
OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: September 28, 2017 B. Campbell
 Ping Identity
 W. Denniss
 Google
 March 27, 2017

OAuth 2.0 Token Binding
draft-ietf-oauth-token-binding-03

Abstract

 This specification enables OAuth 2.0 implementations to apply Token
 Binding to Access Tokens, Authorization Codes, and Refresh Tokens.
 This cryptographically binds these tokens to a client's Token Binding
 key pair, possession of which is proven on the TLS connections over
 which the tokens are intended to be used. This use of Token Binding
 protects these tokens from man-in-the-middle and token export and
 replay attacks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Jones, et al. Expires September 28, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 Token Binding March 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Notation and Conventions 3
1.2. Terminology . 3

2. Token Binding for Refresh Tokens 3
2.1. Example Token Binding for Refresh Tokens 4

3. Token Binding for Access Tokens 6
3.1. Access Tokens Issued from the Authorization Endpoint . . 7

 3.1.1. Example Access Token Issued from the Authorization
 Endpoint . 8

3.2. Access Tokens Issued from the Token Endpoint 9
 3.2.1. Example Access Token Issued from the Token Endpoint . 9

3.3. Protected Resource Token Binding Validation 11
3.3.1. Example Protected Resource Request 11

3.4. Representing Token Binding in JWT Access Tokens 11
4. Token Binding for Authorization Codes 12
4.1. Native Application Clients 12
4.1.1. Code Challenge 13
4.1.1.1. Example Code Challenge 13

4.1.2. Code Verifier . 14
4.1.2.1. Example Code Verifier 14

4.2. Web Server Clients 15
4.2.1. Code Challenge 15
4.2.1.1. Example Code Challenge 16

4.2.2. Code Verifier . 16
4.2.2.1. Example Code Verifier 17

5. Phasing in Token Binding and Preventing Downgrade Attacks . . 18
6. Token Binding Metadata 18
6.1. Token Binding Client Metadata 18
6.2. Token Binding Authorization Server Metadata 19
6.3. Token Binding Protected Resource Metadata 19

7. Security Considerations 19
8. IANA Considerations . 20

 8.1. OAuth Dynamic Client Registration Metadata Registration . 20
8.1.1. Registry Contents 20

8.2. OAuth Authorization Server Metadata Registration 20
8.2.1. Registry Contents 20

8.3. OAuth Protected Resource Metadata Registration 21
8.3.1. Registry Contents 21

8.4. PKCE Code Challenge Method Registration 21

Jones, et al. Expires September 28, 2017 [Page 2]

Internet-Draft OAuth 2.0 Token Binding March 2017

8.4.1. Registry Contents 21
9. References . 21
9.1. Normative References 21
9.2. Informative References 23

Appendix A. Acknowledgements 24
Appendix B. Open Issues . 24
Appendix C. Document History 24

 Authors' Addresses . 25

1. Introduction

 This specification enables OAuth 2.0 [RFC6749] implementations to
 apply Token Binding (TLS Extension for Token Binding Protocol
 Negotiation [I-D.ietf-tokbind-negotiation], The Token Binding
 Protocol Version 1.0 [I-D.ietf-tokbind-protocol] and Token Binding
 over HTTP [I-D.ietf-tokbind-https]) to Access Tokens, Authorization
 Codes, and Refresh Tokens. This cryptographically binds these tokens
 to a client's Token Binding key pair, possession of which is proven
 on the TLS connections over which the tokens are intended to be used.
 This use of Token Binding protects these tokens from man-in-the-
 middle and token export and replay attacks.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

1.2. Terminology

 This specification uses the terms "Access Token", "Authorization
 Code", "Authorization Endpoint", "Authorization Server", "Client",
 "Protected Resource", "Refresh Token", and "Token Endpoint" defined
 by OAuth 2.0 [RFC6749], the terms "Claim" and "JSON Web Token (JWT)"
 defined by JSON Web Token (JWT) [JWT], the term "User Agent" defined
 by RFC 7230 [RFC7230], and the terms "Provided", "Referred", "Token
 Binding" and "Token Binding ID" defined by Token Binding over HTTP
 [I-D.ietf-tokbind-https].

2. Token Binding for Refresh Tokens

 Token Binding of refresh tokens is a straightforward first-party
 scenario, applying term "first-party" as used in Token Binding over
 HTTP [I-D.ietf-tokbind-https]. It cryptographically binds the
 refresh token to the client's Token Binding key pair, possession of
 which is proven on the TLS connections between the client and the
 token endpoint. This case is straightforward because the refresh

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Jones, et al. Expires September 28, 2017 [Page 3]

Internet-Draft OAuth 2.0 Token Binding March 2017

 token is both retrieved by the client from the token endpoint and
 sent by the client to the token endpoint. Unlike the federated
 scenarios described in Section 4 (Federation Use Cases) of Token
 Binding over HTTP [I-D.ietf-tokbind-https] and the access token case
 described in the next section, only a single TLS connection is
 involved in the refresh token case.

 Token Binding a refresh token requires that the authorization server
 do two things. First, when refresh token is sent to the client, the
 authorization server needs to remember the Provided Token Binding ID
 and remember its association with the issued refresh token. Second,
 when a token request containing a refresh token is received at the
 token endpoint, the authorization server needs to verify that the
 Provided Token Binding ID for the request matches the remembered
 Token Binding ID associated with the refresh token. If the Token
 Binding IDs do not match, the authorization server should return an
 error in response to the request.

 How the authorization server remembers the association between the
 refresh token and the Token Binding ID is an implementation detail
 that beyond the scope of this specification. Some authorization
 servers will choose to store the Token Binding ID (or a cryptographic
 hash of it, such a SHA-256 hash [SHS]) in the refresh token itself,
 provided it is integrity-protected, thus reducing the amount of state
 to be kept by the server. Other authorization servers will add the
 Token Binding ID value (or a hash of it) to an internal data
 structure also containing other information about the refresh token,
 such as grant type information. These choices make no difference to
 the client, since the refresh token is opaque to it.

