E. Hammer-Lahav, TOC

Network Working Group Ed

Internet-Draft Yahoo!

Intended status: Standards

D. Recordon
Track

Expires: November 10, 2010 Facebook
D. Hardt
May 9, 2010

The OAuth 2.0 Protocol
draft-ietf-oauth-v2-03

Abstract

This specification describes the OAuth 2.0 protocol. OAuth provides a
method for making authenticated HTTP requests using a token - an
identifier used to denote an access grant with specific scope,
duration, and other attributes. Tokens are issued to third-party
clients by an authorization server with the approval of the resource
owner. OAuth defines multiple flows for obtaining a token to support a
wide range of client types and user experience.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 10, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted



from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Authors
Introduction
2.1. Terminology
2.2. Overview
2.3. Example
2.4. Notational Conventions
2.5. Conformance
Obtaining an Access Token
3.1. Authorization Endpoint
3.2. Token Endpoint
3.2.1. Response Format

Al

b

3.3. Flow Parameters
3.4. Client Credentials
3.5. User-Agent Flow
3.5.1. Client Requests Authorization

3.5.2. Client Extracts Access Token
3.6. Web Server Flow
3.6.1. Client Requests Authorization

3.6.2. Client Requests Access Token
3.7. Device Flow
3.7.1. Client Requests Authorization

3.7.2. Client Requests Access Token
Username and Password Flow
4.1. Client Requests Access Token
Client Credentials Flow
5.1. Client Requests Access Token
Assertion Flow
6.1. Client Requests Access Token
Refreshing an Access Token
Accessing a Protected Resource
8.1. The Authorization Request Header
8.2. Bearer Token Requests
8.2.1. URI Query Parameter
8.2.2. Form-Encoded Body Parameter
8.3. Cryptographic Tokens Requests
8.3.1. The 'hmac-sha256' Algorithm
Identifying a Protected Resource
9.1. The WwwW-Authenticate Response Header
9.1.1. The 'realm' Attribute
9.1.2. The 'authorization-uri' Attribute
9.1.3. The 'algorithms' Attribute

S

@

[ [

|«©



9.1.4. The 'error' Attribute

0. Security Considerations
1. TIANA Considerations
2. Acknowledgements
Appendix A. Differences from OAuth 1.0a
Appendix B. Document History
13. References

13.1. Normative References

13.2. Informative References
8 Authors' Addresses

=

B E

1. Authors TOC

This specification was authored with the participation and based on the
work of Allen Tom (Yahoo!), Brian Eaton (Google), Brent Goldman
(Facebook), Luke Shepard (Facebook), Raffi Krikorian (Twitter), and
Yaron Goland (Microsoft).

2. Introduction TOC

With the increasing use of distributed web services and cloud
computing, third-party applications require access to server-hosted
resources. These resources are usually protected and require
authentication using the resource owner's credentials (typically a
username and password). In the traditional client-server authentication
model, a client accessing a protected resource on a server presents the
resource owner's credentials in order to authenticate and gain access.
Resource owners should not be required to share their credentials when
granting third-party applications access to their protected resources.
They should also have the ability to restrict access to a limited
subset of the resources they control, to limit access duration, or to
limit access to the HTTP methods supported by these resources.

OAuth provides a method for making authenticated HTTP requests using a
token - an identifier used to denote an access grant with specific
scope, duration, and other attributes. Tokens are issued to third-party
clients by an authorization server with the approval of the resource
owner. Instead of sharing their credentials with the client, resource
owners grant access by authenticating directly with the authorization
server which in turn issues a token to the client. The client uses the
token (and optional secret) to authenticate with the resource server
and gain access.

For example, a web user (resource owner) can grant a printing service
(client) access to her protected photos stored at a photo sharing



service (resource server), without sharing her username and password
with the printing service. Instead, she authenticates directly with the
photo sharing service (authorization server) which issues the printing
service delegation-specific credentials (token).

This specification defines the use of OAuth over HTTP (Fielding, R.,
Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T.
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.)
[RFC2616] (or HTTP over TLS 1.0 as defined by [RFC2818] (Rescorla, E.,
“HTTP Over TLS,” May 2000.). Other specifications may extend it for use
with other tranport protocols.

2.1. Terminology TOC

resource server An HTTP (Fielding, R., Gettys, J., Moqul, J.,
Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.) [RFC2616]
server capable of accepting authenticated resource requests using
the OAuth protocol.

protected resource An access-restricted resource which can be
obtained from a resource server using an OAuth-authenticated
request.

client An HTTP client capable of making authenticated requests for
protected resources using the OAuth protocol.

resource owner An entity capable of granting access to a protected
resource.

end-user A human resource owner.

access token A unique identifier used by the client to make
authenticated requests on behalf of the resource owner. Access
tokens may have a matching secret.

bearer token An access token without a matching secret, used to
obtain access to a protected resource by simply presenting the
access token as-is to the resource server.

authorization server An HTTP server capable of issuing tokens after
successfully authenticating the resource owner and obtaining
authorization. The authorization server may be the same server as
the resource server, or a separate entity.

authorization endpoint The authorization server's HTTP endpoint
capable of authenticating the resource owner and obtaining
authorization.



token endpoint
The authorization server's HTTP endpoint capable of
issuing tokens and refreshing expired tokens.

client identifier An unique identifier issued to the client to
identify itself to the authorization server. Client identifiers
may have a matching secret.

refresh token A unique identifier used by the client to replace an
expired access token with a new access token without having to
involve the resource owner. A refresh token is used when the
access token is valid for a shorter time period than the duration
of the access grant approved by the resource owner.

2.2. Overview TOC

Clients interact with a protected resource, first by requesting access
(which is granted in the form of an access token) from the
authorization server, and then by authenticating with the resource
server by presenting the access token. Figure 1 demonstrates the flow
between the client and authorization server (A, B), and the flow
between the client and resource server (C, D), when the client is
acting autonomously (the client is also the resource owner).

Fommmo oo + S +
| [--(A)------ Credentials --------- >| Authorization |
| | | Server |
| |<-(B)------ Access Token --------- |

| | (w/ Optional Refresh Token) +--------------- +
| Client |

| | HTTP Request A +
| |--(C)--- with Access Token ------ >| Resource |
[ | | Server |
| |<-(D)------ HTTP Response -------- |

Fommm o + i +

Figure 1

Access token strings can use any internal structure agreed upon between
the authorization server and the resource server, but their structure



is opaque to the client. Since the access token provides the client
access to the protected resource for the life of the access token (or
until revoked), the authorization server should issue access tokens
which expire within an appropriate time, usually much shorter than the
duration of the access grant.

When an access token expires, the client can request a new access token
from the authorization server by presenting its credentials again
(Figure 1), or by using the refresh token (if issued with the access
token) as shown in Figure 2. Once an expired access token has been
replaced with a new access token (A, B), the client uses the new access
token as before (C, D).

tommmean + S T CpSp R +
| [--(A)------ Refresh Token ------- >| Authorization |
| | | Server |
| |<-(B)------ Access Token --------- |

[ | (with Optional Secret) R i +
| Client |

| | HTTP Request A +
| |--(C)--- with Access Token ------ >| Resource |
| | | Server |
| |<-(D)----- HTTP Response --------- |

Fommm o - + S +

Figure 2

This specification defines a number of authorization flows to support
different client types and scenarios. These authorization flows can be
separated into three groups: user delegation flows, end-user
credentials flows, and autonomous flows.

Additional authorization flows may be defined by other specifications
to cover different scenarios and client types.

User delegation flows are used to grant client access to protected
resources by the end-user without sharing the end-user credentials
(e.g. a username and password) with the client. Instead, the end-user
authenticates directly with the authorization server, and grants client
access to its protected resources. The user delegation flows defined by
this specifications are:

*User-Agent Flow - This flow is designed for clients running
inside a user-agent (typically a web browser). This flow is
described in Section 3.5 (User-Agent Flow).




