
Network Working Group E. Hammer-Lahav, Ed.

Internet-Draft Yahoo!

Obsoletes: 5849 (if approved) D. Recordon

Intended status: Standards Track Facebook

Expires: January 26, 2012 D. Hardt

Microsoft

July 25, 2011

The OAuth 2.0 Authorization Protocol

draft-ietf-oauth-v2-20

Abstract

The OAuth 2.0 authorization protocol enables a third-party application

to obtain limited access to an HTTP service, either on behalf of a

resource owner by orchestrating an approval interaction between the

resource owner and the HTTP service, or by allowing the third-party

application to obtain access on its own behalf.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 26, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

1.1. Roles

1.2. Protocol Flow

1.3. Access Token

1.4. Authorization Grant

1.4.1. Authorization Code

1.4.2. Implicit

1.4.3. Resource Owner Password Credentials

1.4.4. Client Credentials

1.4.5. Extensions

1.5. Refresh Token

1.6. Notational Conventions

2. Client Registration

2.1. Client Types

2.2. Registration Requirements

2.3. Client Identifier

2.4. Client Authentication

2.4.1. Client Password

2.4.2. Other Authentication Methods

2.5. Unregistered Clients

3. Protocol Endpoints

3.1. Authorization Endpoint

3.1.1. Response Type

3.1.2. Redirection Endpoint

3.1.2.1. Endpoint Request Confidentiality

3.1.2.2. Registration Requirements

3.1.2.3. Dynamic Configuration

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3.1.2.4. Invalid Endpoint

3.1.2.5. Endpoint Content

3.2. Token Endpoint

3.2.1. Client Authentication

4. Obtaining Authorization

4.1. Authorization Code

4.1.1. Authorization Request

4.1.2. Authorization Response

4.1.2.1. Error Response

4.1.3. Access Token Request

4.1.4. Access Token Response

4.2. Implicit Grant

4.2.1. Authorization Request

4.2.2. Access Token Response

4.2.2.1. Error Response

4.3. Resource Owner Password Credentials

4.3.1. Authorization Request and Response

4.3.2. Access Token Request

4.3.3. Access Token Response

4.4. Client Credentials

4.4.1. Authorization Request and Response

4.4.2. Access Token Request

4.4.3. Access Token Response

4.5. Extensions

5. Issuing an Access Token

5.1. Successful Response

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

5.2. Error Response

6. Refreshing an Access Token

7. Accessing Protected Resources

7.1. Access Token Types

8. Extensibility

8.1. Defining Access Token Types

8.2. Defining New Endpoint Parameters

8.3. Defining New Authorization Grant Types

8.4. Defining New Authorization Endpoint Response Types

8.5. Defining Additional Error Codes

9. Native Applications

10. Security Considerations

10.1. Client Authentication

10.2. Client Impersonation

10.3. Access Tokens

10.4. Refresh Tokens

10.5. Authorization Codes

10.6. Authorization Code Leakage

10.7. Resource Owner Password Credentials

10.8. Request Confidentiality

10.9. Endpoints Authenticity

10.10. Credentials Guessing Attacks

10.11. Phishing Attacks

10.12. Cross-Site Request Forgery

10.13. Clickjacking

10.14. Code Injection and Input Validation

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

11. IANA Considerations

11.1. The OAuth Access Token Type Registry

11.1.1. Registration Template

11.2. The OAuth Parameters Registry

11.2.1. Registration Template

11.2.2. Initial Registry Contents

11.3. The OAuth Authorization Endpoint Response Type Registry

11.3.1. Registration Template

11.3.2. Initial Registry Contents

11.4. The OAuth Extensions Error Registry

11.4.1. Registration Template

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

Authors' Addresses

1. Introduction

In the traditional client-server authentication model, the client

accesses a protected resource on the server by authenticating with the

server using the resource owner's credentials. In order to provide

third-party applications access to protected resources, the resource

owner shares its credentials with the third-party. This creates several

problems and limitations:

Third-party applications are required to store the resource

owner's credentials for future use, typically a password in

clear-text.

Servers are required to support password authentication, despite

the security weaknesses created by passwords.

Third-party applications gain overly broad access to the resource

owner's protected resources, leaving resource owners without any

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

resource owner

resource server

client

ability to restrict duration or access to a limited subset of

resources.

Resource owners cannot revoke access to an individual third-party

without revoking access to all third-parties, and must do so by

changing their password.

Compromise of any third-party application results in compromise

of the end-user’s password and all of the data protected by that

password.

OAuth addresses these issues by introducing an authorization layer and

separating the role of the client from that of the resource owner. In

OAuth, the client requests access to resources controlled by the

resource owner and hosted by the resource server, and is issued a

different set of credentials than those of the resource owner.

Instead of using the resource owner's credentials to access protected

resources, the client obtains an access token - a string denoting a

specific scope, lifetime, and other access attributes. Access tokens

are issued to third-party clients by an authorization server with the

approval of the resource owner. The client uses the access token to

access the protected resources hosted by the resource server.

For example, an end-user (resource owner) can grant a printing service

(client) access to her protected photos stored at a photo sharing

service (resource server), without sharing her username and password

with the printing service. Instead, she authenticates directly with a

server trusted by the photo sharing service (authorization server)

which issues the printing service delegation-specific credentials

(access token).

This specification is designed for use with HTTP [RFC2616]. The use of

OAuth with any transport protocol other than HTTP is undefined.

1.1. Roles

OAuth includes four roles working together to grant and provide access

to protected resources - access restricted resources requiring

authentication:

An entity capable of granting access to a protected

resource (e.g. end-user).

The server hosting the protected resources, capable of

accepting and responding to protected resource requests using access

tokens.

An application making protected resource requests on behalf of

the resource owner and with its authorization.

*

*

authorization server

(%C)

(%C)

(%C)

The server issuing access tokens to the client after successfully

authenticating the resource owner and obtaining authorization.

The interaction between the authorization server and resource server is

beyond the scope of this specification. The authorization server may be

the same server as the resource server or a separate entity. A single

authorization server may issue access tokens accepted by multiple

resource servers.

1.2. Protocol Flow

 +--------+ +---------------+

 | |--(A)- Authorization Request ->| Resource |

 | | | Owner |

 | |<-(B)-- Authorization Grant ---| |

 | | +---------------+

 | |

 | | +---------------+

 | |--(C)-- Authorization Grant -->| Authorization |

 | Client | | Server |

 | |<-(D)----- Access Token -------| |

 | | +---------------+

 | |

 | | +---------------+

 | |--(E)----- Access Token ------>| Resource |

 | | | Server |

 | |<-(F)--- Protected Resource ---| |

 +--------+ +---------------+

The abstract flow illustrated in Figure 1 describes the interaction

between the four roles and includes the following steps:

The client requests authorization from the resource owner. The

authorization request can be made directly to the resource owner (as

shown), or preferably indirectly via an intermediary such as an

authorization server.

The client receives an authorization grant which represents the

authorization provided by the resource owner. The authorization

grant type depends on the method used by the client and supported by

the authorization server to obtain it.

The client requests an access token by authenticating with the

authorization server and presenting the authorization grant.

(%C)

(%C)

(%C)

The authorization server authenticates the client and validates

the authorization grant, and if valid issues an access token.

The client requests the protected resource from the resource

server and authenticates by presenting the access token.

The resource server validates the access token, and if valid,

serves the request.

1.3. Access Token

Access tokens are credentials used to access protected resources. An

access token is a string representing an authorization issued to the

client. The string is usually opaque to the client. Tokens represent

specific scopes and durations of access, granted by the resource owner,

and enforced by the resource server and authorization server.

The token may denote an identifier used to retrieve the authorization

information, or self-contain the authorization information in a

verifiable manner (i.e. a token string consisting of some data and a

signature). Additional authentication credentials, which are beyond the

scope of this specification, may be required in order for the client to

use a token.

The access token provides an abstraction layer, replacing different

authorization constructs (e.g. username and password) with a single

token understood by the resource server. This abstraction enables

issuing access tokens more restrictive than the authorization grant

used to obtain them, as well as removing the resource server's need to

understand a wide range of authentication methods.

Access tokens can have different formats, structures, and methods of

utilization (e.g. cryptographic properties) based on the resource

server security requirements. Access token attributes and the methods

used to access protected resources are beyond the scope of this

specification and are defined by companion specifications.

1.4. Authorization Grant

An authorization grant is a general term used to describe the

intermediate credentials representing the resource owner authorization

(to access its protected resources), and serves as an abstraction

layer. An authorization grant is used by the client to obtain an access

token.

This specification defines four grant types: authorization code,

implicit, resource owner password credentials, and client credentials,

as well as an extensibility mechanism for defining additional types.

1.4.1. Authorization Code

The authorization code is obtained by using an authorization server as

an intermediary between the client and resource owner. Instead of

requesting authorization directly from the resource owner, the client

directs the resource owner to an authorization server (via its user-

agent as defined in [RFC2616]), which in turn directs the resource

owner back to the client with the authorization code.

Before directing the resource owner back to the client with the

authorization code, the authorization server authenticates the resource

owner and obtains authorization. Because the resource owner only

authenticates with the authorization server, the resource owner's

credentials are never shared with the client.

The authorization code provides a few important security benefits such

as the ability to authenticate the client and issuing the access token

directly to the client without potentially exposing it to others,

including the resource owner.

1.4.2. Implicit

The authorization grant is implicit when an access token is issued to

the client directly as the result of the resource owner authorization,

without using intermediate credentials (such as an authorization code).

When issuing an implicit grant, the authorization server does not

authenticate the client and the client identity is verified via the

redirection URI used to deliver the access token to the client. The

access token may be exposed to the resource owner or other applications

with access to the resource owner's user-agent.

Implicit grants improve the responsiveness and efficiency of some

clients (such as a client implemented as an in-browser application)

since it reduces the number of round trips required to obtain an access

token. However, this convenience should be weighted against the

security implications of using implicit grants, especially when the

authorization code grant type is available.

1.4.3. Resource Owner Password Credentials

The resource owner password credentials (e.g. a username and password)

can be used directly as an authorization grant to obtain an access

token. The credentials should only be used when there is a high degree

of trust between the resource owner and the client (e.g. its device

operating system or a highly privileged application), and when other

authorization grant types are not available (such as an authorization

code).