2.1. Example Token Binding for Refresh Tokens

 This section provides an example of what the interactions around a
 Token Bound refresh token might look like, along with some details of
 the involved processing. Token Binding of refresh tokens is most
 useful for native application clients so the example has protocol
 elements typical of a native client flow. Extra line breaks in all
 examples are for display purposes only.

 A native application client makes the following access token request
 with an authorization code using a TLS connection where Token Binding
 has been negotiated. A PKCE "code_verifier" is included because use
 the of PKCE is considered best practice for native application
 clients [I-D.ietf-oauth-native-apps]. The base64url-encoded
 representation of the exported keying material (EKM) from that TLS
 connection is "p6ZuSwfl6pIe8es5KyeV76T4swZmQp0_awd27jHfrbo", which is
 needed to validate the Token Binding Message.

Jones, et al. Expires September 28, 2017 [Page 4]

Internet-Draft OAuth 2.0 Token Binding March 2017

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQGto7hHRR0Y5nkOWqc9KNfwW95dEFmSI_tCZ_Cbl
 7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8m7eqAAQOKiDK1Oi0z6v4X5B
 P7uc0pFestVZ42TTOdJmoHpji06Qq3jsCiCRSJx9ck2fWJYx8tLVXRZPATB3x6c24
 aY0ZEAAA

 grant_type=authorization_code&code=4bwcZesc7Xacc330ltc66Wxk8EAfP9j2
 &code_verifier=2x6_ylS390-8V7jaT9wj.8qP9nKmYCf.V-rD9O4r_1
 &client_id=example-native-client-id

 Figure 1: Initial Request with Code

 A refresh token is issued in response to the prior request. Although
 it looks like a typical response to the client, the authorization
 server has bound the refresh token to the Provided Token Binding ID
 from the encoded Token Binding message in the "Sec-Token-Binding"
 header of the request. In this example, that binding is done by
 saving the Token Binding ID alongside other information about the
 refresh token in some server side persistent storage. The base64url-
 encoded representation of that Token Binding ID is "AgBBQGto7hHRR0Y5n
 kOWqc9KNfwW95dEFmSI_tCZ_Cbl7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8
 m7eqA".

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"EdRs7qMrLb167Z9fV2dcwoLTC",
 "refresh_token":"ACClZEIQTjW9arT9GOJGGd7QNwqOMmUYfsJTiv8his4",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 2: Successful Response

 When the access token expires, the client requests a new one with a
 refresh request to the token endpoint. In this example, the request
 is made on a new TLS connection so the EKM (base64url-encoded: "va-
 84Ukw4Zqfd7uWOtFrAJda96WwgbdaPDX2knoOiAE") and signature in the Token
 Binding Message are different than in the initial request.

Jones, et al. Expires September 28, 2017 [Page 5]

Internet-Draft OAuth 2.0 Token Binding March 2017

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQGto7hHRR0Y5nkOWqc9KNfwW95dEFmSI_tCZ_Cbl
 7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8m7eqAAQCpGbaG_YRf27qOra
 L0UT4fsKKjL6PukuOT00qzamoAXxOq7m_id7O3mLpnb_sM7kwSxLi7iNHzzDgCAkP
 t3lHwAAA

 refresh_token=ACClZEIQTjW9arT9GOJGGd7QNwqOMmUYfsJTiv8his4
 &grant_type=refresh_token&client_id=example-native-client-id

 Figure 3: Refresh Request

 However, because the Token Binding ID is long-lived and may span
 multiple TLS sessions and connections, it is the same as in the
 initial request. That Token Binding ID is what the refresh token is
 bound to, so the authorization server is able to verify it and issue
 a new access token.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"bwcESCwC4yOCQ8iPsgcn117k7",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 4: Successful Response

3. Token Binding for Access Tokens

 Token Binding for access tokens cryptographically binds the access
 token to the client's Token Binding key pair, possession of which is
 proven on the TLS connections between the client and the protected
 resource. Token Binding is applied to access tokens in a similar
 manner to that described in Section 4 (Federation Use Cases) of Token
 Binding over HTTP [I-D.ietf-tokbind-https]. It also builds upon the
 mechanisms for Token Binding of ID Tokens defined in OpenID Connect
 Token Bound Authentication 1.0 [OpenID.TokenBinding].

 In the OpenID Connect [OpenID.Core] use case, HTTP redirects are used
 to pass information between the identity provider and the relying
 party; this HTTP redirect makes the Token Binding ID of the relying
 party available to the identity provider as the Referred Token
 Binding ID, information about which is then added to the ID Token.
 No such redirect occurs between the authorization server and the

Jones, et al. Expires September 28, 2017 [Page 6]

Internet-Draft OAuth 2.0 Token Binding March 2017

 protected resource in the access token case; therefore, information
 about the Token Binding ID for the TLS connection between the client
 and the protected resource needs to be explicitly communicated by the
 client to the authorization server to achieve Token Binding of the
 access token.

 This information is passed to the authorization server using the
 Referred Token Binding ID, just as in the ID Token case. The only
 difference is that the client needs to explicitly communicate the
 Token Binding ID of the TLS connection between the client and the
 protected resource to the Token Binding implementation so that it is
 sent as the Referred Token Binding ID in the request to the
 authorization server. This functionality provided by Token Binding
 implementations is described in Section 5 (Implementation
 Considerations) of Token Binding over HTTP [I-D.ietf-tokbind-https].

 Note that to obtain this Token Binding ID, the client may need to
 establish a TLS connection between itself and the protected resource
 prior to making the request to the authorization server so that the
 Provided Token Binding ID for the TLS connection to the protected
 resource can be obtained. How the client retrieves this Token
 Binding ID from the underlying Token Binding API is implementation
 and operating system specific. An alternative, if supported, is for
 the client to generate a Token Binding key to use for the protected
 resource, use the Token Binding ID for that key, and then later use
 that key when the TLS connection to the protected resource is
 established.

