
OAuth Working Group J. Richer, Ed.
Internet-Draft The MITRE Corporation
Intended status: Experimental J. Bradley
Expires: January 22, 2015 Ping Identity
 H. Tschofenig
 ARM Limited
 July 21, 2014

A Method for Signing an HTTP Requests for OAuth
draft-ietf-oauth-signed-http-request-00.txt

Abstract

 This document a method for offering data origin authentication and
 integrity protection of HTTP requests. To convey the relevant data
 items in the request a JSON-based encapsulation is used and the JSON
 Web Signature (JWS) technique is re-used. JWS offers integrity
 protection using symmetric as well as asymmetric cryptography.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 22, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Richer, et al. Expires January 22, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Signed Messages July 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Generating a JSON Object from an HTTP Request 3
3.1. Selection of a hashing algorithm and size 4
3.2. Calculating the query parameter list and hash 4
3.3. Calculating the header list and hash 5

4. Verifying the Hashes . 5
4.1. Validating the query parameter list and hash 6
4.2. Validating the header list and hash 6

5. Example . 7
6. IANA Considerations . 7
6.1. The 'pop' OAuth Access Token Type 7

 6.2. JSON Web Signature and Encryption Type Values
 Registration . 8

7. Security Considerations 8
 7.1. Offering Confidentiality Protection for Access to
 Protected Resources 8

7.2. Authentication of Resource Servers 8
7.3. Plaintext Storage of Credentials 9
7.4. Entropy of Keys . 9
7.5. Denial of Service . 9
7.6. Protecting HTTP Header Fields 10

8. Acknowledgements . 10
9. References . 10
9.1. Normative References 10
9.2. Informative References 11

 Authors' Addresses . 11

1. Introduction

 In order to protect an HTTP request with a signature, a method for
 conveying various parameters and to compute a signature is needed.
 Ideally, this should be done without replicating the information
 already present in the HTTP request. This version of the document
 still replicates most of the headers though.

 The keying material required for this signature calculation is
 distributed via mechanisms described in companion documents (see
 [I-D.bradley-oauth-pop-key-distribution] and
 [I-D.hunt-oauth-pop-architecture]). The JSON Web Signature (JWS)
 specification [I-D.ietf-jose-json-web-signature] is re-used for

Richer, et al. Expires January 22, 2015 [Page 2]

Internet-Draft HTTP Signed Messages July 2014

 computing a digital signature (which uses asymmetric cryptography) or
 a keyed message digest (in case of symmetric cryptography).

 The scope of the mechanism described in this document is shown in
 Figure 1 where a client in possession of keying material that is tied
 to the access token creates a JSON object, signs it, and issues an
 request to a resource server for access to a protected resource.

 +-----------+ +------------+
 | |--(1)- HTTP Request ->| Resource |
 | Client | (+Signature, +Access Token)->| Server |
 | | | |
 | |<-(2)- HTTP Response ---------------| |
 +-----------+ +------------+

 Figure 1: Message Flow.

 Many HTTP application frameworks insert extra headers, query
 parameters, and otherwise manipulate the HTTP request on its way from
 the web server into the application code itself. It is the goal of
 this draft to have a signature protection mechanism that is
 sufficiently robust against such deployment constraints (while still
 providing sufficient security benefits).

 The method of conveying the token and signed request to the protected
 resource server is undefined by this document, but [RFC6750] could be
 re-used.

 The mechanism described in this document does not provide
 authentication of the resource server to the client. This version of
 the document does not provide a cryptographic binding to Transport
 Layer Security (TLS) used underneath the an HTTPS request.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 We use the term 'sign' (or 'signature') to denote both a keyed
 message digest and a digital signature operation.

3. Generating a JSON Object from an HTTP Request

 This section describes how to generate a JSON object below is
 included as a member of the JSON object. All members are OPTIONAL.