Even though this grant type requires direct client access to the

resource owner credentials, the resource owner credentials are used for

a single request and are exchanged for an access token. Unlike the HTTP

Basic authentication scheme defined in [RFC2617], this grant type (when

combined with a refresh token) eliminates the need for the client to

store the resource owner credentials for future use.

1.4.4. Client Credentials

The client credentials (or other forms of client authentication) can be

used as an authorization grant when the authorization scope is limited

to the protected resources under the control of the client, or to

protected resources previously arranged with the authorization server.

Client credentials are used as an authorization grant typically when

the client is acting on its own behalf (the client is also the resource

owner).

1.4.5. Extensions

Additional grant types may be defined to provide a bridge between OAuth

and other protocols.

1.5. Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh

tokens are issued to the client by the authorization server and are

used to obtain a new access token when the current access token becomes

invalid or expires, or to obtain additional access tokens with

identical or narrower scope (access tokens may have a shorter lifetime

and fewer permissions than authorized by the resource owner). Issuing a

refresh token is optional and is included when issuing an access token.

A refresh token is a string representing the authorization granted to

the client by the resource owner. The string is usually opaque to the

client. The token denotes an identifier used to retrieve the

authorization information. Unlike access tokens, refresh tokens are

intended for use only with authorization servers and are never sent to

resource servers.

 +--------+ +---------------+

 | |--(A)------- Authorization Grant --------->| |

 | | | |

 | |<-(B)----------- Access Token -------------| |

 | | & Refresh Token | |

 | | | |

 | | +----------+ | |

 | |--(C)---- Access Token ---->| | | |

 | | | | | |

 | |<-(D)- Protected Resource --| Resource | | Authorization |

 | Client | | Server | | Server |

 | |--(E)---- Access Token ---->| | | |

 | | | | | |

 | |<-(F)- Invalid Token Error -| | | |

 | | +----------+ | |

 | | | |

 | |--(G)----------- Refresh Token ----------->| |

 | | | |

 | |<-(H)----------- Access Token -------------| |

 +--------+ & Optional Refresh Token +---------------+

The flow illustrated in Figure 2 includes the following steps:

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

(%C)

The client requests an access token by authenticating with the

authorization server, and presenting an authorization grant.

The authorization server authenticates the client and validates

the authorization grant, and if valid issues an access token and a

refresh token.

The client makes a protected resource requests to the resource

server by presenting the access token.

The resource server validates the access token, and if valid,

serves the request.

Steps (C) and (D) repeat until the access token expires. If the

client knows the access token expired, it skips to step (G),

otherwise it makes another protected resource request.

Since the access token is invalid, the resource server returns an

invalid token error.

The client requests a new access token by authenticating with the

authorization server and presenting the refresh token.

The authorization server authenticates the client and validates

the refresh token, and if valid issues a new access token (and

optionally, a new refresh token).

1.6. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',

'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this

specification are to be interpreted as described in [RFC2119].

This specification uses the Augmented Backus-Naur Form (ABNF) notation

of [RFC5234].

Certain security-related terms are to be understood in the sense

defined in [RFC4949]. These terms include, but are not limited to,

'attack', 'authentication', 'authorization', 'certificate',

'confidentiality', 'credential', 'encryption', 'identity', 'sign',

'signature', 'trust', 'validate', and 'verify'.

Unless otherwise noted, all the protocol parameter names and values are

case sensitive.

2. Client Registration

Before initiating the protocol, the client registers with the

authorization server. The means through which the client registers with

the authorization server are beyond the scope of this specification,

but typically involve end-user interaction with an HTML registration

form.

confidential

public

web application

user-agent-based application

Client registration does not require a direct interaction between the

client and the authorization server. When supported by the

authorization server, registration can rely on other means for

establishing trust and obtaining the required client properties (e.g.

redirection URI, client type). For example, registration can be

accomplished using a self-issued or third-party-issued assertion, or by

the authorization server performing client discovery using a trusted

channel.

2.1. Client Types

OAuth defines two client types, based on their ability to authenticate

securely with the authorization server (i.e. ability to maintain the

confidentiality of their client credentials):

Clients capable of maintaining the confidentiality of

their credentials (e.g. client implemented on a secure server with

restricted access to the client credentials), or capable of secure

client authentication using other means.

Clients incapable of maintaining the confidentiality of their

credentials (e.g. clients executing on the resource owner's device

such as an installed native application or a user-agent-based

application), and incapable of secure client authentication via any

other mean.

The client type designation is based on the authorization server's

definition of secure authentication and its acceptable exposure levels

of client credentials.

This specification has been designed around the following client

profiles:

A web application is a confidential client running on

a web server. Resource owners access the client via an HTML user

interface rendered in a user-agent on the resource owner's device.

The client credentials as well as any access token issued to the

client are stored on the web server and are not exposed to or

accessible by the resource owner.

A user-agent-based application is a

public client in which the client code is downloaded from a web

server and executes within a user-agent on the resource owner's

device. Protocol data and credentials are easily accessible (and

often visible) to the resource owner. Since such applications reside

within the user-agent, they can make seamless use of the user-agent

capabilities when requesting authorization.

native application

A native application is a public client installed and executed on

the resource owner's device. Protocol data and credentials are

accessible to the resource owner. It is assumed that any client

authentication credentials included in the application can be

extracted. On the other hand, dynamically issued credentials such

access tokens or refresh tokens, can receive an acceptable level of

protection. At a minimum, these credentials are protected from

hostile servers which the application may interact with. On some

platform these credentials might be protected from other

applications residing on the same device.

2.2. Registration Requirements

When registering a client, the client developer:

specifies the client type as described in Section 2.1,

provides its client redirection URIs as described in Section

3.1.2, and

includes any other information required by the authorization

server (e.g. application name, website, description, logo image,

the acceptance of legal terms).

2.3. Client Identifier

The authorization server issues the registered client a client

identifier - a unique string representing the registration information

provided by the client. The client identifier is not a secret, it is

exposed to the resource owner, and cannot be used alone for client

authentication.

2.4. Client Authentication

If the client type is confidential, the client and authorization server

establish a client authentication method suitable for the security

requirements of the authorization server. The authorization server MAY

accept any form of client authentication meeting its security

requirements.

Confidential clients are typically issued (or establish) a set of

client credentials used for authenticating with the authorization

server (e.g. password, public/private key pair).

The authorization server SHOULD NOT make assumptions about the client

type or accept the type information provided without establishing trust

with the client or its developer. The authorization server MAY

establish a client authentication method with public clients. However,

the authorization server MUST NOT rely on public client authentication

for the purpose of identifying the client.

*

*

*

client_id

client_secret

The client MUST NOT use more than one authentication method in each

request.

2.4.1. Client Password

Clients in possession of a client password MAY use the HTTP Basic

authentication scheme as defined in [RFC2617] to authenticate with the

authorization server. The client identifier is used as the username,

and the client password is used as the password.

For example (extra line breaks are for display purposes only):

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Alternatively, the authorization server MAY allow including the client

credentials in the request body using the following parameters:

REQUIRED. The client identifier issued to the client during

the registration process described by Section 2.3.

REQUIRED. The client secret.

Including the client credentials in the request body using the two

parameters is NOT RECOMMENDED, and should be limited to clients unable

to directly utilize the HTTP Basic authentication scheme (or other

password-based HTTP authentication schemes).

For example, requesting to refresh an access token (Section 6) using

the body parameters (extra line breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

 &client_id=s6BhdRkqt3&client_secret=7Fjfp0ZBr1KtDRbnfVdmIw

The authorization server MUST require the use of a transport-layer

security mechanism when sending requests to the token endpoint, as

requests using this authentication method result in the transmission of

clear-text credentials.

2.4.2. Other Authentication Methods

The authorization server MAY support any suitable HTTP authentication

scheme matching its security requirements. When using other

authentication methods, the authorization server MUST define a mapping

between the client identifier (registration record) and authentication

scheme.

2.5. Unregistered Clients

This specification does not exclude the use of unregistered clients.

However, the use with such clients is beyond the scope of this

specification, and requires additional security analysis and review of

its interoperability impact.

3. Protocol Endpoints

The authorization process utilizes two endpoints (HTTP resources):

Authorization endpoint - used to obtain authorization from the

resource owner via user-agent redirection.

Token endpoint - used to exchange an authorization grant for an

access token, typically with client authentication.

Not every authorization grant type utilizes both endpoints. Extension

grant types MAY define additional endpoints as needed.

3.1. Authorization Endpoint

The authorization endpoint is used to interact with the resource owner

and obtain authorization which is expressed explicitly as an

authorization code (later exchanged for an access token), or implicitly

by direct issuance of an access token.

The authorization server MUST first verify the identity of the resource

owner. The way in which the authorization server authenticates the

resource owner (e.g. username and password login, session cookies) is

beyond the scope of this specification.

The means through which the client obtains the location of the

authorization endpoint are beyond the scope of this specification but

the location is typically provided in the service documentation. The

endpoint URI MAY include a query component as defined by [RFC3986]

section 3, which MUST be retained when adding additional query

parameters. The endpoint URI MUST NOT include a fragment component.

Since requests to the authorization endpoint result in user

authentication and the transmission of clear-text credentials (in the

HTTP response), the authorization server MUST require the use of a

transport-layer security mechanism when sending requests to the

authorization endpoint. The authorization server MUST support TLS 1.2

*

*

response_type

as defined in [RFC5246], and MAY support additional transport-layer

mechanisms meeting its security requirements.

The authorization server MUST support the use of the HTTP GET method

[RFC2616] for the authorization endpoint, and MAY support the use of

the POST method as well.

Parameters sent without a value MUST be treated as if they were omitted

from the request. The authorization server SHOULD ignore unrecognized

request parameters. Request and response parameters MUST NOT be

included more than once.

3.1.1. Response Type

The authorization endpoint is used by the authorization code grant type

and implicit grant type flows. The client informs the authorization

server of the desired grant type using the following parameter:

REQUIRED. The value MUST be one of code for requesting

an authorization code as described by Section 4.1.1, token for

requesting an access token (implicit grant) as described by Section

4.2.1, or a registered extension value as described by Section 8.4.

If the response type contains one or more space characters (%x20),

it is interpreted as a space-delimited list of values, where the

order of values does not matter (e.g. a b is the same as b a).

