
Network Working Group M.B. Jones

Internet-Draft Microsoft

Intended status: Standards Track D. Hardt

Expires: March 27, 2012 independent

D. Recordon

Facebook

September 24, 2011

The OAuth 2.0 Authorization Protocol: Bearer Tokens

draft-ietf-oauth-v2-bearer-09

Abstract

This specification describes how to use bearer tokens in HTTP requests

to access OAuth 2.0 protected resources.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on March 27, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

*

*

1.2. Terminology

1.3. Overview

2. Authenticated Requests

2.1. The Authorization Request Header Field

2.2. Form-Encoded Body Parameter

2.3. URI Query Parameter

2.4. The WWW-Authenticate Response Header Field

2.4.1. Error Codes

3. Security Considerations

3.1. Security Threats

3.2. Threat Mitigation

3.3. Summary of Recommendations

4. IANA Considerations

4.1. OAuth Access Token Type Registration

4.1.1. The "Bearer" OAuth Access Token Type

4.2. Authentication Scheme Registration

4.2.1. The "Bearer" Authentication Scheme

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Acknowledgements

Appendix B. Document History

Authors' Addresses

1. Introduction

OAuth enables clients to access protected resources by obtaining an

access token, which is defined in [I-D.ietf-oauth-v2] as "a string

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Bearer Token

representing an access authorization issued to the client", rather than

using the resource owner's credentials directly.

Tokens are issued to clients by an authorization server with the

approval of the resource owner. The client uses the access token to

access the protected resources hosted by the resource server. This

specification describes how to make protected resource requests when

the OAuth access token is a bearer token.

This specification defines the use of bearer tokens with OAuth over

HTTP [RFC2616] using TLS [RFC5246]. Other specifications may extend it

for use with other transport protocols.

1.1. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',

'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this

document are to be interpreted as described in [RFC2119].

This document uses the Augmented Backus-Naur Form (ABNF) notation of

[I-D.ietf-httpbis-p1-messaging], which is based upon the Augmented

Backus-Naur Form (ABNF) notation of [RFC5234]. Additionally, the

following rules are included from [I-D.ietf-httpbis-p7-auth]: b64token,

auth-param, and realm; from [I-D.ietf-httpbis-p1-messaging]: quoted-

string; and from [RFC3986]: URI-Reference.

Unless otherwise noted, all the protocol parameter names and values are

case sensitive.

1.2. Terminology

A security token with the property that any party in

possession of the token (a "bearer") can use the token in any way

that any other party in possession of it can. Using a bearer token

does not require a bearer to prove possession of cryptographic key

material (proof-of-possession).

All other terms are as defined in [I-D.ietf-oauth-v2].

1.3. Overview

OAuth provides a method for clients to access a protected resource on

behalf of a resource owner. In the general case, before a client can

access a protected resource, it must first obtain authorization (access

grant) from the resource owner and then exchange the access grant for

an access token (representing the grant's scope, duration, and other

attributes). The client accesses the protected resource by presenting

the access token to the resource server. In some cases, a client can

directly present its own credentials to an authorization server to

obtain an access token without having to first obtain an access grant

from a resource owner.

The access token provides an abstraction layer, replacing different

authorization constructs (e.g. username and password, assertion) for a

single token understood by the resource server. This abstraction

enables issuing access tokens valid for a short time period, as well as

removing the resource server's need to understand a wide range of

authentication schemes.

+--------+ +---------------+

| |--(A)- Authorization Request ->| Resource |

| | | Owner |

| |<-(B)----- Access Grant -------| |

| | +---------------+

| |

| | Access Grant & +---------------+

| |--(C)--- Client Credentials -->| Authorization |

| Client | | Server |

| |<-(D)----- Access Token -------| |

| | +---------------+

| |

| | +---------------+

| |--(E)----- Access Token ------>| Resource |

| | | Server |

| |<-(F)--- Protected Resource ---| |

+--------+ +---------------+

The abstract flow illustrated in Figure 1 describes the overall OAuth

2.0 protocol architecture. The following steps are specified within

this document:

E) The client makes a protected resource request to the resource

server by presenting the access token.

