION from the Holder and verifies

the signature of the SD-JWT using the Issuer's public key,

verifies the Holder Binding JWT, if Holder Binding is required by

the Verifier's policy, using the public key included in the SD-

JWT,

calculates the digests over the Holder-Selected Disclosures and

verifies that each digest is contained in the SD-JWT.

The detailed algorithm is described in Section 6.2.

5. Data Formats

This section defines data formats for SD-JWTs, Disclosures, Holder

Binding JWTs and formats for combining these elements for transport.

5.1. The Challenge of Canonicalization

When receiving an SD-JWT with associated Disclosures, a Verifier

must be able to re-compute digests of the disclosed claim values

and, given the same input values, obtain the same digest values as

signed by the Issuer.

Usually, JSON-based formats transport claim values as simple

properties of a JSON object such as this:

¶

HOLDER-BINDING-JWT-DOC = (NONCE, AUDIENCE)

HOLDER-BINDING-JWT = HOLDER-BINDING-JWT-DOC |

 SIG(HOLDER-BINDING-JWT-DOC, HOLDER-PRIV-KEY)

¶

¶

COMBINED-PRESENTATION = SD-JWT | HOLDER-SELECTED-DISCLOSURES | HOLDER-BINDING-JWT¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

However, a problem arises when computation over the data need to be

performed and verified, like signing or computing digests. Common

signature schemes require the same byte string as input to the

signature verification as was used for creating the signature. In

the digest approach outlined above, the same problem exists: for the

Issuer and the Verifier to arrive at the same digest, the same byte

string must be hashed.

JSON [RFC7159], however, does not prescribe a unique encoding for

data, but allows for variations in the encoded string. The data

above, for example, can be encoded as

or as

The two representations "M\u00f6bius" and "Möbius" are very

different on the byte-level, but yield equivalent objects. Same for

the representations of address, varying in white space and order of

elements in the object.

The variations in white space, ordering of object properties, and

encoding of Unicode characters are all allowed by the JSON

specification, including further variations, e.g., concerning

floating-point numbers, as described in [RFC8785]. Variations can be

introduced whenever JSON data is serialized or deserialized and

unless dealt with, will lead to different digests and the inability

to verify signatures.

...

 "family_name": "Möbius",

 "address": {

 "street_address": "Schulstr. 12",

 "locality": "Schulpforta"

 }

...

¶

¶

¶

...

"family_name": "M\u00f6bius",

"address": {

 "street_address": "Schulstr. 12",

 "locality": "Schulpforta"

}

...

¶

¶

...

"family_name": "Möbius",

"address": {"locality":"Schulpforta", "street_address":"Schulstr. 12"}

...

¶

¶

¶

There are generally two approaches to deal with this problem:

Canonicalization: The data is transferred in JSON format,

potentially introducing variations in its representation, but

is transformed into a canonical form before computing a digest.

Both the Issuer and the Verifier must use the same

canonicalization algorithm to arrive at the same byte string

for computing a digest.

Source string hardening: Instead of transferring data in a

format that may introduce variations, a representation of the

data is serialized. This representation is then used as the

hashing input at the Verifier, but also transferred to the

Verifier and used for the same digest calculcation there. This

means that the Verifier can easily compute and check the digest

of the byte string before finally deserializing and accessing

the data.

Mixed approaches are conceivable, i.e., transferring both the

original JSON data plus a string suitable for computing a digest,

but such approaches can easily lead to undetected inconsistencies

resulting in time-of-check-time-of-use type security

vulnerabilities.

In this specification, the source string hardening approach is used,

as it allows for simple and reliable interoperability without the

requirement for a canonicalization library. To harden the source

string, any serialization format that supports the necessary data

types could be used in theory, like protobuf, msgpack, or pickle. In

this specification, JSON is used and plain text values of each

Disclosure are encoded using base64url-encoding for transport. This

approach means that SD-JWTs can be implemented purely based on

widely available JWT, JSON, and Base64 encoding and decoding

libraries.

A Verifier can then easily check the digest over the source string

before extracting the original JSON data. Variations in the encoding

of the source string are implicitly tolerated by the Verifier, as

the digest is computed over a predefined byte string and not over a

JSON object.

It is important to note that the Disclosures are neither intended

nor suitable for direct consumption by an application that needs to

access the disclosed claim values after the verification by the

Verifier. The Disclosures are only intended to be used by a Verifier

to check the digests over the source strings and to extract the

original JSON data. The original JSON data is then used by the

application. See Section 6.2 for details.

¶

1.

¶

2.

¶

¶

¶

¶

¶

5.2. Format of an SD-JWT

An SD-JWT is a JWT that MUST be signed using the Issuer's private

key. The payload of an SD-JWT MUST contain the _sd_alg claim

described in the following, MAY contain one or more selectively

disclosable claims, and MAY contain a Holder's public key or a

reference thereto, as well as further claims such as iss, iat, etc.

as defined or required by the application using SD-JWTs.

5.2.1. Selectively Disclosable Claims

For each claim that is to be selectively disclosed, the Issuer

creates a Disclosure, hashes it, and includes the hash instead of

the original claim in the SD-JWT, as described next. The Disclosures

are then sent to the Holder.

5.2.1.1. Creating Disclosures

The Issuer MUST create a Disclosure for each selectively disclosable

claim as follows:

Create an array of three elements in this order:

A salt value. See Section 8.4 and Section 8.5 for security

considerations. The salt value MUST be unique for each claim

that is to be selectively disclosed. It is RECOMMENDED to

base64url-encode the salt value, producing a string. Any

other type that is allowed in JSON MAY be used, e.g., a

number.

The claim name, or key, as it would be used in a regular JWT

body. This MUST be a string.

The claim's value, as it would be used in a regular JWT

body. The value MAY be of any type that is allowed in JSON,

including numbers, strings, booleans, arrays, and objects.

JSON-encode the array such that an UTF-8 string is produced.

base64url-encode the byte representation of the UTF-8 string,

producing a US-ASCII [RFC0020] string. This string is the

Disclosure.

The order is decided based on the readability considerations: salts

would have a constant length within the SD-JWT, claim names would be

around the same length all the time, and claim values would vary in

size, potentially being large objects.

The following example illustrates the steps described above.

¶

¶

¶

* ¶

1.

¶

2.

¶

3.

¶

* ¶

*

¶

¶

¶

The array is created as follows:

The resulting Disclosure would be:

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVz

Il0

Note that the JSON encoding of the object is not canonicalized, so

variations in white space, encoding of Unicode characters, and

ordering of object properties are allowed. For example, the

following strings are all valid and encode the same claim value:

A different way to encode the umlaut (two dots ¨ placed over

the letter):

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNXHUwM

GY2Yml1cyJd

No white space:

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsImZhbWlseV9uYW1lIiwiTcO2Yml1c

yJd

Newline characters between elements:

WwoiXzI2YmM0TFQtYWM2cTJLSTZjQlc1ZXMiLAoiZmFtaWx5X25hbWUiLAoiTcO2Y

ml1cyIKXQ

5.2.1.2. Hashing Disclosures

For embedding the Disclosures in the SD-JWT, the Disclosures are

hashed using the hash algorithm specified in the _sd_alg claim

described below. The resulting digest is then included in the SD-JWT

instead of the original claim value, as described next.

The digest MUST be taken over the US-ASCII bytes of the base64url-

encoded Disclosure. This follows the convention in JWS [RFC7515] and

JWE [RFC7516]. The bytes of the digest MUST then be base64url-

encoded.

It is important to note that:

The input to the hash function is the base64url-encoded

Disclosure, not the bytes encoded by the base64url string.

The bytes of the output of the hash function are base64url-

encoded, not the bytes making up the (often used) hex

representation of the bytes of the digest.

For example, the SHA-256 digest of the Disclosure

WyI2cU1RdlJMNWhhaiIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVzIl0 would be

uutlBuYeMDyjLLTpf6Jxi7yNkEF35jdyWMn9U7b_RYY.

¶

["_26bc4LT-ac6q2KI6cBW5es", "family_name", "Möbius"]¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

5.2.1.3. Decoy Digests

An Issuer MAY add additional digests to the SD-JWT that are not

associated with any claim. The purpose of such "decoy" digests is to

make it more difficult for an attacker to see the original number of

claims contained in the SD-JWT. It is RECOMMENDED to create the

decoy digests by hashing over a cryptographically secure random

number. The bytes of the digest MUST then be base64url-encoded as

above. The same digest function as for the Disclosures MUST be used.

For decoy digests, no Disclosure is sent to the Holder, i.e., the

Holder will see digests that do not correspond to any Disclosure.

See Section 9.2 for additional privacy considerations.

To ensure readability and replicability, the examples in this

specification do not contain decoy digests unless explicitly stated.

5.2.1.4. Creating an SD-JWT

An SD-JWT is a JWT that MUST be signed using the Issuer's private

key.

An SD-JWT MAY contain both selectively disclosable claims and non-

selectively disclosable claims, i.e., claims that are always

contained in the SD-JWT in plaintext and are always visible to a

Verifier.

It is the Issuer who decides which claims are selectively

disclosable and which are not. However, claims controlling the

validity of the SD-JWT, such as iss, exp, or nbf are usually

included in plaintext. End-User claims MAY be included as plaintext

as well, e.g., if hiding the particular claims from the Verifier

does not make sense in the intended use case.

Claims that are not selectively disclosable are included in the SD-

JWT in plaintext just as they would be in any other JWT.

Selectively disclosable claims are omitted from the SD-JWT. Instead,

the digests of the respective Disclosures and potentially decoy

digests are contained as an array in a new JWT claim, _sd.

The _sd claim MUST be an array of strings, each string being a

digest of a Disclosure or a decoy digest as described above.

The array MAY be empty in case the Issuer decided not to selectively

disclose any of the claims at that level. However, it is RECOMMENDED

to omit _sd claim in this case to save space.

The Issuer MUST hide the original order of the claims in the array.

To ensure this, it is RECOMMENDED to shuffle the array of hashes,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e.g., by sorting it alphanumerically or randomly. The precise method

does not matter as long as it does not depend on the original order

of elements.

Issuers MUST NOT issue SD-JWTs where

the key _sd is already used for the purpose other than to contain

the array of digests, or

the claim value contained in a Disclosure contains (at the top

level or nested deeper) an object with an _sd key, or

the same Disclosure value appears more than once (in the same

array or in different arrays).

5.2.1.5. Nested Data in SD-JWTs

Just like any JWT, an SD-JWT MAY contain key value pairs where the

value is an object. For any object in an SD-JWT, the Issuer MAY

decide to either make the entire object selectively disclosable or

to make its properties selectively disclosable individually. In the

latter case, the Issuer MAY even choose to make some of the object's

properties selectively disclosable and others not.

In any case, the _sd claim MUST be included in the SD-JWT at the

same level as the original claim and therefore MAY appear multiple

times in an SD-JWT.

The following examples show some of the options an Issuer has when

producing an SD-JWT with the following End-User data.

Important: Throughout the examples in this document, line breaks had

to be added to JSON strings and base64-encoded strings (as shown in

the next example) to adhere to the 72 character limit for lines in

RFCs and for readability. JSON does not allow line breaks in

strings.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

{

 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

 "address": {

 "street_address": "Schulstr. 12",

 "locality": "Schulpforta",

 "region": "Sachsen-Anhalt",

 "country": "DE"

 }

}

¶

¶

5.2.1.5.1. Option 1: Flat SD-JWT

The Issuer can decide to treat the address claim as a block that can

either be disclosed completely or not at all. The following example

shows that in this case, the entire address claim is treated as an

object in the Disclosure.

The Issuer would create the following Disclosure:

Disclosure for address:

Contents:

SHA-256 Hash: vNhbLbXx6SFqIJZn5lNXyrASjpaXGUT2uNGuy_gSMbw

5.2.1.5.2. Option 2: Structured SD-JWT

The Issuer may instead decide to make the address claim contents

selectively disclosable individually:

¶

{

 "_sd": [

 "vNhbLbXx6SFqIJZn5lNXyrASjpaXGUT2uNGuy_gSMbw"

],

 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

WyJEa1daaVFLdW1SYXIzbHBmNHFFYlNBIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRy

ZXNzIjogIlNjaHVsc3RyLiAxMiIsICJsb2NhbGl0eSI6ICJTY2h1bHBmb3J0YSIsICJy

ZWdpb24iOiAiU2FjaHNlbi1BbmhhbHQiLCAiY291bnRyeSI6ICJERSJ9XQ

¶

¶

["DkWZiQKumRar3lpf4qEbSA", "address", {"street_address": "Schulstr.