If an authorization request is missing the response_type parameter, the

authorization server SHOULD return an error response as described in

Section 4.1.2.1.

3.1.2. Redirection Endpoint

After completing its interaction with the resource owner, the

authorization server directs the resource owner's user-agent back to

the client. The authorization server redirects the user-agent to the

client's redirection endpoint previously established with the

authorization server during the client registration process or when

initiating the authorization request.

The redirection endpoint URI MUST be an absolute URI as defined by

[RFC3986] section 4.3, MAY include a query component which MUST be

retained by the authorization server when adding additional query

parameters, and MUST NOT include a fragment component.

3.1.2.1. Endpoint Request Confidentiality

If a redirection request will result in the transmission of an

authorization code or access token over an open network (between the

resource owner's user-agent and the client), the client SHOULD require

the use of a transport-layer security mechanism.

Lack of transport-layer security can have a severe impact on the

security of the client and the protected resources it is authorized to

access. The use of transport-layer security is particularly critical

when the authorization process is used as a form of delegated end-user

authentication by the client (e.g. third-party sign-in service).

3.1.2.2. Registration Requirements

The authorization server MUST require public clients to register their

redirection URI, MUST require all clients to register their redirection

URI prior to utilizing the implicit grant type, and SHOULD require all

clients to register their redirection URI prior to utilizing the

authorization code grant type.

The authorization server SHOULD require the client to provide the

complete redirection URI (the client MAY use the state request

parameter to achieve per-request customization). The authorization

server MAY allow the client to register multiple redirection URIs. If

requiring the registration of the complete redirection URI is not

possible, the authorization server SHOULD require the registration of

the URI scheme, authority, and path.

3.1.2.3. Dynamic Configuration

If multiple redirection URIs have been registered, if only part of the

redirection URI has been registered, or if no redirection URI has been

registered, the client MUST include a redirection URI with the

authorization request using the redirect_uri request parameter.

When a redirection URI is included in an authorization request, the

authorization server MUST compare and match the value received against

at least one of the registered redirection URIs (or URI components) as

defined in [RFC3986] section 6, if any redirection URIs were

registered.

If the authorization server allows the client to dynamically change the

query component of the redirection URI, the client MUST ensure that

manipulation of the query component by an attacker cannot lead to an

abuse of the redirection endpoint as an open redirector.

3.1.2.4. Invalid Endpoint

If an authorization request fails validation due to a missing, invalid,

or mismatching redirection URI, the authorization server SHOULD inform

the resource owner of the error, and MUST NOT automatically redirect

the user-agent to the invalid redirection URI.

The authorization server SHOULD NOT redirect the user-agent to

unregistered or untrusted URIs to prevent the authorization endpoint

from being used as an open redirector.

3.1.2.5. Endpoint Content

The redirection request to the client's endpoint typically results in

an HTML document response, processed by the user-agent. If the HTML

response is served directly as the result of the redirection request,

any script included in the HTML document will execute with full access

to the redirection URI and the credentials it contains.

The client MUST NOT include any untrusted third-party scripts in the

redirection endpoint response (e.g. third-party analytics, social plug-

ins, ad networks) without first ensuring that its own scripts used to

extract and remove the credentials from the URI will execute first.

The client SHOULD NOT include any third-party scripts in the

redirection endpoint response. Instead, it should extract the

credentials from the URI and redirect the user-agent again to another

endpoint without the credentials in the URI.

3.2. Token Endpoint

The token endpoint is used by the client to obtain an access token by

presenting its authorization grant or refresh token. The token endpoint

is used with every authorization grant except for the implicit grant

type (since an access token is issued directly).

The means through which the client obtains the location of the token

endpoint are beyond the scope of this specification but is typically

provided in the service documentation. The endpoint URI MAY include a

query component, which MUST be retained when adding additional query

parameters.

Since requests to the token endpoint result in the transmission of

clear-text credentials (in the HTTP request and response), the

authorization server MUST require the use of a transport-layer security

mechanism when sending requests to the token endpoint. The

authorization server MUST support TLS 1.2 as defined in [RFC5246], and

MAY support additional transport-layer mechanisms meeting its security

requirements.

The client MUST use the HTTP POST method when making access token

requests.

Parameters sent without a value MUST be treated as if they were omitted

from the request. The authorization server SHOULD ignore unrecognized

request parameters. Request and response parameters MUST NOT be

included more than once.

3.2.1. Client Authentication

Confidential clients, clients issued client credentials, or clients

assigned other authentication requirements, MUST authenticate with the

authorization server as described in Section 2.4 when making requests

to the token endpoint. Client authentication is used for:

Enforcing the binding of refresh tokens and authorization codes

to the client they are issued. Client authentication is critical

when an authorization code is transmitted to the redirection

endpoint over an insecure channel, or when the redirection URI

has not been registered in full.

*

Recovery from a compromised client by disabling the client or

changing its credentials, by preventing an attacker from abusing

stolen refresh tokens. Changing a single set of client

credentials is significantly faster than revoking an entire set

of refresh tokens.

Implementing authentication management best practices which

require periodic credentials rotation. Rotation of an entire set

of refresh tokens can be challenging, while rotation of a single

set of client credentials is significantly easier.

The security ramifications of allowing unauthenticated access by public

clients to the token endpoint MUST be considered, as well as the

issuance of refresh tokens to public clients, their scope, and

lifetime.

4. Obtaining Authorization

To request an access token, the client obtains authorization from the

resource owner. The authorization is expressed in the form of an

authorization grant which the client uses to request the access token.

OAuth defines four grant types: authorization code, implicit, resource

owner password credentials, and client credentials. It also provides an

extension mechanism for defining additional grant types.

4.1. Authorization Code

The authorization code grant type is used to obtain both access tokens

and refresh tokens and is optimized for confidential clients. As a

redirection-based flow, the client must be capable of interacting with

the resource owner's user-agent (typically a web browser) and capable

of receiving incoming requests (via redirection) from the authorization

server.

*

*

(%C)

(%C)

(%C)

(%C)

 +----------+

 | resource |

 | owner |

 | |

 +----------+

 ^

 |

 (B)

 +----|-----+ Client Identifier +---------------+

 | -+----(A)-- & Redirection URI ---->| |

 | User- | | Authorization |

 | Agent -+----(B)-- User authenticates --->| Server |

 | | | |

 | -+----(C)-- Authorization Code ---<| |

 +-|----|---+ +---------------+

 | | ^ v

 (A) (C) | |

 | | | |

 ^ v | |

 +---------+ | |

 | |>---(D)-- Authorization Code ---------' |

 | Client | & Redirection URI |

 | | |

 | |<---(E)----- Access Token -------------------'

 +---------+ (w/ Optional Refresh Token)

The flow illustrated in Figure 5 includes the following steps:

The client initiates the flow by directing the resource owner's

user-agent to the authorization endpoint. The client includes its

client identifier, requested scope, local state, and a redirection

URI to which the authorization server will send the user-agent back

once access is granted (or denied).

The authorization server authenticates the resource owner (via

the user-agent) and establishes whether the resource owner grants or

denies the client's access request.

Assuming the resource owner grants access, the authorization

server redirects the user-agent back to the client using the

redirection URI provided earlier. The redirection URI includes an

authorization code and any local state provided by the client

earlier.

The client requests an access token from the authorization

server's token endpoint by including the authorization code received

in the previous step. When making the request, the client

(%C)

response_type

client_id

redirect_uri

scope

state

authenticates with the authorization server. The client includes the

redirection URI used to obtain the authorization code for

verification.

The authorization server authenticates the client, validates the

authorization code, and ensures the redirection URI received matches

the URI used to redirect the client in step (C). If valid, responds

back with an access token.

4.1.1. Authorization Request

The client constructs the request URI by adding the following

parameters to the query component of the authorization endpoint URI

using the application/x-www-form-urlencoded format as defined by

[W3C.REC-html401-19991224]:

REQUIRED. Value MUST be set to code.

REQUIRED. The client identifier as described in Section 2.3.

OPTIONAL, as described in Section 3.1.2.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope.

OPTIONAL. An opaque value used by the client to maintain state

between the request and callback. The authorization server includes

this value when redirecting the user-agent back to the client.

The client directs the resource owner to the constructed URI using an

HTTP redirection response, or by other means available to it via the

user-agent.

For example, the client directs the user-agent to make the following

HTTP request using transport-layer security (extra line breaks are for

display purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

code

state

The authorization server validates the request to ensure all required

parameters are present and valid. If the request is valid, the

authorization server authenticates the resource owner and obtains an

authorization decision (by asking the resource owner or by establishing

approval via other means).

When a decision is established, the authorization server directs the

user-agent to the provided client redirection URI using an HTTP

redirection response, or by other means available to it via the user-

agent.

4.1.2. Authorization Response

If the resource owner grants the access request, the authorization

server issues an authorization code and delivers it to the client by

adding the following parameters to the query component of the

redirection URI using the application/x-www-form-urlencoded format:

REQUIRED. The authorization code generated by the authorization

server. The authorization code MUST expire shortly after it is

issued to mitigate the risk of leaks. A maximum authorization code

lifetime of 10 minutes is RECOMMENDED. The client MUST NOT reuse the

authorization code. If an authorization code is used more than once,

the authorization server SHOULD attempt to revoke all tokens

previously issued based on that authorization code. The

authorization code is bound to the client identifier and redirection

URI.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA

 &state=xyz

The client SHOULD ignore unrecognized response parameters. The

authorization code string size is left undefined by this specification.

The client should avoid making assumptions about code value sizes. The

authorization server should document the size of any value it issues.

error

invalid_request

unauthorized_client

access_denied

unsupported_response_type

invalid_scope

server_error

temporarily_unavailable

error_description

4.1.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching

redirection URI, or if the client identifier provided is invalid, the

authorization server SHOULD inform the resource owner of the error, and

MUST NOT automatically redirect the user-agent to the invalid

redirection URI.

If the resource owner denies the access request or if the request fails

for reasons other than a missing or invalid redirection URI, the

authorization server informs the client by adding the following

parameters to the query component of the redirection URI using the

application/x-www-form-urlencoded format:

REQUIRED. A single error code from the following:

The request is missing a required parameter,

includes an unsupported parameter or parameter value, or is

otherwise malformed.

The client is not authorized to request an

authorization code using this method.

The resource owner or authorization server denied the

request.

