
Network Working Group Richer
Internet-Draft The MITRE Corporation
Intended status: Standards Track W. Mills
Expires: August 29, 2013 Yahoo! Inc.
 H. Tschofenig, Ed.
 Nokia Siemens Networks
 February 25, 2013

OAuth 2.0 Message Authentication Code (MAC) Tokens
draft-ietf-oauth-v2-http-mac-03

Abstract

 This specification describes how to use MAC Tokens in HTTP requests
 to access OAuth 2.0 protected resources. An OAuth client willing to
 access a protected resource needs to demonstrate possession of a
 crytographic key by using it with a keyed message digest function to
 the request.

 The document also defines a key distribution protocol for obtaining a
 fresh session key.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Richer, et al. Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Richer, et al. Expires August 29, 2013 [Page 2]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Architecture . 5
4. Key Distribution . 7
4.1. Session Key Transport to Client 7
4.2. Session Key Transport to Resource Server 9

5. The Authenticator . 10
5.1. The Authenticator . 10
5.2. MAC Input String . 13
5.3. Keyed Message Digest Algorithms 14
5.3.1. hmac-sha-1 . 14
5.3.2. hmac-sha-256 . 14

6. Verifying the Authenticator 15
6.1. Timestamp Verification 15
6.2. Error Handling . 16

7. Example . 17
8. Security Considerations 17
8.1. Key Distribution . 17

 8.2. Offering Confidentiality Protection for Access to
 Protected Resources 17

8.3. Authentication of Resource Servers 18
8.4. Plaintext Storage of Credentials 18
8.5. Entropy of Session Keys 18
8.6. Denial of Service / Resource Exhaustion Attacks 19
8.7. Timing Attacks . 19
8.8. CSRF Attacks . 19
8.9. Protecting HTTP Header Fields 20

9. IANA Considerations . 20
9.1. JSON Web Token Claims 20
9.2. MAC Token Algorithm Registry 20
9.2.1. Registration Template 21
9.2.2. Initial Registry Contents 21

9.3. OAuth Access Token Type Registration 22
9.3.1. The "mac" OAuth Access Token Type 22

9.4. OAuth Parameters Registration 22
9.4.1. The "mac_key" OAuth Parameter 22
9.4.2. The "mac_algorithm" OAuth Parameter 22
9.4.3. The "kid" OAuth Parameter 23

10. Acknowledgments . 23
11. References . 23
11.1. Normative References 23
11.2. Informative References 25

 Authors' Addresses . 25

Richer, et al. Expires August 29, 2013 [Page 3]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

1. Introduction

 This specification describes how to use MAC Tokens in HTTP requests
 and responses to access protected resources via the OAuth 2.0
 protocol [RFC6749]. An OAuth client willing to access a protected
 resource needs to demonstrate possession of a symmetric key by using
 it with a keyed message digest function to the request. The keyed
 message digest function is computed over a flexible set of parameters
 from the HTTP message.

 The MAC Token mechanism requires the establishment of a shared
 symmetric key between the client and the resource server. This
 specification defines a three party key distribution protocol to
 dynamically distribute this session key from the authorization server
 to the client and the resource server.

 The design goal for this mechanism is to support the requirements
 outlined in [I-D.tschofenig-oauth-security]. In particular, when a
 server uses this mechanism, a passive attacker will be unable to use
 an eavesdropped access token exchanged between the client and the
 resource server. In addition, this mechanism helps secure the access
 token against leakage when sent over a secure channel to the wrong
 resource server if the client provided information about the resource
 server it wants to interact with in the request to the authorization
 server.

 Since a keyed message digest only provides integrity protection and
 data-origin authentication confidentiality protection can only be
 added by the usage of Transport Layer Security (TLS). This
 specification provides a mechanism for channel binding is included to
 ensure that a TLS channel is not terminated prematurely and indeed
 covers the entire end-to-end communication.

2. Terminology

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 specification are to be interpreted as described in [RFC2119].

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [I-D.ietf-httpbis-p1-messaging]. Additionally, the
 following rules are included from [RFC2617]: auth-param.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2617

Richer, et al. Expires August 29, 2013 [Page 4]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Session Key:

 The terms mac key, session key, and symmetric key are used
 interchangably and refer to the cryptographic keying material
 established between the client and the resource server. This
 temporary key used between the client and the resource server,
 with a lifetime limited to the lifetime of the access token. This
 session key is generated by the authorization server.