12", "locality": "Schulpforta", "region": "Sachsen-Anhalt",

"country": "DE"}]

¶

¶

¶

In this case, the Issuer would use the following data in the

Disclosures for the address sub-claims:

Disclosure for street_address:

Contents:

SHA-256 Hash: pEtkKwoFK_JHN7yNby0Lc_Jc10BAxCm5yXJjDbVehvU

Disclosure for locality:

Contents:

SHA-256 Hash: nTzPZ3Q68z1Ko_9ao9LK0mSYXY5gY6UG6KEkQ_BdqU0

Disclosure for region:

Contents:

{

 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

 "address": {

 "_sd": [

 "7pHe1uQ5uSClgAxXdG0E6dKnBgXcxEO1zvoQO9E5Lr4",

 "9-VdSnvRTZNDo-4Bxcp3X-V9VtLOCRUkR6oLWZQl81I",

 "nTzPZ3Q68z1Ko_9ao9LK0mSYXY5gY6UG6KEkQ_BdqU0",

 "pEtkKwoFK_JHN7yNby0Lc_Jc10BAxCm5yXJjDbVehvU"

]

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

WyI0d3dqUzlyMm4tblBxdzNpTHR0TkFBIiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVs

c3RyLiAxMiJd

¶

¶

["4wwjS9r2n-nPqw3iLttNAA", "street_address", "Schulstr. 12"]¶

¶

¶

WyJXcEtIQmVTa3A5U2MyNVV4a1F1RmNRIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRh

Il0

¶

¶

["WpKHBeSkp9Sc25UxkQuFcQ", "locality", "Schulpforta"]¶

¶

¶

WyIzSl9xWGctdUwxYzdtN1FoT0hUNTJnIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFs

dCJd

¶

¶

["3J_qXg-uL1c7m7QhOHT52g", "region", "Sachsen-Anhalt"]¶

SHA-256 Hash: 9-VdSnvRTZNDo-4Bxcp3X-V9VtLOCRUkR6oLWZQl81I

Disclosure for country:

Contents:

SHA-256 Hash: 7pHe1uQ5uSClgAxXdG0E6dKnBgXcxEO1zvoQO9E5Lr4

5.2.1.5.3. Option 3: Structured SD-JWT, only some properties
selectively disclosable

The Issuer may also make one sub-claim of address non-selectively

disclosable and hide only the other sub-claims:

In this case, the Issuer would issue the following Disclosures:

Disclosure for street_address:

Contents:

SHA-256 Hash: ToD9fSNGo_SOCnTM0r0AaGjdHEIh4doXinCkKjR2fk4

Disclosure for locality:

¶

¶

WyIwN2U3bWY2YWpTUDJjZkQ3NmJCZE93IiwgImNvdW50cnkiLCAiREUiXQ¶

¶

["07e7mf6ajSP2cfD76bBdOw", "country", "DE"]¶

¶

¶

{

 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

 "address": {

 "_sd": [

 "ToD9fSNGo_SOCnTM0r0AaGjdHEIh4doXinCkKjR2fk4",

 "bIPnfvtg9QQSGd7W9srnYOVTK-sNUFz9kr1Js7XaU4E",

 "xWq47lkkG-K5CYfcWtHqwi9CbL9LCP3q8v5YsSlmoUQ"

],

 "country": "DE"

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

WyJkTWZMOXBrOVFXUUNPajJRVDA0c21BIiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVs

c3RyLiAxMiJd

¶

¶

["dMfL9pk9QWQCOj2QT04smA", "street_address", "Schulstr. 12"]¶

¶

¶

Contents:

SHA-256 Hash: bIPnfvtg9QQSGd7W9srnYOVTK-sNUFz9kr1Js7XaU4E

Disclosure for region:

Contents:

SHA-256 Hash: xWq47lkkG-K5CYfcWtHqwi9CbL9LCP3q8v5YsSlmoUQ

5.2.2. Hash Function Claim

The claim _sd_alg indicates the hash algorithm used by the Issuer to

generate the digests over the salts and the claim values.

The hash algorithm identifier MUST be a hash algorithm value from

the "Hash Name String" column in the IANA "Named Information Hash

Algorithm" registry [IANA.Hash.Algorithms].

To promote interoperability, implementations MUST support the

SHA-256 hash algorithm.

See Section 8 for requirements regarding entropy of the salt,

minimum length of the salt, and choice of a hash algorithm.

5.2.3. Holder Public Key Claim

If the Issuer wants to enable Holder Binding, it MAY include a

public key associated with the Holder, or a reference thereto.

It is out of the scope of this document to describe how the Holder

key pair is established. For example, the Holder MAY provide a key

pair to the Issuer, the Issuer MAY create the key pair for the

Holder, or Holder and Issuer MAY use pre-established key material.

Note: Examples in this document use cnf Claim defined in [RFC7800]

to include raw public key by value in SD-JWT.

WyJsNklkRC1FeDZ5eHFGck9DUjFNbktBIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRh

Il0

¶

¶

["l6IdD-Ex6yxqFrOCR1MnKA", "locality", "Schulpforta"]¶

¶

¶

WyI3WFB4R21ldC1vaWFoOEhDdmU3bTJBIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFs

dCJd

¶

¶

["7XPxGmet-oiah8HCve7m2A", "region", "Sachsen-Anhalt"]¶

¶

¶

¶

¶

¶

¶

¶

¶

5.3. Example 1: SD-JWT

This example uses the following object as the set of claims that the

Issuer is issuing:

The following non-normative example shows the payload of an SD-JWT.

The Issuer is using a flat structure in this case, i.e., all of the

claims in the address claim can only be disclosed in full.

¶

{

 "sub": "john_doe_42",

 "given_name": "John",

 "family_name": "Doe",

 "email": "johndoe@example.com",

 "phone_number": "+1-202-555-0101",

 "address": {

 "street_address": "123 Main St",

 "locality": "Anytown",

 "region": "Anystate",

 "country": "US"

 },

 "birthdate": "1940-01-01"

}

¶

¶

The SD-JWT is then signed by the Issuer to create a JWT like the

following:

{

 "_sd": [

 "NYCoSRKEYwXdpe5yduJXCxxhynEU8z-b4TyNiap77UY",

 "SY8n2BbkX9lrY3exHlSwPRFXoD09GF8a9CPO-G8j208",

 "TPsGNPYA46wmBxfv2znOJhfdoN5Y1GkezbpaGZCT1ac",

 "ZkSJxxeGluIdYBb7CqkZbJVm0w2V5UrReNTzAQCYBjw",

 "l9qIJ9JTQwLG7OLEICTFBVxmArw8Pjy65dD6mtQVG5c",

 "o1SAsJ33YMioO9pX5VeAM1lxuHF6hZW2kGdkKKBnVlo",

 "qqvcqnczAMgYx7EykI6wwtspyvyvK790ge7MBbQ-Nus"

],

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256",

 "cnf": {

 "jwk": {

 "kty": "RSA",

 "n": "pm4bOHBg-oYhAyPWzR56AWX3rUIXp11_ICDkGgS6W3ZWLts-hzwI3x65

 659kg4hVo9dbGoCJE3ZGF_eaetE30UhBUEgpGwrDrQiJ9zqprmcFfr3qvvkG

 jtth8Zgl1eM2bJcOwE7PCBHWTKWYs152R7g6Jg2OVph-a8rq-q79MhKG5QoW

 _mTz10QT_6H4c7PjWG1fjh8hpWNnbP_pv6d1zSwZfc5fl6yVRL0DV0V3lGHK

 e2Wqf_eNGjBrBLVklDTk8-stX_MWLcR-EGmXAOv0UBWitS_dXJKJu-vXJyw1

 4nHSGuxTIK2hx1pttMft9CsvqimXKeDTU14qQL1eE7ihcw",

 "e": "AQAB"

 }

 }

}

¶

¶

The Issuer creates the following Disclosures:

Disclosure for sub:

Contents:

SHA-256 Hash: ZkSJxxeGluIdYBb7CqkZbJVm0w2V5UrReNTzAQCYBjw

Disclosure for given_name:

Contents:

SHA-256 Hash: qqvcqnczAMgYx7EykI6wwtspyvyvK790ge7MBbQ-Nus

Disclosure for family_name:

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJfc2QiOiBbIk5ZQ29TUktFWXdYZHBlNXlkdUpYQ

3h4aHluRVU4ei1iNFR5TmlhcDc3VVkiLCAiU1k4bjJCYmtYOWxyWTNleEhsU3dQUkZYb

0QwOUdGOGE5Q1BPLUc4ajIwOCIsICJUUHNHTlBZQTQ2d21CeGZ2MnpuT0poZmRvTjVZM

UdrZXpicGFHWkNUMWFjIiwgIlprU0p4eGVHbHVJZFlCYjdDcWtaYkpWbTB3MlY1VXJSZ

U5UekFRQ1lCanciLCAibDlxSUo5SlRRd0xHN09MRUlDVEZCVnhtQXJ3OFBqeTY1ZEQ2b

XRRVkc1YyIsICJvMVNBc0ozM1lNaW9POXBYNVZlQU0xbHh1SEY2aFpXMmtHZGtLS0JuV

mxvIiwgInFxdmNxbmN6QU1nWXg3RXlrSTZ3d3RzcHl2eXZLNzkwZ2U3TUJiUS1OdXMiX

SwgImlzcyI6ICJodHRwczovL2V4YW1wbGUuY29tL2lzc3VlciIsICJpYXQiOiAxNTE2M

jM5MDIyLCAiZXhwIjogMTUxNjI0NzAyMiwgIl9zZF9hbGciOiAic2hhLTI1NiIsICJjb

mYiOiB7Imp3ayI6IHsia3R5IjogIlJTQSIsICJuIjogInBtNGJPSEJnLW9ZaEF5UFd6U

jU2QVdYM3JVSVhwMTFfSUNEa0dnUzZXM1pXTHRzLWh6d0kzeDY1NjU5a2c0aFZvOWRiR

29DSkUzWkdGX2VhZXRFMzBVaEJVRWdwR3dyRHJRaUo5enFwcm1jRmZyM3F2dmtHanR0a

DhaZ2wxZU0yYkpjT3dFN1BDQkhXVEtXWXMxNTJSN2c2SmcyT1ZwaC1hOHJxLXE3OU1oS

0c1UW9XX21UejEwUVRfNkg0YzdQaldHMWZqaDhocFdObmJQX3B2NmQxelN3WmZjNWZsN

nlWUkwwRFYwVjNsR0hLZTJXcWZfZU5HakJyQkxWa2xEVGs4LXN0WF9NV0xjUi1FR21YQ

U92MFVCV2l0U19kWEpLSnUtdlhKeXcxNG5IU0d1eFRJSzJoeDFwdHRNZnQ5Q3N2cWltW

EtlRFRVMTRxUUwxZUU3aWhjdyIsICJlIjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqdc

q_elaIGxM6Z-RyuysglGyddR1O1IiE3mIk8kCpoqcRLR88opkVWN2392K_XYfAuAmeT9

kJVisD8ZcgNcv-MQlWW9s8WaViXxBRe7EZWkWRQcQVR6jf95XZ5H2-_KA54POq3L42xj

k0y5vDr8yc08Reak6vvJVvjXpp-Wk6uxsdEEAKFspt_EYIvISFJhfTuQqyhCjnaW13X3

12MSQBPwjbHn74ylUqVLljDvqcemxeqjh42KWJq4C3RqNJ7anA2i3FU1kB4-KNZWsijY

7-op49iL7BrnIBxdlAMrbHEkoGTbFWdl7Ki17GHtDxxa1jaxQg

¶

¶

¶

WyJkcVR2WE14UzBHYTNEb2FHbmU5eDBRIiwgInN1YiIsICJqb2huX2RvZV80MiJd¶

¶

["dqTvXMxS0Ga3DoaGne9x0Q", "sub", "john_doe_42"]¶

¶

¶

WyIzanFjYjY3ejl3a3MwOHp3aUs3RXlRIiwgImdpdmVuX25hbWUiLCAiSm9obiJd¶

¶

["3jqcb67z9wks08zwiK7EyQ", "given_name", "John"]¶

¶

¶

WyJxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImZhbWlseV9uYW1lIiwgIkRvZSJd¶

Contents:

SHA-256 Hash: l9qIJ9JTQwLG7OLEICTFBVxmArw8Pjy65dD6mtQVG5c

Disclosure for email:

Contents:

SHA-256 Hash: o1SAsJ33YMioO9pX5VeAM1lxuHF6hZW2kGdkKKBnVlo

Disclosure for phone_number:

Contents:

SHA-256 Hash: SY8n2BbkX9lrY3exHlSwPRFXoD09GF8a9CPO-G8j208

Disclosure for address:

Contents:

SHA-256 Hash: TPsGNPYA46wmBxfv2znOJhfdoN5Y1GkezbpaGZCT1ac

Disclosure for birthdate:

Contents:

SHA-256 Hash: NYCoSRKEYwXdpe5yduJXCxxhynEU8z-b4TyNiap77UY

¶

["qQWmjJl1s1R4lqhENLRrrw", "family_name", "Doe"]¶

¶

¶

WyJLVXhTNWhFX1hiVmFjckdBYzdFRnd3IiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBs

ZS5jb20iXQ

¶

¶

["KUxS5hE_XbVacrGAc7EFww", "email", "johndoe@example.com"]¶

¶

¶

WyIzcXZWSjFCQURwSERTUzkzOVEtUml3IiwgInBob25lX251bWJlciIsICIrMS0yMDIt

NTU1LTAxMDEiXQ

¶

¶

["3qvVJ1BADpHDSS939Q-Riw", "phone_number", "+1-202-555-0101"]¶

¶

¶

WyIweEd6bjNNaXFzY3RaSV9PcERsQWJRIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRy

ZXNzIjogIjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9u

IjogIkFueXN0YXRlIiwgImNvdW50cnkiOiAiVVMifV0

¶

¶

["0xGzn3MiqsctZI_OpDlAbQ", "address", {"street_address": "123 Main

St", "locality": "Anytown", "region": "Anystate", "country": "US"}]

¶

¶

¶

WyJFUktNMENOZUZKa2FENW1UWFZfWDh3IiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAx

Il0

¶

¶

["ERKM0CNeFJkaD5mTXV_X8w", "birthdate", "1940-01-01"]¶

¶

5.4. Combined Format for Issuance

Besides the SD-JWT itself, the Holder needs to learn the raw claim

values that are contained in the SD-JWT, along with the precise

input to the digest calculation and the salts. To this end, the

Issuer sends the Disclosure objects that were also used for the hash

calculation, as described in Section 5.2.1.1, to the Holder.