*Web Server Flow - This flow is optimized for clients that are
part of a web server application, accessible via HTTP requests.
This flow is described in Section 3.6 (Web Server Flow).

*Device Flow - This flow is suitable for clients executing on
limited devices, but where the end-user has separate access to a
user-agent on another computer or device. This flow is described
in Section 3.7 (Device Flow).

End-user credentials flow enable clients with direct access to the end-
user's credentials to exchange them for an access token without seeking
additional authorization. These flows are only suitable when there is a
high degree of trust between the end-user and the client. The end-user

credentials flow defined by this specification is:

*Username and Password Flow - This flow is used in cases where the
end-user trusts the client to handle its credentials but it is
still undesirable for the client to store the end-user's username
and password. This flow is described in Section 4 (Username and
Password Flow).

Autonomous flows enable clients to act for their own behalf (the client
is also the resource owner). The autonomous authorization flows defined
by this specifications are:

*Client Credentials Flow - The client uses its credentials to
obtain an access token. This flow is described in Section 5
(Client Credentials Flow).

*Assertion Flow - The client presents an assertion such as a SAML
(Cantor, S., Kemp, J., Philpott, R., and E. Maler, “Assertions
and Protocol for the OASIS Security Assertion Markup Language
(SAML) V2.0,” March 2005.) [0ASIS.saml-core-2.0-0s] assertion to
the authorization server in exchange for an access token. This
flow is described in Section 6 (Assertion Flow).

2.3. Example TOC

[[ Todo ]]

TOC



2.4. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

This document uses the Augmented Backus-Naur Form (ABNF) notation of
[I-D.ietf-httpbis-pl-messaging] (Fielding, R., Gettys, J., Mogqul, J.,
Nielsen, H., Masinter, L., Leach, P., Berners-Lee, T., and J. Reschke,
“HTTP/1.1, part 1: URIs, Connections, and Message Parsing,”

March 2010.). Additionally, the realm and auth-param rules are included
from [RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence,
S., Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication:
Basic and Digest Access Authentication,” June 1999.), and the URI-
Reference rule from [RFC3986] (Berners-Lee, T., Fielding, R., and L.
Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.).

2.5. Conformance TOC

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the flows it implements.
An implementation that satisfies all the MUST or REQUIRED level and all
the SHOULD level requirements for its flows is said to be
"unconditionally compliant"; one that satisfies all the MUST level
requirements but not all the SHOULD level requirements for its flows 1is
said to be "conditionally compliant."

3. Obtaining an Access Token TOC

The client obtains an access token by using one of the authorization
flows supported by the authorization server. The authorization flows
all use the same authorization and token endpoints, each with a
different set of request parameters and values.

Access tokens have a scope, duration, and other access attributes
granted by the resource owner. These attributes MUST be enforced by the
resource server when receiving a protected resource request, and by the
authorization server when receiving a token refresh request.

In many cases it is desirable to issue access tokens with a shorter
lifetime than the duration of the authorization grant. However, it may
be undesirable to require the resource owner to authorize the request
again. Instead, the authorization server issues a refresh token in
addition to the access token. When the access token expires, the client



can request a new access token without involving the resource owner as
long as the authorization grant is still valid. The token refresh
method is described in Section 7 (Refreshing an Access Token).

3.1. Authorization Endpoint TOC

Clients direct the resource owner to the authorization endpoint to
approve their access request. Before granting access, the resource
owner first authenticates with the authorization server. The way in
which the authorization server authenticates the end-user (e.g.
username and password login, OpenID, session cookies) and in which the
authorization server obtains the end-user's authorization, including
whether it uses a secure channel such as TLS/SSL, is beyond the scope
of this specification. However, the authorization server MUST first
verify the identity of the end-user.

The URI of the authorization endpoint can be found in the service
documentation, or can be obtained by the client by making an
unauthorized protected resource request (from the WwWwW-Authenticate
response header auth-uri (The 'authorization-uri' Attribute)
attribute).

The authorization endpoint advertised by the resource server MAY
include a query component as defined by [RFC3986] (Berners-Lee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) section 3.

Since requests to the authorization endpoint result in user
authentication and the transmission of sensitive values, the
authorization server SHOULD require the use of a transport-layer
mechanism such as TLS/SSL (or a secure channel with equivalent
protections) when sending requests to the authorization endpoints.

3.2. Token Endpoint TOC

After obtaining authorization from the resource owner, clients request
an access token from the authorization server's token endpoint.

The URI of the token endpoint can be found in the service
documentation, or can be obtained by the client by making an
unauthorized protected resource request (from the WwWw-Authenticate
response header token-uri (The 'authorization-uri' Attribute)
attribute).

The token endpoint advertised by the resource server MAY include a
query component as defined by [RFC3986] (Berners-Lee, T., Fielding, R.,

and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.




Since requests to the token endpoint result in the transmission of
plain text credentials in the HTTP request and response, the
authorization server MUST require the use of a transport-layer
mechanism such as TLS/SSL (or a secure channel with equivalent
protections) when sending requests to the token endpoints.

3.2.1. Response Format TOC

Authorization servers respond to client requests by including a set of
response parameters in the entity body of the HTTP response. The
response uses the application/json media type as defined by [RFC4627
(Crockford, D., “The application/json Media Type for JavaScript Object
Notation (JSON),” July 2006.).

The parameters are serialized into a JSON structure by adding each
parameter at the highest strucutre level. Parameter names and string
values are included as JSON strings. Numerical number are included as
JSON numbers.

The authorization server MUST include the HTTP Cache-Control response
header field with a value of no-store in any response containing
tokens, secrets, or other sensitive information.

3.2.1.1. Access Token Response TOC

After recieving and verifying a valid and authorized access token
request from the client (as described in each of the flows below), the
authorization server constructs a JSON-formatted response which
includes the common parameters set as well as additional flow-specific
parameters. The formatted parameters are sent to the client in the
entity body of the HTTP response with a 200 status code (OK).

The token response contains the following common parameters:

access_token REQUIRED. The access token issued by the authorization
server.

expires_in OPTIONAL. The duration in seconds of the access token
lifetime.

refresh_token OPTIONAL. The refresh token used to obtain new access
tokens using the same end-user access grant as described in
Section 7 (Refreshing an Access Token).

access_token_secret REQUIRED if requested by the client. The
corresponding access token secret as requested by the client.



For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600,
"refresh_token":"8xLOxBtzp8"}

3.2.1.2. Error Response TOC

If the token request is invalid or unauthorized, the authorization
server constructs a JSON-formatted response which includes the common
parameters set as well as additional flow-specific parameters. The
formatted parameters are sent to the client in the entity body of the
HTTP response with a 400 status code (Bad Request).

The response contains the following common parameter:

error REQUIRED. The parameter value MUST be set to one of the
values specified by each flow.

For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{"error":"incorrect_client_credentials"}

3.3. Flow Parameters TOC

The sizes of tokens and other values received from the authorization
server, are left undefined by this specification. Clients should avoid
making assumptions about value sizes. Servers should document the
expected size of any value they issue.

Unless otherwise noted, all the protocol parameter names and values are
case sensitive.



3.4. Client Credentials TOC

When requesting access from the authorization server, the client
identifies itself using its authorization-server-issued client
credentials. The client credentials include a client identifier and an
OPTIONAL symmetric shared secret. The means through which the client
obtains these credentials are beyond the scope of this specification,
but usually involve registration with the authorization server.

The client identifier is used by the authorization server to establish
the identity of the client for the purpose of presenting information to
the resource owner prior to granting access, as well as for providing
different service levels to different clients. They can also be used to
block unauthorized clients from requesting access.

