
Network Working Group E. Hammer-Lahav, Ed.

Internet-Draft Yahoo!

Obsoletes: 5849 (if approved) D. Recordon

Intended status: Standards Track Facebook

Expires: August 20, 2011 D. Hardt

Microsoft

February 16, 2011

The OAuth 2.0 Authorization Protocol

draft-ietf-oauth-v2-13

Abstract

This specification describes the OAuth 2.0 authorization protocol.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 20, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Roles

1.2. Protocol Flow

*

*

*

1.3. Access Token

1.4. Authorization Grant

1.4.1. Authorization Code

1.4.2. Implicit

1.4.3. Resource Owner Password Credentials

1.4.4. Client Credentials

1.4.5. Extensions

1.5. Refresh Token

1.6. Document Structure

1.7. Notational Conventions

2. Protocol Endpoints

2.1. Authorization Endpoint

2.1.1. Redirection URI

2.2. Token Endpoint

3. Client Authentication

3.1. Client Password Authentication

3.2. Other Client Authentication Methods

4. Obtaining Authorization

4.1. Authorization Code

4.1.1. Authorization Request

4.1.2. Authorization Response

4.1.2.1. Error Response

4.1.3. Access Token Request

4.1.4. Access Token Response

4.2. Implicit Grant

4.2.1. Authorization Request

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4.2.2. Access Token Response

4.2.2.1. Error Response

4.3. Resource Owner Password Credentials

4.3.1. Authorization Request and Response

4.3.2. Access Token Request

4.3.3. Access Token Response

4.4. Client Credentials

4.4.1. Authorization Request and Response

4.4.2. Access Token Request

4.4.3. Access Token Response

4.5. Extensions

5. Issuing an Access Token

5.1. Successful Response

5.2. Error Response

6. Refreshing an Access Token

7. Accessing Protected Resources

7.1. Access Token Types

8. Extensibility

8.1. Defining Access Token Types

8.2. Defining New Endpoint Parameters

8.3. Defining New Authorization Grant Types

9. Security Considerations

10. IANA Considerations

10.1. The OAuth Access Token Type Registry

10.1.1. Registration Template

10.2. The OAuth Parameters Registry

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

10.2.1. Registration Template

10.2.2. Initial Registry Contents

11. References

11.1. Normative References

11.2. Informative References

Authors' Addresses

1. Introduction

In the traditional client-server authentication model, the client

accesses a protected resource on the server by authenticating with the

server using the resource owner's credentials. In order to provide

third-party applications access to protected resources, the resource

owner shares its credentials with the third-party. This creates several

problems and limitations:

Third-party applications are required to store the resource-

owner's credentials for future use, typically a password in

clear-text.

Servers are required to support password authentication, despite

the security weaknesses created by passwords.

Third-party applications gain overly broad access to the

resource-owner's protected resources, leaving resource owners

without any ability to restrict duration or access to a limited

subset of resources.

Resource owners cannot revoke access to an individual third-party

without revoking access to all third-parties, and must do so by

changing their password.

OAuth addresses these issues by introducing an authorization layer and

separating the role of the client from that of the resource owner. In

OAuth, the client requests access to resources controlled by the

resource owner and hosted by the resource server, and is issued a

different set of credentials than those of the resource owner.

Instead of using the resource owner's credentials to access protected

resources, the client obtains an access token - a string denoting a

specific scope, duration, and other access attributes. Access tokens

are issued to third-party clients by an authorization server with the

approval of the resource owner. The client uses the access token to

access the protected resources hosted by the resource server.

For example, a web user (resource owner) can grant a printing service

(client) access to her protected photos stored at a photo sharing

*

*

*

*

*

*

*

*

*

*

resource owner

resource server

client

authorization server

service (resource server), without sharing her username and password

with the printing service. Instead, she authenticates directly with a

server trusted by the photo sharing service (authorization server)

which issues the printing service delegation-specific credentials

(access token).

1.1. Roles

OAuth includes four roles working together to grant and provide access

to protected resources - access restricted resources which require

authentication to access:

An entity capable of granting access to a protected

resource. When the resource owner is a person, it is referred to as

an end-user.

The server hosting the protected resources, capable of

accepting and responding to protected resource requests using access

tokens.

An application making protected resource requests on behalf of

the resource owner and with its authorization.

The server issuing access tokens to the client

after successfully authenticating the resource owner and obtaining

authorization.

The interaction between the authorization server and resource server is

beyond the scope of this specification. The authorization server may be

the same server as the resource server or a separate entity. A single

authorization server may issue access tokens accepted by multiple

resource servers.

1.2. Protocol Flow

When interacting with the authorization server, the client identifies

itself using a set of client credentials which include a client

identifier and other authentication attributes. The means through which

the client obtains its credentials are beyond the scope of this

specification, but typically involve registration with the

authorization server.

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

 +--------+ +---------------+

 | |--(A)- Authorization Request ->| Resource |

 | | | Owner |

 | |<-(B)-- Authorization Grant ---| |

 | | +---------------+

 | |

 | | Authorization Grant & +---------------+

 | |--(C)--- Client Credentials -->| Authorization |

 | Client | | Server |

 | |<-(D)----- Access Token -------| |

 | | +---------------+

 | |

 | | +---------------+

 | |--(E)----- Access Token ------>| Resource |

 | | | Server |

 | |<-(F)--- Protected Resource ---| |

 +--------+ +---------------+

The abstract flow illustrated in Figure 1 describes the interaction

between the four roles and includes the following steps:

The client requests authorization from the resource owner. The

authorization request can be made directly to the resource owner (as

shown), or preferably indirectly via an intermediary such as an

authorization server.

The client receives an authorization grant which represents the

authorization provided by the resource owner. The authorization

grant type depends on the method used by the client and supported by

the authorization server to obtain it.

The client requests an access token by authenticating with the

authorization server using its client credentials (prearranged

between the client and authorization server) and presenting the

authorization grant.

The authorization server validates the client credentials and the

authorization grant, and if valid issues an access token.

The client requests the protected resource from the resource

server and authenticates by presenting the access token.

The resource server validates the access token, and if valid,

serves the request.

1.3. Access Token

An access token is a string representing an authorization issued to the

client. The string is usually opaque to the client. Tokens represent

specific scopes and durations of access, granted by the resource owner,

and enforced by the resource server and authorization server.