F) The resource server validates the access token, and if valid,

serves the request.

2. Authenticated Requests

Clients SHOULD make authenticated requests with a bearer token using

the Authorization request header field defined by [I-D.ietf-httpbis-p7-

auth]. Resource servers MUST accept authenticated requests using the

Bearer HTTP authorization scheme as described in Section 2.1, and MAY

support additional methods.

Alternatively, clients MAY transmit the access token in the HTTP body

when using the application/x-www-form-urlencoded content type as

described in Section 2.2; or clients MAY transmit the access token in

the HTTP request URI in the query component as described in Section

2.3. Resource servers MAY support these alternative methods.

Clients SHOULD NOT use the request body or URI unless the Authorization

request header field is not available, and MUST NOT use more than one

method to transmit the token in each request. Because of the Security

*

*

Considerations [sec-con] associated with the URI method, it SHOULD NOT

be used unless no other method is feasible.

2.1. The Authorization Request Header Field

The Authorization request header field is used by clients to make

authenticated requests with bearer tokens. The client uses the Bearer

authentication scheme to transmit the access token in the request.

For example:

GET /resource HTTP/1.1

Host: server.example.com

Authorization: Bearer vF9dft4qmT

The Authorization header field uses the framework defined by [I-D.ietf-

httpbis-p7-auth] follows:

credentials = "Bearer" 1*SP (b64token / #auth-param)

2.2. Form-Encoded Body Parameter

When including the access token in the HTTP request entity-body, the

client adds the access token to the request body using the access_token

parameter. The client MUST NOT use this method unless the following

conditions are met:

The HTTP request entity-body is single-part.

The entity-body follows the encoding requirements of the

application/x-www-form-urlencoded content-type as defined by

[W3C.REC-html401-19991224].

The HTTP request entity-header includes the Content-Type header

field set to application/x-www-form-urlencoded.

The HTTP request method is one for which the request body has

defined semantics. In particular, this means that the GET method

MUST NOT be used.

The entity-body can include other request-specific parameters, in which

case, the access_token parameter MUST be properly separated from the

request-specific parameters using & character(s) (ASCII code 38).

For example, the client makes the following HTTP request using

transport-layer security:

*

*

*

*

POST /resource HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

access_token=vF9dft4qmT

The application/x-www-form-urlencoded method SHOULD NOT be used except

in application contexts where participating browsers do not have access

to the Authorization request header field.

2.3. URI Query Parameter

When including the access token in the HTTP request URI, the client

adds the access token to the request URI query component as defined by

[RFC3986] using the access_token parameter.

For example, the client makes the following HTTP request using

transport-layer security:

GET /resource?access_token=vF9dft4qmT HTTP/1.1

Host: server.example.com

The HTTP request URI query can include other request-specific

parameters, in which case, the access_token parameter MUST be properly

separated from the request-specific parameters using & character(s)

(ASCII code 38).

For example:

https://server.example.com/resource?x=y&access_token=vF9dft4qmT&p=q

Because of the Security Considerations [sec-con] associated with the

URI method, it SHOULD NOT be used unless no other method is feasible.

2.4. The WWW-Authenticate Response Header Field

If the protected resource request does not include authentication

credentials or does not contain an access token that enables access to

the protected resource, the resource server MUST include the HTTP WWW-

Authenticate response header field; it MAY include it in response to

other conditions as well. The WWW-Authenticate header field uses the

framework defined by [I-D.ietf-httpbis-p7-auth] as follows:

challenge = "Bearer" [1*SP 1#param]

param = realm / scope /

 error / error-desc / error-uri /

 auth-param

scope = "scope" "=" <"> scope-v *(SP scope-v) <">

scope-v = 1*quoted-char

quoted-char = ALPHA / DIGIT /

 "!" / "#" / "$" / "%" / "&" / "'" / "(" / ")" /

 "*" / "+" / "-" / "." / "/" / ":" / "<" / "=" /

 ">" / "?" / "@" / "[" / "]" / "^" / "_" / "`" /

 "{" / "|" / "}" / "~" / "\" / "," / ";"

error = "error" "=" quoted-string

error-desc = "error_description" "=" quoted-string

error-uri = "error_uri" "=" <"> URI-reference <">

The scope attribute is a space-delimited list of scope values

indicating the required scope of the access token for accessing the

requested resource. The scope attribute MUST NOT appear more than once.