Due to the nature of some clients, authorization servers SHOULD NOT
make assumptions about the confidentiality of client credentials
without establishing trust with the client operator. Authorization
servers SHOULD NOT issue client secrets to clients incapable of keeping
their secrets confidential.

3.5. User-Agent Flow TOC

The user-agent flow is a user delegation flow suitable for client
applications residing in a user-agent, typically implemented in a
browser using a scripting language such as JavaScript. These clients
cannot keep client secrets confidential and the authentication of the
client is based on the user-agent's same-origin policy.

Unlike other flows in which the client makes separate authorization and
access token requests, the client received the access token as a result
of the authorization request in the form of an HTTP redirection. The
client requests the authorization server to redirect the user-agent to
another web server or local resource accessible to the browser which is
capable of extracting the access token from the response and passing it
to the client.

This user-agent flow does not utilize the client secret since the
client executables reside on the end-user's computer or device which
makes the client secret accessible and exploitable. Because the access
token is encoded into the redirection URI, it may be exposed to the
end-user and other applications residing on the computer or device.



Client Identifier e meeee o

| |>---(A)-- & Redirection URI --->|

End <--+ - - - +----(B)-- User authenticates -->| Authorization
User | | | Server

| |<---(C)-- Redirect URI -------- <|

| Client | with Access Token |

| in | (w/ Optional Refresh Token) +----------------

| Browser | in Fragment

| | R

| |>---(D)-- Redirect URI -------- >|

| | without Fragment | Web Server

| | | with Client

| (F) |<---(E)-- Web Page with ------- <| Resource

| Access | Script |

| Token | e

tommmmeeaaa +

Figure 3

The user-agent flow illustrated in Figure 3 includes the following

steps:

(A)

(B)

(c)

The client sends the user-agent to the authorization server and
includes its client identifier and redirection URI in the

request.

The authorization server authenticates the end-user (via the
user-agent) and establishes whether the end-user grants or denies

the client's access request.

Assuming the end-user granted access,

the authorization server

redirects the user-agent to the redirection URI provided earlier.



The redirection URI includes the access token in the URI
fragment.

(D) The user-agent follows the redirection instructions by making a
request to the web server which does not include the fragment.
The user-agent retains the fragment information locally.

(E) The web server returns a web page containing a script capable
of extracting the access token from the URI fragment retained by
the user-agent.

(F) The user-agent executes the script provided by the web server
which extracts the access token and passes it to the client.

3.5.1. Client Requests Authorization TOC

In order for the end-user to grant the client access, the client sends
the end-user to the authorization server. The client constructs the
request URI by adding the following URI query parameters to the user
authorization endpoint URI:

type REQUIRED. The parameter value MUST be set to user_agent.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

redirect_uri REQUIRED unless a redirection URI has been established
between the client and authorization server via other means. An
absolute URI to which the authorization server will redirect the
user-agent to when the end-user authorization step is completed.
The authorization server SHOULD require the client to pre-
register their redirection URI. Authorization servers MAY
restrict the redirection URI to not include a query component as
defined by [RFC3986] (Berners-Lee, T., Fielding, R., and L.
Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.

state OPTIONAL. An opaque value used by the client to maintain
state between the request and callback. The authorization server
includes this value when redirecting the user-agent back to the
client.

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,



and each string adds additional access range to the requested
scope.

immediate OPTIONAL. The parameter value must be set to true or
false. If set to true, the authorization server MUST NOT prompt
the end-user to authenticate or approve access. Instead, the
authorization server attempts to establish the end-user's
identity via other means (e.g. browser cookies) and checks if the
end-user has previously approved an identical access request by
the same client and if that access grant is still active. If the
authorization server does not support an immediate check or if it
is unable to establish the end-user's identity or approval
status, it MUST deny the request without prompting the end-user.
Defaults to false if omitted.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Reqguests).

The client directs the end-user to the constructed URI using an HTTP

redirection response, or by other means available to it via the end-

user's user-agent. The request MUST use the HTTP GET method.

For example, the client directs the end-user's user-agent to make the
following HTTPS request (line breaks are for display purposes only):

GET /authorize?type=user_agent&client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2FEexample%2Ecom%2Frd HTTP/1.1
Host: server.example.com

If the client has previously registered a redirection URI with the
authorization server, the authorization server MUST verify that the
redirection URI received matches the registered URI associated with the
client identifier.

The authorization server authenticates the end-user and obtains an
authorization decision (by asking the end-user or establishing approval
via other means). The authorization server sends the end-user's user-
agent to the provided client redirection URI using an HTTP redirection
response.

3.5.1.1. End-user Grants Authorization TOC

If the end-user authorizes the access request, the authorization server
issues an access token and delivers it to the client by adding the



following parameters, using the application/x-www-form-urlencoded format
as defined by [W3C.REC-html40-19980424] (Hors, A., Raggett, D., and I.
Jacobs, “HTML 4.0 Specification,” April 1998.), to the redirection URI
fragment:

access_token REQUIRED. The access token.

expires_in OPTIONAL. The duration in seconds of the access token
lifetime.

refresh_token OPTIONAL. The refresh token.

state REQUIRED if the state parameter was present in the client
authorization request. Set to the exact value received from the
client.

access_token_secret REQUIRED if requested by the client. The
corresponding access token secret as requested by the client.

For example, the authorization server redirects the end-user's user-
agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: http://example.com/rd#access_token=FJQbwq9&expires_in=3600

3.5.1.2. End-user Denies Authorization TOC

If the end-user denied the access request, the authorization server
responds to the client by adding the following parameters, using the
application/x-www-form-urlencoded format as defined by
[W3C.REC-html140-19980424] (Hors, A., Raggett, D., and I. Jacobs, “HTML
4.0 Specification,” April 1998.), to the redirection URI fragment:

error REQUIRED. The parameter value MUST be set to user_denied.
state REQUIRED if the state parameter was present in the client
authorization request. Set to the exact value received from the

client.

For example, the authorization server responds with the following:



HTTP/1.1 302 Found
Location: http://example.com/rd#error=user_denied

The authorization flow concludes unsuccessfully. To extract the error
message, the client follows the steps described in Section 3.5.2
(Client Extracts Access Token).

3.5.2. Client Extracts Access Token TOC

The user-agent follows the authorization server redirection response by
making an HTTP GET request to the URI received in the Location HTTP
response header. The user-agent SHALL NOT include the fragment
component with the request.

For example, the user-agent makes the following HTTP GET request in
response to the redirection directive received from the authorization
server:

GET /rd HTTP/1.1
Host: example.com

The HTTP response to the redirection request returns a web page
(typically an HTML page with an embedded script) capable of accessing
the full redirection URI including the fragment retained by the user-
agent, and extracting the access token (and other parameters) contained
in the fragment.

3.6. Web Server Flow TOC

The web server flow is a user delegation flow suitable for clients
capable of interacting with the end-user's user-agent (typically a web
browser) and capable of receiving incoming requests from the
authorization server (capable of acting as an HTTP server).



Fommem - + Client Identifier R +

| -+----(A)-- & Redirect URI ------- > | |
| End-user | | Authorization |
| at |<---(B)-- User authenticates --->| Server |
| Browser | | |
| -+----(C)-- Verification Code ----<| |
+--------+ g +
. A v
(A) (C) I I
I I I I
A v I I
L + | |
| |>---(D)-- Client Credentials, -------- ! |
| Web | Verification Code, |
| Client | & Redirect URI |
I I I
| |<---(E)------- Access Token ----------------- !
R + (w/ Optional Refresh Token)
Figure 4

The web server flow illustrated in Figure 4 includes the following
steps:

(A) The web client initiates the flow by redirecting the end-user's
user-agent to the authorization endpoint with its client
identifier and a redirect URI to which the authorization server
will send the end-user back once authorization is received (or
denied).