The data format for sending the SD-JWT and the Disclosures to the

Holder is as follows:

This is called the Combined Format for Issuance.

The Disclosures and SD-JWT are implicitly linked through the digest

values of the Disclosures included in the SD-JWT.

5.4.1. Example

For Example 1, the Combined Format for Issuance looks as follows:

¶

¶

<SD-JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>¶

¶

¶

¶

(Line breaks for presentation only.)

5.5. Combined Format for Presentation

For presentation to a Verifier, the Holder sends the SD-JWT and a

selected subset of the Disclosures to the Verifier.

The data format for sending the SD-JWT and the Disclosures to the

Verifier is as follows (line break added for readability):

This is called the Combined Format for Presentation.

The Holder MAY send any subset of the Disclosures to the Verifier,

i.e., none, multiple, or all Disclosures.

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJfc2QiOiBbIk5ZQ29TUktFWXdYZHBlNXlkdUpYQ

3h4aHluRVU4ei1iNFR5TmlhcDc3VVkiLCAiU1k4bjJCYmtYOWxyWTNleEhsU3dQUkZYb

0QwOUdGOGE5Q1BPLUc4ajIwOCIsICJUUHNHTlBZQTQ2d21CeGZ2MnpuT0poZmRvTjVZM

UdrZXpicGFHWkNUMWFjIiwgIlprU0p4eGVHbHVJZFlCYjdDcWtaYkpWbTB3MlY1VXJSZ

U5UekFRQ1lCanciLCAibDlxSUo5SlRRd0xHN09MRUlDVEZCVnhtQXJ3OFBqeTY1ZEQ2b

XRRVkc1YyIsICJvMVNBc0ozM1lNaW9POXBYNVZlQU0xbHh1SEY2aFpXMmtHZGtLS0JuV

mxvIiwgInFxdmNxbmN6QU1nWXg3RXlrSTZ3d3RzcHl2eXZLNzkwZ2U3TUJiUS1OdXMiX

SwgImlzcyI6ICJodHRwczovL2V4YW1wbGUuY29tL2lzc3VlciIsICJpYXQiOiAxNTE2M

jM5MDIyLCAiZXhwIjogMTUxNjI0NzAyMiwgIl9zZF9hbGciOiAic2hhLTI1NiIsICJjb

mYiOiB7Imp3ayI6IHsia3R5IjogIlJTQSIsICJuIjogInBtNGJPSEJnLW9ZaEF5UFd6U

jU2QVdYM3JVSVhwMTFfSUNEa0dnUzZXM1pXTHRzLWh6d0kzeDY1NjU5a2c0aFZvOWRiR

29DSkUzWkdGX2VhZXRFMzBVaEJVRWdwR3dyRHJRaUo5enFwcm1jRmZyM3F2dmtHanR0a

DhaZ2wxZU0yYkpjT3dFN1BDQkhXVEtXWXMxNTJSN2c2SmcyT1ZwaC1hOHJxLXE3OU1oS

0c1UW9XX21UejEwUVRfNkg0YzdQaldHMWZqaDhocFdObmJQX3B2NmQxelN3WmZjNWZsN

nlWUkwwRFYwVjNsR0hLZTJXcWZfZU5HakJyQkxWa2xEVGs4LXN0WF9NV0xjUi1FR21YQ

U92MFVCV2l0U19kWEpLSnUtdlhKeXcxNG5IU0d1eFRJSzJoeDFwdHRNZnQ5Q3N2cWltW

EtlRFRVMTRxUUwxZUU3aWhjdyIsICJlIjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqdc

q_elaIGxM6Z-RyuysglGyddR1O1IiE3mIk8kCpoqcRLR88opkVWN2392K_XYfAuAmeT9

kJVisD8ZcgNcv-MQlWW9s8WaViXxBRe7EZWkWRQcQVR6jf95XZ5H2-_KA54POq3L42xj

k0y5vDr8yc08Reak6vvJVvjXpp-Wk6uxsdEEAKFspt_EYIvISFJhfTuQqyhCjnaW13X3

12MSQBPwjbHn74ylUqVLljDvqcemxeqjh42KWJq4C3RqNJ7anA2i3FU1kB4-KNZWsijY

7-op49iL7BrnIBxdlAMrbHEkoGTbFWdl7Ki17GHtDxxa1jaxQg~WyJkcVR2WE14UzBHY

TNEb2FHbmU5eDBRIiwgInN1YiIsICJqb2huX2RvZV80MiJd~WyIzanFjYjY3ejl3a3Mw

OHp3aUs3RXlRIiwgImdpdmVuX25hbWUiLCAiSm9obiJd~WyJxUVdtakpsMXMxUjRscWh

FTkxScnJ3IiwgImZhbWlseV9uYW1lIiwgIkRvZSJd~WyJLVXhTNWhFX1hiVmFjckdBYz

dFRnd3IiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ~WyIzcXZWSjFCQUR

wSERTUzkzOVEtUml3IiwgInBob25lX251bWJlciIsICIrMS0yMDItNTU1LTAxMDEiXQ~

WyIweEd6bjNNaXFzY3RaSV9PcERsQWJRIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRy

ZXNzIjogIjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9u

IjogIkFueXN0YXRlIiwgImNvdW50cnkiOiAiVVMifV0~WyJFUktNMENOZUZKa2FENW1U

WFZfWDh3IiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0

¶

¶

¶

¶

<SD-JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure M>~<optional Holder Binding JWT>¶

¶

¶

A Holder MUST NOT send a Disclosure that was not included in the SD-

JWT or send a Disclosure more than once.

5.5.1. Enabling Holder Binding

The Holder MAY add an optional JWT to prove Holder Binding to the

Verifier. The precise contents of the JWT are out of scope of this

specification. Usually, a nonce and aud claim are included to show

that the proof is intended for the Verifier and to prevent replay

attacks. How the nonce or other claims are obtained by the Holder is

out of scope of this specification.

Example Holder Binding JWT payload:

Which is then signed by the Holder to create a JWT like the

following:

Whether to require Holder Binding is up to the Verifier's policy,

based on the set of trust requirements such as trust frameworks it

belongs to.

Other ways of proving Holder Binding MAY be used when supported by

the Verifier, e.g., when the Combined Format for Presentation is

itself embedded in a signed JWT. See Section 7 for details.

If no Holder Binding JWT is included, the Combined Format for

Presentation ends with the ~ character after the last Disclosure.

5.5.2. Example

The following is a non-normative example of the contents of a

Presentation for Example 1, disclosing the claims given_name,

family_name, and address, as it would be sent from the Holder to the

¶

¶

¶

{

 "nonce": "XZOUco1u_gEPknxS78sWWg",

 "aud": "https://example.com/verifier",

 "iat": 1670366430

}

¶

¶

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogIkxkeVRYd0F5ZnJpcjRfVjZORzFSYzEwVThK

ZExZVHJFQktKaF9oNWlfclUifQ.eyJub25jZSI6ICJYWk9VY28xdV9nRVBrbnhTNzhzV

1dnIiwgImF1ZCI6ICJodHRwczovL2V4YW1wbGUuY29tL3ZlcmlmaWVyIiwgImlhdCI6I

DE2NzAzNjY0MzB9.aJ1HRh21dXP2_pMCHmkqNKaDN25aKuJGiTu2XKOegQ2xjZ_OzLu5

_6gNy0qMhJIXb28-uQc7pMpWMZqkQLV3d7HGBiqiA71RsYYUCF-4VYrFNFb63HQxOHTc

u-nXALwbJgBSbQXKjdpjOj6NrIwItQNh7_EQ3vrf7E0_exmkNoZxy0QCGqApAwUtiLtw

QDExM9UYgms_ayPDZ3TJVcWHd9UtQTJugF4fTCJnq6TQLKuUioK-kLAbDuRamnOpQ5d6

Rbz3NHWdVp3nHM6bgh_3Y0zBFdg6VsmAXvnoIN9b2jzSemNNAniAsalmd4X5pwzyK1TU

HFJm-ib_kFf2G7Iapw

¶

¶

¶

¶

Verifier. The Holder Binding JWT as shown before is included as the

last element.

6. Verification and Processing

6.1. Processing by the Holder

The Holder MUST perform the following (or equivalent) steps when

receiving a Combined Format for Issuance:

Separate the SD-JWT and the Disclosures in the Combined Format

for Issuance.

¶

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJfc2QiOiBbIk5ZQ29TUktFWXdYZHBlNXlkdUpYQ

3h4aHluRVU4ei1iNFR5TmlhcDc3VVkiLCAiU1k4bjJCYmtYOWxyWTNleEhsU3dQUkZYb

0QwOUdGOGE5Q1BPLUc4ajIwOCIsICJUUHNHTlBZQTQ2d21CeGZ2MnpuT0poZmRvTjVZM

UdrZXpicGFHWkNUMWFjIiwgIlprU0p4eGVHbHVJZFlCYjdDcWtaYkpWbTB3MlY1VXJSZ

U5UekFRQ1lCanciLCAibDlxSUo5SlRRd0xHN09MRUlDVEZCVnhtQXJ3OFBqeTY1ZEQ2b

XRRVkc1YyIsICJvMVNBc0ozM1lNaW9POXBYNVZlQU0xbHh1SEY2aFpXMmtHZGtLS0JuV

mxvIiwgInFxdmNxbmN6QU1nWXg3RXlrSTZ3d3RzcHl2eXZLNzkwZ2U3TUJiUS1OdXMiX

SwgImlzcyI6ICJodHRwczovL2V4YW1wbGUuY29tL2lzc3VlciIsICJpYXQiOiAxNTE2M

jM5MDIyLCAiZXhwIjogMTUxNjI0NzAyMiwgIl9zZF9hbGciOiAic2hhLTI1NiIsICJjb

mYiOiB7Imp3ayI6IHsia3R5IjogIlJTQSIsICJuIjogInBtNGJPSEJnLW9ZaEF5UFd6U

jU2QVdYM3JVSVhwMTFfSUNEa0dnUzZXM1pXTHRzLWh6d0kzeDY1NjU5a2c0aFZvOWRiR

29DSkUzWkdGX2VhZXRFMzBVaEJVRWdwR3dyRHJRaUo5enFwcm1jRmZyM3F2dmtHanR0a

DhaZ2wxZU0yYkpjT3dFN1BDQkhXVEtXWXMxNTJSN2c2SmcyT1ZwaC1hOHJxLXE3OU1oS

0c1UW9XX21UejEwUVRfNkg0YzdQaldHMWZqaDhocFdObmJQX3B2NmQxelN3WmZjNWZsN

nlWUkwwRFYwVjNsR0hLZTJXcWZfZU5HakJyQkxWa2xEVGs4LXN0WF9NV0xjUi1FR21YQ

U92MFVCV2l0U19kWEpLSnUtdlhKeXcxNG5IU0d1eFRJSzJoeDFwdHRNZnQ5Q3N2cWltW

EtlRFRVMTRxUUwxZUU3aWhjdyIsICJlIjogIkFRQUIifX19.xqgKrDO6dK_oBL3fiqdc

q_elaIGxM6Z-RyuysglGyddR1O1IiE3mIk8kCpoqcRLR88opkVWN2392K_XYfAuAmeT9

kJVisD8ZcgNcv-MQlWW9s8WaViXxBRe7EZWkWRQcQVR6jf95XZ5H2-_KA54POq3L42xj

k0y5vDr8yc08Reak6vvJVvjXpp-Wk6uxsdEEAKFspt_EYIvISFJhfTuQqyhCjnaW13X3

12MSQBPwjbHn74ylUqVLljDvqcemxeqjh42KWJq4C3RqNJ7anA2i3FU1kB4-KNZWsijY

7-op49iL7BrnIBxdlAMrbHEkoGTbFWdl7Ki17GHtDxxa1jaxQg~WyIweEd6bjNNaXFzY

3RaSV9PcERsQWJRIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjogIjEyMyBNY

WluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFueXN0YXRlI

iwgImNvdW50cnkiOiAiVVMifV0~WyJxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImZhb

WlseV9uYW1lIiwgIkRvZSJd~WyIzanFjYjY3ejl3a3MwOHp3aUs3RXlRIiwgImdpdmVu

X25hbWUiLCAiSm9obiJd~eyJhbGciOiAiUlMyNTYiLCAia2lkIjogIkxkeVRYd0F5ZnJ

pcjRfVjZORzFSYzEwVThKZExZVHJFQktKaF9oNWlfclUifQ.eyJub25jZSI6ICJYWk9V

Y28xdV9nRVBrbnhTNzhzV1dnIiwgImF1ZCI6ICJodHRwczovL2V4YW1wbGUuY29tL3Zl

cmlmaWVyIiwgImlhdCI6IDE2NzAzNjY0MzB9.aJ1HRh21dXP2_pMCHmkqNKaDN25aKuJ

GiTu2XKOegQ2xjZ_OzLu5_6gNy0qMhJIXb28-uQc7pMpWMZqkQLV3d7HGBiqiA71RsYY

UCF-4VYrFNFb63HQxOHTcu-nXALwbJgBSbQXKjdpjOj6NrIwItQNh7_EQ3vrf7E0_exm

kNoZxy0QCGqApAwUtiLtwQDExM9UYgms_ayPDZ3TJVcWHd9UtQTJugF4fTCJnq6TQLKu

UioK-kLAbDuRamnOpQ5d6Rbz3NHWdVp3nHM6bgh_3Y0zBFdg6VsmAXvnoIN9b2jzSemN

NAniAsalmd4X5pwzyK1TUHFJm-ib_kFf2G7Iapw

¶

¶

1.

¶

Hash all of the Disclosures separately.

Find the places in the SD-JWT where the digests of the

Disclosures are included. If any of the digests cannot be found

in the SD-JWT, the Holder MUST reject the SD-JWT.

Decode Disclosures and obtain plaintext of the claim values.

It is up to the Holder how to maintain the mapping between the

Disclosures and the plaintext claim values to be able to display

them to the End-User when needed.

For presentation to a Verifier, the Holder MUST perform the

following (or equivalent) steps:

Decide which Disclosures to release to the Verifier, obtaining

proper End-User consent if necessary.

If Holder Binding is required, create a Holder Binding JWT.

Create the Combined Format for Presentation, including the

selected Disclosures and, if applicable, the Holder Binding

JWT.

Send the Presentation to the Verifier.

6.2. Verification by the Verifier

Upon receiving a Presentation, Verifiers MUST ensure that

the SD-JWT is valid, i.e., it is signed by the Issuer and the

signature is valid,

all Disclosures are correct, i.e., their digests are referenced

in the SD-JWT, and

if Holder Binding is required, the Holder Binding JWT is signed

by the Holder and valid.

To this end, Verifiers MUST follow the following steps (or

equivalent):

Determine if Holder Binding is to be checked according to the

Verifier's policy for the use case at hand. This decision MUST

NOT be based on whether a Holder Binding JWT is provided by the

Holder or not. Refer to Section 8.7 for details.

Separate the Presentation into the SD-JWT, the Disclosures (if

any), and the Holder Binding JWT (if provided).

2. ¶

3.

¶

4. ¶

¶

¶

1.

¶

2. ¶

3.

¶

4. ¶

¶

*

¶

*

¶

*

¶

¶

1.

¶

2.

¶

Validate the SD-JWT:

Ensure that a signing algorithm was used that was deemed

secure for the application. Refer to [RFC8725], Sections

3.1 and 3.2 for details. The none algorithm MUST NOT be

accepted.

Validate the signature over the SD-JWT.

Validate the Issuer of the SD-JWT and that the signing key

belongs to this Issuer.

Check that the SD-JWT is valid using nbf, iat, and exp

claims, if provided in the SD-JWT, and not selectively

disclosed.

Check that the _sd_alg claim is present and its value is

understood and the hash algorithm is deemed secure.

Create a copy of the SD-JWT payload, if required for further

processing.

Process the Disclosures. For each Disclosure provided:

Calculate the digest over the base64url string as

described in Section 5.2.1.2.

Find all _sd keys in the SD-JWT payload that contain a

digest calculated in the previous step. Note that there

might be more than one _sd arrays in on SD-JWT.

If the digest cannot be found in the SD-JWT payload,

the Verifier MUST reject the Presentation.

If there is more than one place where the digest is

included, the Verifier MUST reject the Presentation.

If there is a key _sd that does not refer to an

array, the Verifier MUST reject the Presentation.

Otherwise, insert, at the level of the _sd claim, the

claim described by the Disclosure with the claim name

and claim value provided in the Disclosure.

If the Disclosure is not a JSON-encoded array of

three elements, the Verifier MUST reject the

Presentation.

If the claim name already exists at the same

level, the Verifier MUST reject the

3. ¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

4.

¶

5. ¶

1.

¶

2.

¶

1.

¶

2.

¶

3.

¶

4.

¶

1.

¶

2.

Presentation. Note that this also means that if

a Holder sends the same Disclosure multiple

times, the Verifier MUST reject the

Presentation.

If the claim value contains an object with an

_sd key (at the top level or nested deeper), the

Verifier MUST reject the Presentation.

Remove all _sd claims from the SD-JWT payload.

Remove the claim _sd_alg from the SD-JWT payload.

If Holder Binding is required:

If Holder Binding is provided by means not defined in this

specification, verify the Holder Binding according to the

method used.

Otherwise, verify the Holder Binding JWT as follows:

If Holder Binding JWT is not provided, the Verifier

MUST reject the Presentation.

Determine the public key for the Holder from the SD-

JWT.

Ensure that a signing algorithm was used that was

deemed secure for the application. Refer to

[RFC8725], Sections 3.1 and 3.2 for details. The none

algorithm MUST NOT be accepted.

Validate the signature over the Holder Binding JWT.

Check that the Holder Binding JWT is valid using nbf,

iat, and exp claims, if provided in the Holder

Binding JWT.

Determine that the Holder Binding JWT is bound to the

current transaction and was created for this Verifier

(replay protection). This is usually achieved by a

nonce and aud field within the Holder Binding JWT.

If any step fails, the Presentation is not valid and processing MUST

be aborted.

Otherwise, the processed SD-JWT payload can be passed to the

application to be used for the intended purpose.

¶

3.

¶

3. ¶

4. ¶

6. ¶

1.

¶

2. ¶

1.

¶

2.

¶

3.

¶

4. ¶

5.

¶

6.

¶

¶

¶

7. Enveloping the Combined Format for Issuance and Presentation

In some applications or transport protocols, it is desirable to put

an SD-JWT and associated Disclosures into a JWT container. For

example, an implementation may envelope all credentials and

presentations, independent of their format, in a JWT to enable

application-layer encryption during transport.

For such use cases, the SD-JWT and the respective Disclosures SHOULD

be transported as a single string using the Combined Formats for

Issuance and Presentation, respectively. Holder Binding MAY be

achieved by signing the envelope JWT instead of adding a separate

Holder Binding JWT as described in Section 5.5.1.

The claim _sd_jwt SHOULD be used when transporting a Combined Format

unless the application or protocol defines a different claim name.

The following non-normative example shows a Combined Format for

Presentation enveloped in a JWT payload:

Here, eyJhbGci...emhlaUJhZzBZ represents the SD-JWT and

eyJhb...dYALCGg represents a Disclosure. The Combined Format for

Presentation does not contain a Holder Binding JWT as the outer

container can be signed instead.

8. Security Considerations

8.1. Mandatory digest computation of the revealed claim values by the

Verifier

ToDo: add text explaining mechanisms that should be adopted to

ensure that Verifiers validate the claim values received in HS-

Disclosures JWT by calculating the digests of those values and

comparing them with the digests in the SD-JWT: - create a test suite

that forces digest computation by the Verifiers, and includes

negative test cases in test vectors - use only implementations/

libraries that are compliant to the test suite - etc.

¶

¶

¶

¶

{

 "iss": "https://holder.example.com",

 "sub": "did:example:123",

 "aud": "https://verifier.example.com",

 "exp": 1590000000,

 "iat": 1580000000,

 "nbf": 1580000000,

 "jti": "urn:uuid:12345678-1234-1234-1234-123456789012",

 "_sd_jwt": "eyJhbGci...emhlaUJhZzBZ~eyJhb...dYALCGg~"

}

¶

¶

¶

8.2. Mandatory signing of the SD-JWT

The SD-JWT MUST be signed by the Issuer to protect integrity of the

issued claims. An attacker can modify or add claims if an SD-JWT is

not signed (e.g., change the "email" attribute to take over the

victim's account or add an attribute indicating a fake academic

qualification).

The Verifier MUST always check the SD-JWT signature to ensure that

the SD-JWT has not been tampered with since its issuance. If the

signature on the SD-JWT cannot be verified, the SD-JWT MUST be

rejected.

8.3. Manipulation of Disclosures

Holders can manipulate the Disclosures by changing the values of the

claims before sending them to the Issuer. The Issuer MUST check the

Disclosures to ensure that the values of the claims are correct,

i.e., the digests of the Disclosures are actually present in the

signed SD-JWT.

A naive Verifier that extracts all claim values from the Disclosures

(without checking the hashes) and inserts them into the SD-JWT

payload is vulnerable to this attack. However, in a structured SD-

JWT, without comparing the digests of the Disclosures, such an

implementation could not determine the correct place in a nested

object where a claim needs to be inserted. Therefore, the naive

implementation would not only be insecure, but also incorrect.

The steps described in Section 6.2 ensure that the Verifier checks

the Disclosures correctly.

8.4. Entropy of the salt

The security model that conceals the plaintext claims relies on the

fact that the salt cannot be learned or guessed by the attacker. It

is vitally important to adhere to this principle. As such, the salt

MUST be created in such a manner that it is cryptographically

random, long enough and has high entropy that it is not practical

for the attacker to guess. A new salt MUST be chosen for each claim.

8.5. Minimum length of the salt

The RECOMMENDED minimum length of the randomly-generated portion of

the salt is 128 bits.

The Issuer MUST ensure that a new salt value is chosen for each

claim, including when the same claim name occurs at different places

in the structure of the SD-JWT. This can be seen in Example 3 in the

¶

¶

¶

¶

¶

¶

¶

Appendix, where multiple claims with the name type appear, but each

of them has a different salt.

8.6. Choice of a Hash Algorithm

For the security of this scheme, the hash algorithm is required to

be preimage and collision resistant, i.e., it is infeasible to

calculate the salt and claim value that result in a particular

digest, and it is infeasible to find a different salt and claim

value pair that result in a matching digest, respectively.

Furthermore the hash algorithms MD2, MD4, MD5, RIPEMD-160, and SHA-1

revealed fundamental weaknesses and they MUST NOT be used.

8.7. Holder Binding

Verifiers MUST decide whether Holder Binding is required for a

particular use case or not before verifying a credential. This

decision can be informed by various factors including, but not

limited to the following: business requirements, the use case, the

type of binding between a Holder and its credential that is required

for a use case, the sensitivity of the use case, the expected

properties of a credential, the type and contents of other

credentials expected to be presented at the same time, etc.

This can be showcased based on two scenarios for a mobile driver's

license use case for SD-JWT:

Scenario A: For the verification of the driver's license when

stopped by a police officer for exceeding a speed limit, Holder

Binding may be necessary to ensure that the person driving the car

and presenting the license is the actual Holder of the license. The

Verifier (e.g., the software used by the police officer) will ensure

that a Holder Binding JWT is present and signed with the Holder's

private key.

Scenario B: A rental car agency may want to ensure, for insurance

purposes, that all drivers named on the rental contract own a

government-issued driver's license. The signer of the rental

contract can present the mobile driver's license of all named

drivers. In this case, the rental car agency does not need to check

Holder Binding as the goal is not to verify the identity of the

person presenting the license, but to verify that a license exists

and is valid.

It is important that a Verifier does not make its security policy

decisions based on data that can be influenced by an attacker or

that can be misinterpreted. For this reason, when deciding whether

¶

¶

¶

¶

¶

¶

¶

Holder binding is required or not, Verifiers MUST NOT take into

account

whether an Holder Binding JWT is present or not, as an attacker

can remove the Holder Binding JWT from any Presentation and

present it to the Verifier, or

whether a key reference is present in the SD-JWT or not, as the

Issuer might have added the key to the SD-JWT in a format/claim

that is not recognized by the Verifier.

If a Verifier has decided that Holder Binding is required for a

particular use case and the Holder Binding is not present, does not

fulfill the requirements (e.g., on the signing algorithm), or no

recognized key reference is present in the SD-JWT, the Verifier will

reject the presentation, as described in Section 6.2.