The token may denote an identifier used to retrieve the authorization

information, or self-contain the authorization information in a

verifiable manner (i.e. a token string consisting of some data and a

signature). Additional authentication credentials may be required in

order for the client to use a token.

The access token provides an abstraction layer, replacing different

authorization constructs (e.g. username and password) with a single

token understood by the resource server. This abstraction enables

issuing access tokens more restrictive than the authorization grant

used to obtain them, as well as removing the resource server's need to

understand a wide range of authentication methods.

Access tokens can have different formats, structures, and methods of

utilization (e.g. cryptographic properties) based on the resource

server security requirements. Access token attributes and the methods

used to access protected resources are beyond the scope of this

specification and are defined by companion specifications.

1.4. Authorization Grant

An authorization grant is a general term used to describe the

intermediate credentials representing the resource owner authorization,

and serves as an abstraction layer. An authorization grant is used by

the client to obtain an access token.

1.4.1. Authorization Code

The authorization code is obtained by using an authorization server as

an intermediary between the client and resource owner. Instead of

requesting authorization directly from the resource owner, the client

directs the resource owner to an authorization server (via its user-

agent), which in turns directs the resource owner back to the client

with the authorization code.

Before directing the resource owner back to the client with the

authorization code, the authorization server authenticates the resource

owner and obtains authorization. Because the resource owner only

authenticates with the authorization server, the resource owner's

credentials are never shared with the client.

The authorization code provides a few important security benefits such

as the ability to authenticate the client and issuing the access token

directly to the client without potentially exposing it to others,

including the resource owner.

1.4.2. Implicit

An implicit grant is issued when the resource owner's authorization is

expressed directly as an access token, without using an intermediate

credential. The implicit grant is issued in a similar manner as an

authorization code, but instead of the resource owner being redirected

back to the client with the authorization code, it is redirected back

with an access token and its related attributes.

When issuing an implicit grant, the authorization server cannot verify

the identity of the client, and the access token may be exposed to the

resource owner or other applications with access to the resource

owner's user-agent.

Implicit grants improve the responsiveness and efficiency of some

clients (such as a client implemented as an in-browser application)

since it reduces the number of round trips required to obtain an access

token.

1.4.3. Resource Owner Password Credentials

The resource owner password credentials (e.g. a username and password)

can be used directly as an authorization grant to obtain an access

token. The credentials should only be used when there is a high degree

of trust between the resource owner and the client (e.g. its computer

operating system or a highly privileged application), and when other

authorization grant types are not available (such as an authorization

code).

Even though this grant type requires direct client access to the

resource owner credentials, the resource owner credentials are used for

a single request and are exchanged for an access token. Unlike the HTTP

Basic authentication scheme defined in [RFC2617], this grant type

eliminates the need for the client to store the resource-owner

credentials for future use.

1.4.4. Client Credentials

The client credentials can be used as an authorization grant when the

authorization scope is limited to the protected resources under the

control of the client, or to protected resources previously arranged

with the authorization server. Client credentials are used as an

authorization grant typically when the client is acting on its own

behalf (the client is also the resource owner).

1.4.5. Extensions

Additional grant types may be defined to provide a bridge between OAuth

and other trust frameworks. For example, [I-D.ietf-oauth-saml2-bearer]

defines a SAML 2.0 [OASIS.saml-core-2.0-os] bearer assertion grant

type, which can be used to obtain an access token.

1.5. Refresh Token

A refresh token is optionally issued by the authorization server to the

client together with an access token. The client can use the refresh

token to request another access token based on the same authorization,

without having to involve the resource owner again, or having to retain

the original authorization grant used to obtain the initial access

token.

A refresh token is a string representing the authorization granted to

the client by the resource owner. The string is usually opaque to the

client. The token may denote an identifier used to retrieve the

authorization information, or self-contain the authorization

information in a verifiable manner.

The refresh token can be used to obtain a new access token when the

current access token expires (access tokens may have a shorter lifetime

than authorized by the resource owner), or to obtain additional access

tokens with identical or narrower scope.

 +--------+ Authorization Grant & +---------------+

 | |--(A)-------- Client Credentials --------->| |

 | | | |

 | |<-(B)----------- Access Token -------------| |

 | | & Refresh Token | |

 | | | |

 | | +----------+ | |

 | |--(C)---- Access Token ---->| | | |

 | | | | | |

 | |<-(D)- Protected Resource --| Resource | | Authorization |

 | Client | | Server | | Server |

 | |--(E)---- Access Token ---->| | | |

 | | | | | |

 | |<-(F)- Invalid Token Error -| | | |

 | | +----------+ | |

 | | | |

 | | Refresh Token & | |

 | |--(G)-------- Client Credentials --------->| |

 | | | |

 | |<-(H)----------- Access Token -------------| |

 +--------+ & Optional Refresh Token +---------------+

The flow illustrated in Figure 2 includes the following steps:

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

The client requests an access token by authenticating with the

authorization server using its client credentials, and presenting an

authorization grant.

The authorization server validates the client credentials and the

authorization grant, and if valid issues an access token and a

refresh token.

The client makes a protected resource requests to the resource

server by presenting the access token.

The resource server validates the access token, and if valid,

serves the request.

Steps (C) and (D) repeat until the access token expires. If the

client knows the access token expired, it skips to step (G),

otherwise it makes another protected resource request.

Since the access token is invalid (expired), the resource server

returns an invalid token error.

The client requests a new access token by authenticating with the

authorization server using its client credentials, and presenting

the refresh token.

The authorization server validates the client credentials and the

refresh token, and if valid issues a new access token (and

optionally, a new refresh token).

1.6. Document Structure

This specification is organized into the following sections:

Section 2 - describes the two endpoints used to obtain and

utilize the various authorization grant types.

Section 3 - describes client identification and authentication in

general, and provides one such method for client authentication

using password credentials.

Section 4 - describes the complete flow for each authorization

grant type, including requesting authorization, authorization

response, and requesting an access token.

Section 5 - describes the common access token response used for

all non-implicit authorization grant types.

*

*

*

*

Section 6 - describes the use of a refresh token to obtain

additional access tokens using the same resource owner

authorization.

Section 7 - describes how access tokens are used to access

protected resources.

Section 8 - describes how to extend certain elements of the

protocol.