3.1. Access Tokens Issued from the Authorization Endpoint

 For access tokens returned directly from the authorization endpoint,
 such as with the implicit grant defined in Section 4.2 of OAuth 2.0
 [RFC6749], the Token Binding ID of the client's TLS channel to the
 protected resource is sent with the authorization request as the
 Referred Token Binding ID in the "Sec-Token-Binding" header, and is
 used to Token Bind the access token.

 Upon receiving the Referred Token Binding ID in an authorization
 request, the authorization server associates (Token Binds) the ID
 with the access token in a way that can be accessed by the protected
 resource. Such methods include embedding the Referred Token Binding
 ID (or a cryptographic hash of it) in the issued access token itself,
 possibly using the syntax described at Section 3.4, or through token
 introspection [RFC7662]. The method for associating the referred
 token binding ID with the access token is determined by the
 authorization server and the protected resource, and is beyond the
 scope for this specification.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7662

Jones, et al. Expires September 28, 2017 [Page 7]

Internet-Draft OAuth 2.0 Token Binding March 2017

3.1.1. Example Access Token Issued from the Authorization Endpoint

 This section provides an example of what the interactions around a
 Token Bound access token issued from the authorization endpoint might
 look like, along with some details of the involved processing. Extra
 line breaks in all examples are for display purposes only.

 The client directs the user-agent to make the following HTTP request
 to the authorization endpoint. It is a typical authorization request
 that, because Token Binding was negotiated on the underlying TLS
 connection and the user-agent was signaled to reveal the Referred
 Token Binding, also includes the "Sec-Token-Binding" header with a
 Token Binding Message that contains both a Provided and Referred
 Token Binding. The base64url-encoded EKM from the TLS connection
 over which the request was made is
 "jI5UAyjs5XCPISUGQIwgcSrOiVIWq4fhLVIFTQ4nLxc".

 GET /as/authorization.oauth2?response_type=token
 &client_id=example-client-id&state=rM8pZxG1c3gKy6rEbsD8s
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb HTTP/1.1
 Host: server.example.com
 Sec-Token-Binding: ARIAAgBBQIEE8mSMtDy2dj9EEBdXaQT9W3Rq1NS-jW8ebPoF
 6FyL0jIfATVE55zlircgOTZmEg1xeIrC3DsGegwjs4bhw14AQGKDlAXFFMyQkZegC
 wlbTlqX3F9HTt-lJxFU_pi16ezka7qVRCpSF0BQLfSqlsxMbYfSSCJX1BDtrIL7PX
 j__fUAAAECAEFA1BNUnP3te5WrwlEwiejEz0OpesmC5PElWc7kZ5nlLSqQTj1ciIp
 5vQ30LLUCyM_a2BYTUPKtd5EdS-PalT4t6ABADgeizRa5NkTMuX4zOdC-R4cLNWVV
 O8lLu2Psko-UJLR_XAH4Q0H7-m0_nQR1zBN78nYMKPvHsz8L3zWKRVyXEgAA

 Figure 5: Authorization Request

 The authorization server issues an access token and delivers it to
 the client by redirecting the user-agent with the following HTTP
 response:

 HTTP/1.1 302 Found
 Location: https://client.example.org/cb#state=rM8pZxG1c3gKy6rEbsD8s
 &expires_in=3600&token_type=Bearer
 &access_token=eyJhbGciOiJFUzI[...omitted for brevity...]8xy5W5sQ

 Figure 6: Authorization Response

 The access token is bound to the Referred Token Binding ID from the
 authorization request, which when represented as a JWT, as described
 in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
 the value of the "tbh" (token binding hash) member of the "cnf"
 (confirmation) claim. The confirmation claim portion of the JWT
 Claims Set is shown in the following figure.

Jones, et al. Expires September 28, 2017 [Page 8]

Internet-Draft OAuth 2.0 Token Binding March 2017

 {
 ...other claims omitted for brevity...
 "cnf":{
 "tbh": "vowQESa_MgbGJwIXaFm_BTN2QDPwh8PhuBm-EtUAqxc"
 }
 }

 Figure 7: Confirmation Claim

3.2. Access Tokens Issued from the Token Endpoint

 For access tokens returned from the token endpoint, the Token Binding
 ID of the client's TLS channel to the protected resource is sent as
 the Referred Token Binding ID in the "Sec-Token-Binding" header, and
 is used to Token Bind the access token. This applies to all the
 grant types from OAuth 2.0 [RFC6749] using the token endpoint,
 including, but not limited to the refresh and authorization code
 token requests, as well as some extension grants, such as JWT
 assertion authorization grants [RFC7523].

 Upon receiving the Referred Token Binding ID in a token request, the
 authorization server associates (Token Binds) the ID with the access
 token in a way that can be accessed by the protected resource. Such
 methods include embedding the Referred Token Binding ID (or a
 cryptographic hash of it) in the issued access token itself, possibly
 using the syntax described at Section 3.4, or through token
 introspection [RFC7662]. The method for associating the referred
 token binding ID with the access token is determined by the
 authorization server and the protected resource, and is beyond the
 scope for this specification.

 Note that if the request results in a new refresh token being
 generated, it can be Token bound using the Provided Token Binding ID,
 per Section 2.

3.2.1. Example Access Token Issued from the Token Endpoint

 This section provides an example of what the interactions around a
 Token Bound access token issued from the token endpoint might look
 like, along with some details of the involved processing. Extra line
 breaks in all examples are for display purposes only.

 The client makes an access token request to the token endpoint and
 includes the "Sec-Token-Binding" header with a Token Binding Message
 that contains both Provided and Referred Token Binding IDs. The
 Provided Token Binding ID is used to validate the token binding of
 the refresh token in the request (and to Token Bind a new refresh
 token, if one is issued), and the Referred Token Binding ID is used

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7662

Jones, et al. Expires September 28, 2017 [Page 9]

Internet-Draft OAuth 2.0 Token Binding March 2017

 to Token Bind the access token that is generated. The base64url-
 encoded EKM from the TLS connection over which the access token
 request was made is "4jTc5e1QpocqPTZ5l6jsb6pRP18IFKdwwPvasYjn1-E".