If the protected resource request included an access token and failed

authentication, the resource server SHOULD include the error attribute

to provide the client with the reason why the access request was

declined. The parameter value is described in Section 2.4.1. In

addition, the resource server MAY include the error_description

attribute to provide developers a UTF-8 encoded human-readable

explanation, and the error_uri attribute with an absolute URI

identifying a human-readable web page explaining the error. The error,

error_description, and error_uri attribute MUST NOT appear more than

once.

For example, in response to a protected resource request without

authentication:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="example"

And in response to a protected resource request with an authentication

attempt using an expired access token:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="example",

 error="invalid_token",

 error_description="The access token expired"

invalid_request

invalid_token

insufficient_scope

Token manufacture/modification:

2.4.1. Error Codes

When a request fails, the resource server responds using the

appropriate HTTP status code (typically, 400, 401, or 403), and

includes one of the following error codes in the response:

The request is missing a required parameter, includes

an unsupported parameter or parameter value, repeats the same

parameter, uses more than one method for including an access token,

or is otherwise malformed. The resource server SHOULD respond with

the HTTP 400 (Bad Request) status code.

The access token provided is expired, revoked,

malformed, or invalid for other reasons. The resource SHOULD respond

with the HTTP 401 (Unauthorized) status code. The client MAY request

a new access token and retry the protected resource request.

The request requires higher privileges than

provided by the access token. The resource server SHOULD respond

with the HTTP 403 (Forbidden) status code and MAY include the scope

attribute with the scope necessary to access the protected resource.

If the request lacks any authentication information (i.e. the client

was unaware authentication is necessary or attempted using an

unsupported authentication method), the resource server SHOULD NOT

include an error code or other error information.

For example:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="example"

3. Security Considerations

This section describes the relevant security threats regarding token

handling when using bearer tokens and describes how to mitigate these

threats.

3.1. Security Threats

The following list presents several common threats against protocols

utilizing some form of tokens. This list of threats is based on NIST

Special Publication 800-63 [NIST800-63]. Since this document builds on

the OAuth 2.0 specification, we exclude a discussion of threats that

are described there or in related documents.

Token disclosure:

Token redirect:

Token replay:

An attacker may generate a bogus token or modify the token contents

(such as the authentication or attribute statements) of an existing

token, causing the resource server to grant inappropriate access to

the client. For example, an attacker may modify the token to extend

the validity period; a malicious client may modify the assertion to

gain access to information that they should not be able to view.

Tokens may contain authentication and attribute

statements that include sensitive information.

An attacker uses a token generated for consumption by

a particular resource server to gain access to a different resource

server that mistakenly believes the token to be for it.

An attacker attempts to use a token that has already

been used with that resource server in the past.

3.2. Threat Mitigation

A large range of threats can be mitigated by protecting the contents of

the token by using a digital signature or a Message Authentication Code

(MAC). Alternatively, a bearer token can contain a reference to

authorization information, rather than encoding the information

directly. Such references MUST be infeasible for an attacker to guess;

using a reference may require an extra interaction between a server and

the token issuer to resolve the reference to the authorization

information. The mechanics of such an interaction are not defined by

this specification.

This document does not specify the encoding or the contents of the

token; hence detailed recommendations for token integrity protection

are outside the scope of this document. We assume that the token

integrity protection is sufficient to prevent the token from being

modified.

To deal with token redirect, it is important for the authorization

server to include the identity of the intended recipients (the

audience), typically a single resource server (or a list of resource

servers), in the token. Restricting the use of the token to a specific

scope is also recommended.

To provide protection against token disclosure, confidentiality

protection is applied via TLS [RFC5246] with a ciphersuite that offers

confidentiality protection. This requires that the communication

interaction between the client and the authorization server, as well as

the interaction between the client and the resource server, utilize

confidentiality protection. Since TLS is mandatory to implement and to

use with this specification, it is the preferred approach for

preventing token disclosure via the communication channel. For those

cases where the client is prevented from observing the contents of the

token, token encryption MUST be applied in addition to the usage of TLS

protection.