The authorization server does not support

obtaining an authorization code using this method.

The requested scope is invalid, unknown, or

malformed.

The authorization server encountered an unexpected

condition which prevented it from fulfilling the request.

The authorization server is currently

unable to handle the request due to a temporary overloading or

maintenance of the server.

OPTIONAL. A human-readable UTF-8 encoded text

providing additional information, used to assist the client

developer in understanding the error that occurred.

error_uri

state

grant_type

code

redirect_uri

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the client developer

with additional information about the error.

REQUIRED if a valid state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb?error=access_denied&state=xyz

4.1.3. Access Token Request

The client makes a request to the token endpoint by adding the

following parameters using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to authorization_code.

REQUIRED. The authorization code received from the authorization

server.

REQUIRED, if the redirect_uri parameter was included in

the authorization request described in Section 4.1.1, and their

values MUST be identical.

If the client type is confidential or was issued client credentials (or

assigned other authentication requirements), the client MUST

authenticate with the authorization server as described in Section

3.2.1.

For example, the client makes the following HTTP using transport-layer

security (extra line breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

The authorization server MUST:

require client authentication for confidential clients or for any

client issued client credentials (or with other authentication

requirements),

authenticate the client if client authentication is included and

ensure the authorization code was issued to the authenticated

client,

verify that the authorization code is valid, and

ensure that the redirect_uri parameter is present if the

redirect_uri parameter was included in the initial authorization

request described in Section 4.1.1, and that their values are

identical.

4.1.4. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request client authentication failed or is

invalid, the authorization server returns an error response as

described in Section 5.2.

An example successful response:

*

*

*

*

 HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "example_parameter":"example_value"

 }

4.2. Implicit Grant

The implicit grant type is used to obtain access tokens (it does not

support the issuance of refresh tokens) and is optimized for public

clients known to operate a particular redirection URI. These clients

are typically implemented in a browser using a scripting language such

as JavaScript.

As a redirection-based flow, the client must be capable of interacting

with the resource owner's user-agent (typically a web browser) and

capable of receiving incoming requests (via redirection) from the

authorization server.

Unlike the authorization code grant type in which the client makes

separate requests for authorization and access token, the client

receives the access token as the result of the authorization request.

The implicit grant type does not include client authentication, and

relies on the presence of the resource owner and the registration of

the redirection URI. Because the access token is encoded into the

redirection URI, it may be exposed to the resource owner and other

applications residing on its device.

(%C)

 +----------+

 | Resource |

 | Owner |

 | |

 +----------+

 ^

 |

 (B)

 +----|-----+ Client Identifier +---------------+

 | -+----(A)-- & Redirection URI --->| |

 | User- | | Authorization |

 | Agent -|----(B)-- User authenticates -->| Server |

 | | | |

 | |<---(C)--- Redirection URI ----<| |

 | | with Access Token +---------------+

 | | in Fragment

 | | +---------------+

 | |----(D)--- Redirection URI ---->| Web-Hosted |

 | | without Fragment | Client |

 | | | Resource |

 | (F) |<---(E)------- Script ---------<| |

 | | +---------------+

 +-|--------+

 | |

 (A) (G) Access Token

 | |

 ^ v

 +---------+

 | |

 | Client |

 | |

 +---------+

The flow illustrated in Figure 11 includes the following steps:

The client initiates the flow by directing the resource owner's

user-agent to the authorization endpoint. The client includes its

client identifier, requested scope, local state, and a redirection

(%C)

(%C)

(%C)

(%C)

(%C)

response_type

client_id

redirect_uri

scope

URI to which the authorization server will send the user-agent back

once access is granted (or denied).

The authorization server authenticates the resource owner (via

the user-agent) and establishes whether the resource owner grants or

denies the client's access request.

Assuming the resource owner grants access, the authorization

server redirects the user-agent back to the client using the

redirection URI provided earlier. The redirection URI includes the

access token in the URI fragment.

The user-agent follows the redirection instructions by making a

request to the web-hosted client resource (which does not include

the fragment). The user-agent retains the fragment information

locally.

The web-hosted client resource returns a web page (typically an

HTML document with an embedded script) capable of accessing the full

redirection URI including the fragment retained by the user-agent,

and extracting the access token (and other parameters) contained in

the fragment.

The user-agent executes the script provided by the web-hosted

client resource locally, which extracts the access token and passes

it to the client.

4.2.1. Authorization Request

The client constructs the request URI by adding the following

parameters to the query component of the authorization endpoint URI

using the application/x-www-form-urlencoded format:

REQUIRED. Value MUST be set to token.

REQUIRED. The client identifier as described in Section 2.3.

OPTIONAL, as described in Section 3.1.2.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

state

access_token

token_type

strings, their order does not matter, and each string adds an

additional access range to the requested scope.

OPTIONAL. An opaque value used by the client to maintain state

between the request and callback. The authorization server includes

this value when redirecting the user-agent back to the client.

The client directs the resource owner to the constructed URI using an

HTTP redirection response, or by other means available to it via the

user-agent.

For example, the client directs the user-agent to make the following

HTTP request using transport-layer security (extra line breaks are for

display purposes only):

 GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

The authorization server validates the request to ensure all required

parameters are present and valid. The authorization server MUST verify

that the redirection URI to which it will redirect the access token

matches a redirection URI registered by the client as described in

Section 3.1.2.

If the request is valid, the authorization server authenticates the

resource owner and obtains an authorization decision (by asking the

resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the

user-agent to the provided client redirection URI using an HTTP

redirection response, or by other means available to it via the user-

agent.

4.2.2. Access Token Response

If the resource owner grants the access request, the authorization

server issues an access token and delivers it to the client by adding

the following parameters to the fragment component of the redirection

URI using the application/x-www-form-urlencoded format:

REQUIRED. The access token issued by the authorization

server.

REQUIRED. The type of the token issued as described in

Section 7.1. Value is case insensitive.

expires_in

scope

state

OPTIONAL. The lifetime in seconds of the access token. For example,

the value 3600 denotes that the access token will expire in one hour

from the time the response was generated.

OPTIONAL. The scope of the access token expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope. The authorization

server SHOULD include the parameter if the access token scope is

different from the one requested by the client.

REQUIRED if the state parameter was present in the client

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response (URI extra line breaks are for

display purposes only):

 HTTP/1.1 302 Found

 Location: http://example.com/rd#access_token=2YotnFZFEjr1zCsicMWpAA

 &state=xyz&token_type=example&expires_in=3600

Developers should note that some HTTP client implementations do not

support the inclusion of a fragment component in the HTTP Location

response header field. Such client will require using other methods for

redirecting the client than a 3xx redirection response. For example,

returning an HTML page which includes a 'continue' button with an

action linked to the redirection URI.

The client SHOULD ignore unrecognized response parameters. The access

token string size is left undefined by this specification. The client

should avoid making assumptions about value sizes. The authorization

server should document the size of any value it issues.

4.2.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching

redirection URI, or if the client identifier provided is invalid, the

authorization server SHOULD inform the resource owner of the error, and

MUST NOT automatically redirect the user-agent to the invalid

redirection URI.

error

invalid_request

unauthorized_client

access_denied

unsupported_response_type

invalid_scope

server_error

temporarily_unavailable

error_description

error_uri

state

If the resource owner denies the access request or if the request fails

for reasons other than a missing or invalid redirection URI, the

authorization server informs the client by adding the following

parameters to the fragment component of the redirection URI using the

application/x-www-form-urlencoded format:

REQUIRED. A single error code from the following:

The request is missing a required parameter,

includes an unsupported parameter or parameter value, or is

otherwise malformed.

The client is not authorized to request an

access token using this method.

The resource owner or authorization server denied the

request.

The authorization server does not support

obtaining an access token using this method.

The requested scope is invalid, unknown, or

malformed.

The authorization server encountered an unexpected

condition which prevented it from fulfilling the request.

The authorization server is currently

unable to handle the request due to a temporary overloading or

maintenance of the server.

OPTIONAL. A human-readable UTF-8 encoded text

providing additional information, used to assist the client

developer in understanding the error that occurred.

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the client developer

with additional information about the error.

REQUIRED if a valid state parameter was present in the client

(%C)

authorization request. Set to the exact value received from the

client.

For example, the authorization server redirects the user-agent by

sending the following HTTP response:

 HTTP/1.1 302 Found

 Location: https://client.example.com/cb#error=access_denied&state=xyz

4.3. Resource Owner Password Credentials

The resource owner password credentials grant type is suitable in cases

where the resource owner has a trust relationship with the client, such

as its device operating system or a highly privileged application. The

authorization server should take special care when enabling the grant

type, and only when other flows are not viable.

The grant type is suitable for clients capable of obtaining the

resource owner credentials (username and password, typically using an

interactive form). It is also used to migrate existing clients using

direct authentication schemes such as HTTP Basic or Digest

authentication to OAuth by converting the stored credentials to an

access token.

 +----------+

 | Resource |

 | Owner |

 | |

 +----------+

 v

 | Resource Owner

 (A) Password Credentials

 |

 v

 +---------+ +---------------+

 | |>--(B)---- Resource Owner ------->| |

 | | Password Credentials | Authorization |

 | Client | | Server |

 | |<--(C)---- Access Token ---------<| |

 | | (w/ Optional Refresh Token) | |

 +---------+ +---------------+

The flow illustrated in Figure 15 includes the following steps:

(%C)

(%C)

grant_type

username

password

scope

The resource owner provides the client with its username and

password.

The client requests an access token from the authorization

server's token endpoint by including the credentials received from

the resource owner. When making the request, the client

authenticates with the authorization server.

The authorization server authenticates the client and validates

the resource owner credentials, and if valid issues an access token.

4.3.1. Authorization Request and Response

The method through which the client obtains the resource owner

credentials is beyond the scope of this specification. The client MUST

discard the credentials once an access token has been obtained.

4.3.2. Access Token Request

The client makes a request to the token endpoint by adding the

following parameters using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to password.

REQUIRED. The resource owner username, encoded as UTF-8.

REQUIRED. The resource owner password, encoded as UTF-8.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope.

If the client type is confidential or was issued client credentials (or

assigned other authentication requirements), the client MUST

authenticate with the authorization server as described in Section

3.2.1.