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: ARIAAgBBQJFXJir2w4gbJ7grBx9uTYWIrs9V50-PW4ZijegQ
 0LUM-_bGnGT6DizxUK-m5n3dQUIkeH7ybn6wb1C5dGyV_IAAQDDFToFrHt41Zppq7
 u_SEMF_E-KimAB-HewWl2MvZzAQ9QKoWiJCLFiCkjgtr1RrA2-jaJvoB8o51DTGXQ
 ydWYkAAAECAEFAuC1GlYU83rqTGHEau1oqvNwy0fDsdXzIyT_4x1FcldsMxjFkJac
 IBJFGuYcccvnCak_duFi3QKFENuwxql-H9ABAMcU7IjJOUA4IyE6YoEcfz9BMPQqw
 M5M6hw4RZNQd58fsTCCslQE_NmNCl9JXy4NkdkEZBxqvZGPr0y8QZ_bmAwAA

 refresh_token=gZR_ZI8EAhLgWR-gWxBimbgZRZi_8EAhLgWRgWxBimbf
 &grant_type=refresh_token&client_id=example-client-id

 Figure 8: Access Token Request

 The authorization server issues an access token bound to the Referred
 Token Binding ID and delivers it in a response the client.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtp[...omitted...]1cs29j5c3",
 "token_type":"Bearer",
 "expires_in":3600
 }

 Figure 9: Response

 The access token is bound to the Referred Token Binding ID of the
 access token request, which when represented as a JWT, as described
 in Section 3.4, contains the SHA-256 hash of the Token Binding ID as
 the value of the "tbh" (token binding hash) member of the "cnf"
 (confirmation) claim. The confirmation claim portion of the JWT
 Claims Set of the access token is shown in the following figure.

Jones, et al. Expires September 28, 2017 [Page 10]

Internet-Draft OAuth 2.0 Token Binding March 2017

 {
 ...other claims omitted for brevity...
 "cnf":{
 "tbh": "7NRBu9iDdJlYCTOqyeYuLxXv0blEA-yTpmGIrAwKAws"
 }
 }

 Figure 10: Confirmation Claim

3.3. Protected Resource Token Binding Validation

 Upon receiving a token bound access token, the protected resource
 validates the binding by comparing the Provided Token Binding ID to
 the Token Binding ID for the access token. Alternatively,
 cryptographic hashes of these Token Binding ID values can be
 compared. If the values do not match, the resource access attempt
 MUST be rejected with an error.

3.3.1. Example Protected Resource Request

 For example, a protected resource request using the access token from
Section 3.2.1 would look something like the following. The

 base64url-encoded EKM from the TLS connection over which the request
 was made is "7LsNP3BT1aHHdXdk6meEWjtSkiPVLb7YS6iHp-JXmuE". The
 protected resource validates the binding by comparing the Provided
 Token Binding ID from the "Sec-Token-Binding" header to the token
 binding hash confirmation of the access token. Extra line breaks in
 the example are for display purposes only.

 GET /api/stuff HTTP/1.1
 Host: resource.example.org
 Authorization: Bearer eyJhbGciOiJFUzI1NiIsI[...omitted...]1cs29j5c3
 Sec-Token-Binding: AIkAAgBBQLgtRpWFPN66kxhxGrtaKrzcMtHw7HV8yMk_-MdR
 XJXbDMYxZCWnCASRRrmHHHL5wmpP3bhYt0ChRDbsMapfh_QAQN1He3Ftj4Wa_S_fz
 ZVns4saLfj6aBoMSQW6rLs19IIvHze7LrGjKyCfPTKXjajebxp-TLPFZCc0JTqTY5
 _0MBAAAA

 Figure 11: Protected Resource Request

3.4. Representing Token Binding in JWT Access Tokens

 If the access token is represented as a JWT, the token binding
 information SHOULD be represented in the same way that it is in token
 bound OpenID Connect ID Tokens [OpenID.TokenBinding]. That
 specification defines the new JWT Confirmation Method RFC 7800
 [RFC7800] member "tbh" (token binding hash) to represent the SHA-256
 hash of a Token Binding ID in an ID Token. The value of the "tbh"

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7800

Jones, et al. Expires September 28, 2017 [Page 11]

Internet-Draft OAuth 2.0 Token Binding March 2017

 member is the base64url encoding of the SHA-256 hash of the Token
 Binding ID.

 The following example demonstrates the JWT Claims Set of an access
 token containing the base64url encoding of the SHA-256 hash of a
 Token Binding ID as the value of the "tbh" (token binding hash)
 element in the "cnf" (confirmation) claim:

 {
 "iss": "https://server.example.com",
 "aud": "https://resource.example.org",
 "sub": "brian@example.com"
 "iat": 1467324320,
 "exp": 1467324920,
 "cnf":{
 "tbh": "7NRBu9iDdJlYCTOqyeYuLxXv0blEA-yTpmGIrAwKAws"
 }
 }

 Figure 12: JWT with Token Binding Hash Confirmation Claim

4. Token Binding for Authorization Codes

 There are two variations for Token Binding of an authorization code.
 One is appropriate for native application clients and the other for
 web server clients. The nature of where the various components
 reside for the different client types demands different methods of
 Token Binding the authorization code so that it is bound to a Token
 Binding key on the end user's device. This ensures that a lost or
 stolen authorization code cannot be successfully utilized from a
 different device. For native application clients, the code is bound
 to a Token Binding key pair that the native client itself possesses.
 For web server clients, the code is bound to a Token Binding key pair
 on the end user's browser. Both variations utilize the extensible
 framework of Proof Key for Code Exchange (PKCE) [RFC7636], which
 enables the client to show possession of a certain key when
 exchanging the authorization code for tokens. The following
 subsections individually describe each of the two PKCE methods
 respectively.

4.1. Native Application Clients

 This section describes a PKCE method suitable for native application
 clients that cryptographically binds the authorization code to a
 Token Binding key pair on the client, which the client proves
 possession of on the TLS connection during the access token request
 containing the authorization code. The authorization code is bound
 to the Token Binding ID that the native application client uses to

https://datatracker.ietf.org/doc/html/rfc7636

Jones, et al. Expires September 28, 2017 [Page 12]

Internet-Draft OAuth 2.0 Token Binding March 2017

 resolve the authorization code at the token endpoint. This binding
 ensures that the client that made the authorization request is the
 same client that is presenting the authorization code.