Section 9 - provides a security analysis of the protocol.

1.7. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',

'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this

specification are to be interpreted as described in [RFC2119].

This specification uses the Augmented Backus-Naur Form (ABNF) notation

of [RFC5234].

Unless otherwise noted, all the protocol parameter names and values are

case sensitive.

2. Protocol Endpoints

The authorization process utilizes two endpoints:

Authorization endpoint - used to obtain authorization from the

resource owner via user-agent redirection.

Token endpoint - used to exchange an authorization grant for an

access token, typically with client authentication.

Not every authorization grant type utilizes both endpoints. Extension

grant types MAY define additional endpoints as needed.

2.1. Authorization Endpoint

The authorization endpoint is used to interact with the resource owner

and obtain authorization which is expressed explicitly as an

authorization code (exchanged for an access token), or implicitly by

direct issuance of an access token.

The authorization server MUST first verify the identity of the resource

owner. The way in which the authorization server authenticates the

resource owner (e.g. username and password login, session cookies) is

beyond the scope of this specification.

The location of the authorization endpoint can be found in the service

documentation. The endpoint URI MAY include a query component as

defined by [RFC3986] section 3, which MUST be retained when adding

additional query parameters.

*

*

*

*

*

*

Requests to the authorization endpoint result in user authentication

and the transmission of sensitive information. If the response includes

an access token, the authorization server MUST require TLS 1.2 as

defined in [RFC5246] and MAY support additional transport-layer

mechanisms meeting its security requirements. If the response does not

include an access token, the authorization server SHOULD require TLS

1.2 and any additional transport-layer mechanism meeting its security

requirements.

The authorization server MUST support the use of the HTTP GET method

for the authorization endpoint, and MAY support the use of the POST

method as well.

Parameters sent without a value MUST be treated as if they were omitted

from the request. The authorization server SHOULD ignore unrecognized

request parameters.

2.1.1. Redirection URI

The client directs the resource owner's user-agent to the authorization

endpoint and includes a redirection URI to which the authorization

server will redirect the user-agent back once authorization has been

obtained (or denied). The client MAY omit the redirection URI if one

has been established between the client and authorization server via

other means, such as during the client registration process.

The redirection URI MUST be an absolute URI and MAY include a query

component, which MUST be retained by the authorization server when

adding additional query parameters.

The authorization server SHOULD require the client to pre-register

their redirection URI or at least certain components such as the

scheme, host, port and path. If a redirection URI was registered, the

authorization server MUST compare any redirection URI received at the

authorization endpoint with the registered URI.

The authorization server SHOULD NOT redirect the user-agent to

unregistered or untrusted URIs to prevent the endpoint from being used

as an open redirector. If no valid redirection URI is available, the

authorization server SHOULD inform the resource owner directly of the

error.

2.2. Token Endpoint

The token endpoint is used by the client to obtain an access token by

authenticating with the authorization server and presenting its

authorization grant. The token endpoint is used with every

authorization grant except for the implicit grant type (since an access

token is issued directly).

The location of the token endpoint can be found in the service

documentation. The endpoint URI MAY include a query component, which

MUST be retained when adding additional query parameters.

Since requests to the token endpoint result in the transmission of

clear-text credentials (in the HTTP request and response), the

client_id

client_secret

authorization server MUST require the use of a transport-layer security

mechanism when sending requests to the token endpoints. The

authorization server MUST support TLS 1.2 as defined in [RFC5246], and

MAY support additional transport-layer mechanisms meeting its security

requirements.

The token endpoint requires client authentication as described in

Section 3. The authorization server MAY accept any form of client

authentication meeting its security requirements. The client MUST NOT

use more than one authentication method in each request.

The client MUST use the HTTP POST method when making access token

requests.

Parameters sent without a value MUST be treated as if they were omitted

from the request. The authorization server SHOULD ignore unrecognized

request parameters.

3. Client Authentication

Client credentials are used to identify and authenticate the client.

The client credentials include a client identifier - a unique string

issued to the client to identify itself to the authorization server.

The methods through which the client obtains its client credentials are

beyond the scope of this specification.

Due to the nature of some clients, the authorization server should not

make assumptions about the confidentiality of client credentials

without establishing trust with the client. The authorization server

SHOULD NOT issue client credentials to clients incapable of keeping

their secrets confidential.

3.1. Client Password Authentication

The client password authentication uses a shared symmetric secret to

authenticate the client. The client identifier and password are

included in the request using the following parameters:

REQUIRED. The client identifier.

REQUIRED. The client password.

For example (line breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&client_id=s6BhdRkqt3&

 client_secret=gX1fBat3bV&code=i1WsRn1uB1&

 redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

3.2. Other Client Authentication Methods

In cases where client password authentication is not suitable or

sufficient, the authorization server MAY support other existing HTTP

authentication schemes or define new methods. In addition, the

authorization server MAY allow unauthenticated access token requests

when the client identity does not matter (e.g. anonymous client) or

when the client identity is established via other means.

For example, the authorization server MAY support using the HTTP Basic

authentication scheme as defined in [RFC2617] to include the client

identifier as the username and client password as the password (line

breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=i1WsRn1uB1&

 redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

When using a method other than client password authentication to

exchange an authorization code grant type, the authorization server

MUST define a method for mapping the client credentials to the client

identifier used to obtain the authorization code.

4. Obtaining Authorization

To request an access token, the client obtains authorization from the

resource owner. The authorization is expressed in the form of an

authorization grant which the client uses to requesting the access

token. OAuth defines four grant types: authorization code, implicit,

resource owner password credentials, and client credentials. It also

provides an extension mechanism for defining additional grant types.

(%C)

4.1. Authorization Code

The authorization code grant type is suitable for clients capable of

maintaining their client credentials confidential (for authenticating

with the authorization server) such as a client implemented on a secure

server. As a redirection-based flow, the client must be capable of

interacting with the resource owner's user-agent (typically a web

browser) and capable of receiving incoming requests (via redirection)

from the authorization server.