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Richer, et al. Expires January 22, 2015 [Page 3]

Internet-Draft HTTP Signed Messages July 2014

 m The HTTP Method used to make this request. This MUST be the
 uppercase HTTP verb as a JSON string.

 u The HTTP URL host component as a JSON string. This MAY include
 the port separated from the host by a colon in host:port format.

 p The HTTP URL path component of the request as an HTTP string.

 q The hashed HTTP URL query parameter map of the request as a two-
 part JSON array. The first part of this array is a JSON array
 listing all query parameters that were used in the calculation of
 the hash in the order that they were added to the hashed value as
 described below. The second part of this array is a JSON string
 containing the Base64URL encoded hash itself, calculated as
 described below.

 h The hashed HTTP request headers as a two-part JSON array. The
 first part of this array is a JSON array listing all headers that
 were used in the calculation of the hash in the order that they
 were added to the hashed value as described below. The second
 part of this array is a JSON string containing the Base64URL
 encoded hash itself, calculated as described below.

 b The base64URL encoded hash of the HTTP Request body, calculated as
 the HMAC of the byte array of the body.

 ts The "ts" (timestamp) element provides replay protection of the
 JSON object. Its value MUST be a number containing an IntDate
 value representing number of whole integer seconds from midnight,
 January 1, 1970 GMT.

3.1. Selection of a hashing algorithm and size

 The hashes SHALL be calculated using the HMAC algorithm using a hash
 size equal to the size of the surrounding JWT's alg header field.
 That is, if the JWT uses HS256 or RS256, the HMAC here uses a 256-bit
 HMAC. If the JWT uses RS512, the HMAC here uses 512-bit HMAC, and so
 forth.

3.2. Calculating the query parameter list and hash

 To generate the query parameter list and hash, the client creates two
 data objects: an ordered list of strings to hold the query parameter
 names and a string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

Richer, et al. Expires January 22, 2015 [Page 4]

Internet-Draft HTTP Signed Messages July 2014

 1. Adds the name of the query parameter to the end of the list.

 2. Encodes the name and value of the query parameter as "name=value"
 and appends it to the string buffer. [[Separated by an
 ampersand? Alternatively we could have this also pulled into an
 ordered list and post-process the concatenation, but that might
 be too deep into the weeds.]]

 Repeated parameter names are processed separately with no special
 handling. Parameters MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The client then calculates the HMAC hash over the resulting string
 buffer. The list and the hash result are added as the value of the
 "p" member.

3.3. Calculating the header list and hash

 To generate the header list and hash, the client creates two data
 objects: an ordered list of strings to hold the header names and a
 string buffer to hold the data to be hashed.

 The client iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

 1. Adds the name of the header to the end of the list.

 2. Encodes the name and value of the header as "name: value" and
 appends it to the string buffer. [[Separated by a newline?
 Alternatively we could have this also pulled into an ordered list
 and post-process the concatenation, but that might be too deep
 into the weeds.]]

 Repeated header names are processed separately with no special
 handling. Headers MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The client then calculates the HMAC hash over the resulting string
 buffer. The list and the hash result are added as the value of the
 "h" member.

4. Verifying the Hashes

 Validation of the overall signature is done using the standard JWS
 mechanisms for JSON structures. However, in order to trust any of
 the hashed mechanisms above, an application MUST re-create and verify
 a hash for each component. Additionally, an application MUST compare
 the replicated values included in various JSON fields with the actual

Richer, et al. Expires January 22, 2015 [Page 5]

Internet-Draft HTTP Signed Messages July 2014

 header fields of the request. Failure to-do so will allow an
 attacker to modify the underlying request, connect do different
 resources while at the same time having the application layer verify
 the signature correctly.

4.1. Validating the query parameter list and hash

 The client has at its disposal a map that indexes the query parameter
 names to the values given. The client creates a string buffer for
 calculating the hash. The client then iterates through the "list"
 portion of the "p" parameter. For each item in the list (in the
 order of the list) it does the following:

 1. Fetch the value of the parameter from the HTTP request parameter
 map. If a parameter is found in the list of signed parameters
 but not in the map, the validation fails.