 Authenticator:

 A record containing information that can be shown to have been
 recently generated using the session key known only by the client
 and the resource server.

 Message Authentication Code (MAC):

 Message authentication codes (MACs) are hash functions that take
 two distinct inputs, a message and a secret key, and produce a
 ﬁxed-size output. The design goal is that it is
 practically infeasible to produce the same output without
 knowledge of the key. The terms keyed message digest functions
 and MACs are used interchangably.

3. Architecture

 The architecture of the proposal described in this document assumes
 that the authorization server acts as a trusted third party that
 provides session keys to clients and to resource servers. These
 session keys are used by the client and the resource server as input
 to a MAC. In order to obtain the session key the client interacts
 with the authorization server as part of the a normal grant exchange.
 This is shown in an abstract way in Figure 1. Together with the
 access token the authorization server returns a session key (in the
 mac_key parameter) and several other parameters. The resource server
 obtains the session key via the access token. Both of these two key
 distribution steps are described in more detail in Section 4.

Richer, et al. Expires August 29, 2013 [Page 5]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 +---------------+
 ^| | AS-RS Key
 // | Authorization |<*******
 / | Server | *
 // | | *
 / | | *
 (I) // /+---------------+ *
 Access / // *
 Token / / *
 Request// // (II) Access Token *
 / / +Session Key (SK) *
 // // *
 / v v
 +-----------+ +------------+
 | | | |
 | | | Resource |
 | Client | | Server |
 | | | |
 | | | |
 +-----------+ +------------+

 ****: Out-of-Band Long-Term Key Establishment
 ----: Dynamic Session Key Distribution

 Figure 1: Architecture: Interaction between the Client and the
 Authorization Server.

 Once the client has obtained the necessary access token and the
 session key (including parameters) it can start to interact with the
 resource server. To demonstrate possession of the session key it
 computes a MAC and adds various fields to the outgoing request
 message. We call this structure the "Authenticator". The server
 evaluates the request, includes an Authenticator and returns a
 response back to the client. Since the access token is valid for a
 period of time the resource server may decide to cache it so that it
 does not need to be provided in every request from the client. This
 interaction is shown in Figure 2.

Richer, et al. Expires August 29, 2013 [Page 6]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 +---------------+
 | |
 | Authorization |
 | Server |
 | |
 | |
 +---------------+

 +-----------+ Authenticator (a) +------------+
	---------------------->	
	[+Access Token]	Resource
Client		Server
	Authenticator (b)	
	<----------------------	
 +-----------+ +------------+

 ^ ^
 | |
 | |
 SK SK
 +param +param

 Figure 2: Architecture: Interaction between the Client and the
 Resource Server.

4. Key Distribution

 For this scheme to function a session key must be available to the
 client and the resource server, which is then used as a parameter in
 the keyed message digest function. This document describes the key
 distribution mechanism that uses the authorization server as a
 trusted third party, which ensures that the session key is
 transported from the authorization server to the client and the
 resource server.

4.1. Session Key Transport to Client

 Authorization servers issue MAC Tokens based on requests from
 clients. The request MUST include the audience parameter defined in
 [I-D.tschofenig-oauth-audience], which indicates the resource server
 the client wants to interact with. This specification assumes use of

Richer, et al. Expires August 29, 2013 [Page 7]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 the 'Authorization Code' grant. If the request is processed
 successfully by the authorization server it MUST return at least the
 following parameters to the client:

 kid

 The name of the key (key id), which is an identifier generated
 by the resource server. It is RECOMMENDED that the
 authorization server generates this key id by computing a hash
 over the access_token, for example using SHA-1, and to encode
 it in a base64 format.

 access_token

 The OAuth 2.0 access token.

 mac_key

 The session key generated by the authorization server. Note
 that the lifetime of the session key is equal to the lifetime
 of the access token.

 mac_algorithm

 The MAC algorithm used to calculate the request MAC. The value
 MUST be one of "hmac-sha-1", "hmac-sha-256", or a registered
 extension algorithm name as described in Section 9.2. The
 authorization server is assumed to know the set of algorithms
 supported by the client and the resource server. It selects an
 algorithm that meets the security policies and is supported by
 both nodes.