4.1.1. Code Challenge

 As defined in Proof Key for Code Exchange [RFC7636], the client sends
 the code challenge as part of the OAuth 2.0 authorization request
 with the two additional parameters: "code_challenge" and
 "code_challenge_method".

 For this Token Binding method of PKCE, "TB-S256" is used as the value
 of the "code_challenge_method" parameter.

 The value of the "code_challenge" parameter is the base64url encoding
 (per Section 5 of [RFC4648] with all trailing padding ('=')
 characters omitted and without the inclusion of any line breaks or
 whitespace) of the SHA-256 hash of the Provided Token Binding ID that
 the client will use when calling the authorization server's token
 endpoint. Note that, prior to making the authorization request, the
 client may need to establish a TLS connection between itself and the
 authorization server's token endpoint in order to establish the
 appropriate Token Binding ID.

 When the authorization server issues the authorization code in the
 authorization response, it associates the code challenge and method
 values with the authorization code so they can be verified later when
 the authorization code is presented in the access token request.

4.1.1.1. Example Code Challenge

 For example, a native application client sends an authorization
 request by sending the user's browser to the authorization endpoint.
 The resulting HTTP request looks something like the following (with
 extra line breaks for display purposes only).

 GET /as/authorization.oauth2?response_type=code
 &client_id=example-native-client-id&state=oUC2jyYtzRCrMyWrVnGj
 &code_challenge=rBlgOyMY4teiuJMDgOwkrpsAjPyI07D2WsEM-dnq6eE
 &code_challenge_method=TB-S256 HTTP/1.1
 Host: server.example.com

 Figure 13: Authorization Request with PKCE Challenge

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc4648#section-5

Jones, et al. Expires September 28, 2017 [Page 13]

Internet-Draft OAuth 2.0 Token Binding March 2017

4.1.2. Code Verifier

 Upon receipt of the authorization code, the client sends the access
 token request to the token endpoint. The Token Binding Protocol
 [I-D.ietf-tokbind-protocol] is negotiated on the TLS connection
 between the client and the authorization server and the "Sec-Token-
 Binding" header, as defined in Token Binding over HTTP
 [I-D.ietf-tokbind-https], is included in the access token request.
 The authorization server extracts the Provided Token Binding ID from
 the header value, hashes it with SHA-256, and compares it to the
 "code_challenge" value previously associated with the authorization
 code. If the values match, the token endpoint continues processing
 as normal (as defined by OAuth 2.0 [RFC6749]). If the values do not
 match, an error response indicating "invalid_grant" MUST be returned.

 The "Sec-Token-Binding" header contains sufficient information for
 verification of the authorization code and its association to the
 original authorization request. However, PKCE [RFC7636] requires
 that a "code_verifier" parameter be sent with the access token
 request, so the static value "provided_tb" is used to meet that
 requirement and indicate that the Provided Token Binding ID is used
 for the verification.

4.1.2.1. Example Code Verifier

 An example access token request, correlating to the authorization
 request in the previous example, to the token endpoint over a TLS
 connection for which Token Binding has been negotiated would look
 like the following (with extra line breaks for display purposes
 only). The base64url-encoded EKM from the TLS connection over which
 the request was made is
 "pNVKtPuQFvylNYn000QowWrQKoeMkeX9H32hVuU71Bs".

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Sec-Token-Binding: AIkAAgBBQEOO9GRFP-LM0hoWw6-2i318BsuuUum5AL8bt1sz
 lr1EFfp5DMXMNW3O8WjcIXr2DKJnI4xnuGsE6GywQd9RbD0AQJDb3xyo9PBxj8M6Y
 jLt-6OaxgDkyoBoTkyrnNbLc8tJQ0JtXomKzBbj5qPtHDduXc6xz_lzvNpxSPxi42
 8m7wkAAA

 grant_type=authorization_code&code=mJAReTWKX7zI3oHUNd4o3PeNqNqxKGp6
 &code_verifier=provided_tb&client_id=example-native-client-id

 Figure 14: Token Request with PKCE Verifier

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636

Jones, et al. Expires September 28, 2017 [Page 14]

Internet-Draft OAuth 2.0 Token Binding March 2017

4.2. Web Server Clients

 This section describes a PKCE method suitable for web server clients,
 which cryptographically binds the authorization code to a Token
 Binding key pair on the browser. The authorization code is bound to
 the Token Binding ID that the browser uses to deliver the
 authorization code to a web server client, which is sent to the
 authorization server as the Referred Token Binding ID during the
 authorization request. The web server client conveys the Token
 Binding ID to the authorization server when making the access token
 request containing the authorization code. This binding ensures that
 the authorization code cannot successfully be played or replayed to
 the web server client from a different browser than the one that made
 the authorization request.

4.2.1. Code Challenge

 As defined in Proof Key for Code Exchange [RFC7636], the client sends
 the code challenge as part of the OAuth 2.0 Authorization Request
 with the two additional parameters: "code_challenge" and
 "code_challenge_method".

 The client must send the authorization request through the browser
 such that the Token Binding ID established between the browser and
 itself is revealed to the authorization server's authorization
 endpoint as the Referred Token Binding ID. Typically, this is done
 with an HTTP redirection response and the "Include-Referred-Token-
 Binding-ID" header, as defined in Section 5.3 of Token Binding over
 HTTP [I-D.ietf-tokbind-https].

 For this Token Binding method of PKCE, "referred_tb" is used for the
 value of the "code_challenge_method" parameter.

 The value of the "code_challenge" parameter is "referred_tb". The
 static value for the required PKCE parameter indicates that the
 authorization code is to be bound to the Referred Token Binding ID
 from the Token Binding Message sent in the "Sec-Token-Binding" header
 of the authorization request.