(B) The authorization server authenticates the end-user (via the
user-agent) and establishes whether the end-user grants or denies
the client's access request.

(C) Assuming the end-user granted access, the authorization server
redirects the user-agent back to the client to the redirection
URI provided earlier. The authorization includes a verification
code for the client to use to obtain an access token.

(D) The client requests an access token from the authorization
server by including its client credentials (identifier and



secret), as well as the verification code received in the
previous step.

(E) The authorization server validates the client credentials and
the verification code and responds back with the access token.

3.6.1. Client Requests Authorization TOC

In order for the end-user to grant the client access, the client sends
the end-user to the authorization server. The client constructs the
request URI by adding the following URI query parameters to the user
authorization endpoint URI:

type REQUIRED. The parameter value MUST be set to web_server.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

redirect_uri REQUIRED unless a redirection URI has been established
between the client and authorization server via other means. An
absolute URI to which the authorization server will redirect the
user-agent to when the end-user authorization step is completed.
The authorization server MAY require the client to pre-register
their redirection URI. Authorization servers MAY restrict the
redirection URI to not include a query component as defined by
[RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.

state OPTIONAL. An opaque value used by the client to maintain
state between the request and callback. The authorization server
includes this value when redirecting the user-agent back to the
client.

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter 1is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,
and each string adds additional access range to the requested
scope.

immediate OPTIONAL. The parameter value must be set to true or
false. If set to true, the authorization server MUST NOT prompt
the end-user to authenticate or approve access. Instead, the
authorization server attempts to establish the end-user's
identity via other means (e.g. browser cookies) and checks if the



end-user has previously approved an identical access request by
the same client and if that access grant is still active. If the
authorization server does not support an immediate check or if it
is unable to establish the end-user's identity or approval
status, it MUST deny the request without prompting the end-user.
Defaults to false if omitted.

The client directs the end-user to the constructed URI using an HTTP

redirection response, or by other means available to it via the end-

user's user-agent. The request MUST use the HTTP GET method.

For example, the client directs the end-user's user-agent to make the
following HTTPS requests (line breaks are for display purposes only):

GET /authorize?type=web_server&client_id=s6BhdRkqt3&redirect_uri=
https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

If the client has previously registered a redirection URI with the
authorization server, the authorization server MUST verify that the
redirection URI received matches the registered URI associated with the
client identifier.

The authorization server authenticates the end-user and obtains an
authorization decision (by asking the end-user or establishing approval
via other means). The authorization server sends the end-user's user-
agent to the provided client redirection URI using an HTTP redirection
response, or by other means available to it via the end-user's user-
agent.

3.6.1.1. End-user Grants Authorization TOC

If the end-user authorizes the access request, the authorization server
generates a verification code and associates it with the client
identifier and redirection URI. The authorization server constructs the
request URI by adding the following parameters to the query component
of redirection URI provided by the client:

code REQUIRED. The verification code generated by the authorization
server.

state REQUIRED if the state parameter was present in the client
authorization request. Set to the exact value received from the
client.

The verification code should expire shortly after it is issued and
allowed for a single use.



For example, the authorization server redirects the end-user's user-
agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?code=i1WsRnluB1l

In turn, the end-user's user-agent makes the following HTTPS GET
request:

GET /cb?code=ilWsRni1uB1 HTTP/1.1
Host: client.example.com

3.6.1.2. End-user Denies Authorization TOC
If the end-user denied the access request, the authorization server
constructs the request URI by adding the following parameters to the
query component of the redirection URI provided by the client:
error REQUIRED. The parameter value MUST be set to user_denied.
state REQUIRED if the state parameter was present in the client
authorization request. Set to the exact value received from the
client.
For example, the authorization server directs the client to make the

following HTTP request:

GET /cb?error=user_denied HTTP/1.1
Host: client.example.com

The authorization flow concludes unsuccessfully.

3.6.2. Client Requests Access Token TOC

The client obtains an access token from the authorization server by
making an HTTP POST request to the token endpoint. The client
constructs a request URI by adding the following parameters to the
request:



type
REQUIRED. The parameter value MUST be set to web_server.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

client_secret REQUIRED if the client identifier has a matching
secret. The client secret as described in Section 3.4 (Client

Credentials).

code REQUIRED. The verification code received from the
authorization server.

redirect_uri REQUIRED. The redirection URI used in the initial
request.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Reguests).

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

type=web_server&client_id=s6BhdRkqt3&
client_secret=gXifBat3bV&code=i1WsRn1uB1l&
redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fch

The authorization server MUST verify that the verification code, client
identity, client secret, and redirection URI are all valid and match
its stored association. If the request is valid, the authorization
server issues a successful response as described in Section 3.2.1.1
(Access Token Response).

For example (line breaks are for display purposes only):




HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600,
"refresh_token":"8xLOxBtzp8"}

If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*redirect_uri_mismatch
*bad_verification_code
*incorrect_client_credentials

For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{"error":"incorrect_client_credentials"}

3.7. Device Flow TOC

The device flow is a user delegation flow suitable for clients
executing on devices which do not have an easy data-entry method (e.g.
game consoles or media hub), but where the end-user has separate access
to a user-agent on another computer or device (e.g. home computer, a
laptop, or a smartphone). The client is incapable of receiving incoming
requests from the authorization server (incapable of acting as an HTTP
server).

Instead of interacting with the end-user's user-agent, the client
instructs the end-user to use another computer or device and connect to
the authorization server to approve the access request. Since the
client cannot receive incoming requests, it polls the authorization
server repeatedly until the end-user completes the approval process.
This device flow does not utilize the client secret since the client
executables reside on a local device which makes the client secret
accessible and exploitable.



|>---(A)-- Client Identifier --->|
| I
|<---(B)-- Verification Code, --<|
| User Code, |
| & Verification URI |

|

|

I

I

I

Device | | |
Client | Client Identifier & | |
|>---(E)-- Verification Code --->| |

I I I
|>---(E)---> I |

[ | Authorization |

|<---(F)-- Access Token -------- <| Server |
I + (w/ Optional Refresh Token) | |
v I |

: I |

(C) User Code & Verification URI | |

: I I

v I |

R e + | |
| End-user | | [
| at |<---(D)-- User authenticates -->| |
| Browser | | |
Fommmmo oo + S ——— +

Figure 5

The device flow illustrated in Figure 5 includes the following steps:

(A) The client requests access from the authorization server and
includes its client identifier in the request.

(B) The authorization server issues a verification code, a user
code, and provides the end-user authorization URI.

(C) The client instructs the end-user to use its user-agent
(elsewhere) and visit the provided authorization URI. The client



provides the user with the user code to enter in order to grant
access.

(D) The authorization server authenticates the end-user (via the
user-agent) and prompts the end-user to grant the client's access
request by entering the user code provided by the client.

(E) While the end-user authorizes (or denies) the client's request
(D), the client repeatedly polls the authorization server to find
out if the end-user completed the user authorization step. The
client includes the verification code and its client identifier.

(F) Assuming the end-user granted access, the authorization server
validates the verification code provided by the client and
responds back with the access token.

3.7.1. Client Requests Authorization TOC

The client initiates the flow by requesting a set of verification codes
from the authorization server by making an HTTP GET request to the
token endpoint. The client constructs a request URI by adding the
following parameters to the request:

type REQUIRED. The parameter value MUST be set to device_code.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,
and each string adds additional access range to the requested
scope.