Safeguard bearer tokens

Validate SSL certificate chains

Always use TLS (https)

Don't store bearer tokens in cookies

Issue short-lived bearer tokens

To deal with token capture and replay, the following recommendations

are made: First, the lifetime of the token has to be limited by putting

a validity time field inside the protected part of the token. Note that

using short-lived (one hour or less) tokens reduces the impact of one

of them being leaked. Second, confidentiality protection of the

exchanges between the client and the authorization server and between

the client and the resource server MUST be applied, for instance,

through the use of TLS [RFC5246]. As a consequence, no eavesdropper

along the communication path is able to observe the token exchange.

Consequently, such an on-path adversary cannot replay the token.

Furthermore, when presenting the token to a resource server, the client

MUST verify the identity of that resource server, as per [RFC2818].

Note that the client MUST validate the TLS certificate chain when

making these requests to protected resources. Presenting the token to

an unauthenticated and unauthorized resource server or failing to

validate the certificate chain will allow adversaries to steal the

token and gain unauthorized access to protected resources.

3.3. Summary of Recommendations

Client implementations MUST ensure that bearer

tokens are not leaked to unintended parties, as they will be able to

use them to gain access to protected resources. This is the primary

security consideration when using bearer tokens and underlies all

the more specific recommendations that follow.

The client MUST validate the TLS

certificate chain when making requests to protected resources.

Failing to do so may enable DNS hijacking attacks to steal the token

and gain unintended access.

Clients MUST always use TLS [RFC5246] (https)

or equivalent transport security when making requests with bearer

tokens. Failing to do so exposes the token to numerous attacks that

could give attackers unintended access.

Implementations MUST NOT store

bearer tokens within cookies that can be sent in the clear (which is

the default transmission mode for cookies). Implementations that do

store bearer tokens in cookies MUST take precautions against cross

site request forgery.

Using short-lived (one hour or less)

bearer tokens can reduce the impact of one of them being leaked. In

particular, only short-lived bearer tokens should be issued to

Issue scoped bearer tokens

Don't pass bearer tokens in page URLs

Type name:

Additional Token Endpoint Response Parameters:

HTTP Authentication Scheme(s):

Change controller:

Specification document(s):

clients that run within a web browser or other environments where

information leakage may occur.

Issue bearer tokens that contain an

audience restriction, scoping their use to the intended relying

party or set of relying parties.

Browsers, web servers, and other

software may not adequately secure URLs in the browser history, web

server logs, and other data structures. If bearer tokens are passed

in page URLs (typically as query string parameters), attackers might

be able to steal them from the history data, logs, or other

unsecured locations. Instead, pass bearer tokens in HTTP message

headers or message bodies for which confidentiality measures are

taken.

4. IANA Considerations

4.1. OAuth Access Token Type Registration

This specification registers the following access token type in the

OAuth Access Token Type Registry.

4.1.1. The "Bearer" OAuth Access Token Type

Bearer

(none)

Bearer

IETF

[[this document]]

4.2. Authentication Scheme Registration

This specification registers the following authentication scheme in the

Authentication Scheme Registry defined in [I-D.ietf-httpbis-p7-auth].

4.2.1. The "Bearer" Authentication Scheme

Authentication Scheme Name:

Pointer to specification text:

Notes (optional):

Bearer

[[this document]]

(none)

5. References

5.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk,

H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/

1.1", RFC 2616, June 1999.

[RFC2818]
Rescorla, E., "HTTP Over TLS", RFC 2818, May

2000.

[RFC3986]

Berners-Lee, T., Fielding, R. and L.

Masinter, "Uniform Resource Identifier (URI):

Generic Syntax", STD 66, RFC 3986, January

2005.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF

for Syntax Specifications: ABNF", STD 68, RFC

5234, January 2008.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport

Layer Security (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web

Consortium Recommendation REC-

html401-19991224, December 1999.