 When the authorization server issues the authorization code in the
 authorization response, it associates the Token Binding ID (or hash
 thereof) and code challenge method with the authorization code so
 they can be verified later when the authorization code is presented
 in the access token request.

https://datatracker.ietf.org/doc/html/rfc7636

Jones, et al. Expires September 28, 2017 [Page 15]

Internet-Draft OAuth 2.0 Token Binding March 2017

4.2.1.1. Example Code Challenge

 For example, the web server client sends the authorization request by
 redirecting the browser to the authorization endpoint. That HTTP
 redirection response looks like the following (with extra line breaks
 for display purposes only).

 HTTP/1.1 302 Found
 Location: https://server.example.com?response_type=code
 &client_id=example-web-client-id&state=P4FUFqYzs1ij3ffsYCP34d3
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &code_challenge=referred_tb&code_challenge_method=referred_tb
 Include-Referred-Token-Binding-ID: true

 Figure 15: Redirect the Browser

 The redirect includes the "Include-Referred-Token-Binding-ID"
 response header field that signals to the user-agent that it should
 reveal, to the authorization server, the Token Binding ID used on the
 connection to the web server client. The resulting HTTP request to
 the authorization server looks something like the following (with
 extra line breaks for display purposes only). The base64url-encoded
 EKM from the TLS connection over which the request was made is
 "7gOdRzMhPeO-1YwZGmnVHyReN5vd2CxcsRBN69Ue4cI".

 GET /as/authorization.oauth2?response_type=code
 &client_id=example-web-client-id&state=dryo8YFpWacbUPjhBf4Nvt51
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &code_challenge=referred_tb
 &code_challenge_method=referred_tb HTTP/1.1
 Host: server.example.com
 Sec-Token-Binding: ARIAAgBBQB-XOPf5ePlf7ikATiAFEGOS503lPmRfkyymzdWw
 HCxl0njjxC3D0E_OVfBNqrIQxzIfkF7tWby2ZfyaE6XpwTsAQBYqhFX78vMOgDX_F
 d_b2dlHyHlMmkIz8iMVBY_reM98OUaJFz5IB7PG9nZ11j58LoG5QhmQoI9NXYktKZ
 RXxrYAAAECAEFAdUFTnfQADkn1uDbQnvJEk6oQs38L92gv-KO-qlYadLoDIKe2h53
 hSiKwIP98iRj_unedkNkAMyg9e2mY4Gp7WwBAeDUOwaSXNz1e6gKohwN4SAZ5eNyx
 45Mh8VI4woL1BipLoqrJRoK6dxFkWgHRMuBROcLGUj5PiOoxybQH_Tom3gAA

 Figure 16: Authorization Request

4.2.2. Code Verifier

 The web server client receives the authorization code from the
 browser and extracts the Provided Token Binding ID from the "Sec-
 Token-Binding" header of the request. The client sends the
 base64url-encoded (per Section 5 of [RFC4648] with all trailing
 padding ('=') characters omitted and without the inclusion of any
 line breaks or whitespace) Provided Token Binding ID as the value of

https://server.example.com?response_type=code
https://datatracker.ietf.org/doc/html/rfc4648#section-5

Jones, et al. Expires September 28, 2017 [Page 16]

Internet-Draft OAuth 2.0 Token Binding March 2017

 the "code_verifier" parameter in the access token request to the
 authorization server's token endpoint. The authorization server
 compares the value of the "code_verifier" parameter to the Token
 Binding ID value previously associated with the authorization code.
 If the values match, the token endpoint continues processing as
 normal (as defined by OAuth 2.0 [RFC6749]). If the values do not
 match, an error response indicating "invalid_grant" MUST be returned.

4.2.2.1. Example Code Verifier

 Continuing the example from the previous section, the authorization
 server sends the code to the web server client by redirecting the
 browser to the client's "redirect_uri", which results in the browser
 making a request like the following (with extra line breaks for
 display purposes only) to the web server client over a TLS channel
 for which Token Binding has been established. The base64url-encoded
 EKM from the TLS connection over which the request was made is
 "EzW60vyINbsb_tajt8ij3tV6cwy2KH-i8BdEMYXcNn0".

 GET /cb?state=dryo8YFpWacbUPjhBf4Nvt51&code=jwD3oOa5cQvvLc81bwc4CMw
 Host: client.example.org
 Sec-Token-Binding: AIkAAgBBQHVBU530AA5J9bg20J7yRJOqELN_C_doL_ijvqpW
 GnS6AyCntoed4UoisCD_fIkY_7p3nZDZADMoPXtpmOBqe1sAQEwgC9Zpg7QFCDBib
 6GlZki3MhH32KNfLefLJc1vR1xE8l7OMfPLZHP2Woxh6rEtmgBcAABubEbTz7muNl
 Ln8uoAAA

 Figure 17: Authorization Response to Web Server Client

 The web server client takes the Provided Token Binding ID from the
 above request from the browser and sends it, base64url encoded, to
 the authorization server in the "code_verifier" parameter of the
 authorization code grant type request. Extra line breaks in the
 example request are for display purposes only.

 POST /as/token.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic b3JnLmV4YW1wbGUuY2xpZW50OmlldGY5OGNoaWNhZ28=

 grant_type=authorization_code&code=jwD3oOa5cQvvLc81bwc4CMw
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb
 &client_id=example-web-client-id
 &code_verifier=AgBBQHVBU530AA5J9bg20J7yRJOqELN_C_doL_ijv
 qpWGnS6AyCntoed4UoisCD_fIkY_7p3nZDZADMoPXtpmOBqe1s

 Figure 18: Exchange Authorization Code

https://datatracker.ietf.org/doc/html/rfc6749

Jones, et al. Expires September 28, 2017 [Page 17]

Internet-Draft OAuth 2.0 Token Binding March 2017

5. Phasing in Token Binding and Preventing Downgrade Attacks

 Many OAuth implementations will be deployed in situations in which
 not all participants support Token Binding. Any of combination of
 the client, the authorization server, the protected resource, and the
 user agent may not yet support Token Binding, in which case it will
 not work end-to-end.