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

GET /token?type=device_code&client_id=s6BhdRkqt3
HTTP/1.1
Host: server.example.com

In response, the authorization server generates a verification code and
a user code and includes them in the HTTP response body using the



application/json format as desribed by Section 3.2.1 (Response Format)
with a 200 status code (OK). The response contains the following
parameters:

code REQUIRED. The verification code.
user_code REQUIRED. The user code.

user_uri REQUIRED. The user authorization URI on the authorization
server.

expires_in OPTIONAL. The duration in seconds of the verification
code lifetime.

interval OPTIONAL. The minimum amount of time in seconds that the
client SHOULD wait between polling requests to the token
endpoint.

For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"code":"74tg5miHKB", "user_code":"94248", "user_uri": "http%3A%2F%2
Fwww%2Eexample%2Ecom%2Fdevice", "interval"=5}

The client displays the user code and the user authorization URI to the
end-user, and instructs the end-user to visit the URI using a user-
agent and enter the user code.

The end-user manually types the provided URI and authenticates with the
authorization server. The authorization server prompts the end-user to
authorize the client's request by entering the user code provided by
the client. Once the end-user approves or denies the request, the
authorization server informs the end-user to return to the device for
further instructions.

3.7.2. Client Requests Access Token TOC

Since the client is unable to receive incoming requests from the
authorization server, it polls the authorization server repeatedly
until the end-user grants or denies the request, or the verification
code expires.

The client makes the following request at an arbitrary but reasonable
interval which MUST NOT exceed the minimum interval rate provided by



the authorization server (if present via the -interval parameter).
Alternatively, the client MAY provide a user interface for the end-user
to manually inform it when authorization was granted.

The client requests an access token by making an HTTP GET request to
the token endpoint. The client constructs a request URI by adding the
following parameters to the request:

type REQUIRED. The parameter value MUST be set to device_token.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

code The verification code received from the authorization server.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Requests).

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

GET /token?type=device_token&client_id=s6BhdRkqt3
&code=J2vC420ifV HTTP/1.1
Host: server.example.com

If the end-user authorized the request, the authorization server issues
an access token response as described in Section 3.2.1.1 (Access Token

Response).

For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600,
"refresh_token":"8xLOxBtzp8"}

If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*authorization_declined

*bad_verification_code



For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{"error":"authorization_declined"}

If the end-user authorization is pending or expired without receiving
any response from the end-user, or the client is exceeding the allowed
polling interval, the authorization server returns an error response as
described in Section 3.2.1.2 (Error Response) with one of the following
error codes:

*'authorization_pending
*slow_down
*code_expired

For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{"error":"authorization_pending"}

4. Username and Password Flow TOC

The username and password flow is an end-user credentials flow suitable
for clients capable of asking end users for their usernames and
passwords. It is also used to migrate existing clients using direct
authentication schemes such as HTTP Basic or Digest authentication to
OAuth by converting the end-user credentials stored with tokens.
However, unlike the HTTP Basic authentication scheme defined in
[REC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., lLawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” June 1999.), the end-user's
credentials are used in a single request and are exchanged for an
access token and refresh token which eliminates the client need to
store them for future use.




The methods through which the client prompts end users for their
usernames and passwords is beyond the scope of this specification. The
client MUST discard the usernames and passwords once an access token
has been obtained.

This flow is suitable in cases where the end-user already has a trust
relationship with the client, such as its computer operating system or
highly privileged applications. Authorization servers should take
special care when enabling the username and password flow, and only
when other delegation flows are not viable.

End-user

Y

(A)

Y
Foommo oo + S +
| | Client Credentials | |
| |>--(B)--- & User Credentials ---->| Authorization |
| Client | | Server |
| |<--(C)---- Access Token --------- <| |
| | (w/ Optional Refresh Token) | |
Fommm o - + S +

Figure 6

The username and password flow illustrated in Figure 6 includes the
following steps:

(A) The end-user provides the client with its username and
password.

(B) The client sends an access token request to the authorization
server and includes its client identifier and client secret, and

the end-user's username and password.

(C) The authorization server validates the end-user credentials and
the client credentials and issues an access token.

T0C



4.1. Client Requests Access Token

The client requests an access token by making an HTTP POST request to
the token endpoint. The client constructs a request URI by adding the
following parameters to the request:

type REQUIRED. The parameter value MUST be set to username.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

client_secret REQUIRED. The client secret as described in
Section 3.4 (Client Credentials). OPTIONAL if no client secret
was issued.

username REQUIRED. The end-user's username.
password REQUIRED. The end-user's password.

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,
and each string adds additional access range to the requested
scope.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Requests).

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com

type=username&client_id=s6BhdRkqt3&client_secret=
47HDu8s&username=johndoe&password=A3ddj3w

The authorization server MUST validate the client credentials and end-
user credentials and if valid issues an access token response as
described in Section 3.2.1.1 (Access Token Response).

For example (line breaks are for display purposes only):




HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600,
"refresh_token":"8xLOxBtzp8"}

If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*incorrect_client_credentials

*unauthorized_client' - The client is not permitted to use this
flow.

For example:
HTTP/1.1 400 Bad Request

Content-Type: application/json
Cache-Control: no-store

{"error":"incorrect_client_credentials"}

5. Client Credentials Flow TOC

The client credentials flow is used when the client acts autonomously
without acting on behalf of a separate resource owner. The client
secret is assumed to be high-entropy since it is not designed to be
memorized by an end-user.



I I

| |>--(A)--- Client Credentials ---->| Authorization |

| Client | | Server |

| |<--(B)---- Access Token --------- <| |

| | (w/ Optional Refresh Token) | |

Foomm oo + S +
Figure 7

The client credential flow illustrated in Figure 7 includes the
following steps:

(A) The client sends an access token request to the authorization
server and includes its client identifier and client secret.

(B) The authorization server validates the client credentials and
issues an access token.

5.1. Client Requests Access Token TOC

The client requests an access token by making an HTTP POST request to
the token endpoint. The client constructs a request URI by adding the
following parameters to the request:

type REQUIRED. The parameter value MUST be set to
client_credentials.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

client_secret REQUIRED. The client secret as described in
Section 3.4 (Client Credentials).

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,



and each string adds additional access range to the requested
scope.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Requests).

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com

type=client_credentials&client_id=s6BhdRkqt3&client_secret=47HDu8s

The authorization server MUST validate the client credentials and if
valid issues an access token response as described in Section 3.2.1.1
(Access Token Response).

For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600,
"refresh_token":"8xLOxBtzp8"}

If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*incorrect_client_credentials
For example:
HTTP/1.1 400 Bad Request
Content-Type: application/json

Cache-Control: no-store

{"error":"incorrect_client_credentials"}



6. Assertion Flow TOC

The assertion flow is used when a client wishes to exchange an existing
security token or assertion for an access token. This flow is suitable
when the client is acting autonomously or on behalf of the end-user
(based on the content of the assertion used).

The assertion flow requires the client to obtain a assertion (such as a
SAML (Cantor, S., Kemp, J., Philpott, R., and E. Maler, “Assertions and
Protocol for the OASIS Security Assertion Markup Language (SAML) Vv2.0,”
March 2005.) [O0ASIS.saml-core-2.0-0s] assertion) from an assertion
issuer or to self-issue an assertion prior to initiating the flow. The
assertion format, the process by which the assertion is obtained, and
the method of validating the assertion are defined by the assertion
issuer and the authorization server, and are beyond the scope of this
specification.

Feommmma- + Fommmem e e +
I I I I
| [>--(A)------ Assertion ---------- >| Authorization |
| Client | | Server |
[ |<--(B)---- Access Token --------- <| |
I I I I
oo e e - - + - +
Figure 8

The assertion flow illustrated in Figure 8 includes the following
steps:

(A) The client sends an access token request to the authorization
server and includes an assertion.

