
OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: January 7, 2016 Ping Identity
 N. Agarwal
 Google
 July 6, 2015

Proof Key for Code Exchange by OAuth Public Clients
draft-ietf-oauth-spop-14

Abstract

 OAuth 2.0 public clients utilizing the Authorization Code Grant are
 susceptible to the authorization code interception attack. This
 specification describes the attack as well as a technique to mitigate
 against the threat through the use of Proof Key for Code Exchange
 (PKCE, pronounced "pixy").

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Sakimura, et al. Expires January 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth_pkce July 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Protocol Flow . 5

2. Notational Conventions 6
3. Terminology . 7
3.1. Abbreviations . 7

4. Protocol . 7
4.1. Client creates a code verifier 7
4.2. Client creates the code challenge 8

 4.3. Client sends the code challenge with the authorization
 request . 8

4.4. Server returns the code 8
4.4.1. Error Response 9

 4.5. Client sends the Authorization Code and the Code Verifier
 to the token endpoint 9
 4.6. Server verifies code_verifier before returning the tokens 9

5. Compatibility . 10
6. IANA Considerations . 10
6.1. OAuth Parameters Registry 10
6.2. PKCE Code Challenge Method Registry 11
6.2.1. Registration Template 11
6.2.2. Initial Registry Contents 12

7. Security Considerations 12
7.1. Entropy of the code_verifier 12
7.2. Protection against eavesdroppers 12
7.3. Salting the code_challenge 13
7.4. OAuth security considerations 14
7.5. TLS security considerations 14

8. Acknowledgements . 14
9. Revision History . 15
10. References . 17
10.1. Normative References 17
10.2. Informative References 18

Appendix A. Notes on implementing base64url encoding without
 padding . 18

Appendix B. Example for the S256 code_challenge_method 18
 Authors' Addresses . 20

1. Introduction

 OAuth 2.0 [RFC6749] public clients are susceptible to the
 authorization code interception attack.

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires January 7, 2016 [Page 2]

Internet-Draft oauth_pkce July 2015

 The attacker thereby intercepts the authorization code returned from
 the authorization endpoint within communication path not protected by
 TLS, such as inter-app communication within the operating system of
 the client.

 Once the attacker has gained access to the authorization code it can
 use it to obtain the access token.

 Figure 1 shows the attack graphically. In step (1) the native app
 running on the end device, such as a smart phone, issues an OAuth 2.0
 Authorization Request via the browser/operating system. The
 Redirection Endpoint URI in this case typically uses a custom URI
 scheme. Step (1) happens through a secure API that cannot be
 intercepted, though it may potentially be observed in advanced attack
 scenarios. The request then gets forwarded to the OAuth 2.0
 authorization server in step (2). Because OAuth requires the use of
 TLS, this communication is protected by TLS, and also cannot be
 intercepted. The authorization server returns the authorization code
 in step (3). In step (4), the Authorization Code is returned to the
 requester via the Redirection Endpoint URI that was provided in step
 (1).

 A malicious app that has been designed to attack this native app has
 previously registered itself as a handler for the custom URI scheme
 is now able to intercept the Authorization Code in step (4). This
 allows the attacker to request and obtain an access token in steps
 (5) and (6), respectively.

Sakimura, et al. Expires January 7, 2016 [Page 3]

Internet-Draft oauth_pkce July 2015

 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
 | End Device (e.g., Smart Phone) |
 | |
 | +-------------+ +----------+ | (6) Access Token +----------+
 | |Legitimate | | Malicious|<--------------------| |
 | |OAuth 2.0 App| | App |-------------------->| |
 | +-------------+ +----------+ | (5) Authorization | |
 | | ^ ^ | Grant | |
 | | \ | | | |
 | | \ (4) | | | |
 | (1) | \ Authz| | | |
 | Authz| \ Code | | | Authz |
 | Request| \ | | | Server |
 | | \ | | | |
 | | \ | | | |
 | v \ | | | |
 | +----------------------------+ | | |
 | | | | (3) Authz Code | |
 | | Operating System/ |<--------------------| |
 | | Browser |-------------------->| |
 | | | | (2) Authz Request | |
 | +----------------------------+ | +----------+
 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

 Figure 1: Authorization Code Interception Attack.