 It is a context-dependent deployment choice whether to allow
 interactions to proceed in which Token Binding is not supported or
 whether to treat Token Binding failures at any step as fatal errors.
 Particularly in dynamic deployment environments in which End Users
 have choices of clients, authorization servers, protected resources,
 and/or user agents, it is RECOMMENDED that authorizations using one
 or more components that do not implement Token Binding be allowed to
 successfully proceed. This enables different components to be
 upgraded to supporting Token Binding at different times, providing a
 smooth transition path for phasing in Token Binding. However, when
 Token Binding has been performed, any Token Binding key mismatches
 MUST be treated as fatal errors.

 If all the participants in an authorization interaction support Token
 Binding and yet one or more of them does not use it, this is likely
 evidence of a downgrade attack. In this case, the authorization
 SHOULD be aborted with an error. For instance, if the protected
 resource knows that the authorization server and the user agent both
 support Token Binding and yet the access token received does not
 contain Token Binding information, this is almost certainly a sign of
 an attack.

 The authorization server, client, and protected resource can
 determine whether the others support Token Binding using the metadata
 values defined in the next section. They can determine whether the
 user agent supports Token Binding by whether it negotiated Token
 Binding for the TLS connection.

6. Token Binding Metadata

6.1. Token Binding Client Metadata

 Clients supporting Token Binding that also support the OAuth 2.0
 Dynamic Client Registration Protocol [RFC7591] use these metadata
 values to declare their support for Token Binding of access tokens
 and refresh tokens:

 client_access_token_token_binding_supported

https://datatracker.ietf.org/doc/html/rfc7591

Jones, et al. Expires September 28, 2017 [Page 18]

Internet-Draft OAuth 2.0 Token Binding March 2017

 OPTIONAL. Boolean value specifying whether the client supports
 Token Binding of access tokens. If omitted, the default value is
 "false".

 client_refresh_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the client supports
 Token Binding of refresh tokens. If omitted, the default value is
 "false".

6.2. Token Binding Authorization Server Metadata

 Authorization servers supporting Token Binding that also support
 OAuth 2.0 Authorization Server Metadata [OAuth.AuthorizationMetadata]
 use these metadata values to declare their support for Token Binding
 of access tokens and refresh tokens:

 as_access_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the authorization
 server supports Token Binding of access tokens. If omitted, the
 default value is "false".

 as_refresh_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the authorization
 server supports Token Binding of refresh tokens. If omitted, the
 default value is "false".

6.3. Token Binding Protected Resource Metadata

 Protected resources supporting Token Binding that also support the
 OAuth 2.0 Protected Resource Metadata [OAuth.ResourceMetadata] use
 this metadata value to declare their support for Token Binding of
 access tokens:

 resource_access_token_token_binding_supported
 OPTIONAL. Boolean value specifying whether the protected resource
 supports Token Binding of access tokens. If omitted, the default
 value is "false".

7. Security Considerations

 If a refresh request is received by the authorization server
 containing a Referred Token Binding ID and the refresh token in the
 request is not itself token bound, then it is not clear that token
 binding the access token adds significant value. This situation
 should be considered an open issue for discussion by the working
 group.

Jones, et al. Expires September 28, 2017 [Page 19]

Internet-Draft OAuth 2.0 Token Binding March 2017

8. IANA Considerations

8.1. OAuth Dynamic Client Registration Metadata Registration

 This specification registers the following client metadata
 definitions in the IANA "OAuth Dynamic Client Registration Metadata"
 registry [IANA.OAuth.Parameters] established by [RFC7591]:

8.1.1. Registry Contents

 o Client Metadata Name:
 "client_access_token_token_binding_supported"
 o Client Metadata Description: Boolean value specifying whether the
 client supports Token Binding of access tokens
 o Change Controller: IESG
 o Specification Document(s): Section 6.1 of [[this specification]]

 o Client Metadata Name:
 "client_refresh_token_token_binding_supported"
 o Client Metadata Description: Boolean value specifying whether the
 client supports Token Binding of refresh tokens
 o Change Controller: IESG
 o Specification Document(s): Section 6.1 of [[this specification]]

8.2. OAuth Authorization Server Metadata Registration

 This specification registers the following metadata definitions in
 the IANA "OAuth Authorization Server Metadata" registry established
 by [OAuth.AuthorizationMetadata]:

8.2.1. Registry Contents

 o Metadata Name: "as_access_token_token_binding_supported"
 o Metadata Description: Boolean value specifying whether the
 authorization server supports Token Binding of access tokens
 o Change Controller: IESG
 o Specification Document(s): Section 6.2 of [[this specification]]

 o Metadata Name: "as_refresh_token_token_binding_supported"
 o Metadata Description: Boolean value specifying whether the
 authorization server supports Token Binding of refresh tokens
 o Change Controller: IESG
 o Specification Document(s): Section 6.2 of [[this specification]]

https://datatracker.ietf.org/doc/html/rfc7591

Jones, et al. Expires September 28, 2017 [Page 20]

Internet-Draft OAuth 2.0 Token Binding March 2017

8.3. OAuth Protected Resource Metadata Registration

 This specification registers the following client metadata definition
 in the IANA "OAuth Protected Resource Metadata" registry established
 by [OAuth.ResourceMetadata]:

8.3.1. Registry Contents

 o Resource Metadata Name:
 "resource_access_token_token_binding_supported"
 o Resource Metadata Description: Boolean value specifying whether
 the protected resource supports Token Binding of access tokens
 o Change Controller: IESG
 o Specification Document(s): Section 6.3 of [[this specification]]

8.4. PKCE Code Challenge Method Registration

 This specification requests registration of the following Code
 Challenge Method Parameter Names in the IANA "PKCE Code Challenge
 Methods" registry [IANA.OAuth.Parameters] established by [RFC7636].

8.4.1. Registry Contents

 o Code Challenge Method Parameter Name: TB-S256
 o Change controller: IESG
 o Specification document(s): Section 4.1.1 of [[this specification
]]

 o Code Challenge Method Parameter Name: referred_tb
 o Change controller: IESG
 o Specification document(s): Section 4.2.1 of [[this specification
]]

9. References

9.1. Normative References

 [I-D.ietf-tokbind-https]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J.
 Hodges, "Token Binding over HTTP", draft-ietf-tokbind-

https-08 (work in progress), February 2017.