8.8. Blinding Claim Names

SD-JWT ensures that names of claims that are selectively disclosable

are always blinded. This prevents an attacker from learning the

names of the disclosable claims. However, the names of the claims

that are not disclosable are not blinded. This includes the keys of

objects that themselves are not blinded, but contain disclosable

claims. This limitation needs to be taken into account by Issuers

when creating the structure of the SD-JWT.

9. Privacy Considerations

9.1. Confidentiality during Transport

If the SD-JWT and associated Disclosures are transmitted over an

insecure channel during issuance or presentation, an adversary may

be able to intercept and read the End-User's personal data or

correlate the information with previous uses of the same SD-JWT.

Usually, transport protocols for issuance and presentation of

credentials are designed to protect the confidentiality of the

transmitted data, for example, by requiring the use of TLS.

This specification therefore considers the confidentiality of the

data to be provided by the transport protocol and does not specify

any encryption mechanism.

Implementers MUST ensure that the transport protocol provides

confidentiality, if the privacy of End-User data or correlation

attacks are a concern. Implementers MAY define an envelope format

(such as described in Section 7 or nesting the SD-JWT Combined

Format as the plaintext payload of a JWE) to encrypt the SD-JWT and

associated Disclosures when transmitted over an insecure channel.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

9.2. Decoy Digests

The use of decoy digests is RECOMMENDED when the number of claims

(or the existence of particular claims) can be a side-channel

disclosing information about otherwise undisclosed claims. In

particular, if a claim in an SD-JWT is present only if a certain

condition is met (e.g., a membership number is only contained if the

End-User is a member of a group), the Issuer SHOULD add decoy

digests when the condition is not met.

Decoy digests increase the size of the SD-JWT. The number of decoy

digests (or whether to use them at all) is a trade-off between the

size of the SD-JWT and the privacy of the End-User's data.

9.3. Unlinkability

Colluding Issuer/Verifier or Verifier/Verifier pairs could link

issuance/presentation or two presentation sessions to the same user

on the basis of unique values encoded in the SD-JWT (Issuer

signature, salts, digests, etc.).

To prevent these types of linkability, various methods, including

but not limited to the following ones can be used:

Use advanced cryptographic schemes, outside the scope of this

specification.

Issue a batch of SD-JWTs to the Holder to enable the Holder to

use a unique SD-JWT per Verifier. This only helps with Verifier/

Verifier unlinkability.

10. Acknowledgements

We would like to thank Alen Horvat, Arjan Geluk, Christian Paquin,

David Bakker, David Waite, Fabian Hauck, Giuseppe De Marco, Kushal

Das, Mike Jones, Nat Sakimura, Orie Steele, Pieter Kasselman,

Ryosuke Abe, Shawn Butterfield, and Torsten Lodderstedt Vittorio

Bertocci for their contributions (some of which substantial) to this

draft and to the initial set of implementations.

The work on this draft was started at OAuth Security Workshop 2022

in Trondheim, Norway.

11. IANA Considerations

TBD

12. Normative References

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

[RFC7159]

[RFC7519]

[RFC8174]

[IANA.Hash.Algorithms]

[OIDC.IDA]

[RFC0020]

[RFC7515]

[RFC7516]

[RFC7800]

[RFC8725]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,

March 2014, <https://www.rfc-editor.org/info/rfc7159>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13. Informative References

IANA, "Named Information Hash Algorithm",

<https://www.iana.org/assignments/named-information/

named-information.xhtml>.

Lodderstedt, T., Fett, D., Haine, M., Pulido, A.,

Lehmann, K., and K. Koiwai, "OpenID Connect for Identity

Assurance 1.0", <https://openid.net/specs/openid-

connect-4-identity-assurance-1_0-13.html>.

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/info/rfc7516>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token

Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/

RFC8725, February 2020, <https://www.rfc-editor.org/info/

rfc8725>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8174
https://www.iana.org/assignments/named-information/named-information.xhtml
https://www.iana.org/assignments/named-information/named-information.xhtml
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0-13.html
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725

[RFC8785]

[VC_DATA]

Rundgren, A., Jordan, B., and S. Erdtman, "JSON

Canonicalization Scheme (JCS)", RFC 8785, DOI 10.17487/

RFC8785, June 2020, <https://www.rfc-editor.org/info/

rfc8785>.

Sporny, M., Noble, G., Longley, D., Burnett, D. C.,

Zundel, B., and D. Chadwick, "Verifiable Credentials Data

Model 1.0", 19 November 2019, <https://www.w3.org/TR/

vc_data>.

Appendix A. Additional Examples

All of the following examples are non-normative.

A.1. Example 2a: Handling Structured Claims

This example uses the following object as the set of claims that the

Issuer is issuing:

Note that in contrast to Example 1, here the Issuer decided to

create a structured object for the address claim, allowing for

separate disclosure of the individual members of the claim.

¶

¶

{

 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

 "given_name": " ",
 "family_name": " ",
 "email": "\"unusual email address\"@nihon.com",

 "phone_number": "+81-80-1234-5678",

 "address": {

 "street_address": " 東京都港区芝公園４丁目２− ",
 "locality": " ",
 "region": " ",
 "country": "JP"

 },

 "birthdate": "1940-01-01"

}

¶

¶

https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://www.w3.org/TR/vc_data
https://www.w3.org/TR/vc_data

The Disclosures for this SD-JWT are as follows:

Disclosure for sub:

Contents:

SHA-256 Hash: AIDyoxx1ipy45-GFpKgvc-HIbcVrlLlrYLXmx3ev2e4

Disclosure for given_name:

Contents:

SHA-256 Hash: 1h29ggQi1xou-_NjVyyoChK2aswUto2UjCfF-1LahA8

Disclosure for family_name:

{

 "_sd": [

 "0lkScKjiJMHedJfq7sJB7HQ3qomGfrELbo5gZhvKRWo",

 "1h29ggQi1xou-_NjVyyoChK2aswUto2UjCfF-1LahA8",

 "3CoLULmDxxUw_LdyYETjuduXuEpGuBy4rXHotuD40X4",

 "AIDyoxx1ipy45-GFpKgvc-HIbcVrlLlrYLXmx3ev2e4",

 "OlthfRoFdS-J6S82OWlrO4pWhoeRMrH_KGP_h6EapYQ",

 "r4dbpGeeia02SyGL5gBdHY1w8IhjT3xx05RsfyyHUk4"

],

 "address": {

 "_sd": [

 "6OKNwnGGKWXCI9uijNAsv64u22eLS4rMdLNlg1fqJp4",

 "HEVMgD-NKK5NvXPbARorVdODITmkUyuMpCs_m7HXnYc",

 "Uq02nV73K0bdRK23rzabmnDa4O8YNQZvt9x8Lykok_Y",

 "oxFRilno26UYe7kqMM4bdq8IvNMtIi6F8ptt-uiPLbM"

]

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

WyJWb1p5VUUtNlFvQ3hVLThHeTl5RTBnIiwgInN1YiIsICI2YzVjMGE0OS1iNTg5LTQz

MWQtYmFlNy0yMTkxMjJhOWVjMmMiXQ

¶

¶

["VoZyUE-6QoCxU-8Gy9yE0g", "sub",

"6c5c0a49-b589-431d-bae7-219122a9ec2c"]

¶

¶

¶

WyJicjgxenVSc0NUcXJuWEp4MHVqMkRRIiwgImdpdmVuX25hbWUiLCAiXHU1OTJhXHU5

MGNlIl0

¶

¶

["br81zuRsCTqrnXJx0uj2DQ", "given_name", "\u592a\u90ce"]¶

¶

¶

Contents:

SHA-256 Hash: 0lkScKjiJMHedJfq7sJB7HQ3qomGfrELbo5gZhvKRWo

Disclosure for email:

Contents:

SHA-256 Hash: OlthfRoFdS-J6S82OWlrO4pWhoeRMrH_KGP_h6EapYQ

Disclosure for phone_number:

Contents:

SHA-256 Hash: r4dbpGeeia02SyGL5gBdHY1w8IhjT3xx05RsfyyHUk4

Disclosure for street_address:

Contents:

SHA-256 Hash: HEVMgD-NKK5NvXPbARorVdODITmkUyuMpCs_m7HXnYc

Disclosure for locality:

Contents:

WyJSdHczZUFFUE5wWjIwTkhZSzNNRWNnIiwgImZhbWlseV9uYW1lIiwgIlx1NWM3MVx1

NzUzMCJd

¶

¶

["Rtw3eAEPNpZ20NHYK3MEcg", "family_name", "\u5c71\u7530"]¶

¶

¶

WyJJTms2bkx4WGFybDF4NmVabHdBOTV3IiwgImVtYWlsIiwgIlwidW51c3VhbCBlbWFp

bCBhZGRyZXNzXCJAbmlob24uY29tIl0

¶

¶

["INk6nLxXarl1x6eZlwA95w", "email", "\"unusual email

address\"@nihon.com"]

¶

¶

¶

WyJuUG9LdV9oakkyeTMtbTVnbmVkYzFBIiwgInBob25lX251bWJlciIsICIrODEtODAt

MTIzNC01Njc4Il0

¶

¶

["nPoKu_hjI2y3-m5gnedc1A", "phone_number", "+81-80-1234-5678"]¶

¶

¶

WyJiLWtOOG9nVjg4N0FHY2RzRnQyT1RBIiwgInN0cmVldF9hZGRyZXNzIiwgIlx1Njc3

MVx1NGVhY1x1OTBmZFx1NmUyZlx1NTMzYVx1ODI5ZFx1NTE2Y1x1NTcxMlx1ZmYxNFx1

NGUwMVx1NzZlZVx1ZmYxMlx1MjIxMlx1ZmYxOCJd

¶

¶

["b-kN8ogV887AGcdsFt2OTA", "street_address", "\u6771\u4eac\u90fd\u6e

2f\u533a\u829d\u516c\u5712\uff14\u4e01\u76ee\uff12\u2212\uff18"]

¶

¶

¶

WyJnclBTdm9iLVVfbHVOSVJUUmJvb2dBIiwgImxvY2FsaXR5IiwgIlx1Njc3MVx1NGVh

Y1x1OTBmZCJd

¶

¶

SHA-256 Hash: 6OKNwnGGKWXCI9uijNAsv64u22eLS4rMdLNlg1fqJp4

Disclosure for region:

Contents:

SHA-256 Hash: Uq02nV73K0bdRK23rzabmnDa4O8YNQZvt9x8Lykok_Y

Disclosure for country:

Contents:

SHA-256 Hash: oxFRilno26UYe7kqMM4bdq8IvNMtIi6F8ptt-uiPLbM

Disclosure for birthdate:

Contents:

SHA-256 Hash: 3CoLULmDxxUw_LdyYETjuduXuEpGuBy4rXHotuD40X4

A Presentation for the SD-JWT that discloses only region and country

of the address property and without a Holder Binding JWT could look

as follows:

["grPSvob-U_luNIRTRboogA", "locality", "\u6771\u4eac\u90fd"]¶

¶

¶

WyJNOVY2N3V0UC1hTF9lR1B0UU5hM0RRIiwgInJlZ2lvbiIsICJcdTZlMmZcdTUzM2Ei

XQ

¶

¶

["M9V67utP-aL_eGPtQNa3DQ", "region", "\u6e2f\u533a"]¶

¶

¶

WyJzNFhNSmxXQ2Eza3hDWk4wSVVrbnlBIiwgImNvdW50cnkiLCAiSlAiXQ¶

¶

["s4XMJlWCa3kxCZN0IUknyA", "country", "JP"]¶

¶

¶

WyI1Z2NXRmxWSEM1VVEwbktrallybDlnIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAx

Il0

¶

¶

["5gcWFlVHC5UQ0nKkjYrl9g", "birthdate", "1940-01-01"]¶

¶

¶

A.2. Example 2b: Adding Decoys

This example is based on the same set of user data as Example 2a,

but here, the Issuer decided to add decoy digests to the SD-JWT.

