
OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: May 14, 2015 Ping Identity
 N. Agarwal
 Google
 November 12, 2014

Symmetric Proof of Possession for the OAuth Authorization Code Grant
draft-ietf-oauth-spop-03

Abstract

 The OAuth 2.0 public client utilizing Authorization Code Grant (RFC
6749 - 4.1) is susceptible to the code interception attack. This

 specification describes a mechanism that acts as a control against
 this threat.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 14, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 1]

Internet-Draft oauth_spop November 2014

1.1. Protocol Flow . 2
2. Notational Conventions . 3
3. Terminology . 4
4. Protocol . 4
4.1. Client creates a code verifier 4
4.2. Client creates the code challenge 5

 4.3. Client sends the code challenge with the authorization
 request . 5

4.4. Server returns the code 5
 4.5. Client sends the code and the secret to the token endpoint 6
 4.6. Server verifies code_verifier before returning the tokens 6

5. Compatibility . 6
6. IANA Considerations . 6
6.1. OAuth Parameters Registry 7

7. Security Considerations 7
7.1. Entropy of the code verifier 7
7.2. Protection against eavesdroppers 7
7.3. Checking the Server support 7
7.4. OAuth security considerations 8

8. Acknowledgements . 8
9. Revision History . 8
10. References . 9
10.1. Normative References 9
10.2. Informative References 9

Appendix A. Notes on implementing base64url encoding without paddi 10
 Authors' Addresses . 11

1. Introduction

 Public clients in OAuth 2.0 [RFC6749] are susceptible to the
 authorization "code" interception attack. A malicious client
 intercepts the authorization code returned from the authorization
 endpoint and uses it to obtain the access token. This is possible on
 a public client as there is no client secret associated for it to be
 sent to the token endpoint. This is especially true on Smartphone
 applications where the authorization code can be returned through
 custom URL Schemes where the same scheme can be registered by
 multiple applications. Under this scenario, the mitigation strategy
 stated in section 4.4.1 of [RFC6819] does not work as they rely on
 per-client instance secret or per client instance redirect URI.

 To mitigate this attack, this extension utilizes a dynamically
 created cryptographically random key called 'code verifier'. The code
 verifier is created for every authorization request and its
 transformed value, called 'code challenge', is sent to the
 authorization server to obtain the authorization code. The
 authorization "code" obtained is then sent to the token endpoint with
 the 'code verifier' and the server compares it with the previously
 received request code so that it can perform the proof of possession

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1

 of the 'code verifier' by the client. This works as the mitigation
 since the attacker would not know this one-time key.

1.1. Protocol Flow

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 2]

Internet-Draft oauth_spop November 2014

 +--------+ +---------------+
 | |--(A)-- Authorization Request --->| |
 | | + t(code_verifier), t | Resource |
 | | | Owner |
 | |<-(B)--- Authorization Grant -----| |
 | | +---------------+
 | Client |
 | | +---------------+
 | |--(C)--- Access Token Request --->| |
 | | + code_verifier | Authorization |
 | | | Server |
 | |<-(D)------ Access Token ---------| |
 +--------+ +---------------+

 This specification adds additional parameters to the OAuth 2.0
 Authorization and Access Token Requests, shown in abstract form in
 Figure 1.

 A. The client creates and records a secret named the "code_verifier",
 and derives a transformed version "t(code_verifier)" (referred to
 as the "code_challenge") which is sent in the OAuth 2.0
 Authorization Request, along with the transformation method "t".

 B. The resource owner responds as usual, but records
 "t(code_verifier)" and the transformation method.

 C. The client then sends the code to the Access Token Request as
 usual, but includes the "code_verifier" secret generated at (A).

 D. The authorization server transforms "code_verifier" and compares
 it to "t(code_verifier)" from (B). Access is denied if they are
 not equal.