 [I-D.ietf-tokbind-negotiation]
 Popov, A., Nystrom, M., Balfanz, D., and A. Langley,
 "Transport Layer Security (TLS) Extension for Token
 Binding Protocol Negotiation", draft-ietf-tokbind-

negotiation-07 (work in progress), February 2017.

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-08
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-08
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-07
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-07

Jones, et al. Expires September 28, 2017 [Page 21]

Internet-Draft OAuth 2.0 Token Binding March 2017

 [I-D.ietf-tokbind-protocol]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J.
 Hodges, "The Token Binding Protocol Version 1.0", draft-

ietf-tokbind-protocol-13 (work in progress), February
 2017.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://tools.ietf.org/html/rfc7519>.

 [OAuth.AuthorizationMetadata]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-

discovery-06 (work in progress), March 2017,
 <http://tools.ietf.org/html/

draft-ietf-oauth-discovery-06>.

 [OAuth.ResourceMetadata]
 Jones, M. and P. Hunt, "OAuth 2.0 Protected Resource
 Metadata", draft-jones-oauth-resource-metadata-01 (work in
 progress), January 2017, <http://tools.ietf.org/html/

draft-jones-oauth-resource-metadata-01>.

 [OpenID.TokenBinding]
 Jones, M., Bradley, J., and B. Campbell, "OpenID Connect
 Token Bound Authentication 1.0", July 2016,
 <http://openid.net/specs/

openid-connect-token-bound-authentication-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-13
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-13
http://www.iana.org/assignments/oauth-parameters
https://datatracker.ietf.org/doc/html/rfc7519
http://tools.ietf.org/html/rfc7519
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-06
http://tools.ietf.org/html/draft-ietf-oauth-discovery-06
http://tools.ietf.org/html/draft-ietf-oauth-discovery-06
https://datatracker.ietf.org/doc/html/draft-jones-oauth-resource-metadata-01
http://tools.ietf.org/html/draft-jones-oauth-resource-metadata-01
http://tools.ietf.org/html/draft-jones-oauth-resource-metadata-01
http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html
http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749

Jones, et al. Expires September 28, 2017 [Page 22]

Internet-Draft OAuth 2.0 Token Binding March 2017

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <http://www.rfc-editor.org/info/rfc7636>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <http://www.rfc-editor.org/info/rfc7662>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <http://www.rfc-editor.org/info/rfc7800>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

9.2. Informative References

 [I-D.ietf-oauth-native-apps]
 Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",

draft-ietf-oauth-native-apps-08 (work in progress), March
 2017.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", August 2015,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <http://www.rfc-editor.org/info/rfc7523>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <http://www.rfc-editor.org/info/rfc7591>.

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7636
http://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/rfc7662
http://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800
http://www.rfc-editor.org/info/rfc7800
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-native-apps-08
http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc7523
http://www.rfc-editor.org/info/rfc7523
https://datatracker.ietf.org/doc/html/rfc7591
http://www.rfc-editor.org/info/rfc7591

Jones, et al. Expires September 28, 2017 [Page 23]

Internet-Draft OAuth 2.0 Token Binding March 2017

Appendix A. Acknowledgements

 The authors would like to thank the following people for their
 contributions to the specification: Dirk Balfanz, Andrei Popov, and
 Nat Sakimura.

Appendix B. Open Issues

 o What should we do in the case that a refresh request for a token
 bound access token is received when the refresh token used in the
 request is not token bound?

 o Should the scope of this document include standardizing or
 recommending how to convey token binding information of an access
 token via RFC 7662 OAuth 2.0 Token Introspection?

 o Should the scope of this document include standardization or
 guidance on token binding of JWT Client Authentication and/or
 Authorization Grants from RFC 7523?

 o The Metadata (Section 6) and what can and cannot be reliably
 inferred from it (Section 5) need additional evaluation and work.
 OAuth 2.0 Protected Resource Metadata [OAuth.ResourceMetadata] is
 no longer a going concern, but is currently referenced herein.
 Boolean values do not adequately convey Token Binding support, as
 different components may support different key parameters types.
 And successful negotiation likely doesn't provide the application
 layer info about all the supported key parameters types but rather
 just the one that was negotiated.

Appendix C. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -03

 o Fix a few mistakes in and around the examples that were noticed
 preparing the slides for IETF 98 Chicago.

 -02

 o Added a section on Token Binding for authorization codes with one
 variation for native clients and one for web server clients.

 o Updated language to reflect that the binding is to the token
 binding key pair and that proof-of-possession of that key is done
 on the TLS connection.

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7523

Jones, et al. Expires September 28, 2017 [Page 24]

Internet-Draft OAuth 2.0 Token Binding March 2017

 o Added a bunch of examples.

 o Added a few Open Issues so they are tracked in the document.

 o Updated the Token Binding and OAuth Metadata references.

 o Added William Denniss as an author.

 -01

 o Changed Token Binding for access tokens to use the Referred Token
 Binding ID, now that the Implementation Considerations in the
 Token Binding HTTPS specification make it clear that
 implementations will enable using the Referred Token Binding ID.

 o Defined Protected Resource Metadata value.

 o Changed to use the more specific term "protected resource" instead
 of "resource server".

 -00

 o Created the initial working group version from draft-jones-oauth-
token-binding-00.

Authors' Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com
 URI: https://twitter.com/__b_c

https://datatracker.ietf.org/doc/html/draft-jones-oauth-token-binding-00
https://datatracker.ietf.org/doc/html/draft-jones-oauth-token-binding-00
http://self-issued.info/
http://www.thread-safe.com/
https://twitter.com/__b_c

Jones, et al. Expires September 28, 2017 [Page 25]

Internet-Draft OAuth 2.0 Token Binding March 2017

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Email: wdenniss@google.com
 URI: http://wdenniss.com/

Jones, et al. Expires September 28, 2017 [Page 26]

http://wdenniss.com/