 2. Encode the parameter as "name=value" and concatenate it to the
 end of the string buffer. [[same separator issue as above.]]

 The client calculates the hash of the string buffer and base64url
 encodes it. The client compares that string to the string passed in
 as the hash. If the two match, the hash validates, and all named
 parameters and their values are considered covered by the signature.

 There MAY be additional query parameters that are not listed in the
 list and are therefore not covered by the signature. The client MUST
 decide whether or not to accept a request with these uncovered
 parameters.

4.2. Validating the header list and hash

 The client has at its disposal a map that indexes the header names to
 the values given. The client creates a string buffer for calculating
 the hash. The client then iterates through the "list" portion of the
 "h" parameter. For each item in the list (in the order of the list)
 it does the following:

 1. Fetch the value of the header from the HTTP request header map.
 If a header is found in the list of signed parameters but not in
 the map, the validation fails.

 2. Encode the parameter as "name: value" and concatenate it to the
 end of the string buffer. [[same separator issue as above.]]

 The client calculates the hash of the string buffer and base64url
 encodes it. The client compares that string to the string passed in

Richer, et al. Expires January 22, 2015 [Page 6]

Internet-Draft HTTP Signed Messages July 2014

 as the hash. If the two match, the hash validates, and all named
 headers and their values are considered covered by the signature.

 There MAY be additional headers that are not listed in the list and
 are therefore not covered by the signature. The client MUST decide
 whether or not to accept a request with these uncovered headers.

5. Example

 Example goes in here but will look like something like this
 (symmetric key case).

 1) HTTP Request (plain)

 POST /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2 HTTP/1.1
 Host: example.com

 2) JWS protected JSON object

 {"typ":"pop",
 "alg":"HS256",
 "kid":"client12345@example.com"}
 .
 {"m":"POST",
 "u":"example.com",
 "p":"request",
 "q":[["a3", "b5", "a2"], "m2398f32i2o3roiu2313aa"],
 "ts":1300819380
 }
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Figure 2: Message Flow.

6. IANA Considerations

6.1. The 'pop' OAuth Access Token Type

Section 11.1 of [RFC6749] defines the OAuth Access Token Type
 Registry and this document adds another token type to this registry.

 Type name: pop

 Additional Token Endpoint Response Parameters: (none)

 HTTP Authentication Scheme(s): Proof-of-possession access token for
 use with OAuth 2.0

https://datatracker.ietf.org/doc/html/rfc6749#section-11.1

Richer, et al. Expires January 22, 2015 [Page 7]

Internet-Draft HTTP Signed Messages July 2014

 Change controller: IETF

 Specification document(s): [[this document]]

6.2. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "pop" type value in the IANA JSON
 Web Signature and Encryption Type Values registry
 [I-D.ietf-jose-json-web-signature]:

 o "typ" Header Parameter Value: "pop"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this document]]

7. Security Considerations

7.1. Offering Confidentiality Protection for Access to Protected
 Resources

 This specification can be used with and without Transport Layer
 Security (TLS).

 Without TLS this protocol provides a mechanism for verifying the
 integrity of requests, it provides no confidentiality protection.
 Consequently, eavesdroppers will have full access to communication
 content and any further messages exchanged between the client and the
 resource server. This could be problematic when data is exchanged
 that requires care, such as personal data.

 When TLS is used then confidentiality can be ensured; this version of
 the specification does, however, not provide the TLS channel binding
 feature, which ensures that the TLS channel is cryptographically
 bound to the application layer protocol authentication defined in
 this document.

 The use of TLS in combination with the signed HTTP request mechanism
 is highly recommended to ensure the confidentiality of the user's
 data.

7.2. Authentication of Resource Servers

 This protocol allows clients to verify the authenticity of resource
 servers only when TLS is used. With TLS the resource server is
 authenticated as part of the TLS handshake. The mechanism described

Richer, et al. Expires January 22, 2015 [Page 8]

Internet-Draft HTTP Signed Messages July 2014

 in this document does not provide any mechanism for the client to
 authenticate the resource server at the application layer.