 A number of pre-conditions need to hold in order for this attack to
 work:

 1) The attacker manages to register a malicious application on the
 client device and registers a custom URI scheme that is also used
 by another application.
 The operating systems must allow a custom URI schemes to be
 registered by multiple applications.
 2) The OAuth 2.0 authorization code grant is used.
 3) The attacker has access to the OAuth 2.0 [RFC6749] client_id and
 client_secret(if provisioned). All OAuth 2.0 native app client-
 instances use the same client_id. Secrets provisioned in client
 binary applications cannot be considered confidential.
 4a) The attacker (via the installed app) is able to observe only the
 responses from the authorization endpoint. The plain
 code_challenge_method mitigates only this attack.
 4b) A more sophisticated attack scenario allows the attacker to
 observe requests (in addition to responses) to the authorization
 endpoint. The attacker is, however, not able to act as a man-in-
 the-middle. This has been caused by leaking http log information
 in the OS. To mitigate this the S256 code_challenge_method or

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires January 7, 2016 [Page 4]

Internet-Draft oauth_pkce July 2015

 cryptographically secure code_challenge_method extension must be
 used.

 While this is a long list of pre-conditions the described attack has
 been observed in the wild and has to be considered in OAuth 2.0
 deployments.
 While the OAuth 2.0 Threat Model Section 4.4.1 [RFC6819] describes
 mitigation techniques they are, unfortunately, not applicable since
 they rely on a per-client instance secret or aper client instance
 redirect URI.

 To mitigate this attack, this extension utilizes a dynamically
 created cryptographically random key called "code verifier". A
 unique code verifier is created for every authorization request and
 its transformed value, called "code challenge", is sent to the
 authorization server to obtain the authorization code. The
 authorization code obtained is then sent to the token endpoint with
 the "code verifier" and the server compares it with the previously
 received request code so that it can perform the proof of possession
 of the "code verifier" by the client. This works as the mitigation
 since the attacker would not know this one-time key, since it is sent
 over TLS and cannot be intercepted.

1.1. Protocol Flow

 +-------------------+
 | Authz Server |
 +--------+ | +---------------+ |
 | |--(A)- Authorization Request ---->| | | |
 | | + t(code_verifier), t | | Authorization | |
 | | | | Endpoint | |
 | |<-(B)---- Authorization Code -----| | |
 | | | +---------------+ |
 | Client | | |
 | | | +---------------+ |
 | |--(C)-- Access Token Request ---->| | |
 | | + code_verifier | | Token | |
 | | | | Endpoint | |
 | |<-(D)------ Access Token ---------| | |
 +--------+ | +---------------+ |
 +-------------------+

 Figure 2: Abstract Protocol Flow

 This specification adds additional parameters to the OAuth 2.0
 Authorization and Access Token Requests, shown in abstract form in
 Figure 1.

https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1

Sakimura, et al. Expires January 7, 2016 [Page 5]

Internet-Draft oauth_pkce July 2015

 A. The client creates and records a secret named the "code_verifier",
 and derives a transformed version "t(code_verifier)" (referred to
 as the "code_challenge") which is sent in the OAuth 2.0
 Authorization Request, along with the transformation method "t".
 B. The Authorization Endpoint responds as usual, but records
 "t(code_verifier)" and the transformation method.
 C. The client then sends the authorization code in the Access Token
 Request as usual, but includes the "code_verifier" secret
 generated at (A).
 D. The authorization server transforms "code_verifier" and compares
 it to "t(code_verifier)" from (B). Access is denied if they are
 not equal.

 An attacker who intercepts the Authorization Grant at (B) is unable
 to redeem it for an Access Token, as they are not in possession of
 the "code_verifier" secret.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 STRING denotes a sequence of zero or more ASCII [RFC0020] characters.