[I-D.ietf-httpbis-

p1-messaging]

Fielding, R, Gettys, J, Mogul, J, Nielsen, H,

Masinter, L, Leach, P, Berners-Lee, T,

Reschke, J and Y Lafon, "HTTP/1.1, part 1:

URIs, Connections, and Message Parsing",

Internet-Draft draft-ietf-httpbis-p1-

messaging-16, August 2011.

[I-D.ietf-httpbis-

p7-auth]

Fielding, R, Gettys, J, Mogul, J, Nielsen, H,

Masinter, L, Leach, P, Berners-Lee, T,

Reschke, J and Y Lafon, "HTTP/1.1, part 7:

Authentication", Internet-Draft draft-ietf-

httpbis-p7-auth-16, August 2011.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2818
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-16
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-16
http://tools.ietf.org/html/draft-ietf-httpbis-p7-auth-16
http://tools.ietf.org/html/draft-ietf-httpbis-p7-auth-16

[I-D.ietf-oauth-

v2]

Hammer-Lahav, E, Recordon, D and D Hardt,

"The OAuth 2.0 Authorization Protocol",

Internet-Draft draft-ietf-oauth-v2-22,

September 2011.

5.2. Informative References

[RFC2617]

Franks, J., Hallam-Baker, P.M., Hostetler, J.L.,

Lawrence, S.D., Leach, P.J., Luotonen, A. and L.

Stewart, "HTTP Authentication: Basic and Digest

Access Authentication", RFC 2617, June 1999.

[NIST800-63]

Burr, W., Dodson, D., Perlner, R., Polk, T., Gupta,

S. and E. Nabbus, "NIST Special Publication

800-63-1, INFORMATION SECURITY", December 2008.

Appendix A. Acknowledgements

The following people contributed to preliminary versions of this

document: Blaine Cook (BT), Brian Eaton (Google), Yaron Y. Goland

(Microsoft), Brent Goldman (Facebook), Raffi Krikorian (Twitter), Luke

Shepard (Facebook), and Allen Tom (Yahoo!). The content and concepts

within are a product of the OAuth community, the WRAP community, and

the OAuth Working Group.

The OAuth Working Group has dozens of very active contributors who

proposed ideas and wording for this document, including: Michael Adams,

Andrew Arnott, Dirk Balfanz, Brian Campbell, Leah Culver, Bill de hÓra,

Brian Ellin, Igor Faynberg, George Fletcher, Tim Freeman, Evan Gilbert,

Justin Hart, John Kemp, Eran Hammer-Lahav, Chasen Le Hara, Michael B.

Jones, Torsten Lodderstedt, Eve Maler, James Manger, Laurence Miao,

Chuck Mortimore, Anthony Nadalin, Justin Richer, Peter Saint-Andre, Nat

Sakimura, Rob Sayre, Marius Scurtescu, Naitik Shah, Justin Smith,

Jeremy Suriel, Christian Stübner, Paul Tarjan, and Franklin Tse.

Appendix B. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-09

Incorporated working group last call comments. Specific changes

were:

Use definitions from [I-D.ietf-httpbis-p7-auth] rather than

[RFC2617].

Update credentials definition to conform to [I-D.ietf-httpbis-p7-

auth].

Further clarified that query parameters may occur in any order.

*

*

*

*

http://tools.ietf.org/html/draft-ietf-oauth-v2-22
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

Specify that error_description is UTF-8 encoded (matching the

core specification).

Registered "Bearer" Authentication Scheme in Authentication

Scheme Registry defined by [I-D.ietf-httpbis-p7-auth].

Updated references to oauth-v2, httpbis-p1-messaging, and

httpbis-p7-auth drafts.

Other wording improvements not introducing normative changes.

-08

Updated references to oauth-v2 and httpbis drafts.

-07

Added missing comma in error response example.

-06

Changed parameter name bearer_token to access_token, per working

group consensus.

Changed HTTP status code for invalid_request error code from HTTP

401 (Unauthorized) back to HTTP 400 (Bad Request), per input from

HTTP working group experts.

-05

Removed OAuth Errors Registry, per design team input.