7.3. Plaintext Storage of Credentials

 The mechanism described in this document works similar to many three
 party authentication and key exchange mechanisms. In order to
 compute the signature over the HTTP request, the client must have
 access to a key bound to the access token (in plaintext form).

 If an attacker were to gain access to these stored secrets at the
 client or (in case of symmetric keys) at the resource server he or
 she would be able to perform any action on behalf of any client.

 It is therefore paramount to the security of the protocol that the
 private keys associated with the access tokens are protected from
 unauthorized access.

7.4. Entropy of Keys

 Unless TLS is used between the client and the resource server,
 eavesdroppers will have full access to requests sent by the client.
 They will thus be able to mount off-line brute-force attacks to
 recover the session key or private key used to compute the keyed
 message digest or digital signature, respectively.

 This specification assumes that the keying material for use with the
 described HTTP signing mechanism has been distributed via other
 mechanisms, such as [I-D.bradley-oauth-pop-key-distribution]. Hence,
 it is the responsibility of the authorization server and or the
 client to be careful when generating fresh and unique keys with
 sufficient entropy to resist such attacks for at least the length of
 time that the session keys (and the access tokens) are valid.

 For example, if the key bound to the access token is valid for one
 day, authorization servers must ensure that it is not possible to
 mount a brute force attack that recovers that key in less than one
 day. Of course, servers are urged to err on the side of caution, and
 use the longest key length reasonable.

7.5. Denial of Service

 This specification includes a number of features which may make
 resource exhaustion attacks against resource servers possible. For
 example, a resource server may need to need to the resource server
 has to process the incoming request, verify the access token, perform
 signature verification, and might have (in certain circumstances)

Richer, et al. Expires January 22, 2015 [Page 9]

Internet-Draft HTTP Signed Messages July 2014

 consult back-end databases or the authorization server before
 granting access to the protected resource.

 An attacker may exploit this to perform a denial of service attack by
 sending a large number of invalid requests to the server. The
 computational overhead of verifying the keyed message digest alone
 is, however, not sufficient to mount a denial of service attack since
 keyed message digest functions belong to the computationally fastest
 cryptographic algorithms. The situation may, however, be different
 when using asymmetric cryptography, which is also supported by the
 JWS.

7.6. Protecting HTTP Header Fields

 This specification provides flexibility for selectively protecting
 header fields and even the body of the message. Since all components
 of the HTTP request are only optionally protected by this method, and
 even some components may be protected only in part (e.g., some
 headers but not others) it is up to application developers to verify
 that any parameters in a request are actually covered by the
 signature.

 The application verifying this signature MUST NOT assume that any
 particular parameter is appropriately covered by the signature. Any
 applications that are sensitive of header or query parameter order
 MUST verify the order of the parameters on their own. The
 application MUST also compare the values in the JSON container with
 the actual parameters received with the HTTP request. Failure to
 make this comparison will render the signature mechanism useless.

8. Acknowledgements

 The authors acknowledge the OAuth Working Group and submit this draft
 for feedback and input into the ongoing work of signed HTTP requests
 for the interaction between clients and resource servers.

9. References

9.1. Normative References

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-31
 (work in progress), July 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-31
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Richer, et al. Expires January 22, 2015 [Page 10]

Internet-Draft HTTP Signed Messages July 2014

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

9.2. Informative References

 [I-D.bradley-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-bradley-oauth-pop-key-

distribution-01 (work in progress), June 2014.

 [I-D.hunt-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-hunt-oauth-pop-architecture-02 (work
 in progress), June 2014.

Authors' Addresses

 Justin Richer (editor)
 The MITRE Corporation

 Email: jricher@mitre.org

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/draft-bradley-oauth-pop-key-distribution-01
https://datatracker.ietf.org/doc/html/draft-bradley-oauth-pop-key-distribution-01
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-pop-architecture-02
http://www.thread-safe.com/
http://www.tschofenig.priv.at

Richer, et al. Expires January 22, 2015 [Page 11]