 OCTETS denotes a sequence of zero or more octets.

 ASCII(STRING) denotes the octets of the ASCII [RFC0020]
 representation of STRING where STRING is a sequence of zero or more
 ASCII characters.

 BASE64URL-ENCODE(OCTETS) denotes the base64url encoding of OCTETS,
 per Section 3 producing a STRING.

 BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
 per Section 3, producing a sequence of octets.

 SHA256(OCTETS) denotes a SHA2 256bit hash [RFC6234] of OCTETS.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc6234

Sakimura, et al. Expires January 7, 2016 [Page 6]

Internet-Draft oauth_pkce July 2015

3. Terminology

 In addition to the terms defined in OAuth 2.0 [RFC6749], this
 specification defines the following terms:

 code verifier
 A cryptographically random string that is used to correlate the
 authorization request to the token request.
 code challenge
 A challenge derived from the code verifier that is sent in the
 authorization request, to be verified against later.
 Base64url Encoding
 Base64 encoding using the URL- and filename-safe character set
 defined in Section 5 of [RFC4648], with all trailing '='
 characters omitted (as permitted by Section 3.2 of [RFC4648]) and
 without the inclusion of any line breaks, whitespace, or other
 additional characters. (See Appendix A for notes on implementing
 base64url encoding without padding.)

3.1. Abbreviations

 ABNF Augmented Backus-Naur Form
 Authz Authorization
 PKCE Proof Key for Code Exchange
 MITM Man-in-the-middle
 MTI Mandatory To Implement

4. Protocol

4.1. Client creates a code verifier

 The client first creates a code verifier, "code_verifier", for each
 OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

 code_verifier = high entropy cryptographic random STRING using the
 Unreserved Characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "~"
 from Sec 2.3 of [RFC3986], with a minimum length of 43 characters and
 a maximum length of 128 characters.

 ABNF for "code_verifier" is as follows.

 code-verifier = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

 NOTE: code verifier SHOULD have enough entropy to make it impractical
 to guess the value. It is RECOMMENDED that the output of a suitable

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc3986

Sakimura, et al. Expires January 7, 2016 [Page 7]

Internet-Draft oauth_pkce July 2015

 random number generator be used to create a 32-octet sequence. The
 Octet sequence is then base64url encoded to produce a 43-octet URL
 safe string to use as the code verifier.

4.2. Client creates the code challenge

 The client then creates a code challenge derived from the code
 verifier by using one of the following transformations on the code
 verifier:

 plain
 code_challenge = code_verifier
 S256
 code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

 Clients SHOULD use the S256 transformation. The plain transformation
 is for compatibility with existing deployments and for constrained
 environments that can't use the S256 transformation.

 ABNF for "code_challenge" is as follows.

 code-challenge = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

4.3. Client sends the code challenge with the authorization request

 The client sends the code challenge as part of the OAuth 2.0
 Authorization Request (Section 4.1.1 of [RFC6749].) using the
 following additional parameters:

 code_challenge REQUIRED. Code challenge.

 code_challenge_method OPTIONAL, defaults to "plain" if not present
 in the request. Code verifier transformation method, "S256" or
 "plain".

4.4. Server returns the code

 When the server issues the authorization code in the authorization
 response, it MUST associate the "code_challenge" and
 "code_challenge_method" values with the authorization code so it can
 be verified later.

 Typically, the "code_challenge" and "code_challenge_method" values
 are stored in encrypted form in the "code" itself, but could
 alternatively be stored on the server, associated with the code. The

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.1

Sakimura, et al. Expires January 7, 2016 [Page 8]

Internet-Draft oauth_pkce July 2015

 server MUST NOT include the "code_challenge" value in client requests
 in a form that other entities can extract.

 The exact method that the server uses to associate the
 "code_challenge" with the issued "code" is out of scope for this
 specification.