(B) The authorization server validates the assertion and issues an
access token.

T0C



6.1. Client Requests Access Token

The client requests an access token by making an HTTP POST request to
the token endpoint. The client constructs a request URI by adding the
following parameters to the request:

type REQUIRED. The parameter value MUST be set to assertion.

format REQUIRED. The format of the assertion as defined by the
authorization server. The value MUST be an absolute URI.

assertion REQUIRED. The assertion.

scope OPTIONAL. The scope of the access request expressed as a list
of space-delimited strings. The value of the scope parameter is
defined by the authorization server. If the value contains
multiple space-delimited strings, their order does not matter,
and each string adds additional access range to the requested
scope.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Reqguests).

For example, the client makes the following HTTPS request (line breaks
are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com

type=assertion&format= &assertion=

The authorization server MUST validate the assertion and if valid
issues an access token response as described in Section 3.2.1.1 (Access
Token Response). The authorization server SHOULD NOT issue a refresh
token.

For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600}



If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*invalid_assertion
*unknown_format

For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{"error":"invalid_assertion"}

Authorization servers SHOULD issue access tokens with a limited
lifetime and require clients to refresh them by requesting a new access
token using the same assertion if it is still valid. Otherwise the
client MUST obtain a new valid assertion.

7. Refreshing an Access Token TOC

Token refresh is used when the lifetime of an access token is shorter
than the lifetime of the authorization grant. It allows clients to
obtain a new access token without having to go through the
authorization flow again or involve the resource owner. It is also used
to obtain a new token with different security properties (e.g. bearer
token, token with shared symmetric secret).

R + Client Credentials, e +
| | Refresh Token, | |
| |>--(A)----- & Secret Type ------- >| Authorization |
| Client | | Server |
| |<--(B)----- Access Token -------- <| |
| | & Optional Secret | |
tommmean + S TR +

Figure 9



To refresh a token, the client constructs an HTTP POST request to the
token endpoint and includes the following parameters in the HTTP

request body using the application/x-www-form-urlencoded content type as
defined by [W3C.REC-html40-19980424] (Hors, A., Raggett, D., and TI.
Jacobs, “HTML 4.0 Specification,” April 1998.):

type REQUIRED. The parameter value MUST be set to refresh.

client_id REQUIRED. The client identifier as described in
Section 3.4 (Client Credentials).

client_secret REQUIRED if the client was issued a secret. The
client secret.

refresh_token REQUIRED. The refresh token associated with the
access token to be refreshed.

secret_type OPTIONAL. The access token secret type as described by
Section 8.3 (Cryptographic Tokens Requests). If omitted, the
authorization server will issue a bearer token (an access token
without a matching secret) as described by Section 8.2 (Bearer
Token Requests).

For example, the client makes the following HTTPS request (line break
are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

type=refresh_token&client_id=s6BhdRkqt3&client_secret=8eSEIpngmM
&refresh_token=n4E90119d&secret_type=hmac-sha256

verify the client credential, the validity of the refresh token, and
that the resource owner's authorization is still valid. If the request
is valid, the authorization server issues an access token response as
described in Section 3.2.1.1 (Access Token Response). The authorization
server MAY issue a new token.

For example (line breaks are for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{"access_token":"S1AV32hkKG", "expires_in":3600}



If the request is invalid, the authorization server returns an error
response as described in Section 3.2.1.2 (Error Response) with one of
the following error codes:

*incorrect_client_credentials
*authorization_expired
*unsupported_secret_type
For example:
HTTP/1.1 400 Bad Request
Content-Type: application/json

Cache-Control: no-store

{"error":"incorrect_client_credentials"}

8. Accessing a Protected Resource TOC

Clients access protected resources by presenting an access token to the
resource server. The methods used by the resource server to validate
the access token are beyond the scope of this specification, but
generally involve an interaction or coordination between the resource
server and authorization server.

The method in which a client uses an access token depends on the
security properties of the access tokens. By default, access tokens are
issued without a matching secret. Clients MAY request an access token
with a matching secret by specifying the desired secret type using the
secret_type token request parameter.

When an access token does not include a matching secret, the access
token acts as a bearer token, where the token string is a shared
symmetric secret. This requires treating the access token with the same
care as other secrets (e.g. user passwords). Access tokens SHOULD NOT
be sent in the clear over an insecure channel.

However, when it is necessary to transmit bearer tokens in the clear
without a secure channel, authorization servers SHOULD issue access
tokens with limited scope and lifetime to reduce the potential risk
from a compromised access token. Clients SHOULD request and utilize an
access token with a matching secret when making protected resource
requests over an insecure channel (e.g. an HTTP request without using
TLS/SSL).

When an access token includes a matching secret, the secret is not
included directly in the request but is used instead to generate a



cryptographic signature of the request. The signature can only be
generated and verified by entities with access to the secret.

Clients SHOULD NOT make authenticated requests with an access token to
unfamiliar resource servers, especially when using bearer tokens,
regardless of the presence of a secure channel.

8.1. The Authorization Request Header TOC

The Authorization request header field is used by clients to make both
bearer token and cryptographic token requests. When making bearer token
requests, the client uses the token attribute to include the access
token in the request without any of the other attributes. Additional
methods for making bearer token requests are described in Section 8.2
(Bearer Token Requests).

For example:

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Token token="vFodft4qgmT"

When making a cryptographic token request (using an access token with a
matching secret) the client uses the token attribute to include the
access token in the request, and uses the nonce, timestamp, algorithm,
and signature attributes to apply the matching secret.

For example:

GET /resource HTTP/1.1

Host: server.example.com

Authorization: Token token="vFodft4qmT",
nonce="s8djwd",
timestamp="137131200",
algorithm="hmac-sha256",
signature="w0JIO9A2W5mFwWDgiDVvZbTSMK/PY="

The Authorization header field uses the framework defined by [RFC2617
(Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., and L. Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” June 1999.) as follows:




credentials = "Token" RWS token-response

token-response = token-id
[ CS nonce ]
[ CS timestamp ]
[ CS algorithm ]
[ CS signature ]

token-id = "token" "=" <"> token <">

timestamp = "timestamp" "=" <"> 1*DIGIT <">

nonce = "nonce" "=" <"> token <">

algorithm = "algorithm" "=" algorithm-name

algorithm-name = "hmac-sha256" /

token
signature = "signature" "=" <"> token <">
8.2. Bearer Token Requests TOC

Clients make bearer token requests by including the access token using
the HTTP Authorization request header with the Token authentication
scheme as described in Section 8.1 (The Authorization Request Header).
The access token is included using the token parameter.

For example, the client makes the following HTTPS request:

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Token token="vFodft4qmT"

The resource server MUST validate the access token and ensure it has
not expired and that its scope covers the requested resource. If the
token expired or is invalid, the resource server MUST reply with an
HTTP 401 status code (Unauthorized) and include the HTTP Www-
Authenticate response header as described in Section 9.1 (The Www-
Authenticate Response Header).

For example:

HTTP/1.1 401 Unauthorized
WwwW-Authenticate: Token realm='Service', error='token_expired'



Alternatively, the client MAY include the access token using the HTTP
request URI in the query component as described in Section 8.2.1 (URI
Query Parameter), or in the HTTP body when using the application/x-www-
form-urlencoded content type as described in Section 8.2.2 (Form-
Encoded Body Parameter). Clients SHOULD only use the request URI or
body when the Authorization request header is not available, and MUST
NOT use more than one method in each request.

8.2.1. URI Query Parameter TOC

When including the access token in the HTTP request URI, the client
adds the access token to the request URI query component as defined by
[RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” January 2005.) using the
oauth_token parameter.