Changed HTTP status code for invalid_request error code from HTTP

400 (Bad Request) to HTTP 401 (Unauthorized) to match HTTP usage

[[change pending working group consensus]].

Added missing quotation marks in error-uri definition.

Added note to add language and encoding information to

error_description if the core specification does.

Explicitly reference the Augmented Backus-Naur Form (ABNF)

defined in [RFC5234].

Use auth-param instead of repeating its definition, which is (

token "=" (token / quoted-string)).

Clarify security considerations about including an audience

restriction in the token and include a recommendation to issue

scoped bearer tokens in the summary of recommendations.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

-04

Edits responding to working group last call feedback on -03.

Specific edits enumerated below.

Added Bearer Token definition in Terminology section.

Changed parameter name oauth_token to bearer_token.

Added realm parameter to WWW-Authenticate response to comply with

[RFC2617].

Removed "[RWS 1#auth-param]" from credentials definition since

it did not comply with the ABNF in [I-D.ietf-httpbis-p7-auth].

Removed restriction that the bearer_token (formerly oauth_token)

parameter be the last parameter in the entity-body and the HTTP

request URI query.

Do not require WWW-Authenticate Response in a reply to a

malformed request, as an HTTP 400 Bad Request response without a

WWW-Authenticate header is likely the right response in some

cases of malformed requests.

Removed OAuth Parameters registry extension.

Numerous editorial improvements suggested by working group

members.

-03

Restored the WWW-Authenticate response header functionality

deleted from the framework specification in draft 12 based upon

the specification text from draft 11.

Augmented the OAuth Parameters registry by adding two additional

parameter usage locations: "resource request" and "resource

response".

Registered the "oauth_token" OAuth parameter with usage location

"resource request".

Registered the "error" OAuth parameter.

Created the OAuth Error registry and registered errors.

Changed the "OAuth2" OAuth access token type name to "Bearer".

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

-02

Incorporated feedback received on draft 01. Most changes were to

the security considerations section. No normative changes were

made. Specific changes included:

Changed terminology from "token reuse" to "token capture and

replay".

Removed sentence "Encrypting the token contents is another

alternative" from the security considerations since it was

redundant and potentially confusing.

Corrected some references to "resource server" to be

"authorization server" in the security considerations.

Generalized security considerations language about obtaining

consent of the resource owner.

Broadened scope of security considerations description for

recommendation "Don't pass bearer tokens in page URLs".

Removed unused reference to OAuth 1.0.

Updated reference to framework specification and updated David

Recordon's e-mail address.

Removed security considerations text on authenticating clients.

Registered the "OAuth2" OAuth access token type and "oauth_token"

parameter.

-01

First public draft, which incorporates feedback received on -00

including enhanced Security Considerations content. This version

is intended to accompany OAuth 2.0 draft 11.

-00

Initial draft based on preliminary version of OAuth 2.0 draft 11.

Authors' Addresses

Michael B. Jones Jones Microsoft EMail: mbj@microsoft.com URI:

http://self-issued.info/

Dick Hardt Hardt independent EMail: dick.hardt@gmail.com URI:

http://dickhardt.org/

*

*

*

*

*

*

*

*

*

*

*

*

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:dick.hardt@gmail.com
http://dickhardt.org/

David Recordon Recordon Facebook EMail: dr@fb.com URI: http://

www.davidrecordon.com/

mailto:dr@fb.com
http://www.davidrecordon.com/
http://www.davidrecordon.com/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Overview
	2. Authenticated Requests
	2.1. The Authorization Request Header Field
	2.2. Form-Encoded Body Parameter
	2.3. URI Query Parameter
	2.4. The WWW-Authenticate Response Header Field
	2.4.1. Error Codes
	3. Security Considerations
	3.1. Security Threats
	3.2. Threat Mitigation
	3.3. Summary of Recommendations
	4. IANA Considerations
	4.1. OAuth Access Token Type Registration
	4.1.1. The "Bearer" OAuth Access Token Type
	4.2. Authentication Scheme Registration
	4.2.1. The "Bearer" Authentication Scheme
	5. References
	5.1. Normative References
	5.2. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