4.4.1. Error Response

 If the server requires Proof Key for Code Exchange (PKCE) by OAuth
 Public Clients, and the client does not send the "code_challenge" in
 the request, the authorization endpoint MUST return the authorization
 error response with "error" value set to "invalid_request". The
 "error_description" or the response of "error_uri" SHOULD explain the
 nature of error, e.g., code challenge required.

 If the server supporting PKCE does not support the requested
 transform, the authorization endpoint MUST return the authorization
 error response with "error" value set to "invalid_request". The
 "error_description" or the response of "error_uri" SHOULD explain the
 nature of error, e.g., transform algorithm not supported.

 If the client is capable of using "S256", it MUST use "S256", as
 "S256" is Mandatory To Implement (MTI) on the server. Clients are
 permitted to use "plain" only if they cannot support "S256" for some
 technical reason and knows that the server supports "plain".

4.5. Client sends the Authorization Code and the Code Verifier to the
 token endpoint

 Upon receipt of the Authorization Code, the client sends the Access
 Token Request to the token endpoint. In addition to the parameters
 defined in the OAuth 2.0 Access Token Request (Section 4.1.3 of
 [RFC6749]), it sends the following parameter:

 code_verifier REQUIRED. Code verifier

 The code_challenge_method is bound to the Authorization Code when the
 Authorization Code is issued. That is the method that the token
 endpoint MUST use to verify the code_verifier.

4.6. Server verifies code_verifier before returning the tokens

 Upon receipt of the request at the Access Token endpoint, the server
 verifies it by calculating the code challenge from received
 "code_verifier" and comparing it with the previously associated
 "code_challenge", after first transforming it according to the
 "code_challenge_method" method specified by the client.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

Sakimura, et al. Expires January 7, 2016 [Page 9]

Internet-Draft oauth_pkce July 2015

 If the "code_challenge_method" from Section 4.2 was "S256", the
 received "code_verifier" is hashed by SHA-256, then base64url
 encoded, and then compared to the "code_challenge". i.e.,

 BASE64URL-ENCODE(SHA256(ASCII("code_verifier"))) == "code_challenge"

 If the "code_challenge_method" from Section 4.2 was "plain", they are
 compared directly. i.e.,

 "code_verifier" == "code_challenge".

 If the values are equal, the Access Token endpoint MUST continue
 processing as normal (as defined by OAuth 2.0 [RFC6749]). If the
 values are not equal, an error response indicating "invalid_grant" as
 described in section 5.2 of [RFC6749] MUST be returned.

5. Compatibility

 Server implementations of this specification MAY accept OAuth2.0
 Clients that do not implement this extension. If the "code_verifier"
 is not received from the client in the Authorization Request, servers
 supporting backwards compatibility revert to a normal OAuth 2.0
 [RFC6749] protocol.

 As the OAuth 2.0 [RFC6749] server responses are unchanged by this
 specification, client implementations of this specification do not
 need to know if the server has implemented this specification or not,
 and SHOULD send the additional parameters as defined in Section 3. to
 all servers.

6. IANA Considerations

 This specification makes a registration request as follows:

6.1. OAuth Parameters Registry

 This specification registers the following parameters in the IANA
 OAuth Parameters registry defined in OAuth 2.0 [RFC6749].

 o Parameter name: code_verifier
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): this document

 o Parameter name: code_challenge
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): this document

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires January 7, 2016 [Page 10]

Internet-Draft oauth_pkce July 2015

 o Parameter name: code_challenge_method
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): this document

6.2. PKCE Code Challenge Method Registry

 This specification establishes the PKCE Code Challenge Method
 registry. The new registry should be a sub-registry of OAuth
 Parameters registry.