For example, the client makes the following HTTP request using

transport-layer security (extra line breaks are for display purposes

only):

 POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=password&username=johndoe&password=A3ddj3w

The authorization server MUST:

require client authentication for confidential clients or for any

client issued client credentials (or with other authentication

requirements),

authenticate the client if client authentication is included, and

validate the resource owner password credentials.

Since this access token request utilizes the resource owner's password,

the authorization server MUST protect the endpoint against brute force

attacks.

4.3.3. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server returns an error response as

described in Section 5.2.

An example successful response:

 HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "example_parameter":"example_value"

 }

*

*

*

(%C)

(%C)

grant_type

scope

4.4. Client Credentials

The client can request an access token using only its client

credentials (or other supported means of authentication) when the

client is requesting access to the protected resources under its

control, or those of another resource owner which has been previously

arranged with the authorization server (the method of which is beyond

the scope of this specification).

The client credentials grant type MUST only be used by confidential

clients.

 +---------+ +---------------+

 | | | |

 | |>--(A)- Client Authentication --->| Authorization |

 | Client | | Server |

 | |<--(B)---- Access Token ---------<| |

 | | | |

 +---------+ +---------------+

The flow illustrated in Figure 18 includes the following steps:

The client authenticates with the authorization server and

requests an access token from the token endpoint.

The authorization server authenticates the client, and if valid

issues an access token.

4.4.1. Authorization Request and Response

Since the client authentication is used as the authorization grant, no

additional authorization request is needed.

4.4.2. Access Token Request

The client makes a request to the token endpoint by adding the

following parameters using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to client_credentials.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope.

The client MUST authenticate with the authorization server as described

in Section 3.2.1.

For example, the client makes the following HTTP request using

transport-layer security (extra line breaks are for display purposes

only):

 POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=client_credentials

The authorization server MUST authenticate the client.

4.4.3. Access Token Response

If the access token request is valid and authorized, the authorization

server issues an access token as described in Section 5.1. A refresh

token SHOULD NOT be included. If the request failed client

authentication or is invalid, the authorization server returns an error

response as described in Section 5.2.

An example successful response:

 HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "example_parameter":"example_value"

 }

4.5. Extensions

The client uses an extension grant type by specifying the grant type

using an absolute URI (defined by the authorization server) as the

value of the grant_type parameter of the token endpoint, and by adding

any additional parameters necessary.

For example, to request an access token using a SAML 2.0 assertion

grant type as defined by [I-D.ietf-oauth-saml2-bearer], the client

access_token

token_type

expires_in

refresh_token

makes the following HTTP request using transport-layer security (line

breaks are for display purposes only):

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=http%3A%2F%2Foauth.net%2Fgrant_type%2Fassertion%2F

 saml%2F2.0%2Fbearer&assertion=PEFzc2VydGlvbiBJc3N1ZUluc3RhbnQ

 [...omitted for brevity...]V0aG5TdGF0ZW1lbnQ-PC9Bc3NlcnRpb24-

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server returns an error response as

described in Section 5.2.

5. Issuing an Access Token

If the access token request is valid and authorized, the authorization

server issues an access token and optional refresh token as described

in Section 5.1. If the request failed client authentication or is

invalid, the authorization server returns an error response as

described in Section 5.2.

5.1. Successful Response

The authorization server issues an access token and optional refresh

token, and constructs the response by adding the following parameters

to the entity body of the HTTP response with a 200 (OK) status code:

REQUIRED. The access token issued by the authorization

server.

REQUIRED. The type of the token issued as described in

Section 7.1. Value is case insensitive.

OPTIONAL. The lifetime in seconds of the access token. For

example, the value 3600 denotes that the access token will expire in

one hour from the time the response was generated.

OPTIONAL. The refresh token which can be used to obtain

scope

new access tokens using the same authorization grant as described in

Section 6.

OPTIONAL. The scope of the access token expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope. The authorization

server SHOULD include the parameter if the access token scope is

different from the one requested by the client.

The parameters are included in the entity body of the HTTP response

using the application/json media type as defined by [RFC4627]. The

parameters are serialized into a JSON structure by adding each

parameter at the highest structure level. Parameter names and string

values are included as JSON strings. Numerical values are included as

JSON numbers.

The authorization server MUST include the HTTP Cache-Control response

header field [RFC2616] with a value of no-store in any response

containing tokens, credentials, or other sensitive information, as well

as the Pragma response header field [RFC2616] with a value of no-cache.

For example:

 HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "example_parameter":"example_value"

 }

The client SHOULD ignore unrecognized response parameters. The sizes of

tokens and other values received from the authorization server are left

undefined. The client should avoid making assumptions about value

sizes. The authorization server should document the size of any value

it issues.

5.2. Error Response

The authorization server responds with an HTTP 400 (Bad Request) status

code and includes the following parameters with the response:

error

invalid_request

invalid_client

invalid_grant

unauthorized_client

unsupported_grant_type

invalid_scope

error_description

error_uri

REQUIRED. A single error code from the following:

The request is missing a required parameter,

includes an unsupported parameter or parameter value, repeats a

parameter, includes multiple credentials, utilizes more than one

mechanism for authenticating the client, or is otherwise

malformed.

Client authentication failed (e.g. unknown client,

no client authentication included, multiple client

authentications included, or unsupported authentication method).

The authorization server MAY return an HTTP 401 (Unauthorized)

status code to indicate which HTTP authentication schemes are

supported. If the client attempted to authenticate via the

Authorization request header field, the authorization server MUST

respond with an HTTP 401 (Unauthorized) status code, and include

the WWW-Authenticate response header field matching the

authentication scheme used by the client.

The provided authorization grant is invalid, expired,

revoked, does not match the redirection URI used in the

authorization request, or was issued to another client.

The authenticated client is not authorized to

use this authorization grant type.

The authorization grant type is not

supported by the authorization server.

The requested scope is invalid, unknown, malformed,

or exceeds the scope granted by the resource owner.

OPTIONAL. A human-readable UTF-8 encoded text

providing additional information, used to assist the client

developer in understanding the error that occurred.

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the client developer

with additional information about the error.

grant_type

refresh_token

scope

The parameters are included in the entity body of the HTTP response

using the application/json media type as defined by [RFC4627]. The

parameters are serialized into a JSON structure by adding each

parameter at the highest structure level. Parameter names and string

values are included as JSON strings. Numerical values are included as

JSON numbers.

For example:

 HTTP/1.1 400 Bad Request

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "error":"invalid_request"

 }

6. Refreshing an Access Token

If the authorization server issued a refresh token to the client, the

client makes a refresh request to the token endpoint by adding the

following parameters using the application/x-www-form-urlencoded format

in the HTTP request entity-body:

REQUIRED. Value MUST be set to refresh_token.

REQUIRED. The refresh token issued to the client.

OPTIONAL. The scope of the access request expressed as a list of

space-delimited, case sensitive strings. The value is defined by the

authorization server. If the value contains multiple space-delimited

strings, their order does not matter, and each string adds an

additional access range to the requested scope. The requested scope

MUST be equal or lesser than the scope originally granted by the

resource owner, and if omitted is treated as equal to the scope

originally granted by the resource owner.

Because refresh tokens are typically long-lasting credentials used to

request additional access tokens, the refresh token is bound to the

client it was issued. If the client type is confidential or was issued

client credentials (or assigned other authentication requirements), the

client MUST authenticate with the authorization server as described in

Section 3.2.1.

For example, the client makes the following HTTP request using

transport-layer security (extra line breaks are for display purposes

only):

 POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

The authorization server MUST:

require client authentication for confidential clients or for any

client issued client credentials (or with other authentication

requirements),

authenticate the client if client authentication is included and

ensure the refresh token was issued to the authenticated client,

validate the refresh token, and

If valid and authorized, the authorization server issues an access

token as described in Section 5.1. If the request failed verification

or is invalid, the authorization server returns an error response as

described in Section 5.2.

The authorization server MAY issue a new refresh token, in which case

the client MUST discard the old refresh token and replace it with the

new refresh token. The authorization server MAY revoke the old refresh

token after issuing a new refresh token to the client. If a new refresh

token is issued, its scope MUST be identical to that of the refresh

token included in the request.

7. Accessing Protected Resources

The client accesses protected resources by presenting the access token

to the resource server. The resource server MUST validate the access

token and ensure it has not expired and that its scope covers the

requested resource. The methods used by the resource server to validate

the access token (as well as any error responses) are beyond the scope

of this specification, but generally involve an interaction or

coordination between the resource server and the authorization server.

The method in which the client utilized the access token to

authenticate with the resource server depends on the type of access

token issued by the authorization server. Typically, it involves using

the HTTP Authorization request header field [RFC2617] with an

authentication scheme defined by the access token type specification.

*

*

*

7.1. Access Token Types

The access token type provides the client with the information required

to successfully utilize the access token to make a protected resource

request (along with type-specific attributes). The client MUST NOT use

an access token if it does not understand or does not trust the token

type.

For example, the bearer token type defined in [I-D.ietf-oauth-v2-

bearer] is utilized by simply including the access token string in the

request:

 GET /resource/1 HTTP/1.1

 Host: example.com

 Authorization: Bearer 7Fjfp0ZBr1KtDRbnfVdmIw

while the mac token type defined in [I-D.ietf-oauth-v2-http-mac] is

utilized by issuing a MAC key together with the access token which is

used to sign certain components of the HTTP requests:

 GET /resource/1 HTTP/1.1

 Host: example.com

 Authorization: MAC id="h480djs93hd8",

 nonce="274312:dj83hs9s",

 mac="kDZvddkndxvhGRXZhvuDjEWhGeE="

The above examples are provided for illustration purposes only.

Developers are advised to consult the [I-D.ietf-oauth-v2-bearer] and

[I-D.ietf-oauth-v2-http-mac] specifications before use.

Each access token type definition specifies the additional attributes

(if any) sent to the client together with the access_token response

parameter. It also defines the HTTP authentication method used to

include the access token when making a protected resource request.

8. Extensibility

8.1. Defining Access Token Types

Access token types can be defined in one of two ways: registered in the

access token type registry (following the procedures in Section 11.1),

or use a unique absolute URI as its name.

Types utilizing a URI name SHOULD be limited to vendor-specific

implementations that are not commonly applicable, and are specific to

the implementation details of the resource server where they are used.