 An attacker who intercepts the Authorization Grant at (B) is unable
 to redeem it for an Access Token, as they are not in possession of
 the "code_verifier" secret.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234

 BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 3]

Internet-Draft oauth_spop November 2014

Section 3 producing a [US-ASCII] STRING.

 BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
 per Section 3, producing a UTF-8 sequence of octets.

 SHA256(STRING) denotes a SHA2 256bit hash [RFC4634] of STRING.

 UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
 of STRING.

 ASCII(STRING) denotes the octets of the ASCII [US-ASCII]
 representation of STRING.

 The concatenation of two values A and B is denoted as A || B.

3. Terminology

 In addition to the terms defined in OAuth 2.0 [RFC6749], this
 specification defines the following terms:

 code verifier A cryptographically random string that is used to
 correlate the authorization request to the token request.

 code challenge A challenge derived from the code verifier that is
 sent in the authorization request, to be verified against later.

 Base64url Encoding Base64 encoding using the URL- and filename-safe
 character set defined in Section 5 of RFC 4648 [RFC4648], with all
 trailing '=' characters omitted (as permitted by Section 3.2) and
 without the inclusion of any line breaks, whitespace, or other
 additional characters. (See Appendix Appendix A for notes on
 implementing base64url encoding without padding.)

4. Protocol

4.1. Client creates a code verifier

 The client first creates a code verifier, "code_verifier", for each
 OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

 code_verifier = high entropy cryptographic random [US-ASCII] sequence
 using the url and filename safe Alphabet [A-Z] / [a-z] / [0-9] / "-"
 / "_" from Sec 5 of RFC 4648 [RFC4648], with length less than 128
 characters.

 ABNF for "code_verifier" is as follows.

 code_verifier = 42*128unreserved
 unreserved = [A-Z] / [a-z] / [0-9] / "-" / "_"

https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 4]

Internet-Draft oauth_spop November 2014

 NOTE: code verifier SHOULD have enough entropy to make it impractical
 to guess the value. It is RECOMMENDED that the output of a suitable
 random number generator be used to create a 32-octet sequence. The
 Octet sequence is then BASE64URL encoded to produce a 42-octet URL
 safe string to use as the code verifier.

4.2. Client creates the code challenge

 The client then creates a code challenge, "code_challenge", derived
 from the "code_verifier" by using one of the following
 transformations on the "code_verifier":

 plain "code_challenge" = "code_verifier"

 S256 "code_challenge" = BASE64URL(SHA256("code_verifier"))

 It is RECOMMENDED to use the S256 transformation when possible.

 ABNF for "code_challenge" is as follows.

 code_challenge = 42*128unreserved
 unreserved = [A-Z] / [a-z] / [0-9] / "-" / "_"

4.3. Client sends the code challenge with the authorization request

 The client sends the code challenge as part of the OAuth 2.0
 [RFC6749] Authorization Request (Section 4.1.1.) using the following
 additional parameters:

 code_challenge REQUIRED. Code challenge.

 code_challenge_method OPTIONAL, defaults to "plain". Code verifier
 transformation method, "S256" or "plain".

4.4. Server returns the code

 When the server issues the "code" in the Authorization Response, it
 MUST associate the "code_challenge" and "code_challenge_method"
 values with the "code" so it can be verified later.

 Typically, the "code_challenge" and "code_challenge_method" values
 are stored in encrypted form in the "code" itself, but could
 alternatively be stored on the server, associated with the code. The
 server MUST NOT include the "code_challenge" value in client requests
 in a form that other entities can extract.

 The exact method that the server uses to associate the

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 5]

Internet-Draft oauth_spop November 2014

 "code_challenge" with the issued "code" is out of scope for this
 specification.