 Additional code_challenge_method types for use with the authorization
 endpoint are registered with a Specification Required ([RFC5226])
 after a two-week review period on the oauth-ext-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Expert(s) may approve registration once they are
 satisfied that such a specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request for PKCE code_challenge_method: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

6.2.1. Registration Template

 Code Challenge Method Parameter Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.
 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

https://datatracker.ietf.org/doc/html/rfc5226

Sakimura, et al. Expires January 7, 2016 [Page 11]

Internet-Draft oauth_pkce July 2015

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

6.2.2. Initial Registry Contents

 This specification registers the Code Challenge Method Parameter
 names defined in Section 4.2 in this registry.

 o Code Challenge Method Parameter Name: "plain"
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this document]]

 o Code Challenge Method Parameter Name: "S256"
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [[this document]]

7. Security Considerations

7.1. Entropy of the code_verifier

 The security model relies on the fact that the code verifier is not
 learned or guessed by the attacker. It is vitally important to
 adhere to this principle. As such, the code verifier has to be
 created in such a manner that it is cryptographically random and has
 high entropy that it is not practical for the attacker to guess.

 The client SHOULD create a code_verifier with a minimum of 256bits of
 entropy. This can be done by having a suitable random number
 generator create a 32-octet sequence. The Octet sequence can then be
 base64url encoded to produce a 43-octet URL safe string to use as a
 code_challenge that has the required entropy.

7.2. Protection against eavesdroppers

 Clients MUST NOT try down grading the algorithm after trying "S256"
 method. If the server is PKCE compliant, then "S256" method will
 work. If the server does not support PKCE, it will not generate an
 error. The only time that a server will return that it does not
 support "S256" is if there is a MITM trying the algorithm downgrade
 attack.

 "S256" method protects against eavesdroppers observing or
 intercepting the "code_challenge", because the challenge cannot be
 used without the verifier. With the "plain" method, there is a
 chance that "code_challenge" will be observed by the attacker on the

Sakimura, et al. Expires January 7, 2016 [Page 12]

Internet-Draft oauth_pkce July 2015

 device, or in the http request. Since the code challenge is the same
 as the code verifier in this case, "plain" method deso not protect
 against the eavesdropping of the initial request.

 The use of "S256" protects against disclosure of "code_verifier"
 value to an attacker.

 Because of this, "plain" SHOULD NOT be used, and exists only for
 compatibility with deployed implementations where the request path is
 already protected. The "plain" method MUST NOT be used in new
 implementations.

 The "S256" code_challenge_method or other cryptographically secure
 code_challenge_method extension SHOULD be used. The plain
 code_challenge_method relies on the operating system and transport
 security not to disclose the request to an attacker.

 If the code_challenge_method is plain, and the "code_challenge" is to
 be returned inside authorization "code" to achieve a stateless
 server, it MUST be encrypted in such a manner that only the server
 can decrypt and extract it.

7.3. Salting the code_challenge

 In order to reduce implementation complexity Salting is not used in
 the production of the code_challenge, as the code_verifier contains
 sufficient entropy to prevent brute force attacks. Concatenating a
 publicly known value to a code_verifier (containing 256 bits of
 entropy) and then hashing it with SHA256 to produce a code_challenge
 would not increase the number of attempts necessary to brute force a
 valid value for code_verifier.

 While the S256 transformation is like hashing a password there are
 important differences. Passwords tend to be relatively low entropy
 words that can be hashed offline and the hash looked up in a
 dictionary. By concatenating a unique though public value to each
 password prior to hashing, the dictionary space that an attacker
 needs to search is greatly expanded.

 Modern graphics processors now allow attackers to calculate hashes in
 real time faster than they could be looked up from a disk. This
 eliminates the value of the salt in increasing the complexity of a
 brute force attack for even low entropy passwords.

Sakimura, et al. Expires January 7, 2016 [Page 13]

Internet-Draft oauth_pkce July 2015

7.4. OAuth security considerations

 All the OAuth security analysis presented in [RFC6819] applies so
 readers SHOULD carefully follow it.

7.5. TLS security considerations

 Curent security considerations can be found in Recommendations for
 Secure Use of TLS and DTLS [BCP195]. This supersedes the TLS version
 recommendations in OAuth 2.0 [RFC6749].