All other types MUST be registered. Type names MUST conform to the

type-name ABNF. If the type definition includes a new HTTP

authentication scheme, the type name SHOULD be identical to the HTTP

authentication scheme name (as defined by [RFC2617]).

 type-name = 1*name-char

 name-char = "-" / "." / "_" / DIGIT / ALPHA

8.2. Defining New Endpoint Parameters

New request or response parameters for use with the authorization

endpoint or the token endpoint are defined and registered in the

parameters registry following the procedure in Section 11.2.

Parameter names MUST conform to the param-name ABNF and parameter

values syntax MUST be well-defined (e.g., using ABNF, or a reference to

the syntax of an existing parameter).

 param-name = 1*name-char

 name-char = "-" / "." / "_" / DIGIT / ALPHA

Unregistered vendor-specific parameter extensions that are not commonly

applicable, and are specific to the implementation details of the

authorization server where they are used SHOULD utilize a vendor-

specific prefix that is not likely to conflict with other registered

values (e.g. begin with 'companyname_').

8.3. Defining New Authorization Grant Types

New authorization grant types can be defined by assigning them a unique

absolute URI for use with the grant_type parameter. If the extension

grant type requires additional token endpoint parameters, they MUST be

registered in the OAuth parameters registry as described by Section

11.2.

8.4. Defining New Authorization Endpoint Response Types

New response types for use with the authorization endpoint are defined

and registered in the authorization endpoint response type registry

following the procedure in Section 11.3. Response type names MUST

conform to the response-type ABNF.

 response-type = response-name *(SP response-name)

 response-name = 1*response-char

 response-char = "_" / DIGIT / ALPHA

If a response type contains one of more space characters (%x20), it is

compared as a space-delimited list of values in which the order of

values does not matter. Only one order of values can be registered,

which covers all other arrangements of the same set of values.

For example, the response type token code is left undefined by this

specification. However, an extension can define and register the token

code response type. Once registered, the same combination cannot be

registered as code token, but both values can be used to denote the

same response type.

8.5. Defining Additional Error Codes

In cases where protocol extensions (i.e. access token types, extension

parameters, or extension grant types) require additional error codes to

be used with the authorization code grant error response (Section

4.1.2.1), the implicit grant error response (Section 4.2.2.1), or the

token error response (Section 5.2), such error codes MAY be defined.

Extension error codes MUST be registered (following the procedures in

Section 11.4) if the extension they are used in conjunction with is a

registered access token type, a registered endpoint parameter, or an

extension grant type. Error codes used with unregistered extensions MAY

be registered.

Error codes MUST conform to the error-code ABNF, and SHOULD be prefixed

by an identifying name when possible. For example, an error identifying

an invalid value set to the extension parameter example should be named

example_invalid.

 error-code = ALPHA *error-char

 error-char = "-" / "." / "_" / DIGIT / ALPHA

9. Native Applications

Native applications are clients installed and executed on the resource

owner's device (i.e. desktop application, native mobile application).

Native applications may require special consideration related to

security, platform capabilities, and overall end-user experience.

The authorization endpoint requires interaction between the client and

the resource owner's user-agent. Native applications can invoke an

external user-agent or embed a user-agent within the application. For

example:

External user-agent - the native application can capture the

response from the authorization server using a redirection URI

with an scheme registered with the operating system to invoke the

client as the handler, manual copy-and-paste of the credentials,

running a local web server, installing a user-agent extension, or

by providing a redirection URI identifying a server-hosted

resource under the client's control, which in turn makes the

response available to the native application.

Embedded user-agent - the native application obtains the response

by directly communicating with the embedded user-agent by

monitoring state changes emitted during the resource load, or

accessing the user-agent's cookies storage.

When choosing between an external or embedded user-agent, developers

should consider:

External user-agents may improve completion rate as the resource

owner may already have an active session with the authorization

server removing the need to re-authenticate. It provides a

familiar end-user experience and functionality. The resource

owner may also rely on user-agent features or extensions to

assist with authentication (e.g. password manager, 2-factor

device reader).

Embedded user-agents may offer an improved usability, as they

remove the need to switch context and open new windows.

Embedded user-agents pose a security challenge because resource

owners are authenticating in an unidentified window without

access to the visual protections found in most external user-

agents. Embedded user-agents educate end-user to trust

unidentified requests for authentication (making phishing attacks

easier to execute).

When choosing between the implicit grant type and the authorization

code grant type, the following should be considered:

Native applications that use the authorization code grant type

SHOULD do so without using client credentials, due to the native

application’s inability to keep credentials confidential.

When using the implicit grant type flow a refresh token is not

returned.

10. Security Considerations

As a flexible and extensible framework, OAuth's security considerations

depend on many factors. The following sections provide implementers

*

*

*

*

*

*

*

with security guidelines focused on the three client profiles described

in Section 2.1: web application, user-agent-based application, and

native application.

A comprehensive OAuth security model and analysis, as well as

background for the protocol design is provided by [I-D.ietf-oauth-v2-

threatmodel].

10.1. Client Authentication

The authorization server establishes client credentials with web

application clients for the purpose of client authentication. The

authorization server is encouraged to consider stronger client

authentication means than a client password. Web application clients

MUST ensure confidentiality of client passwords and other client

credentials.

The authorization server MUST NOT issue client passwords or other

client credentials to native application or user-agent-based

application clients for the purpose of client authentication. The

authorization server MAY issue a client password or other credentials

for a specific installation of a native application client on a

specific device.

When client authentication is not possible, the authorization server

SHOULD employ other means to validate the client's identity. For

example, by requiring the registration of the client redirection URI or

enlisting the resource owner to confirm identity. The authorization

server must consider the security implications of interacting with

unauthenticated clients and take measures to limit the potential

exposure of other credentials (e.g. refresh tokens) issued to such

clients.

10.2. Client Impersonation

A malicious client can impersonate another client and obtain access to

protected resources, if the impersonated client fails to, or is unable

to, keep is client credentials confidential.

The authorization server MUST authenticate the client whenever

possible. If the authorization server cannot authenticate the client

due to the client nature, the authorization server MUST require the

registration of any redirection URI used for receiving authorization,

and SHOULD utilize other means to protect resource owners from such

malicious clients. For example, engage the resource owner to assist in

identifying the client and its origin.

The authorization server SHOULD enforce explicit resource owner

authentication and provide the resource owner with information about

the client and the requested authorization scope and lifetime. It is up

to the resource owner to review the information in the context of the

current client, and authorize the request.

The authorization server SHOULD NOT process repeated authorization

requests automatically (without active resource owner interaction)

without authenticating the client or relying on other measures to

ensure the repeated request comes from the original client and not an

impersonator.

10.3. Access Tokens

Access token (as well as any access token type-specific attributes)

MUST be kept confidential in transit and storage, and only shared among

the authorization server, the resource servers the access token is

valid for, and the client to whom the access token is issued.

When using the implicit grant type, the access token is transmitted in

the URI fragment, which can expose it to unauthorized parties.

The authorization server MUST ensure that access tokens cannot be

generated, modified, or guessed to produce valid access tokens.

The client SHOULD request access tokens with the minimal scope and

lifetime necessary. The authorization server SHOULD take the client

identity into account when choosing how to honor the requested scope

and lifetime, and MAY issue an access token with a less rights than

requested.

10.4. Refresh Tokens

Authorization servers MAY issue refresh tokens to web application

clients and native application clients.

Refresh tokens MUST be kept confidential in transit and storage, and

shared only among the authorization server and the client to whom the

refresh tokens were issued. The authorization server MUST maintain the

binding between a refresh token and the client to whom it was issued.

The authorization server MUST verify the binding between the refresh

token and client identity whenever the client identity can be

authenticated. When client authentication is not possible, the

authorization server SHOULD deploy other means to detect refresh token

abuse.

For example, the authorization server could employ refresh tokens

rotation in which a new refresh token is issued with every access token

refresh response. The previous refresh token is invalidated but

retained by the authorization server. If a refresh token is compromised

and subsequently used by both the attacker and the legitimate client,

one of them will present an invalidated refresh token which will inform

the authorization server of the breach.

The authorization server MUST ensure that refresh tokens cannot be

generated, modified, or guessed to produce valid refresh tokens.

10.5. Authorization Codes

The transmission of authorization codes SHOULD be made over a secure

channel, and the client SHOULD implement TLS for use with its

redirection URI if the URI identifies a network resource. Effort should

be made to keep authorization codes confidential. Since authorization

codes are transmitted via user-agent redirections, they could

potentially be disclosed through user-agent history and HTTP referrer

headers.

Authorization codes operate as plaintext bearer credentials, used to

verify that the resource owner who granted authorization at the

authorization server, is the same resource owner returning to the

client to complete the process. Therefore, if the client relies on the

authorization code for its own resource owner authentication, the

client redirection endpoint MUST require TLS.

Authorization codes MUST be short lived and single use. If the

authorization server observes multiple attempts to exchange an

authorization code for an access token, the authorization server SHOULD

attempt to revoke all access tokens already granted based on the

compromised authorization code.

If the client can be authenticated, the authorization servers MUST

authenticate the client and ensure that the authorization code was

issued to the same client.

10.6. Authorization Code Leakage

An attacker can leverage the authorization code grant type by tricking

a resource owner to authorize access to a legitimate client, but using

a client account under the control of the attacker. The only difference

between a valid request and the attack request is in how the victim

reached the authorization server to grant access.

Once at the authorization server, the victim is prompted with a normal,

valid request on behalf of a legitimate and familiar client. The

attacker then uses the victim's authorization to gain access to the

information authorized by the victim (via the client).

In order to prevent such an attack, authorization servers MUST ensure

that the redirection URI used to obtain the authorization code, is the

same as the redirection URI provided when exchanging the authorization

code for an access token. The authorization server SHOULD require the

client to register their redirection URI and if provided, MUST validate

the redirection URI received in the authorization request against the

registered value.

10.7. Resource Owner Password Credentials

The resource owner password credentials grant type is often used for

legacy or migration reasons. It reduces the overall risk of storing

username and password by the client, but does not eliminate the need to

expose highly privileged credentials to the client.

This grant type carries a higher risk than other grant types because it

maintains the password anti-pattern this protocol seeks to avoid. The

client could abuse the password or the password could unintentionally

be disclosed to an attacker (e.g. via log files or other records kept

by the client).