4.5. Client sends the code and the secret to the token endpoint

 Upon receipt of the "code", the client sends the Access Token Request
 to the token endpoint. In addition to the parameters defined in
 OAuth 2.0 [RFC6749] Access Token Request (Section 4.1.3.), it sends
 the following parameter:

 code_verifier REQUIRED. Code verifier

4.6. Server verifies code_verifier before returning the tokens

 Upon receipt of the request at the Access Token endpoint, the server
 verifies it by calculating the code challenge from received
 "code_verifier" and comparing it with the previously associated
 "code_challenge", after first transforming it according to the
 "code_challenge_method" method specified by the client.

 If the "code_challenge_method" from 3.2 was "S256", the received
 "code_verifier" is first hashed with SHA-256 then compared to the
 base64url decoded "code_challenge". i.e.,

 SHA256("code_verifier") == BASE64URL-DECODE("code_challenge").

 If the "code_challenge_method" from 3.2 was "none", they are compared
 directly. i.e.,

 "code_challenge" == "code_verifier".

 If the values are equal, the Access Token endpoint MUST continue
 processing as normal (as defined by OAuth 2.0 [RFC6749]). If the
 values are not equal, an error response indicating "invalid_grant" as
 described in section 5.2 of OAuth 2.0 [RFC6749] MUST be returned.

5. Compatibility

 Server implementations of this specification MAY accept OAuth2.0
 Clients that do not implement this extension. If the "code_verifier"
 is not received from the client in the Authorization Request, servers
 supporting backwards compatibility SHOULD revert to a normal OAuth
 2.0 [RFC6749] protocol.

 As the OAuth 2.0 [RFC6749] server responses are unchanged by this
 specification, client implementations of this specification do not
 need to know if the server has implemented this specification or not,
 and SHOULD send the additional parameters as defined in Section 3. to
 all servers.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

6. IANA Considerations

 This specification makes a registration request as follows:

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 6]

Internet-Draft oauth_spop November 2014

6.1. OAuth Parameters Registry

 This specification registers the following parameters in the IANA
 OAuth Parameters registry defined in OAuth 2.0 [RFC6749].

 o Parameter name: code_verifier

 o Parameter usage location: Access Token Request

 o Change controller: IESG

 o Specification document(s): this document

 o Parameter name: code_challenge

 o Parameter usage location: Authorization Request

 o Change controller: IESG

 o Specification document(s): this document

 o Parameter name: code_challenge_method

 o Parameter usage location: Authorization Request

 o Change controller: IESG

 o Specification document(s): this document

7. Security Considerations

7.1. Entropy of the code verifier

 The security model relies on the fact that the code verifier is not
 learned or guessed by the attacker. It is vitally important to
 adhere to this principle. As such, the code verifier has to be
 created in such a manner that it is cryptographically random and has
 high entropy that it is not practical for the attacker to guess. It
 is RECOMMENDED that the output of a suitable random number generator
 be used to create a 32-octet sequence.

7.2. Protection against eavesdroppers

 Unless there is a compelling reason, implementations SHOULD use
 "S256" method to protect against eavesdroppers intercepting the
 "code_challenge". If the no transformation algorithm, which is the
 default algorithm, is used, the client SHOULD make sure that the
 authorization request is adequately protected from an eavesdropper.
 If "code_challenge" is to be returned inside authorization "code", it

https://datatracker.ietf.org/doc/html/rfc6749

 has to be encrypted in such a manner that only the server can decrypt
 and extract it.

7.3. Checking the Server support

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 7]

Internet-Draft oauth_spop November 2014

 Before starting the authorization process, the client SHOULD check if
 the server supports this specification. Confirmation of the server
 support may be obtained out-of-band or through some other mechanisms
 such as the discovery document in OpenID Connect Discovery
 [OpenID.Discovery]. The exact mechanism on how the client obtains
 this information, or the action it takes as a result is out of scope
 of this specification.

7.4. OAuth security considerations

 All the OAuth security analysis presented in [RFC6819] applies so
 readers SHOULD carefully follow it.