 +----------+

 | resource |

 | owner |

 | |

 +----------+

 ^

 |

 (B)

 +----|-----+ Client Identifier +---------------+

 | -+----(A)--- & Redirect URI ------>| |

 | User- | | Authorization |

 | Agent -+----(B)-- User authenticates --->| Server |

 | | | |

 | -+----(C)-- Authorization Code ---<| |

 +-|----|---+ +---------------+

 | | ^ v

 (A) (C) | |

 | | | |

 ^ v | |

 +---------+ | |

 | |>---(D)-- Client Credentials, --------' |

 | | Authorization Code, |

 | Client | & Redirect URI |

 | | |

 | |<---(E)----- Access Token -------------------'

 +---------+ (w/ Optional Refresh Token)

The flow illustrated in Figure 5 includes the following steps:

The client initiates the flow by directing the resource owner's

user-agent to the authorization endpoint. The client includes its

client identifier, requested scope, local state, and a redirection

(%C)

(%C)

(%C)

(%C)

response_type

client_id

redirect_uri

scope

state

URI to which the authorization server will send the user-agent back

once access is granted (or denied).

The authorization server authenticates the resource owner (via

the user-agent) and establishes whether the resource owner grants or

denies the client's access request.

Assuming the resource owner grants access, the authorization

server redirects the user-agent back to the client using the

redirection URI provided earlier. The redirection URI includes an

authorization code.

The client requests an access token from the authorization

server's token endpoint by authenticating using its client

credentials, and includes the authorization code received in the

previous step.

The authorization server validates the client credentials and the

authorization code and if valid, responds back with an access token.

4.1.1. Authorization Request

The client constructs the request URI by adding the following

parameters to the query component of the authorization endpoint URI

using the application/x-www-form-urlencoded format as defined by

[W3C.REC-html401-19991224]:

REQUIRED. Value MUST be set to code.

REQUIRED. The client identifier as described in Section 3.

REQUIRED, unless a redirection URI has been established

between the client and authorization server via other means.

Described in Section 2.1.1.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope.

OPTIONAL. An opaque value used by the client to maintain state

between the request and callback. The authorization server includes

this value when redirecting the user-agent back to the client.

code

state

The client directs the resource owner to the constructed URI using an

HTTP redirection response, or by other means available to it via the

user-agent.

For example, the client directs the user-agent to make the following

HTTP request using transport-layer security (line breaks are for

display purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&

 redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

The authorization server validates the request to ensure all required

parameters are present and valid. If the request is valid, the

authorization server authenticates the resource owner and obtains an

authorization decision (by asking the resource owner or by establishing

approval via other means).

When a decision is established, the authorization server directs the

user-agent to the provided client redirection URI using an HTTP

redirection response, or by other means available to it via the user-

agent.

4.1.2. Authorization Response

If the resource owner grants the access request, the authorization

server issues an authorization code and delivers it to the client by

adding the following parameters to the query component of the

redirection URI using the application/x-www-form-urlencoded format:

REQUIRED. The authorization code generated by the authorization

server. The authorization code SHOULD expire shortly after it is

issued to minimize the risk of leaks. The client MUST NOT reuse the

authorization code. If an authorization code is used more than once,

the authorization server MAY revoke all tokens previously issued

based on that authorization code. The authorization code is bound to

the client identifier and redirection URI.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

error

invalid_request

unauthorized_client

access_denied

unsupported_response_type

invalid_scope

error_description

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb?code=i1WsRn1uB1

The client SHOULD ignore unrecognized response parameters. The

authorization code string size is left undefined by this specification.

The clients should avoid making assumptions about code value sizes. The

authorization server should document the size of any value it issues.

4.1.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching

redirection URI, or if the client identifier provided is invalid, the

authorization server SHOULD inform the resource owner of the error, and

MUST NOT redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails

for reasons other than a missing or invalid redirection URI, the

authorization server informs the client by adding the following

parameters to the query component of the redirection URI using the

application/x-www-form-urlencoded format:

REQUIRED. A single error code from the following:

The request is missing a required parameter,

includes an unsupported parameter or parameter value, or is

otherwise malformed.

The client is not authorized to request an

authorization code using this method.

The resource owner or authorization server denied the

request.

The authorization server does not support

obtaining an authorization code using this method.

The requested scope is invalid, unknown, or

malformed.

OPTIONAL. A human-readable text providing additional

information, used to assist in the understanding and resolution of

the error occurred.

error_uri

state

grant_type

code

redirect_uri

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the resource owner with

additional information about the error.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb?error=access_denied

4.1.3. Access Token Request

The client makes a request to the token endpoint by adding the

following parameter using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to authorization_code.

REQUIRED. The authorization code received from the authorization

server.

REQUIRED. The redirection URI used by the authorization

server to return the authorization response in the previous step.

The client includes its authentication credentials as described in

Section 3

For example, the client makes the following HTTP request by including

its client credentials via the client_id and client_secret parameters,

and using transport-layer security (line breaks are for display

purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&client_id=s6BhdRkqt3&

 client_secret=gX1fBat3bV&code=i1WsRn1uB1&

 redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

The authorization server MUST:

Validate the client credentials and ensure they match the

authorization code.

Verify that the authorization code is valid, and that the

redirection URI matches the redirection URI used by the

authorization server to deliver the authorization code.

4.1.4. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server return an error response as described

in Section 5.2.

An example successful response:

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-store

 {

 "access_token":"SlAV32hkKG",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"8xLOxBtZp8",

 "example_parameter":"example-value"

 }

4.2. Implicit Grant

The implicit grant type is suitable for clients incapable of

maintaining their client credentials confidential (for authenticating

with the authorization server) such as client applications residing in

a user-agent, typically implemented in a browser using a scripting

*

*

language such as JavaScript, or native applications. These clients

cannot keep client secrets confidential and the authentication of the

client is based on the user-agent's same-origin policy.

As a redirection-based flow, the client must be capable of interacting

with the resource owner's user-agent (typically a web browser) and

capable of receiving incoming requests (via redirection) from the

authorization server.

Unlike the authorization code grant type in which the client makes

separate requests for authorization and access token, the client

receives the access token as the result of the authorization request.

Using the implicit grant type does not include client authentication

since the client is unable to maintain their credential confidentiality

(the client resides on the resource owner's computer or device which

makes the client credentials accessible and exploitable). Because the

access token is encoded into the redirection URI, it may be exposed to

the resource owner and other applications residing on its computer or

device.