Additionally, because the resource owner does not have control over the

authorization process (the resource owner involvement ends when it

hands over its credentials to the client), the client can obtain access

tokens with a broader scope and longer lifetime than desired by the

resource owner. The authorization server SHOULD restrict the scope and

lifetime of access tokens issued via this grant type.

The authorization server and client SHOULD minimize use of this grant

type and utilize other grant types whenever possible.

10.8. Request Confidentiality

Access tokens, refresh tokens, resource owner passwords, and client

credentials MUST NOT be transmitted in the clear. Authorization codes

SHOULD NOT be transmitted in the clear.

10.9. Endpoints Authenticity

In order to prevent man-in-the-middle and phishing attacks, the

authorization server MUST implement and require TLS with server

authentication as defined by [RFC2818] for any request sent to the

authorization and token endpoints. The client MUST validate the

authorization server's TLS certificate in accordance with its

requirements for server identity authentication.

10.10. Credentials Guessing Attacks

The authorization server MUST prevent attackers from guessing access

tokens, authorization codes, refresh tokens, resource owner passwords,

and client credentials.

When generating tokens and other credentials not intended for handling

by end-users, the authorization server MUST use a reasonable level of

entropy in order to mitigate the risk of guessing attacks. The

authorization server MUST utilize other means to protect credentials

intended for end-user usage.

10.11. Phishing Attacks

Wide deployment of this and similar protocols may cause end-users to

become inured to the practice of being redirected to websites where

they are asked to enter their passwords. If end-users are not careful

to verify the authenticity of these websites before entering their

credentials, it will be possible for attackers to exploit this practice

to steal resource owners' passwords.

Service providers should attempt to educate end-users about the risks

phishing attacks pose, and should provide mechanisms that make it easy

for end-users to confirm the authenticity of their sites. Client

developers should consider the security implications of how they

interact with the user-agent (e.g., external, embedded), and the

ability of the end-user to verify the authenticity of the authorization

server.

To reduce the risk of phishing attacks, the authorization servers MUST

utilize TLS on every endpoint used for end-user interaction.

10.12. Cross-Site Request Forgery

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP

requests are transmitted from the user-agent of an end-user the server

trusts or has authenticated. CSRF attacks on the authorization endpoint

can allow an attacker to obtain authorization without the consent of

the resource owner.

The state request parameter SHOULD be used to mitigate against CSRF

attacks, particularly for login CSRF attacks. CSRF attacks against the

client's redirection URI allow an attacker to inject their own

authorization code or access token, which can result in the client

using an access token associated with the attacker's account rather

than the victim's. Depending on the nature of the client and the

protected resources, this can have undesirable and damaging effects.

It is strongly RECOMMENDED that the client includes the state request

parameter with authorization requests to the authorization server. The

state request parameter MUST contain a non-guessable value, and the

client MUST keep it in a location accessible only by the client or the

user-agent (i.e., protected by same-origin policy).

For example, using a DOM variable, HTTP cookie, or HTML5 client-side

storage. The authorization server includes the value of the state

parameter when redirecting the user-agent back to the client which MUST

then ensure the received value matches the stored value.

10.13. Clickjacking

In a clickjacking attack, an attacker registers a legitimate client and

then constructs a malicious site in which it loads the authorization

server's authorization endpoint web page in a transparent iframe

overlaid on top of a set of dummy buttons which are carefully

constructed to be placed directly under important buttons on the

authorization page. When an end-user clicks a misleading visible

button, the end-user is actually clicking an invisible button on the

authorization page (such as an "Authorize" button). This allows an

attacker to trick a resource owner into granting its client access

without their knowledge.

To prevent this form of attack, native applications SHOULD use external

browsers instead of embedding browsers in an iframe when requesting

end-user authorization. For most newer browsers, avoidance of iframes

can be enforced by the authorization server using the (non-standard) x-

frame-options header. This header can have two values, deny and

sameorigin, which will block any framing, or framing by sites with a

different origin, respectively. For older browsers, javascript

framebusting techniques can be used but may not be effective in all

browsers.

Type name:

Additional Token Endpoint Response Parameters:

10.14. Code Injection and Input Validation

A code injection attack occurs when an input or otherwise external

variable is used by an application in which that input can cause

modification of the application logic when used unsanitized. This may

allow an attacker to gain access to the application device or its data,

cause denial of service, or a wide range of malicious side-effects.

The Authorization server and client MUST validate and sanitize any

value received, and in particular, the value of the state and

redirect_uri parameters.

11. IANA Considerations

11.1. The OAuth Access Token Type Registry

This specification establishes the OAuth access token type registry.

Access token types are registered on the advice of one or more

Designated Experts (appointed by the IESG or their delegate), with a

Specification Required (using terminology from [RFC5226]). However, to

allow for the allocation of values prior to publication, the Designated

Expert(s) may approve registration once they are satisfied that such a

specification will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

access toke type: example"). [[Note to RFC-EDITOR: The name of the

mailing list should be determined in consultation with the IESG and

IANA. Suggested name: oauth-ext-review.]]

Within at most 14 days of the request, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision to the review list and IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful.

Decisions (or lack thereof) made by the Designated Expert can be first

appealed to Application Area Directors (contactable using app-

ads@tools.ietf.org email address or directly by looking up their email

addresses on http://www.iesg.org/ website) and, if the appellant is not

satisfied with the response, to the full IESG (using the iesg@iesg.org

mailing list).

IANA should only accept registry updates from the Designated Expert(s),

and should direct all requests for registration to the review mailing

list.

11.1.1. Registration Template

The name requested (e.g., "example").

Additional response

parameters returned together with the access_token parameter. New

HTTP Authentication Scheme(s):

Change controller:

Specification document(s):

parameters MUST be separately registered in the OAuth parameters

registry as described by Section 11.2.

The HTTP authentication scheme name(s),

if any, used to authenticate protected resources requests using

access token of this type.

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

parameter, preferably including a URI that can be used to retrieve a

copy of the document. An indication of the relevant sections may

also be included, but is not required.

11.2. The OAuth Parameters Registry

This specification establishes the OAuth parameters registry.

Additional parameters for inclusion in the authorization endpoint

request, the authorization endpoint response, the token endpoint

request, or the token endpoint response, are registered on the advice

of one or more Designated Experts (appointed by the IESG or their

delegate), with a Specification Required (using terminology from

[RFC5226]). However, to allow for the allocation of values prior to

publication, the Designated Expert(s) may approve registration once

they are satisfied that such a specification will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

parameter: example"). [[Note to RFC-EDITOR: The name of the mailing

list should be determined in consultation with the IESG and IANA.

Suggested name: oauth-ext-review.]]

Within at most 14 days of the request, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision to the review list and IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful.

Decisions (or lack thereof) made by the Designated Expert can be first

appealed to Application Area Directors (contactable using app-

ads@tools.ietf.org email address or directly by looking up their email

addresses on http://www.iesg.org/ website) and, if the appellant is not

satisfied with the response, to the full IESG (using the iesg@iesg.org

mailing list).

IANA should only accept registry updates from the Designated Expert(s),

and should direct all requests for registration to the review mailing

list.

Parameter name:

Parameter usage location:

Change controller:

Specification document(s):

11.2.1. Registration Template

The name requested (e.g., "example").

The location(s) where parameter can be used.

The possible locations are: authorization request, authorization

response, token request, or token response.

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

parameter, preferably including a URI that can be used to retrieve a

copy of the document. An indication of the relevant sections may

also be included, but is not required.

11.2.2. Initial Registry Contents

The OAuth Parameters Registry's initial contents are:

Parameter name: client_id

Parameter usage location: authorization request, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: client_secret

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: response_type

Parameter usage location: authorization request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: redirect_uri

*

*

*

*

*

*

*

*

*

*

*

*

*

Parameter usage location: authorization request, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: scope

Parameter usage location: authorization request, authorization

response, token request, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: state

Parameter usage location: authorization request, authorization

response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: code

Parameter usage location: authorization response, token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: error_description

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: error_uri

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: grant_type

Parameter usage location: token request

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: access_token

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: token_type

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: expires_in

Parameter usage location: authorization response, token response

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: username

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: password

Parameter usage location: token request

Change controller: IETF

Specification document(s): [[this document]]

Parameter name: refresh_token

Parameter usage location: token request, token response

Change controller: IETF

Specification document(s): [[this document]]

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Response type name:

Change controller:

Specification document(s):

11.3. The OAuth Authorization Endpoint Response Type Registry

This specification establishes the OAuth authorization endpoint

response type registry.

Additional response type for use with the authorization endpoint are

registered on the advice of one or more Designated Experts (appointed

by the IESG or their delegate), with a Specification Required (using

terminology from [RFC5226]). However, to allow for the allocation of

values prior to publication, the Designated Expert(s) may approve

registration once they are satisfied that such a specification will be

published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

response type: example"). [[Note to RFC-EDITOR: The name of the

mailing list should be determined in consultation with the IESG and

IANA. Suggested name: oauth-ext-review.]]

Within at most 14 days of the request, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision to the review list and IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful.

Decisions (or lack thereof) made by the Designated Expert can be first

appealed to Application Area Directors (contactable using app-

ads@tools.ietf.org email address or directly by looking up their email

addresses on http://www.iesg.org/ website) and, if the appellant is not

satisfied with the response, to the full IESG (using the iesg@iesg.org

mailing list).

IANA should only accept registry updates from the Designated Expert(s),

and should direct all requests for registration to the review mailing

list.

11.3.1. Registration Template

The name requested (e.g., "example").

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

type, preferably including a URI that can be used to retrieve a copy

of the document. An indication of the relevant sections may also be

included, but is not required.

11.3.2. Initial Registry Contents

The OAuth Authorization Endpoint Response Type Registry's initial

contents are:

Response type name: code

Change controller: IETF

Specification document(s): [[this document]]

Response type name: token

Change controller: IETF

Specification document(s): [[this document]]

11.4. The OAuth Extensions Error Registry

This specification establishes the OAuth extensions error registry.

Additional error codes used together with other protocol extensions

(i.e. extension grant types, access token types, or extension

parameters) are registered on the advice of one or more Designated

Experts (appointed by the IESG or their delegate), with a Specification

Required (using terminology from [RFC5226]). However, to allow for the

allocation of values prior to publication, the Designated Expert(s) may

approve registration once they are satisfied that such a specification

will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

error code: example"). [[Note to RFC-EDITOR: The name of the mailing

list should be determined in consultation with the IESG and IANA.