8. Acknowledgements

 The initial draft of this specification was created by the OpenID AB/
 Connect Working Group of the OpenID Foundation.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Anthony Nadalin, Microsoft
 Axel Nenker, Deutsche Telekom
 Breno de Medeiros, Google
 Brian Campbell, Ping Identity
 Chuck Mortimore, Salesforce
 Dirk Balfanz, Google
 Eduardo Gueiros, Jive Communications
 Hannes Tschonfenig, ARM
 James Manger, Telstra
 John Bradley, Ping Identity
 Justin Richer, MIT Kerberos
 Josh Mandel, Boston Children's Hospital
 Lewis Adam, Motorola Solutions
 Madjid Nakhjiri, Samsung
 Michael B. Jones, Microsoft
 Nat Sakimura, Nomura Research Institute
 Naveen Agarwal, Google
 Paul Madsen, Ping Identity
 Phil Hunt, Oracle
 Prateek Mishra, Oracle
 Ryo Ito, mixi
 Scott Tomilson, Ping Identity
 Sergey Beryozkin
 Takamichi Saito
 Torsten Lodderstedt, Deutsche Telekom
 William Denniss, Google

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires January 7, 2016 [Page 14]

Internet-Draft oauth_pkce July 2015

9. Revision History

 -14

 o #38. Expanded Section 7.2 to explain why plain should not be
 used.
 o #39. Modified Section 4.4.1 to discourage the use of plain.
 o #40. Modified Intro text to explain the attack better.
 o #41. Added explanation that the token request is protected in the
 Last paragraph of the Introduction.
 o #42. Sec 4.2: Removed redundant double quotes caused by spanx.
 o #43. Sec 4.4: Replaced code with authorization code.
 o #44. Sec 4.5: say "code_verifier" rather than "secret"
 o #45. Sec 4.4.1: Expanded PKCE.
 o #46. Sec 5: SHOULD in para 1 removed.
 o Added abbreviations section.

 -13

 o Fix the parameter usage locations for the OAuth Parameters
 Registry per Hannes response.
 o Clarify for IANA that the new registry is a sub-registry of OAuth
 Parameters registry
 o aded text on why the code_challenge_method is not sent to the
 token endpoint.

 -12

 o clarify that the client secret we are talking about in the
 Introduction is a OAuth 2 client_secret.
 o Update salting security consideration based on Ben's feedback

 -11

 o add spanx for plain in sec 4.4 RE Kathleen's comment
 o Add security consideration on TLS and reference BCP195
 o Update to make clearer that plain can only be used for backwards
 compatibility and constrained environments

 -10

 o re #33 specify lower limit to code_verifier in prose
 o remove base64url decode from draft, all steps now use encode only
 o Expanded MTI
 o re #33 change length of 32 octet base64url encoded string back to
 43 octets

 -09

https://datatracker.ietf.org/doc/html/bcp195

Sakimura, et al. Expires January 7, 2016 [Page 15]

Internet-Draft oauth_pkce July 2015

 o clean up some external references so they don't point at internal
 sections

 -08

 o changed BASE64URL to BASE64URL-ENCODE to be more consistent with
appendix A Fixed lowercase base64url in appendix B

 o Added appendix B as an example of S256 processing
 o Change reference for unreserved characters to RFC3986 from
 base64URL

 -07

 o removed unused discovery reference and UTF8
 o re #32 added ASCII(STRING) to make clear that it is the byte array
 that is being hashed
 o re #2 Remove discovery requirement section.
 o updated Acknowledgement
 o re #32 remove unneeded UTF8(STRING) definition, and define STRING
 for ASCII(STRING)
 o re #32 remove unneeded utf8 reference from BASE64URL-
 DECODE(STRING) def
 o resolves #31 unused definition of concatenation
 o re #30 Update figure text call out the endpoints
 o re #30 Update figure to call out the endpoints
 o small wording change to the introduction

 -06

 o fix date
 o replace spop with pkce for registry and other references
 o re #29 change name again
 o re #27 removed US-ASCII reference
 o re #27 updated ABNF for code_verifier
 o resolves #24 added security consideration for salting
 o resolves #29 Changed title
 o updated reference to RFC4634 to RFC6234 re #27
 o changed reference for US-ASCII to RFC20 re #27
 o resolves #28 added Acknowledgements
 o resolves #27 updated ABNF
 o resolves #26 updated abstract and added Hannes figure

 -05

 o Added IANA registry for code_challenge_method + fixed some broken
 internal references.