(%C)

 +----------+

 | Resource |

 | Owner |

 | |

 +----------+

 ^

 |

 (B)

 +----|-----+ Client Identifier +---------------+

 | -+----(A)--- & Redirect URI ----->| |

 | User- | | Authorization |

 | Agent -|----(B)-- User authenticates -->| Server |

 | | | |

 | |<---(C)---- Redirect URI ------<| |

 | | with Access Token +---------------+

 | | in Fragment

 | | +---------------+

 | |----(D)---- Redirect URI ------>| Web Server |

 | | without Fragment | with Client |

 | | | Resource |

 | (F) |<---(E)------- Script ---------<| |

 | | +---------------+

 +-|--------+

 | |

 (A) (G) Access Token

 | |

 ^ v

 +---------+

 | |

 | Client |

 | |

 +---------+

The flow illustrated in Figure 11 includes the following steps:

The client initiates the flow by directing the resource owner's

user-agent to the authorization endpoint. The client includes its

client identifier, requested scope, local state, and a redirection

(%C)

(%C)

(%C)

(%C)

(%C)

response_type

client_id

redirect_uri

scope

URI to which the authorization server will send the user-agent back

once access is granted (or denied).

The authorization server authenticates the resource owner (via

the user-agent) and establishes whether the resource owner grants or

denies the client's access request.

Assuming the resource owner grants access, the authorization

server redirects the user-agent back to the client using the

redirection URI provided earlier. The redirection URI includes the

access token in the URI fragment.

The user-agent follows the redirection instructions by making a

request to the web server (does not include the fragment). The user-

agent retains the fragment information locally.

The web server returns a web page (typically an HTML document

with an embedded script) capable of accessing the full redirection

URI including the fragment retained by the user-agent, and

extracting the access token (and other parameters) contained in the

fragment.

The user-agent executes the script provided by the web server

locally, which extracts the access token and passes it to the

client.

4.2.1. Authorization Request

The client constructs the request URI by adding the following

parameters to the query component of the authorization endpoint URI

using the application/x-www-form-urlencoded format:

REQUIRED. Value MUST be set to token.

REQUIRED. The client identifier as described in Section 3.

Due to lack of client authentication, the client identifier alone

MUST NOT be relied upon for client identification.

REQUIRED, unless a redirection URI has been established

between the client and authorization server via other means.

Described in Section 2.1.1.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

state

access_token

token_type

expires_in

their order does not matter, and each string adds an additional

access range to the requested scope.

OPTIONAL. An opaque value used by the client to maintain state

between the request and callback. The authorization server includes

this value when redirecting the user-agent back to the client.

The client directs the resource owner to the constructed URI using an

HTTP redirection response, or by other means available to it via the

user-agent.

For example, the client directs the user-agent to make the following

HTTP request using transport-layer security (line breaks are for

display purposes only):

 GET /authorize?response_type=token&client_id=s6BhdRkqt3&

 redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

The authorization server validates the request to ensure all required

parameters are present and valid. If the request is valid, the

authorization server authenticates the resource owner and obtains an

authorization decision (by asking the resource owner or by establishing

approval via other means).

When a decision is established, the authorization server directs the

user-agent to the provided client redirection URI using an HTTP

redirection response, or by other means available to it via the user-

agent.

4.2.2. Access Token Response

If the resource owner grants the access request, the authorization

server issues an access token and delivers it to the client by adding

the following parameters to the fragment component of the redirection

URI using the application/x-www-form-urlencoded format:

REQUIRED. The access token issued by the authorization

server.

REQUIRED. The type of the token issued as described in

Section 7.1. Value is case insensitive.

OPTIONAL. The duration in seconds of the access token

scope

state

error

invalid_request

lifetime. For example, the value 3600 denotes that the access token

will expire in one hour from the time the response was generated.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope. The authorization server SHOULD

include the parameter if the requested scope is different from the

one requested by the client.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response (URI line breaks are for display

purposes only):

 HTTP/1.1 302 Found

 Location: http://example.com/rd#access_token=FJQbwq9&

 token_type=example&expires_in=3600

The client SHOULD ignore unrecognized response parameters. The access

token string size is left undefined by this specification. The client

should avoid making assumptions about value sizes. The authorization

server should document the size of any value it issues.

4.2.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching

redirection URI, or if the client identifier provided is invalid, the

authorization server SHOULD inform the resource owner of the error, and

MUST NOT redirect the user-agent to the invalid redirection URI.

If the resource owner denies the access request or if the request fails

for reasons other than a missing or invalid redirection URI, the

authorization server informs the client by adding the following

parameters to the fragment component of the redirection URI using the

application/x-www-form-urlencoded format:

REQUIRED. A single error code from the following:

The request is missing a required parameter,

unauthorized_client

access_denied

unsupported_response_type

invalid_scope

error_description

error_uri

state

includes an unsupported parameter or parameter value, or is

otherwise malformed.

The client is not authorized to request an

access token using this method.

The resource owner or authorization server denied the

request.

The authorization server does not support

obtaining an access token using this method.

The requested scope is invalid, unknown, or

malformed.

OPTIONAL. A human-readable text providing additional

information, used to assist in the understanding and resolution of

the error occurred.

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the resource owner with

additional information about the error.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb#error=access_denied

4.3. Resource Owner Password Credentials

The resource owner password credentials grant type is suitable in cases

where the resource owner has a trust relationship with the client, such

as its computer operating system or a highly privileged application.

The authorization server should take special care when enabling the

grant type, and only when other flows are not viable.

(%C)

(%C)

(%C)

The grant type is suitable for clients capable of obtaining the

resource owner credentials (username and password, typically using an

interactive form). It is also used to migrate existing clients using

direct authentication schemes such as HTTP Basic or Digest

authentication to OAuth by converting the stored credentials with an

access token.

 +----------+

 | Resource |

 | Owner |

 | |

 +----------+

 v

 |

 (A) Password Credentials

 |

 v

 +---------+ +---------------+

 | | Client Credentials | |

 | |>--(B)---- & Resource Owner ----->| |

 | Client | Password Credentials | Authorization |

 | | | Server |

 | |<--(C)---- Access Token ---------<| |

 | | (w/ Optional Refresh Token) | |

 +---------+ +---------------+

The flow illustrated in Figure 15 includes the following steps:

The resource owner provides the client with its username and

password.