8. Acknowledgements

 The initial draft of this specification was created by the OpenID AB/
 Connect Working Group of the OpenID Foundation, most notably by the
 following people:

 o Naveen Agarwal, Google

 o Dirk Balfanz, Google

 o Sergey Beryozkin

 o John Bradley, Ping Identity

 o Brian Campbell, Ping Identity

 o William Denniss, Google

 o Eduardo Gueiros, Jive Communications

 o Phil Hunt, Oracle

 o Ryo Ito, mixi

 o Michael B. Jones, Microsoft

 o Torsten Lodderstedt, Deutsche Telekom

 o Breno de Medeiros, Google

 o Prateek Mishra, Oracle

 o Anthony Nadalin, Microsoft

 o Axel Nenker, Deutsche Telekom

 o Nat Sakimura, Nomura Research Institute

https://datatracker.ietf.org/doc/html/rfc6819

9. Revision History

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 8]

Internet-Draft oauth_spop November 2014

 -03

 o Added an abstract protocol diagram and explanation

 -02

 o Copy edits

 -01

 o Specified exactly two supported transformations

 o Moved discovery steps to security considerations.

 o Incorporated readability comments by Eduardo Gueiros.

 o Changed MUST in 3.1 to SHOULD.

 -00

 o Initial IETF version.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [US-ASCII]
 American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

10.2. Informative References

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

 [OpenID.Discovery]

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 9]

Internet-Draft oauth_spop November 2014

 Sakimura, N., Bradley, J., Jones, M.B. and E. Jay, "OpenID
 Connect Discovery 1.0", February 2014.

 [RFC6819] Lodderstedt, T., McGloin, M. and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Appendix A. Notes on implementing base64url encoding without padding

 This appendix describes how to implement base64url encoding and
 decoding functions without padding based upon standard base64
 encoding and decoding functions that do use padding.

 To be concrete, example C# code implementing these functions is shown
 below. Similar code could be used in other languages.

 static string base64urlencode(byte [] arg)
 {
 string s = Convert.ToBase64String(arg); // Regular base64 encoder
 s = s.Split('=')[0]; // Remove any trailing '='s
 s = s.Replace('+', '-'); // 62nd char of encoding
 s = s.Replace('/', '_'); // 63rd char of encoding
 return s;
 }

 static byte [] base64urldecode(string arg)
 {
 string s = arg;
 s = s.Replace('-', '+'); // 62nd char of encoding
 s = s.Replace('_', '/'); // 63rd char of encoding
 switch (s.Length % 4) // Pad with trailing '='s
 {
 case 0: break; // No pad chars in this case
 case 2: s += "=="; break; // Two pad chars
 case 3: s += "="; break; // One pad char
 default: throw new System.Exception(
 "Illegal base64url string!");
 }
 return Convert.FromBase64String(s); // Standard base64 decoder
 }

 As per the example code above, the number of '=' padding characters
 that needs to be added to the end of a base64url encoded string
 without padding to turn it into one with padding is a deterministic
 function of the length of the encoded string. Specifically, if the
 length mod 4 is 0, no padding is added; if the length mod 4 is 2, two
 '=' padding characters are added; if the length mod 4 is 3, one '='
 padding character is added; if the length mod 4 is 1, the input is
 malformed.

https://datatracker.ietf.org/doc/html/rfc6819

 An example correspondence between unencoded and encoded values
 follows. The octet sequence below encodes into the string below,
 which when decoded, reproduces the octet sequence.

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 10]

Internet-Draft oauth_spop November 2014

 3 236 255 224 193

 A-z_4ME

Authors' Addresses

 Nat Sakimura, editor
 Nomura Research Institute
 1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
 Chiyoda-ku, Tokyo 100-0005
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +44 20 8133 3718
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Naveen Agarwal
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Phone: +1 650-253-0000
 Email: naa@google.com
 URI: http://google.com/

http://nat.sakimura.org/
http://www.thread-safe.com/
http://google.com/

Sakimura, Bradley & AgarwaExpires May 14, 2015 [Page 11]