 -04

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc20

Sakimura, et al. Expires January 7, 2016 [Page 16]

Internet-Draft oauth_pkce July 2015

 o Added error response to authorization response.

 -03

 o Added an abstract protocol diagram and explanation

 -02

 o Copy edits

 -01

 o Specified exactly two supported transformations
 o Moved discovery steps to security considerations.
 o Incorporated readability comments by Eduardo Gueiros.
 o Changed MUST in 3.1 to SHOULD.

 -00

 o Initial IETF version.

10. References

10.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6234

Sakimura, et al. Expires January 7, 2016 [Page 17]

Internet-Draft oauth_pkce July 2015

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

10.2. Informative References

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Appendix A. Notes on implementing base64url encoding without padding

 This appendix describes how to implement a base64url encoding
 function without padding based upon standard base64 encoding function
 that uses padding.

 To be concrete, example C# code implementing these functions is shown
 below. Similar code could be used in other languages.

 static string base64urlencode(byte [] arg)
 {
 string s = Convert.ToBase64String(arg); // Regular base64 encoder
 s = s.Split('=')[0]; // Remove any trailing '='s
 s = s.Replace('+', '-'); // 62nd char of encoding
 s = s.Replace('/', '_'); // 63rd char of encoding
 return s;
 }

 An example correspondence between unencoded and encoded values
 follows. The octet sequence below encodes into the string below,
 which when decoded, reproduces the octet sequence.

 3 236 255 224 193

 A-z_4ME

Appendix B. Example for the S256 code_challenge_method

 The client uses output of a suitable random number generator to
 create a 32-octet sequence. The octets representing the value in
 this example (using JSON array notation) are:"

 [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
 132, 141, 121]

 Encoding this octet sequence as a Base64url provides the value of the
 code_verifier:

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819

Sakimura, et al. Expires January 7, 2016 [Page 18]

Internet-Draft oauth_pkce July 2015

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The code_verifier is then hashed via the SHA256 hash function to
 produce:

 [19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
 8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
 112, 249, 195]

 Encoding this octet sequence as a base64url provides the value of the
 code_challenge:

 E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

 The authorization request includes:

 code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
 &code_challange_method=S256

 The Authorization server then records the code_challenge and
 code_challenge_method along with the code that is granted to the
 client.

 in the request to the token_endpoint the client includes the code
 received in the authorization response as well as the additional
 paramater:

 code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The Authorization server retrieves the information for the code
 grant. Based on the recorded code_challange_method being S256, it
 then hashes and base64url encodes the value of code_verifier.
 BASE64URL-ENCODE(SHA256(ASCII("code_verifier")))

 The calculated value is then compared with the value of
 "code_challenge":

 BASE64URL-ENCODE(SHA256(ASCII("code_verifier"))) == code_challenge

 If the two values are equal then the Authorization server can provide
 the tokens as long as there are no other errors in the request. If
 the values are not equal then the request must be rejected, and an
 error returned.

Sakimura, et al. Expires January 7, 2016 [Page 19]

Internet-Draft oauth_pkce July 2015

Authors' Addresses

 Nat Sakimura (editor)
 Nomura Research Institute
 1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
 Chiyoda-ku, Tokyo 100-0005
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +44 20 8133 3718
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Naveen Agarwal
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Phone: +1 650-253-0000
 Email: naa@google.com
 URI: http://google.com/

http://nat.sakimura.org/
http://www.thread-safe.com/
http://google.com/

Sakimura, et al. Expires January 7, 2016 [Page 20]