The SD-JWT payload is as follows:

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJfc2QiOiBbIjBsa1NjS2ppSk1IZWRKZnE3c0pCN

0hRM3FvbUdmckVMYm81Z1podktSV28iLCAiMWgyOWdnUWkxeG91LV9OalZ5eW9DaEsyY

XN3VXRvMlVqQ2ZGLTFMYWhBOCIsICIzQ29MVUxtRHh4VXdfTGR5WUVUanVkdVh1RXBHd

UJ5NHJYSG90dUQ0MFg0IiwgIkFJRHlveHgxaXB5NDUtR0ZwS2d2Yy1ISWJjVnJsTGxyW

UxYbXgzZXYyZTQiLCAiT2x0aGZSb0ZkUy1KNlM4Mk9XbHJPNHBXaG9lUk1ySF9LR1Bfa

DZFYXBZUSIsICJyNGRicEdlZWlhMDJTeUdMNWdCZEhZMXc4SWhqVDN4eDA1UnNmeXlIV

Ws0Il0sICJhZGRyZXNzIjogeyJfc2QiOiBbIjZPS053bkdHS1dYQ0k5dWlqTkFzdjY0d

TIyZUxTNHJNZExObGcxZnFKcDQiLCAiSEVWTWdELU5LSzVOdlhQYkFSb3JWZE9ESVRta

1V5dU1wQ3NfbTdIWG5ZYyIsICJVcTAyblY3M0swYmRSSzIzcnphYm1uRGE0TzhZTlFad

nQ5eDhMeWtva19ZIiwgIm94RlJpbG5vMjZVWWU3a3FNTTRiZHE4SXZOTXRJaTZGOHB0d

C11aVBMYk0iXX0sICJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc3N1ZXIiLCAia

WF0IjogMTUxNjIzOTAyMiwgImV4cCI6IDE1MTYyNDcwMjIsICJfc2RfYWxnIjogInNoY

S0yNTYifQ.MDBuqNanBUtQtvI0W18zYI7nXqys-EgkEeuMjDFehYkzWifFYI8qbIb-vD

keV6TvMUc3tiV5FWMgoF_1UNVG6msjL1MLC0ztXcIqtEJOMpAx0w13Jaxv4QOTy6NXkI

-DnKxlNxFp6F7Fd3lxaYzVzGFHfTo9AzTfy5ZrNgVmfbgCU40xqhR0Xjjgm1CsFn0dl8

ib2S-CgxcdYUkpKWp2G9eqXkUcWQ55bgUQQdgPTCpGoalads8bcdki5e1vD2eDsfquDy

_JL48rwIJWBELtihJxeT7plnARgKyJk889i5VBXb4Qyr5QZErcgoZVIi6xygzuVeYoKI

l8STyH0f85wQ~WyJSdHczZUFFUE5wWjIwTkhZSzNNRWNnIiwgImZhbWlseV9uYW1lIiw

gIlx1NWM3MVx1NzUzMCJd~WyJicjgxenVSc0NUcXJuWEp4MHVqMkRRIiwgImdpdmVuX2

5hbWUiLCAiXHU1OTJhXHU5MGNlIl0~WyI1Z2NXRmxWSEM1VVEwbktrallybDlnIiwgIm

JpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0~WyJJTms2bkx4WGFybDF4NmVabHdBOTV3Ii

wgImVtYWlsIiwgIlwidW51c3VhbCBlbWFpbCBhZGRyZXNzXCJAbmlob24uY29tIl0~Wy

JNOVY2N3V0UC1hTF9lR1B0UU5hM0RRIiwgInJlZ2lvbiIsICJcdTZlMmZcdTUzM2EiXQ

~WyJzNFhNSmxXQ2Eza3hDWk4wSVVrbnlBIiwgImNvdW50cnkiLCAiSlAiXQ~

¶

¶

¶

Since the Disclosures or Presentation are not affected by the decoy

digests (other than a slightly larger SD-JWT), they are omitted

here.

A.3. Example 3 - Complex Structured SD-JWT

In this example, an SD-JWT with a complex object is demonstrated.

Here, the data structures defined in OIDC4IDA [OIDC.IDA] are used.

The Issuer is using the following user data:

{

 "_sd": [

 "2GFPzomyv0LvsNqVnq9EWkojSdmn8xYhEW6PUF166aE",

 "723eL1tWNqk0k60oEc2jbjgi9Lg09hp_qr5BL2omA8w",

 "ABOPJ9UwDrrYOj3XF9FldPk4qniliHktfC0faS2nEDk",

 "Lccl25w97vsyfqBTCOMXAtvCt_8f4BlqDUBhrvdS2VI",

 "QSBjkY_KqFtGhL7--yjUU0BTbOQKXXEKTzmoVAzCUhY",

 "iVw--s-TwoFGMsv1dhoq1sBsjrBKyKtJoQ5DZu3Oq1I",

 "nGzC_ytvNpNRhxNqUJ8yGd3DtGv-3u6goHM7JqsRzCw",

 "skyXccgGkjo2BK4p19vDmbl2JsnKBdbiVBhqV5b_RXk",

 "woMsAJhxWETDjavMSyNVyu62nyy9PzFfZw9lz5yfC4U"

],

 "address": {

 "_sd": [

 "1nY2u90v7ur8X8mniVZ2tSRNRh6DPnLBYtDEtRS0zM8",

 "F_xLpiE-o4hv3QPy7WpIyQJYEhYVvlG0b5PguzbG64A",

 "Os3GWFP8wcrl01HgFG3EQgX4lLSeGSWcLliHH2Nr4wQ",

 "nQj9x2LdAW4uGv9zl8T3ElZmbf_XScaN8maE-K6kGO0",

 "opzyobnErA3GpoURHpkHGUpmnVGT74GxP9PrdySlxAA",

 "q2Mq7M5Lb6u7qbteQF0BzN6gqs_CbP9bx22xoLjbx2w",

 "xuJuhq1aJqiYgdIxMRmMJNTBkzivgvV9Zk4jmmJYSkk"

]

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

¶

{

 "verified_claims": {

 "verification": {

 "trust_framework": "de_aml",

 "time": "2012-04-23T18:25Z",

 "verification_process": "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",

 "evidence": [

 {

 "type": "document",

 "method": "pipp",

 "time": "2012-04-22T11:30Z",

 "document": {

 "type": "idcard",

 "issuer": {

 "name": "Stadt Augsburg",

 "country": "DE"

 },

 "number": "53554554",

 "date_of_issuance": "2010-03-23",

 "date_of_expiry": "2020-03-22"

 }

 }

]

 },

 "claims": {

 "given_name": "Max",

 "family_name": "Müller",

 "nationalities": [

 "DE"

],

 "birthdate": "1956-01-28",

 "place_of_birth": {

 "country": "IS",

 "locality": "Þykkvabæjarklaustur"

 },

 "address": {

 "locality": "Maxstadt",

 "postal_code": "12344",

 "country": "DE",

 "street_address": "Weidenstraße 22"

 }

 }

 },

 "birth_middle_name": "Timotheus",

 "salutation": "Dr.",

 "msisdn": "49123456789"

}

¶

The Issuer in this example sends the two claims birthdate and

place_of_birth in the claims element in plain text. The following

shows the resulting SD-JWT payload:¶

{

 "_sd": [

 "0fGhQf6nEvYH9sTcCtkxCfAVKp9qAYDVmFsxADWJsio",

 "H0ZuxXsa39gwxHQ0cK_HQAIKjW4t11YwM0Gy_1gUluU",

 "gXzq9tVKaddfQvt94riVze6GlZiW35ItiMngC5p_hXE"

],

 "verified_claims": {

 "verification": {

 "_sd": [

 "4nQI4-y9wtJvyCs2WttyLmITY02K5WBMKKT1qKeEhHE",

 "Zvx3GXqsjB1cR5rmxrlv3xQuTykWDZ7lKlmaxtBVYo0",

 "cCzobgUal0u_Dn0PengU8YcZfv_R3xh0MW1K01Okg1o"

],

 "evidence": [

 {

 "_sd": [

 "18o6apk_mELe_RaWjI1Om877h9_Jky5dpgzuBBNl-dQ",

 "Ed7fTsdbgv2EZ5uGsuUAk5YBaMtCfvTFkmZZszVRJpk",

 "rvJdOi2J6gFeNIvCdgIprrjmi1rKTD_Ru96di5FS7i4"

],

 "document": {

 "_sd": [

 "BiKOIkmtJfr7IpWsn8_X4hc6FygqaeQPujoVuXAHnWQ",

 "F1vtjNyR7vaY8bO6CHdFr9tAje0ltSLe7bIFYlpNW7s",

 "HXyhyliGWAP8uvBf3JhdGSh9Pbg3KNu969581e8MZPo",

 "sVzUIXAzzMw0EfIwZyL23xwee3874u3a7iXcWyZhwp4"

],

 "issuer": {

 "_sd": [

 "C1saJVc21n1Y1O2s4ya0UYJabTAoGyg__Q39OfyjqSM",

 "Li9BJSo7AFcKVTlrLz6ip6t82nqIt2qrXc3wp6rColM"

]

 }

 }

 }

]

 },

 "claims": {

 "_sd": [

 "1qb26tNg6OZuZyVDYwK4--mQxXbZqwcQbhUxGHrXeLM",

 "AHX0EgNpd_wak07lK8HX2izDNntsUZojuzyEWd2GJdk",

 "FwzTz0THaEOzexgEzLRXu-zsTPND7by3aBF57AwKCZI",

 "xKbTMlOSjFjkJw8kAMZAyhEfqbaq2b-klaPK8srpgvs"

],

 "birthdate": "1956-01-28",

 "place_of_birth": {

 "country": "IS",

 "locality": "Þykkvabæjarklaustur"

 }

 }

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

With the following Disclosures:

Disclosure for trust_framework:

Contents:

SHA-256 Hash: Zvx3GXqsjB1cR5rmxrlv3xQuTykWDZ7lKlmaxtBVYo0

Disclosure for time:

Contents:

SHA-256 Hash: cCzobgUal0u_Dn0PengU8YcZfv_R3xh0MW1K01Okg1o

Disclosure for verification_process:

Contents:

SHA-256 Hash: 4nQI4-y9wtJvyCs2WttyLmITY02K5WBMKKT1qKeEhHE

Disclosure for type:

Contents:

SHA-256 Hash: rvJdOi2J6gFeNIvCdgIprrjmi1rKTD_Ru96di5FS7i4

Disclosure for method:

Contents:

¶

¶

WyI2eUNER1RSblBzUHowS3RxSVh3cjhRIiwgInRydXN0X2ZyYW1ld29yayIsICJkZV9h

bWwiXQ

¶

¶

["6yCDGTRnPsPz0KtqIXwr8Q", "trust_framework", "de_aml"]¶

¶

¶

WyI2TlpFYW9FUmVmdzJ2YTl3VWZDSlJBIiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoy

NVoiXQ

¶

¶

["6NZEaoERefw2va9wUfCJRA", "time", "2012-04-23T18:25Z"]¶

¶

¶

WyJTWVhaS291anJYdXZPZ3hjbnVZS1J3IiwgInZlcmlmaWNhdGlvbl9wcm9jZXNzIiwg

ImYyNGM2Zi02ZDNmLTRlYzUtOTczZS1iMGQ4NTA2ZjNiYzciXQ

¶

¶

["SYXZKoujrXuvOgxcnuYKRw", "verification_process",

"f24c6f-6d3f-4ec5-973e-b0d8506f3bc7"]

¶

¶

¶

WyJyNE1TdlZEY1hQMFlFSmNsd1BJTmRnIiwgInR5cGUiLCAiZG9jdW1lbnQiXQ¶

¶

["r4MSvVDcXP0YEJclwPINdg", "type", "document"]¶

¶

¶

WyJVYmI4MGZRYndOOWx0S0xYc0RvbkdnIiwgIm1ldGhvZCIsICJwaXBwIl0¶

¶

SHA-256 Hash: 18o6apk_mELe_RaWjI1Om877h9_Jky5dpgzuBBNl-dQ

Disclosure for time:

Contents:

SHA-256 Hash: Ed7fTsdbgv2EZ5uGsuUAk5YBaMtCfvTFkmZZszVRJpk

Disclosure for type:

Contents:

SHA-256 Hash: F1vtjNyR7vaY8bO6CHdFr9tAje0ltSLe7bIFYlpNW7s

Disclosure for name:

Contents:

SHA-256 Hash: Li9BJSo7AFcKVTlrLz6ip6t82nqIt2qrXc3wp6rColM

Disclosure for country:

Contents:

SHA-256 Hash: C1saJVc21n1Y1O2s4ya0UYJabTAoGyg__Q39OfyjqSM

Disclosure for number:

Contents:

["Ubb80fQbwN9ltKLXsDonGg", "method", "pipp"]¶

¶

¶

WyJaRW1vWTc0ZlNvUXdxOFlWMkxGMmt3IiwgInRpbWUiLCAiMjAxMi0wNC0yMlQxMToz

MFoiXQ

¶

¶

["ZEmoY74fSoQwq8YV2LF2kw", "time", "2012-04-22T11:30Z"]¶

¶

¶

WyJtanBjRGkweHFZbTF4aFJyQ3lCeGZnIiwgInR5cGUiLCAiaWRjYXJkIl0¶

¶

["mjpcDi0xqYm1xhRrCyBxfg", "type", "idcard"]¶

¶

¶

WyJEY0IzOXRwcHBqbGhjVFctLUhKYVJ3IiwgIm5hbWUiLCAiU3RhZHQgQXVnc2J1cmci

XQ

¶

¶

["DcB39tpppjlhcTW--HJaRw", "name", "Stadt Augsburg"]¶

¶

¶

WyJGbWU0VVdmeDZBV0g1NS1BOHJXRF93IiwgImNvdW50cnkiLCAiREUiXQ¶

¶

["Fme4UWfx6AWH55-A8rWD_w", "country", "DE"]¶

¶

¶

WyIzZ3NJRUs0NWM4bkZaT09YbWJELVRBIiwgIm51bWJlciIsICI1MzU1NDU1NCJd¶

¶

SHA-256 Hash: BiKOIkmtJfr7IpWsn8_X4hc6FygqaeQPujoVuXAHnWQ

Disclosure for date_of_issuance:

Contents:

SHA-256 Hash: HXyhyliGWAP8uvBf3JhdGSh9Pbg3KNu969581e8MZPo

Disclosure for date_of_expiry:

Contents:

SHA-256 Hash: sVzUIXAzzMw0EfIwZyL23xwee3874u3a7iXcWyZhwp4

Disclosure for given_name:

Contents:

SHA-256 Hash: xKbTMlOSjFjkJw8kAMZAyhEfqbaq2b-klaPK8srpgvs

Disclosure for family_name:

Contents:

SHA-256 Hash: 1qb26tNg6OZuZyVDYwK4--mQxXbZqwcQbhUxGHrXeLM

Disclosure for nationalities:

["3gsIEK45c8nFZOOXmbD-TA", "number", "53554554"]¶

¶

¶

WyJrNlZGS0I3V29xeWZXT1M0RVZqU3d3IiwgImRhdGVfb2ZfaXNzdWFuY2UiLCAiMjAx

MC0wMy0yMyJd

¶

¶

["k6VFKB7WoqyfWOS4EVjSww", "date_of_issuance", "2010-03-23"]¶

¶

¶

WyJqTEtGZlFYQk5FdHRFRzR1UGV6cnlnIiwgImRhdGVfb2ZfZXhwaXJ5IiwgIjIwMjAt

MDMtMjIiXQ

¶

¶

["jLKFfQXBNEttEG4uPezryg", "date_of_expiry", "2020-03-22"]¶

¶

¶

WyJ2WmN5ZDRDTDhFeDFBUGlSb0tVVFB3IiwgImdpdmVuX25hbWUiLCAiTWF4Il0¶

¶

["vZcyd4CL8Ex1APiRoKUTPw", "given_name", "Max"]¶

¶

¶

WyJod0lFTklDMWwtQlRuZnNfMnZQV2ZBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZmNs

bGVyIl0

¶

¶

["hwIENIC1l-BTnfs_2vPWfA", "family_name", "M\u00fcller"]¶

¶

¶

WyJHRFhMLTBfWWlvYUxNU1l0RzdCdkxnIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d¶

Contents:

SHA-256 Hash: FwzTz0THaEOzexgEzLRXu-zsTPND7by3aBF57AwKCZI

Disclosure for address:

Contents:

SHA-256 Hash: AHX0EgNpd_wak07lK8HX2izDNntsUZojuzyEWd2GJdk

Disclosure for birth_middle_name:

Contents:

SHA-256 Hash: gXzq9tVKaddfQvt94riVze6GlZiW35ItiMngC5p_hXE

Disclosure for salutation:

Contents:

SHA-256 Hash: H0ZuxXsa39gwxHQ0cK_HQAIKjW4t11YwM0Gy_1gUluU

Disclosure for msisdn:

Contents:

SHA-256 Hash: 0fGhQf6nEvYH9sTcCtkxCfAVKp9qAYDVmFsxADWJsio

¶

["GDXL-0_YioaLMSYtG7BvLg", "nationalities", ["DE"]]¶

¶

¶

WyJVUjZsSC1jbUtIenh5VGlhazRmRVVRIiwgImFkZHJlc3MiLCB7ImxvY2FsaXR5Ijog

Ik1heHN0YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cnkiOiAiREUi

LCAic3RyZWV0X2FkZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV0

¶

¶

["UR6lH-cmKHzxyTiak4fEUQ", "address", {"locality": "Maxstadt",

"postal_code": "12344", "country": "DE", "street_address":

"Weidenstra\u00dfe 22"}]

¶

¶

¶

WyJuNV9BU3lpa2FSNHBZMzRrVG9YTlBRIiwgImJpcnRoX21pZGRsZV9uYW1lIiwgIlRp

bW90aGV1cyJd

¶

¶

["n5_ASyikaR4pY34kToXNPQ", "birth_middle_name", "Timotheus"]¶

¶

¶

WyJFSGh2d1dnWGg2VUZKcVRmRjVRaE93IiwgInNhbHV0YXRpb24iLCAiRHIuIl0¶

¶

["EHhvwWgXh6UFJqTfF5QhOw", "salutation", "Dr."]¶

¶

¶

WyJTMzF2RjdWZHNpUDhRTXB0b21PZW1BIiwgIm1zaXNkbiIsICI0OTEyMzQ1Njc4OSJd¶

¶

["S31vF7VdsiP8QMptomOemA", "msisdn", "49123456789"]¶

¶

The Verifier would receive the Issuer-signed SD-JWT together with a

selection of the Disclosures. The Presentation in this example would

look as follows:

After the verification of the data, the Verifier will pass the

following result on to the application for further processing:

¶

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJfc2QiOiBbIjBmR2hRZjZuRXZZSDlzVGNDdGt4Q

2ZBVktwOXFBWURWbUZzeEFEV0pzaW8iLCAiSDBadXhYc2EzOWd3eEhRMGNLX0hRQUlLa

lc0dDExWXdNMEd5XzFnVWx1VSIsICJnWHpxOXRWS2FkZGZRdnQ5NHJpVnplNkdsWmlXM

zVJdGlNbmdDNXBfaFhFIl0sICJ2ZXJpZmllZF9jbGFpbXMiOiB7InZlcmlmaWNhdGlvb

iI6IHsiX3NkIjogWyI0blFJNC15OXd0SnZ5Q3MyV3R0eUxtSVRZMDJLNVdCTUtLVDFxS

2VFaEhFIiwgIlp2eDNHWHFzakIxY1I1cm14cmx2M3hRdVR5a1dEWjdsS2xtYXh0QlZZb

zAiLCAiY0N6b2JnVWFsMHVfRG4wUGVuZ1U4WWNaZnZfUjN4aDBNVzFLMDFPa2cxbyJdL

CAiZXZpZGVuY2UiOiBbeyJfc2QiOiBbIjE4bzZhcGtfbUVMZV9SYVdqSTFPbTg3N2g5X

0preTVkcGd6dUJCTmwtZFEiLCAiRWQ3ZlRzZGJndjJFWjV1R3N1VUFrNVlCYU10Q2Z2V

EZrbVpac3pWUkpwayIsICJydkpkT2kySjZnRmVOSXZDZGdJcHJyam1pMXJLVERfUnU5N

mRpNUZTN2k0Il0sICJkb2N1bWVudCI6IHsiX3NkIjogWyJCaUtPSWttdEpmcjdJcFdzb

jhfWDRoYzZGeWdxYWVRUHVqb1Z1WEFIbldRIiwgIkYxdnRqTnlSN3ZhWThiTzZDSGRGc

jl0QWplMGx0U0xlN2JJRllscE5XN3MiLCAiSFh5aHlsaUdXQVA4dXZCZjNKaGRHU2g5U

GJnM0tOdTk2OTU4MWU4TVpQbyIsICJzVnpVSVhBenpNdzBFZkl3WnlMMjN4d2VlMzg3N

HUzYTdpWGNXeVpod3A0Il0sICJpc3N1ZXIiOiB7Il9zZCI6IFsiQzFzYUpWYzIxbjFZM

U8yczR5YTBVWUphYlRBb0d5Z19fUTM5T2Z5anFTTSIsICJMaTlCSlNvN0FGY0tWVGxyT

Ho2aXA2dDgybnFJdDJxclhjM3dwNnJDb2xNIl19fX1dfSwgImNsYWltcyI6IHsiX3NkI

jogWyIxcWIyNnROZzZPWnVaeVZEWXdLNC0tbVF4WGJacXdjUWJoVXhHSHJYZUxNIiwgI

kFIWDBFZ05wZF93YWswN2xLOEhYMml6RE5udHNVWm9qdXp5RVdkMkdKZGsiLCAiRnd6V

HowVEhhRU96ZXhnRXpMUlh1LXpzVFBORDdieTNhQkY1N0F3S0NaSSIsICJ4S2JUTWxPU

2pGamtKdzhrQU1aQXloRWZxYmFxMmIta2xhUEs4c3JwZ3ZzIl0sICJiaXJ0aGRhdGUiO

iAiMTk1Ni0wMS0yOCIsICJwbGFjZV9vZl9iaXJ0aCI6IHsiY291bnRyeSI6ICJJUyIsI

CJsb2NhbGl0eSI6ICJcdTAwZGV5a2t2YWJcdTAwZTZqYXJrbGF1c3R1ciJ9fX0sICJpc

3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc3N1ZXIiLCAiaWF0IjogMTUxNjIzOTAyM

iwgImV4cCI6IDE1MTYyNDcwMjIsICJfc2RfYWxnIjogInNoYS0yNTYifQ.a7Chaa1KrV

l6IhnmWDnRxEKdjess03TWHjzgp1aUoj2JXD97DwePyKg1K-DBgJehOtU6k7tdcrwIMq

zLnQWDMukCNyT-hBkxZ8jArtB4S5hyDLde1-B5toMVBGF-nv2Oq0TqBV9FlTg884zAPS

WcEsv0OYDDnj5b0pLD5cHCkc3IREkGsCB3Cc07G6beDakS2_QPLZ763Uz3bYX0XFPMDV

7z3xC6vqzUXyKL76_ENQyzyArC8a5e3OegQQ5RY7mdm9zJUUzi-rn_QnTambpiyh9ux-

41ABwf8vHgCe953EBqD9KJNh7ZvQcOstUFEzqV6loSU3gquy2UhZUfXRDSCw~WyI2eUN

ER1RSblBzUHowS3RxSVh3cjhRIiwgInRydXN0X2ZyYW1ld29yayIsICJkZV9hbWwiXQ~

WyI2TlpFYW9FUmVmdzJ2YTl3VWZDSlJBIiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoy

NVoiXQ~WyJyNE1TdlZEY1hQMFlFSmNsd1BJTmRnIiwgInR5cGUiLCAiZG9jdW1lbnQiX

Q~WyJod0lFTklDMWwtQlRuZnNfMnZQV2ZBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZm

NsbGVyIl0~WyJVUjZsSC1jbUtIenh5VGlhazRmRVVRIiwgImFkZHJlc3MiLCB7ImxvY2

FsaXR5IjogIk1heHN0YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cn

kiOiAiREUiLCAic3RyZWV0X2FkZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV

0~WyJ2WmN5ZDRDTDhFeDFBUGlSb0tVVFB3IiwgImdpdmVuX25hbWUiLCAiTWF4Il0~

¶

¶

A.4. Example 4 - W3C Verifiable Credentials Data Model (work in

progress)

This example illustrates how the artifacts defined in this

specification can be represented using W3C Verifiable Credentials

Data Model as defined in [VC_DATA].

SD-JWT is equivalent to an Issuer-signed W3C Verifiable Credential

(W3C VC). Disclosures are sent alongside a VC.

A Presentation with a Holder Binding JWT is equivalent to a Holder-

signed W3C Verifiable Presentation (W3C VP).

{

 "verified_claims": {

 "verification": {

 "evidence": [

 {

 "document": {

 "issuer": {}

 },

 "type": "document"

 }

],

 "trust_framework": "de_aml",

 "time": "2012-04-23T18:25Z"

 },

 "claims": {

 "birthdate": "1956-01-28",

 "place_of_birth": {

 "country": "IS",

 "locality": "Þykkvabæjarklaustur"

 },

 "family_name": "Müller",

 "address": {

 "locality": "Maxstadt",

 "postal_code": "12344",

 "country": "DE",

 "street_address": "Weidenstraße 22"

 },

 "given_name": "Max"

 }

 },

 "iss": "https://example.com/issuer",

 "iat": 1516239022,

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

¶

¶

¶

Holder Binding is applied and the Holder Binding JWT is signed using

a raw public key passed in a cnf Claim in a W3C VC (SD-JWT).

Below is a non-normative example of an SD-JWT represented as a

verifiable credential encoded as JSON and signed as JWS compliant to

[VC_DATA].