For example, the client makes the following HTTPS request:

GET /resource?oauth_token=vFodft4qmT HTTP/1.1
Host: server.example.com

The HTTP request URI query can include other request-specific
parameters, in which case, the oauth_token parameters SHOULD be
appended following the request-specific parameters, properly separated
by an & character (ASCII code 38).

The resource server MUST validate the access token and ensure it has
not expired and its scope includes the requested resource. If the
resource expired or is not valid, the resource server MUST reply with
an HTTP 401 status code (Unauthorized) and include the HTTP Www-
Authenticate response header as described in Section 9.1 (The Www-
Authenticate Response Header).

8.2.2. Form-Encoded Body Parameter TOC

When including the access token in the HTTP request entity-body, the
client adds the access token to the request body using the oauth_token
parameter. The client can use this method only if the following
REQUIRED conditions are met:

*The entity-body is single-part.

*The entity-body follows the encoding requirements of the
application/x-www-form-urlencoded content-type as defined by



[W3C.REC-html40-19980424] (Hors, A., Raggett, D., and I. Jacobs,
“HTML 4.0 Specification,” April 1998.).

*The HTTP request entity-header includes the Content-Type header
field set to application/x-www-form-urlencoded.

*The HTTP request method is POST, PUT, or DELETE.

The entity-body can include other request-specific parameters, in which
case, the oauth_token parameters SHOULD be appended following the
request-specific parameters, properly separated by an & character
(ASCII code 38).

For example, the client makes the following HTTPS request:

POST /resource HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

oauth_token=vFodft4qgmT

The resource server MUST validate the access token and ensure it has
not expired and its scope includes the requested resource. If the
resource expired or is not valid, the resource server MUST reply with
an HTTP 401 status code (Unauthorized) and include the HTTP Www-
Authenticate response header as described in Section 9.1 (The Www-
Authenticate Response Header).

8.3. Cryptographic Tokens Requests TOC

Clients make authenticated protected resource requests using an access
token with a matching secret by calculating a set of values and
including them in the request using the Authorization header field. The
way clients calculate these values depends on the access token secret
type as issued by the authorization server.

This specification defines the hmac-sha256 algorithm, and establishes a
registry for providing additional algorithms. Clients obtain an access
token with a matching hmac-sha256 secret by using the secret_type
parameter when requesting an access token.

TOC



8.3.1. The 'hmac-sha256' Algorithm

The hmac-sha256 algorithm uses the HMAC method as defined in [RFC2104
(Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” February 1997.) together with the SHA-256 hash
function defined in [NIST FIPS-180-3] (National Institute of Standards
and Technology, “Secure Hash Standard (SHS). FIPS PUB 180-3, October
2008,"” .) to apply the access token secret to the request and generate
a signature value that is included in the request instead of
transmitting the secret in the clear.

To use the hmac-sha256 algorithm, clients:

1. Calculate the request timestamp and generate a request nonce as
described in Section 8.3.1.1 (Nonce and Timestamp).

2. Construct the normalized request string as described in
Section 8.3.1.2 (Normalized String Construction).

3. Calculate the request signature as described in Section 8.3.1.3
(Signature Calculation).

4, Include the timestamp, nonce, algorithm name, and calculated
signature in the request using the Authorization header field.

For example:

GET /resource HTTP/1.1

Host: server.example.com

Authorization: Token token="vFodft4qmT",
nonce="s8djwd",
timestamp="137131200",
algorithm="hmac-sha256",
signature="w0JIO9A2W5mFwWDgiDVvZbTSMK/PY=""

The resource server MUST validate the access token and ensure it has
not expired and that its scope covers the requested resource. The
resource server MUST also recalculate the request signature using the
attributes provided by the client and compare it to the signature
provided. If the token expired or is invalid, or if the signature is
incorrect, the resource server MUST reply with an HTTP 401 status code
(Unauthorized) and include the HTTP WWW-Authenticate response header as
described in Section 9.1 (The WwWw-Authenticate Response Header).

For example:




HTTP/1.1 401 Unauthorized

Date: Tue, 15 Nov 2010 08:12:31 GMT

WwWwW-Authenticate: Token realm='Service',
algorithms="'hmac-sha256",
error='invalid_signature'

[[ Errors list ]]

8.3.1.1. Nonce and Timestamp TOC

A timestamp in combination with unique nonce values is used to protect
against replay attacks when transmitted over an insecure channel.

The nonce is a random string, uniquely generated by the client to allow
the resource server to verify that a request has never been made before
and helps prevent replay attacks when requests are made over a non-
secure channel. The nonce value MUST be unique across all requests with
the same timestamp and token combinations.

The timestamp value is the current time expressed in the number of
seconds since January 1, 1970 00:00:00 GMT, and MUST be a positive
integer.

To avoid the need to retain an infinite number of nonce values for
future checks, resource servers MAY choose to restrict the time period
after which a request with an old timestamp is rejected. When resource
servers apply such a restriction, clients SHOULD synchronize their
clocks by using the resource server's time as indicated by the HTTP
Date response header field as defined in [RFC2616] (Fielding, R.,
Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T.
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.).

8.3.1.2. Normalized String Construction TOC

The normalized request string is a consistent, reproducible
concatenation of several of the HTTP request elements into a single
string. The string is used as an input to the selected cryptographic
method and includes the HTTP request method (e.g. GET, POST, etc.), the
authority as declared by the HTTP Host request header, and the request
resource URI.

The normalized request string does not cover the entire HTTP request.
Most notably, it does not include the entity-body or most HTTP entity-
headers. It is important to note that the resource server cannot verify



the authenticity of the excluded request elements without using
additional protections such as TLS/SSL.

The normalized request string is constructed by concatenating together,
in order, the following HTTP request elements, separated by the ,
character (ASCII code 44):

1. The request timestamp as described in Section 8.3.1.1 (Nonce
and Timestamp).

2. The request nonce as described in Section 8.3.1.1 (Nonce and

Timestamp).

3. The cryptographic algorithm used.

4. The HTTP request method in uppercase. For example: HEAD, GET,
POST, etc.

5. The hostname, colon-separated (ASCII code 58) from the TCP port
used to make the request as included in the HTTP request Host
header field. The port MUST be included even if it is not

included in the Host header field (i.e. the default port for
the scheme).

6. The request resource URI.
For example, the normalized request string for the GET request URI
http://example.com/resource, request timestamp 137131200, request nonce

s8djwd, and hmac-sha256 algorithm (line breaks are for display purposes
only):

137131200, s8djwd, hmac-sha256, GET, example.com:80,
http://example.com/resource

8.3.1.3. Signature Calculation TOC

Clients calculate the request signature using the HMAC-SHA256 function:

digest = HMAC-SHA256 (key, text)

by setting the function variables are follows:

text 1is set to the value of the normalize request string as
described in Section 8.3.1.2 (Normalized String Construction).




key
is set to the access token secret.

The request signature is the calculated value of the digest variable
after the result octet string is base64-encoded per [RFC2045] (Freed,
N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies,” November 1996.) section
6.8.

9. Identifying a Protected Resource TOC

Clients access protected resources after locating the appropriate
authorization and token endpoints and obtaining an access token. In
many cases, interacting with a protected resource requires prior
knowledge of the protected resource properties and methods, as well as
its authentication requirements (i.e. establishing client identity,
locating the authorization and token endpoints).

However, there are cases in which clients are unfamiliar with the
protected resource, including whether the resource requires
authentication. When clients attempt to access an unfamiliar protected
resource without an access token, the resource server denies the
request and informs the client of the required credentials using an
HTTP authentication challenge.

In addition, when receiving an invalid authenticated request, the
resource server issues an authentication challenge including the error
type and message.

9.1. The wWWW-Authenticate Response Header TOC

A resource server receiving a request for a protected resource without
a valid access token MUST respond with a 401 HTTP status code
(Unauthorized), and includes at least one Token WWW-Authenticate
response header field challenge.