Suggested name: oauth-ext-review.]]

Within at most 14 days of the request, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision to the review list and IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful.

Decisions (or lack thereof) made by the Designated Expert can be first

appealed to Application Area Directors (contactable using app-

ads@tools.ietf.org email address or directly by looking up their email

addresses on http://www.iesg.org/ website) and, if the appellant is not

satisfied with the response, to the full IESG (using the iesg@iesg.org

mailing list).

IANA should only accept registry updates from the Designated Expert(s),

and should direct all requests for registration to the review mailing

list.

11.4.1. Registration Template

*

*

*

*

*

*

Error name:

Error usage location:

Related protocol extension:

Change controller:

Specification document(s):

The name requested (e.g., "example").

The location(s) where the error can be used. The

possible locations are: authorization code grant error response

(Section 4.1.2.1), implicit grant error response (Section 4.2.2.1),

or token error response (Section 5.2).

The name of the extension grant type,

access token type, or extension parameter, the error code is used in

conjunction with.

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

error code, preferably including a URI that can be used to retrieve

a copy of the document. An indication of the relevant sections may

also be included, but is not required.

12. Acknowledgements

The initial OAuth 2.0 protocol specification was edited by David

Recordon, based on two previous publications: the OAuth 1.0 community

specification [RFC5849], and OAuth WRAP (OAuth Web Resource

Authorization Profiles) [I-D.draft-hardt-oauth-01]. The Security

Considerations section was drafted by Torsten Lodderstedt, Mark

McGloin, Phil Hunt, and Anthony Nadalin.

The OAuth 1.0 community specification was edited by Eran Hammer-Lahav

and authored by Mark Atwood, Dirk Balfanz, Darren Bounds, Richard M.

Conlan, Blaine Cook, Leah Culver, Breno de Medeiros, Brian Eaton,

Kellan Elliott-McCrea, Larry Halff, Eran Hammer-Lahav, Ben Laurie,

Chris Messina, John Panzer, Sam Quigley, David Recordon, Eran Sandler,

Jonathan Sergent, Todd Sieling, Brian Slesinsky, and Andy Smith.

The OAuth WRAP specification was edited by Dick Hardt and authored by

Brian Eaton, Yaron Goland, Dick Hardt, and Allen Tom.

This specification is the work of the OAuth Working Group which

includes dozens of active and dedicated participants. In particular,

the following individuals contributed ideas, feedback, and wording

which shaped and formed the final specification:

Michael Adams, Andrew Arnott, Dirk Balfanz, Aiden Bell, Scott Cantor,

Marcos Caceres, Blaine Cook, Brian Campbell, Brian Eaton, Leah Culver,

Bill de hÓra, Brian Eaton, Brian Ellin, Igor Faynberg, George Fletcher,

Tim Freeman, Evan Gilbert, Yaron Goland, Brent Goldman, Kristoffer

Gronowski, Justin Hart, Dick Hardt, Craig Heath, Phil Hunt, Michael B.

Jones, John Kemp, Mark Kent, Raffi Krikorian, Chasen Le Hara, Rasmus

Lerdorf, Torsten Lodderstedt, Hui-Lan Lu, Paul Madsen, Alastair Mair,

Eve Maler, James Manger, Mark McGloin, Laurence Miao, Chuck Mortimore,

Anthony Nadalin, Justin Richer, Peter Saint-Andre, Nat Sakimura, Rob

Sayre, Marius Scurtescu, Naitik Shah, Luke Shepard, Vlad Skvortsov,

Justin Smith, Jeremy Suriel, Christian Stübner, Paul Tarjan, Allen Tom,

Franklin Tse, Nick Walker, Shane Weeden, and Skylar Woodward.

13. References

13.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk,

H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/

1.1", RFC 2616, June 1999.

[RFC2617]

Franks, J., Hallam-Baker, P.M., Hostetler,

J.L., Lawrence, S.D., Leach, P.J., Luotonen,

A. and L. Stewart, "HTTP Authentication: Basic

and Digest Access Authentication", RFC 2617,

June 1999.

[RFC2818]
Rescorla, E., "HTTP Over TLS", RFC 2818, May

2000.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[RFC4627]

Crockford, D., "The application/json Media

Type for JavaScript Object Notation (JSON)",

RFC 4627, July 2006.

[RFC4949]
Shirey, R., "Internet Security Glossary,

Version 2", RFC 4949, August 2007.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in

RFCs", BCP 26, RFC 5226, May 2008.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC

5234, January 2008.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport

Layer Security (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web Consortium

Recommendation REC-html401-19991224, December

1999.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2818
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

13.2. Informative References

[RFC5849]
Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC

5849, April 2010.

[I-D.ietf-

oauth-v2-

bearer]

Jones, M, Hardt, D and D Recordon, "The OAuth

2.0 Protocol: Bearer Tokens", Internet-Draft

draft-ietf-oauth-v2-bearer-06, June 2011.

[I-D.ietf-

oauth-saml2-

bearer]

Mortimore, C, "SAML 2.0 Bearer Assertion Grant

Type Profile for OAuth 2.0", Internet-Draft

draft-ietf-oauth-saml2-bearer-04, May 2011.

[I-D.ietf-

oauth-v2-http-

mac]

Hammer-Lahav, E, Barth, A and B Adida, "HTTP

Authentication: MAC Access Authentication",

Internet-Draft draft-ietf-oauth-v2-http-mac-00,

May 2011.

[I-D.ietf-

oauth-v2-

threatmodel]

Lodderstedt, T, McGloin, M and P Hunt, "OAuth

2.0 Threat Model and Security Considerations",

Internet-Draft draft-ietf-oauth-v2-

threatmodel-00, July 2011.

[OASIS.saml-

core-2.0-os]

Cantor, S., Kemp, J., Philpott, R. and E. Maler,

"Assertions and Protocol for the OASIS Security

Assertion Markup Language (SAML) V2.0", OASIS

Standard saml-core-2.0-os, March 2005.

[I-D.draft-

hardt-oauth-01]

Hardt, D, Tom, A, Eaton, B and Y Goland, "OAuth

Web Resource Authorization Profiles", January

2010.

Authors' Addresses

Eran Hammer-Lahav editor Hammer-Lahav Yahoo! EMail:

eran@hueniverse.com URI: http://hueniverse.com

David Recordon Recordon Facebook EMail: dr@fb.com URI: http://

www.davidrecordon.com/

Dick Hardt Hardt Microsoft EMail: dick.hardt@gmail.com URI: http://

dickhardt.org/

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-06
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-06
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-04
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-04
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-00
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-00
http://tools.ietf.org/html/draft-ietf-oauth-v2-threatmodel-00
http://tools.ietf.org/html/draft-ietf-oauth-v2-threatmodel-00
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eran@hueniverse.com
http://hueniverse.com
mailto:dr@fb.com
http://www.davidrecordon.com/
http://www.davidrecordon.com/
mailto:dick.hardt@gmail.com
http://dickhardt.org/
http://dickhardt.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Roles
	1.2. Protocol Flow
	1.3. Access Token
	1.4. Authorization Grant
	1.4.1. Authorization Code
	1.4.2. Implicit
	1.4.3. Resource Owner Password Credentials
	1.4.4. Client Credentials
	1.4.5. Extensions
	1.5. Refresh Token
	1.6. Notational Conventions
	2. Client Registration
	2.1. Client Types
	2.2. Registration Requirements
	2.3. Client Identifier
	2.4. Client Authentication
	2.4.1. Client Password
	2.4.2. Other Authentication Methods
	2.5. Unregistered Clients
	3. Protocol Endpoints
	3.1. Authorization Endpoint
	3.1.1. Response Type
	3.1.2. Redirection Endpoint
	3.1.2.1. Endpoint Request Confidentiality
	3.1.2.2. Registration Requirements
	3.1.2.3. Dynamic Configuration
	3.1.2.4. Invalid Endpoint
	3.1.2.5. Endpoint Content
	3.2. Token Endpoint
	3.2.1. Client Authentication
	4. Obtaining Authorization
	4.1. Authorization Code
	4.1.1. Authorization Request
	4.1.2. Authorization Response
	4.1.2.1. Error Response
	4.1.3. Access Token Request
	4.1.4. Access Token Response
	4.2. Implicit Grant
	4.2.1. Authorization Request
	4.2.2. Access Token Response
	4.2.2.1. Error Response
	4.3. Resource Owner Password Credentials
	4.3.1. Authorization Request and Response
	4.3.2. Access Token Request
	4.3.3. Access Token Response
	4.4. Client Credentials
	4.4.1. Authorization Request and Response
	4.4.2. Access Token Request
	4.4.3. Access Token Response
	4.5. Extensions
	5. Issuing an Access Token
	5.1. Successful Response
	5.2. Error Response
	6. Refreshing an Access Token
	7. Accessing Protected Resources
	7.1. Access Token Types
	8. Extensibility
	8.1. Defining Access Token Types
	8.2. Defining New Endpoint Parameters
	8.3. Defining New Authorization Grant Types
	8.4. Defining New Authorization Endpoint Response Types
	8.5. Defining Additional Error Codes
	9. Native Applications
	10. Security Considerations
	10.1. Client Authentication
	10.2. Client Impersonation
	10.3. Access Tokens
	10.4. Refresh Tokens
	10.5. Authorization Codes
	10.6. Authorization Code Leakage
	10.7. Resource Owner Password Credentials
	10.8. Request Confidentiality
	10.9. Endpoints Authenticity
	10.10. Credentials Guessing Attacks
	10.11. Phishing Attacks
	10.12. Cross-Site Request Forgery
	10.13. Clickjacking
	10.14. Code Injection and Input Validation
	11. IANA Considerations
	11.1. The OAuth Access Token Type Registry
	11.1.1. Registration Template
	11.2. The OAuth Parameters Registry
	11.2.1. Registration Template
	11.2.2. Initial Registry Contents
	11.3. The OAuth Authorization Endpoint Response Type Registry
	11.3.1. Registration Template
	11.3.2. Initial Registry Contents
	11.4. The OAuth Extensions Error Registry
	11.4.1. Registration Template
	12. Acknowledgements
	13. References
	13.1. Normative References
	13.2. Informative References
	Authors' Addresses