The following data will be used in this example:

The encoded SD-JWT looks as follows:

Header:

¶

¶

¶

{

 "iss": "https://example.com",

 "jti": "http://example.com/credentials/3732",

 "nbf": 1541493724,

 "iat": 1541493724,

 "cnf": {

 "jwk": {

 "kty": "RSA",

 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4cbbf

 AAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst

 n64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_F

 DW2QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n9

 1CbOpbISD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHa

 Q-G_xBniIqbw0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",

 "e": "AQAB"

 }

 },

 "type": "IdentityCredential",

 "credentialSubject": {

 "given_name": "John",

 "family_name": "Doe",

 "email": "johndoe@example.com",

 "phone_number": "+1-202-555-0101",

 "address": {

 "street_address": "123 Main St",

 "locality": "Anytown",

 "region": "Anystate",

 "country": "US"

 },

 "birthdate": "1940-01-01",

 "is_over_18": true,

 "is_over_21": true,

 "is_over_65": true

 }

}

¶

¶

¶

Body:

{

 "typ": "sd-jwt-vc",

 "alg": "RS256",

 "kid": "cAEIUqJ0cmLzD1kzGzheiBag0YRAzVdlfxN280NgHaA"

}

¶

¶

{

 "iss": "https://example.com/issuer",

 "jti": "http://example.com/credentials/3732",

 "nbf": 1541493724,

 "iat": 1516239022,

 "cnf": {

 "jwk": {

 "kty": "RSA",

 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4cbbf

 AAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst

 n64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_F

 DW2QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n9

 1CbOpbISD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHa

 Q-G_xBniIqbw0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",

 "e": "AQAB"

 }

 },

 "type": "IdentityCredential",

 "credentialSubject": {

 "_sd": [

 "8Bcr2ZGImJ9FlsBNmGiLgj7XmHm-g8QOuYVSXOWoM58",

 "8wawaYT3XNlnl0zUdP8Xri1252yHK6pjgr8JInBzMQg",

 "NVTo4oQvI0kuqdMYeb6M_sp_ByUY7d4zcLfHB483aVY",

 "UQ6IHUAtHqW8Xcik7GqVikWtoviseS4BKjvCmmon6xA",

 "Um7LRM6Ol51wJZLobMeREW6HsMyO3DCCHnWtaikD-40",

 "jIjo9ElQ4Ng2mMzs0SoWq2molpyU80OE_LENjk2Ha_8",

 "w9rrWnA1RQ5dUOBaJDKGfAgtiW12obi1joeF_oLTaZ0",

 "zOJJSAmcB0OqPmFkOZebY70hHI3GpJC1x4beJRtIPbM"

],

 "address": {

 "_sd": [

 "0mcZNz0nIGNYBI4WgKJFx9mjaaB10E59Bc_pefmm544",

 "4zIfrBGk3TStRDz_wlxi4VgYDza81mBs_zeJ84czsS4",

 "Hl_wpSSSagpXtSk_rGoE-xkYGVnIHBO-ZzhUWchy8bo",

 "ySoQUT3JlKF5NdTPMWzmlDamB4TY2EMmGCgrzzJzih0"

]

 }

 },

 "exp": 1516247022,

 "_sd_alg": "sha-256"

}

¶

Disclosures:

Disclosure for given_name:

Contents:

SHA-256 Hash: jIjo9ElQ4Ng2mMzs0SoWq2molpyU80OE_LENjk2Ha_8

Disclosure for family_name:

Contents:

SHA-256 Hash: w9rrWnA1RQ5dUOBaJDKGfAgtiW12obi1joeF_oLTaZ0

Disclosure for email:

Contents:

SHA-256 Hash: NVTo4oQvI0kuqdMYeb6M_sp_ByUY7d4zcLfHB483aVY

Disclosure for phone_number:

Contents:

SHA-256 Hash: zOJJSAmcB0OqPmFkOZebY70hHI3GpJC1x4beJRtIPbM

Disclosure for street_address:

Contents:

¶

¶

WyI5S05NMUxWcU1PVXR6Rk9iSFV4Q2J3IiwgImdpdmVuX25hbWUiLCAiSm9obiJd¶

¶

["9KNM1LVqMOUtzFObHUxCbw", "given_name", "John"]¶

¶

¶

WyJJeC1jVTQzcXpBUFhvU2xZclF3RnRnIiwgImZhbWlseV9uYW1lIiwgIkRvZSJd¶

¶

["Ix-cU43qzAPXoSlYrQwFtg", "family_name", "Doe"]¶

¶

¶

WyJrbnFPOXJYYldqc2llOEtTMkJJSkFRIiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBs

ZS5jb20iXQ

¶

¶

["knqO9rXbWjsie8KS2BIJAQ", "email", "johndoe@example.com"]¶

¶

¶

WyJSbVdDWEhxaE41TDg2SllqOUdYN0h3IiwgInBob25lX251bWJlciIsICIrMS0yMDIt

NTU1LTAxMDEiXQ

¶

¶

["RmWCXHqhN5L86JYj9GX7Hw", "phone_number", "+1-202-555-0101"]¶

¶

¶

WyJjTE84ZnZpNlVHYUstbF91QmFJYTVRIiwgInN0cmVldF9hZGRyZXNzIiwgIjEyMyBN

YWluIFN0Il0

¶

¶

SHA-256 Hash: Hl_wpSSSagpXtSk_rGoE-xkYGVnIHBO-ZzhUWchy8bo

Disclosure for locality:

Contents:

SHA-256 Hash: 4zIfrBGk3TStRDz_wlxi4VgYDza81mBs_zeJ84czsS4

Disclosure for region:

Contents:

SHA-256 Hash: ySoQUT3JlKF5NdTPMWzmlDamB4TY2EMmGCgrzzJzih0

Disclosure for country:

Contents:

SHA-256 Hash: 0mcZNz0nIGNYBI4WgKJFx9mjaaB10E59Bc_pefmm544

Disclosure for birthdate:

Contents:

SHA-256 Hash: Um7LRM6Ol51wJZLobMeREW6HsMyO3DCCHnWtaikD-40

Disclosure for is_over_18:

Contents:

["cLO8fvi6UGaK-l_uBaIa5Q", "street_address", "123 Main St"]¶

¶

¶

WyJOSzBZQU1MWUwtLXRVdi1EdGNoaU1RIiwgImxvY2FsaXR5IiwgIkFueXRvd24iXQ¶

¶

["NK0YAMLYL--tUv-DtchiMQ", "locality", "Anytown"]¶

¶

¶

WyI3c3FoSU1aMlkzOHM4aWxaY012c2RRIiwgInJlZ2lvbiIsICJBbnlzdGF0ZSJd¶

¶

["7sqhIMZ2Y38s8ilZcMvsdQ", "region", "Anystate"]¶

¶

¶

WyJISXlPZXkzNXEzX0ZTbDRVV0g2Mm5BIiwgImNvdW50cnkiLCAiVVMiXQ¶

¶

["HIyOey35q3_FSl4UWH62nA", "country", "US"]¶

¶

¶

WyJpUU5VWU9tblo1N1Z5VHBRaGZnV2lnIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAx

Il0

¶

¶

["iQNUYOmnZ57VyTpQhfgWig", "birthdate", "1940-01-01"]¶

¶

¶

WyJ0cmNEb1BJUDVzeW5wWFhZU0dFc0FRIiwgImlzX292ZXJfMTgiLCB0cnVlXQ¶

¶

SHA-256 Hash: 8wawaYT3XNlnl0zUdP8Xri1252yHK6pjgr8JInBzMQg

Disclosure for is_over_21:

Contents:

SHA-256 Hash: UQ6IHUAtHqW8Xcik7GqVikWtoviseS4BKjvCmmon6xA

Disclosure for is_over_65:

Contents:

SHA-256 Hash: 8Bcr2ZGImJ9FlsBNmGiLgj7XmHm-g8QOuYVSXOWoM58

Appendix B. Document History

[[To be removed from the final specification]]

-03

Disclosures are now delivered not as a JWT but as separate

base64url-encoded JSON objects.

In the SD-JWT, digests are collected under a _sd claim per level.

Terms "II-Disclosures" and "HS-Disclosures" are replaced with

"Disclosures".

Holder Binding is now separate from delivering the Disclosures

and implemented, if required, with a separate JWT.

Examples updated and modified to properly explain the specifics

of the new SD-JWT format.

Examples are now pulled in from the examples directory, not

inlined.

Updated and automated the W3C VC example.

Added examples with multibyte characters to show that the

specification and demo code work well with UTF-8.

["trcDoPIP5synpXXYSGEsAQ", "is_over_18", true]¶

¶

¶

WyJRMnhzRWpnUnBhSE5rdUdEM2tUNUpnIiwgImlzX292ZXJfMjEiLCB0cnVlXQ¶

¶

["Q2xsEjgRpaHNkuGD3kT5Jg", "is_over_21", true]¶

¶

¶

WyI0RDd2N1JWTTh2THUwN0tRVUJqOF9RIiwgImlzX292ZXJfNjUiLCB0cnVlXQ¶

¶

["4D7v7RVM8vLu07KQUBj8_Q", "is_over_65", true]¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

reverted back to hash alg from digest derivation alg (renamed to

_sd_alg)

-02

reformatted

-01

introduced blinded claim names

explained why JSON-encoding of values is needed

explained merging algorithm ("processing model")

generalized hash alg to digest derivation alg which also enables

HMAC to calculate digests

_sd_hash_alg renamed to sd_digest_derivation_alg

Salt/Value Container (SVC) renamed to Issuer-Issued Disclosures

(II-Disclosures)

SD-JWT-Release (SD-JWT-R) renamed to Holder-Selected Disclosures

(HS-Disclosures)

sd_disclosure in II-Disclosures renamed to sd_ii_disclosures

sd_disclosure in HS-Disclosures renamed to sd_hs_disclosures

clarified relationship between sd_hs_disclosure and SD-JWT

clarified combined formats for issuance and presentation

clarified security requirements for blinded claim names

improved description of Holder Binding security considerations -

especially around the usage of "alg=none".

updated examples

text clarifications

fixed cnf structure in examples

added feature summary

-00

Upload as draft-ietf-oauth-selective-disclosure-jwt-00

*

¶

¶

* ¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

[[pre Working Group Adoption:]]

-02

Added acknowledgements

Improved Security Considerations

Stressed entropy requirements for salts

Python reference implementation clean-up and refactoring

hash_alg renamed to _sd_hash_alg

-01

Editorial fixes

Added hash_alg claim

Renamed _sd to sd_digests and sd_release

Added descriptions on Holder Binding - more work to do

Clarify that signing the SD-JWT is mandatory

-00

Renamed to SD-JWT (focus on JWT instead of JWS since signature is

optional)

Make Holder Binding optional

Rename proof to release, since when there is no signature, the

term "proof" can be misleading

Improved the structure of the description

Described verification steps

All examples generated from python demo implementation

Examples for structured objects

Authors' Addresses

Daniel Fett

yes.com

Email: mail@danielfett.de

URI: https://danielfett.de/

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

mailto:mail@danielfett.de
https://danielfett.de/

Kristina Yasuda

Microsoft

Email: Kristina.Yasuda@microsoft.com

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

mailto:Kristina.Yasuda@microsoft.com
mailto:bcampbell@pingidentity.com

	Selective Disclosure for JWTs (SD-JWT)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Feature Summary
	1.2. Conventions and Terminology

	2. Terms and Definitions
	3. Flow Diagram
	4. Concepts
	4.1. Creating an SD-JWT
	4.2. Creating Holder-Selected Disclosures
	4.3. Optional Holder Binding
	4.4. Verifying Holder-Selected Disclosures

	5. Data Formats
	5.1. The Challenge of Canonicalization
	5.2. Format of an SD-JWT
	5.2.1. Selectively Disclosable Claims
	5.2.1.1. Creating Disclosures
	5.2.1.2. Hashing Disclosures
	5.2.1.3. Decoy Digests
	5.2.1.4. Creating an SD-JWT
	5.2.1.5. Nested Data in SD-JWTs
	5.2.1.5.1. Option 1: Flat SD-JWT
	5.2.1.5.2. Option 2: Structured SD-JWT
	5.2.1.5.3. Option 3: Structured SD-JWT, only some properties selectively disclosable

	5.2.2. Hash Function Claim
	5.2.3. Holder Public Key Claim

	5.3. Example 1: SD-JWT
	5.4. Combined Format for Issuance
	5.4.1. Example

	5.5. Combined Format for Presentation
	5.5.1. Enabling Holder Binding
	5.5.2. Example

	6. Verification and Processing
	6.1. Processing by the Holder
	6.2. Verification by the Verifier

	7. Enveloping the Combined Format for Issuance and Presentation
	8. Security Considerations
	8.1. Mandatory digest computation of the revealed claim values by the Verifier
	8.2. Mandatory signing of the SD-JWT
	8.3. Manipulation of Disclosures
	8.4. Entropy of the salt
	8.5. Minimum length of the salt
	8.6. Choice of a Hash Algorithm
	8.7. Holder Binding
	8.8. Blinding Claim Names

	9. Privacy Considerations
	9.1. Confidentiality during Transport
	9.2. Decoy Digests
	9.3. Unlinkability

	10. Acknowledgements
	11. IANA Considerations
	12. Normative References
	13. Informative References
	Appendix A. Additional Examples
	A.1. Example 2a: Handling Structured Claims
	A.2. Example 2b: Adding Decoys
	A.3. Example 3 - Complex Structured SD-JWT
	A.4. Example 4 - W3C Verifiable Credentials Data Model (work in progress)

	Appendix B. Document History
	Authors' Addresses