The client requests an access token from the authorization

server's token endpoint by authenticating using its client

credentials, and includes the credentials received from the resource

owner.

The authorization server validates the resource owner credentials

and the client credentials and issues an access token.

4.3.1. Authorization Request and Response

The method through which the client obtains the resource owner

credentials is beyond the scope of this specification. The client MUST

discard the credentials once an access token has been obtained.

grant_type

username

password

scope

4.3.2. Access Token Request

The client makes a request to the token endpoint by adding the

following parameter using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to password.

REQUIRED. The resource owner username.

REQUIRED. The resource owner password.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope.

The client includes its authentication credentials as described in

Section 3

[[add internationalization consideration for username and password]]

For example, the client makes the following HTTP request by including

its client credentials via the client_id and client_secret parameters,

and using transport-layer security (line breaks are for display

purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=password&client_id=s6BhdRkqt3&

 client_secret=47HDu8s&username=johndoe&password=A3ddj3w

The authorization server MUST:

Validate the client credentials.

Validate the resource owner password credentials.

4.3.3. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

*

*

(%C)

(%C)

invalid, the authorization server return an error response as described

in Section 5.2.

An example successful response:

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-store

 {

 "access_token":"SlAV32hkKG",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"8xLOxBtZp8",

 "example_parameter":"example-value"

 }

4.4. Client Credentials

The client can request an access token using only its client

credentials when the client is requesting access to the protected

resources under its control, or those of another resource owner which

has been previously arranged with the authorization server (the method

of which is beyond the scope of this specification).

 +---------+ +---------------+

 | | | |

 | |>--(A)--- Client Credentials ---->| Authorization |

 | Client | | Server |

 | |<--(B)---- Access Token ---------<| |

 | | (w/ Optional Refresh Token) | |

 +---------+ +---------------+

The flow illustrated in Figure 18 includes the following steps:

The client requests an access token from the token endpoint by

authenticating using its client credentials.

The authorization server validates the client credentials and

issues an access token.

grant_type

scope

4.4.1. Authorization Request and Response

Since the client credentials are used as the authorization grant, no

additional authorization request is needed as the client is already in

the possession of its client credentials.

4.4.2. Access Token Request

The client makes a request to the token endpoint by adding the

following parameter using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to client_credentials.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope.

The client includes its authentication credentials as described in

Section 3

For example, the client makes the following HTTP request by including

its client credentials via the client_id and client_secret parameters,

and using transport-layer security (line breaks are for display

purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&client_id=s6BhdRkqt3&

 client_secret=47HDu8s

The authorization server MUST validate the client credentials.

4.4.3. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server return an error response as described

in Section 5.2.

An example successful response:

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-store

 {

 "access_token":"SlAV32hkKG",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"8xLOxBtZp8",

 "example_parameter":"example-value"

 }

4.5. Extensions

The client uses an extension grant type by specifying the grant type

using an absolute URI (defined by the authorization server) as the

value of the grant_type parameter of the token endpoint, and by adding

any additional parameters necessary.

For example, to request an access token using a SAML 2.0 assertion

grant type as defined by [I-D.ietf-oauth-saml2-bearer], the client

makes the following HTTP request using transport-layer security (line

breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=http%3A%2F%2Foauth.net%2Fgrant_type%2Fassertion%2F

 saml%2F2.0%2Fbearer&assertion=PEFzc2VydGlvbiBJc3N1ZUluc3RhbnQ

 [...omitted for brevity...]V0aG5TdGF0ZW1lbnQ-PC9Bc3NlcnRpb24-

5. Issuing an Access Token

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server return an error response as described

in Section 5.2.

5.1. Successful Response

The authorization server issues an access token and optional refresh

token, and constructs the response by adding the following parameters

to the entity body of the HTTP response with a 200 (OK) status code:

access_token

token_type

expires_in

refresh_token

scope

REQUIRED. The access token issued by the authorization server.

REQUIRED. The type of the token issued as described in

Section 7.1. Value is case insensitive.

OPTIONAL. The duration in seconds of the access token

lifetime. For example, the value 3600 denotes that the access token

will expire in one hour from the time the response was generated.

OPTIONAL. The refresh token which can be used to obtain

new access tokens using the same authorization grant as described in

Section 6.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope. The authorization server SHOULD

include the parameter if the requested scope is different from the

one requested by the client.

The parameters are included in the entity body of the HTTP response

using the application/json media type as defined by [RFC4627]. The

parameters are serialized into a JSON structure by adding each

parameter at the highest structure level. Parameter names and string

values are included as JSON strings. Numerical values are included as

JSON numbers.

The authorization server MUST include the HTTP Cache-Control response

header field with a value of no-store in any response containing

tokens, secrets, or other sensitive information.

For example:

error

invalid_request

invalid_client

invalid_grant

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-store

 {

 "access_token":"SlAV32hkKG",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"8xLOxBtZp8",

 "example_parameter":"example-value"

 }

The client SHOULD ignore unrecognized response parameters. The sizes of

tokens and other values received from the authorization server are left

undefined. The client should avoid making assumptions about value

sizes. The authorization server should document the size of any value

it issues.

5.2. Error Response

The authorization server responds with an HTTP 400 (Bad Request) status

code and includes the following parameters with the response:

REQUIRED. A single error code from the following:

The request is missing a required parameter,

includes an unsupported parameter or parameter value, repeats a

parameter, includes multiple credentials, utilizes more than one

mechanism for authenticating the client, or is otherwise

malformed.

Client authentication failed (e.g. unknown client,

no client credentials included, multiple client credentials

included, or unsupported credentials type). The authorization

server MAY return an HTTP 401 (Unauthorized) status code to

indicate which HTTP authentication schemes are supported. If the

client attempted to authenticate via the Authorization request

header field, the authorization server MUST respond with an HTTP

401 (Unauthorized) status code, and include the WWW-Authenticate

response header field matching the authentication scheme used by

the client.

The provided authorization grant is invalid, expired,

unauthorized_client

unsupported_grant_type

invalid_scope

error_description

error_uri

grant_type

revoked, or does not match the redirection URI used in the

authorization request.

The authenticated client is not authorized to

use this authorization grant type.

The authorization grant type is not

supported by the authorization server.

The requested scope is invalid, unknown, malformed,

or exceeds the previously granted scope.