The Www-Authenticate header field uses the framework defined by
[REC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., lLawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” June 1999.) as follows:




9.

1.1.

challenge

token-challenge

authz-uri
token-uri
algorithms
error

CS

The 'realm’

= "Token" RWS token-challenge

realm

[ CS authz-uri ]
[ CS token-uri ]
[ CS algorithms ]

[ CS error ]
= "auth-uri" "=" URI-Reference
= "token-uri" "=" URI-Reference
= "algorithms" "=" <"> d1#algorithm-name
= ||errorll ||:Il <II> token <ll>
= owsS "," ows
Attribute

The realm attribute is used to provide the protected resources

partition as defined by [RFC2617] (Franks, J., Hallam-Baker, P.

/2

<">

TOC

Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart,

“HTTP Authentication: Basic and Digest Access Authentication,”

June 1999.).

9.

9.

1.2.

1.4.

The 'authorization-uri' Attribute

The 'algorithms' Attribute

The 'error'’

Attribute

T0C

T0C

T0C

T0C



10. Security Considerations

[[ Todo ]]

11. TIANA Considerations

[[ Not Yet ]]

12. Acknowledgements

[[ Add OAuth 1.0a authors + WG contributors ]]

Appendix A. Differences from OAuth 1.0a

[[ Todo ]]

Appendix B. Document History

[[ to be removed by RFC editor before publication as an RFC ]]
-03

*Fixed typo in JSON error examples.
*Fixed general typos.

*Moved all flows sections up one level.

-02
*Removed restriction on redirect_uri including a query.
*Added scope parameter.
*Initial proposal for a JSON-based token response format.
-01

*Editorial changes based on feedback from Brian Eaton, Bill
Keenan, and Chuck Mortimore.

T0C

T0C

TOC

TOC



*Changed devide flow type parameter values and switch to use only
the token endpoint.

-00

*Initial draft based on a combination of WRAP and OAuth 1.0a.

13. References

T0C

13.1. Normative References

[I-D.ietf-
httpbis-p1-
messaging]

[NIST FIPS-180-3]

[RFC2045]

[RFC2104]

[RFC2119]

[RFC2616]

[RFC2617]

[RFC2818]

[RFC3447]

TOC
Fielding, R., Gettys, J., Mogul, J., Nielsen, H.,
Masinter, L., Leach, P., Berners-Lee, T., and J.
Reschke, “HTTP/1.1, part 1: URIs, Connections,
and Message Parsing,” draft-ietf-httpbis-p1-
messaging-09 (work in progress), March 2010
(TXT).
National Institute of Standards and Technology,
“Secure Hash Standard (SHS). FIPS PUB 180-3,
October 2008."
Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies,” RFC 2045,
November 1996 (TXT).
Krawczyk, H., Bellare, M., and R. Canetti, “HMAC:
Keyed-Hashing for Message Authentication,”
RFC 2104, February 1997 (TXT).
Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).
Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,"
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).
Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999 (TXT,
HTML, XML).
Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000
(TXT).



http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-09.txt
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt

[RFC3629]

[RFC3986]

[RFC4627]

[W3C.REC-
htm140-19980424]

1

Jonsson, J. and B. Kaliski, “Public-Key
Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,”

RFC 3447, February 2003 (TXT).

Yergeau, F., “UTF-8, a transformation format of
IS0 10646,"” STD 63, RFC 3629, November 2003
(TXT).

Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).

Crockford, D., “The application/json Media Type
for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

Hors, A., Raggett, D., and I. Jacobs, “HTML 4.0
Specification,” World Wide Web Consortium
Recommendation REC-html40-19980424, April 1998
(HTML).

13.2. Informative References

[I-D.hammer -
oauth]

[I-D.hardt-
oauth]

[OASIS.saml-
core-2.0-0s]

Authors' Addresses

TOC
Hammer-Lahav, E., “The OAuth 1.0 Protocol,” draft-
hammer-oauth-10 (work in progress), February 2010
(TXT).
Hardt, D., Tom, A., Eaton, B., and Y. Goland, “OAuth
Web Resource Authorization Profiles,” draft-hardt-
oauth-01 (work in progress), January 2010 (TXT).
Cantor, S., Kemp, J., Philpott, R., and E. Maler,
“Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V2.0,"” O0ASIS
Standard saml-core-2.0-0s, March 2005.

TOC
Eran Hammer-Lahav (editor)
Yahoo!
Email: eran@hueniverse.com
URI: http://hueniverse.com

David Recordon
Facebook
Email: davidrecordon@facebook.com
URI: http://www.davidrecordon.com/

Dick Hardt


http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.ietf.org/internet-drafts/draft-hammer-oauth-10.txt
http://www.ietf.org/internet-drafts/draft-hammer-oauth-10.txt
http://www.ietf.org/internet-drafts/draft-hardt-oauth-01.txt
http://www.ietf.org/internet-drafts/draft-hardt-oauth-01.txt
http://www.ietf.org/internet-drafts/draft-hardt-oauth-01.txt
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
mailto:eran@hueniverse.com
http://hueniverse.com
mailto:davidrecordon@facebook.com
http://www.davidrecordon.com/

Email: dick.hardt@gmail.com
URI: http://dickhardt.org/



mailto:dick.hardt@gmail.com
http://dickhardt.org/

	The OAuth 2.0 Protocoldraft-ietf-oauth-v2-03
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1.  Authors
	2.  Introduction
	2.1.  Terminology
	2.2.  Overview
	2.3.  Example
	2.4.  Notational Conventions
	2.5.  Conformance
	3.  Obtaining an Access Token
	3.1.  Authorization Endpoint
	3.2.  Token Endpoint
	3.2.1.  Response Format
	3.2.1.1.  Access Token Response
	3.2.1.2.  Error Response
	3.3.  Flow Parameters
	3.4.  Client Credentials
	3.5.  User-Agent Flow
	3.5.1.  Client Requests Authorization
	3.5.1.1.  End-user Grants Authorization
	3.5.1.2.  End-user Denies Authorization
	3.5.2.  Client Extracts Access Token
	3.6.  Web Server Flow
	3.6.1.  Client Requests Authorization
	3.6.1.1.  End-user Grants Authorization
	3.6.1.2.  End-user Denies Authorization
	3.6.2.  Client Requests Access Token
	3.7.  Device Flow
	3.7.1.  Client Requests Authorization
	3.7.2.  Client Requests Access Token
	4.  Username and Password Flow
	4.1.  Client Requests Access Token
	5.  Client Credentials Flow
	5.1.  Client Requests Access Token
	6.  Assertion Flow
	6.1.  Client Requests Access Token
	7.  Refreshing an Access Token
	8.  Accessing a Protected Resource
	8.1.  The Authorization Request Header
	8.2.  Bearer Token Requests
	8.2.1.  URI Query Parameter
	8.2.2.  Form-Encoded Body Parameter
	8.3.  Cryptographic Tokens Requests
	8.3.1.  The 'hmac-sha256' Algorithm
	8.3.1.1.  Nonce and Timestamp
	8.3.1.2.  Normalized String Construction
	8.3.1.3.  Signature Calculation
	9.  Identifying a Protected Resource
	9.1.  The WWW-Authenticate Response Header
	9.1.1.  The 'realm' Attribute
	9.1.2.  The 'authorization-uri' Attribute
	9.1.3.  The 'algorithms' Attribute
	9.1.4.  The 'error' Attribute
	10.  Security Considerations
	11.  IANA Considerations
	12.  Acknowledgements
	Appendix A.  Differences from OAuth 1.0a
	Appendix B.  Document History
	13.  References
	13.1. Normative References
	13.2. Informative References
	Authors' Addresses