OPTIONAL. A human-readable text providing additional

information, used to assist in the understanding and resolution of

the error occurred.

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the resource owner with

additional information about the error.

The parameters are included in the entity body of the HTTP response

using the application/json media type as defined by [RFC4627]. The

parameters are serialized into a JSON structure by adding each

parameter at the highest structure level. Parameter names and string

values are included as JSON strings. Numerical values are included as

JSON numbers.

For example:

 HTTP/1.1 400 Bad Request

 Content-Type: application/json

 Cache-Control: no-store

 {

 "error":"invalid_request"

 }

6. Refreshing an Access Token

The client makes a request to the token endpoint by adding the

following parameter using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

refresh_token

scope

REQUIRED. Value MUST be set to refresh_token.

REQUIRED. The refresh token issued along the access

token being refreshed.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited strings. The value is defined by the authorization

server. If the value contains multiple space-delimited strings,

their order does not matter, and each string adds an additional

access range to the requested scope. The requested scope MUST be

equal or lesser than the scope originally granted by the resource

owner, and if omitted is treated as equal to the previously approved

scope.

The client includes its authentication credentials as described in

Section 3

For example, the client makes the following HTTP request by including

its client credentials via the client_id and client_secret parameters,

and using transport-layer security (line breaks are for display

purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&client_id=s6BhdRkqt3&

 client_secret=8eSEIpnqmM&refresh_token=n4E9O119d

The authorization server MUST validate the client credentials, the

refresh token, and verify that the resource owner's authorization is

still valid. If valid and authorized, the authorization server issues

an access token as described in Section 5.1. If the request failed

verification or is invalid, the authorization server return an error

response as described in Section 5.2.

The authorization server MAY issue a new refresh token, in which case,

the client MUST discard the old refresh token and replace it with the

new refresh token.

7. Accessing Protected Resources

The client accesses protected resources by presenting the access token

to the resource server. The resource server MUST validate the access

token and ensure it has not expired and that its scope covers the

requested resource. The methods used by the resource server to validate

the access token are beyond the scope of this specification, but

generally involve an interaction or coordination between the resource

server and the authorization server.

The method in which the client utilized the access token to

authenticate with the resource server depends on the type of access

token issued by the authorization server. Typically, it involves using

the HTTP Authorization request header field with an authentication

scheme defined by the access token type specification.

7.1. Access Token Types

The access token type provides the client with the information required

to successfully utilize the access token to make a protected resource

request (along with type-specific attributes).

For example, the bearer token type defined in [I-D.ietf-oauth-v2-

bearer] is utilized by simply including the access token string in the

request:

 GET /resource/1 HTTP/1.1

 Host: example.com

 Authorization: BEARER h480djs93hd8

while the mac token type defined in [I-D.hammer-oauth-v2-mac-token] is

utilized by issuing a token secret together with the access token which

is used to sign certain components of the HTTP requests:

 GET /resource/1 HTTP/1.1

 Host: example.com

 Authorization: MAC token="h480djs93hd8",

 timestamp="137131200",

 nonce="dj83hs9s",

 signature="kDZvddkndxvhGRXZhvuDjEWhGeE="

Each access token type definition specifies the additional attributes

(if any) sent to the client together with the access_token response

parameter. It also defines the HTTP authentication method used to

include the access token when making a protected resource request.

8. Extensibility

8.1. Defining Access Token Types

Access token types can be defined in one of two ways: registered in the

access token type registry (following the procedures in Section 10.1),

or use a unique absolute URI as its name.

Types utilizing a URI name SHOULD be limited to vendor-specific

implementations that are not commonly applicable, and are specific to

the implementation details of the resource server where they are used.

All other types MUST be registered. Type names MUST conform to the

type-name ABNF. If the type definition includes a new HTTP

authentication scheme, the type name SHOULD be identical to the HTTP

authentication scheme name (as defined by [RFC2617]).

 type-name = 1*name-char

 name-char = "-" / "." / "_" / DIGIT / ALPHA

8.2. Defining New Endpoint Parameters

New request or response parameters for use with the authorization

endpoint or the token endpoint are defined and registered in the

parameters registry following the procedure in Section 10.2.

Parameter names MUST conform to the param-name ABNF, MUST NOT use the

x_ parameter name prefix, and parameter values syntax MUST be well-

defined (e.g., using ABNF, or a reference to the syntax of an existing

parameter).

 param-name = 1*name-char

 name-char = "-" / "." / "_" / DIGIT / ALPHA

Vendor-specific parameter extensions that are not commonly applicable,

and are specific to the implementation details of the authorization

server where they are used SHOULD utilize the x_ parameter name prefix

if they are not registered.

8.3. Defining New Authorization Grant Types

New authorization grant types can be defined by assigning them a unique

absolute URI for use with the grant_type parameter. If the extension

grant type requires additional token endpoint parameters, they MUST be

registered in the OAuth parameters registry as described by Section

10.2.

Type name:

Additional Token Endpoint Response Parameters:

HTTP Authentication Scheme(s):

Change controller:

9. Security Considerations

[[TBD]]

10. IANA Considerations

10.1. The OAuth Access Token Type Registry

This specification establishes the OAuth access token type registry.

Access token types are registered on the advice of one or more

Designated Experts (appointed by the IESG or their delegate), with a

Specification Required (using terminology from [RFC5226]). However, to

allow for the allocation of values prior to publication, the Designated

Expert(s) may approve registration once they are satisfied that such a

specification will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

access toke type: example"). [[Note to RFC-EDITOR: The name of the

mailing list should be determined in consultation with the IESG and

IANA. Suggested name: oauth-ext-review.]]

Before a period of 14 days has passed, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision both to the review list and to IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful. Registration requests that are undetermined for a

period longer than 21 days can be brought to the IESG's attention

(using the iesg@iesg.org mailing list) for resolution.

10.1.1. Registration Template

The name requested (e.g., "example").

Additional response

parameters returned together with the access_token parameter. New

parameters MUST be separately registered in the OAuth parameters

registry as described by Section 10.2.

The HTTP authentication scheme name(s),

if any, used to authenticate protected resources requests using

access token of this type.

For standards-track RFCs, state "IETF". For others,

Specification document(s):

Parameter name:

Parameter usage location:

Change controller:

Specification document(s):

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

parameter, preferably including a URI that can be used to retrieve a

copy of the document. An indication of the relevant sections may

also be included, but is not required.

10.2. The OAuth Parameters Registry

This specification establishes the OAuth parameters registry.

Additional parameters for inclusion in the authorization endpoint

request, the authorization endpoint response, the token endpoint

request, or the token endpoint response, are registered on the advice

of one or more Designated Experts (appointed by the IESG or their

delegate), with a Specification Required (using terminology from

[RFC5226]). However, to allow for the allocation of values prior to

publication, the Designated Expert(s) may approve registration once

they are satisfied that such a specification will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

parameter: example"). [[Note to RFC-EDITOR: The name of the mailing

list should be determined in consultation with the IESG and IANA.

Suggested name: oauth-ext-review.]]

Before a period of 14 days has passed, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision both to the review list and to IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful. Registration requests that are undetermined for a

period longer than 21 days can be brought to the IESG's attention

(using the iesg@iesg.org mailing list) for resolution.

10.2.1. Registration Template

The name requested (e.g., "example").

The location(s) where parameter can be used.

The possible locations are: authorization request, authorization

response, token request, or token response.

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

parameter, preferably including a URI that can be used to retrieve a

copy of the document. An indication of the relevant sections may

also be included, but is not required.

10.2.2. Initial Registry Contents

The OAuth Parameters Registry's initial contents are:

Parameter name: client_id

Parameter usage location: authorization request, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: client_secret

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: response_type

Parameter usage location: authorization request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: redirect_uri

Parameter usage location: authorization request, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: scope

Parameter usage location: authorization request, authorization

response, token request, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: state

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Parameter usage location: authorization request, authorization

response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: code

Parameter usage location: authorization response, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: error_description

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: error_uri

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: grant_type

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: access_token

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: token_type

Parameter usage location: authorization response, token response

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: expires_in

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: username

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: password

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: refresh_token

Parameter usage location: token request, token response

Change controller: IETF

Specification document(s): [[this document]]

11. References

11.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2617]

Franks, J., Hallam-Baker, P.M., Hostetler,

J.L., Lawrence, S.D., Leach, P.J., Luotonen,

A. and L. Stewart, "HTTP Authentication: Basic

and Digest Access Authentication", RFC 2617,

June 1999.

[RFC3986]

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[RFC4627]

Crockford, D., "The application/json Media

Type for JavaScript Object Notation (JSON)",

RFC 4627, July 2006.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in

RFCs", BCP 26, RFC 5226, May 2008.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC

5234, January 2008.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport

Layer Security (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web Consortium

Recommendation REC-html401-19991224, December

1999.

11.2. Informative References

[I-D.ietf-

oauth-v2-

bearer]

Jones, M, Hardt, D and D Recordon, "The OAuth

2.0 Protocol: Bearer Tokens", Internet-Draft

draft-ietf-oauth-v2-bearer-02, January 2011.

[I-D.ietf-

oauth-saml2-

bearer]

Campbell, B and C Mortimore, "SAML 2.0 Bearer

Assertion Grant Type Profile for OAuth 2.0",

Internet-Draft draft-ietf-oauth-saml2-bearer-03,

February 2011.

[I-D.hammer-

oauth-v2-mac-

token]

Hammer-Lahav, E, "HTTP Authentication: MAC

Authentication", Internet-Draft draft-hammer-

oauth-v2-mac-token-02, January 2011.

[OASIS.saml-

core-2.0-os]

Cantor, S., Kemp, J., Philpott, R. and E. Maler,

"Assertions and Protocol for the OASIS Security

Assertion Markup Language (SAML) V2.0", OASIS

Standard saml-core-2.0-os, March 2005.

Authors' Addresses

Eran Hammer-Lahav editor Hammer-Lahav Yahoo! EMail:

eran@hueniverse.com URI: http://hueniverse.com

David Recordon Recordon Facebook EMail: dr@fb.com URI: http://

www.davidrecordon.com/

Dick Hardt Hardt Microsoft EMail: dick.hardt@gmail.com URI: http://

dickhardt.org/

mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-02
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-02
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-03
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-03
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eran@hueniverse.com
http://hueniverse.com
mailto:dr@fb.com
http://www.davidrecordon.com/
http://www.davidrecordon.com/
mailto:dick.hardt@gmail.com
http://dickhardt.org/
http://dickhardt.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Roles
	1.2. Protocol Flow
	1.3. Access Token
	1.4. Authorization Grant
	1.4.1. Authorization Code
	1.4.2. Implicit
	1.4.3. Resource Owner Password Credentials
	1.4.4. Client Credentials
	1.4.5. Extensions
	1.5. Refresh Token
	1.6. Document Structure
	1.7. Notational Conventions
	2. Protocol Endpoints
	2.1. Authorization Endpoint
	2.1.1. Redirection URI
	2.2. Token Endpoint
	3. Client Authentication
	3.1. Client Password Authentication
	3.2. Other Client Authentication Methods
	4. Obtaining Authorization
	4.1. Authorization Code
	4.1.1. Authorization Request
	4.1.2. Authorization Response
	4.1.2.1. Error Response
	4.1.3. Access Token Request
	4.1.4. Access Token Response
	4.2. Implicit Grant
	4.2.1. Authorization Request
	4.2.2. Access Token Response
	4.2.2.1. Error Response
	4.3. Resource Owner Password Credentials
	4.3.1. Authorization Request and Response
	4.3.2. Access Token Request
	4.3.3. Access Token Response
	4.4. Client Credentials
	4.4.1. Authorization Request and Response
	4.4.2. Access Token Request
	4.4.3. Access Token Response
	4.5. Extensions
	5. Issuing an Access Token
	5.1. Successful Response
	5.2. Error Response
	6. Refreshing an Access Token
	7. Accessing Protected Resources
	7.1. Access Token Types
	8. Extensibility
	8.1. Defining Access Token Types
	8.2. Defining New Endpoint Parameters
	8.3. Defining New Authorization Grant Types
	9. Security Considerations
	10. IANA Considerations
	10.1. The OAuth Access Token Type Registry
	10.1.1. Registration Template
	10.2. The OAuth Parameters Registry
	10.2.1. Registration Template
	10.2.2. Initial Registry Contents
	11. References
	11.1. Normative References
	11.2. Informative References
	Authors' Addresses