Richer, et al. Expires August 29, 2013 [Page 8]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":
 "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0.
 pwaFh7yJPivLjjPkzC-GeAyHuy7AinGcS51AZ7TXnwkC80Ow1aW47kcT_UV54ubo
 nONbeArwOVuR7shveXnwPmucwrk_3OCcHrCbE1HR-Jfme2mF_WR3zUMcwqmU0RlH
 kwx9txo_sKRasjlXc8RYP-evLCmT1XRXKjtY5l44Gnh0A84hGvVfMxMfCWXh38hi
 2h8JMjQHGQ3mivVui5lbf-zzb3qXXxNO1ZYoWgs5tP1-T54QYc9Bi9wodFPWNPKB
 kY-BgewG-Vmc59JqFeprk1O08qhKQeOGCWc0WPC_n_LIpGWH6spRm7KGuYdgDMkQ
 bd4uuB0uPPLx_euVCdrVrA.
 AxY8DCtDaGlsbGljb3RoZQ.
 7MI2lRCaoyYx1HclVXkr8DhmDoikTmOp3IdEmm4qgBThFkqFqOs3ivXLJTku4M0f
 laMAbGG_X6K8_B-0E-7ak-Olm_-_V03oBUUGTAc-F0A.
 OwWNxnC-BMEie-GkFHzVWiNiaV3zUHf6fCOGTwbRckU",
 "token_type":"mac",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "kid":"22BIjxU93h/IgwEb4zCRu5WF37s=",
 "mac_key":"adijq39jdlaska9asud",
 "mac_algorithm":"hmac-sha-256"
 }

4.2. Session Key Transport to Resource Server

 The transport of the mac_key from the authorization server to the
 resource server is accomplished by conveying the encrypting mac_key
 inside the access token. At the time of writing only one
 standardized format for carrying the access token is defined: the
 JSON Web Token (JWT) [I-D.ietf-oauth-json-web-token]. Note that the
 header of the JSON Web Encryption (JWE) structure
 [I-D.ietf-jose-json-web-encryption], which is a JWT with encrypted
 content, MUST contain a key id (kid) in the header to allow the
 resource server to select the appropriate keying material for
 decryption. This keying material is a symmetric or an asymmetric
 long-term key established between the resource server and the
 authorization server, as shown in Figure 1 as AS-RS key. The
 establishment of this long-term key is outside the scope of this
 specification.

 This document defines two new claims to be carried in the JWT:
 mac_key, kid. These two parameters match the content of the mac_key

Richer, et al. Expires August 29, 2013 [Page 9]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 and the kid conveyed to the client, as shown in Section 4.1.

 kid

 The name of the key (key id), which is an identifier generated
 by the resource server.

 mac_key

 The session key generated by the authorization server.

 This example shows a JWT claim set without header and without
 encryption:

 {"iss":"authorization-server.example.com",
 "exp":1300819380,
 "kid":"22BIjxU93h/IgwEb4zCRu5WF37s=",
 "mac_key":"adijq39jdlaska9asud",
 "aud":"apps.example.com"
 }

 QUESTIONS: An alternative to the use of a JWT to convey the access
 token with the encrypted mac_key is use the token introspect
 [I-D.richer-oauth-introspection]. What mechanism should be
 described? What should be mandatory to implement?
 QUESTIONS: The above description assumes that the entire access
 token is encrypted but it would be possible to only encrypt the
 session key and to only apply integrity protection to other
 fields. Is this desireable?

5. The Authenticator

 To access a protected resource the client must be in the possession
 of a valid set of session key provided by the authorization server.
 The client constructs the authenticator, as described in Section 5.1.

5.1. The Authenticator

 The client constructs the authenticator and adds the resulting fields
 to the HTTP request using the "Authorization" request header field.
 The "Authorization" request header field uses the framework defined
 by [RFC2617]. To include the authenticator in a subsequent response
 from the authorization server to the client the WWW-Authenticate
 header is used. For further exchanges a new, yet-to-be-defined

https://datatracker.ietf.org/doc/html/rfc2617

Richer, et al. Expires August 29, 2013 [Page 10]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 header will be used.

 authenticator = "MAC" 1*SP #params

 params = id / ts / seq-nr / access_token / mac / h / cb

 kid = "kid" "=" string-value
 ts = "ts" "=" (<"> timestamp <">) / timestamp
 seq-nr = "seq-nr" "=" string-value
 access_token = "access_token" "=" b64token
 mac = "mac" "=" string-value
 cb = "cb" "=" token
 h = "h" "=" h-tag
 h-tag = %x68 [FWS] "=" [FWS] hdr-name
 *([FWS] ":" [FWS] hdr-name)
 hdr-name = token

 timestamp = 1*DIGIT
 string-value = (<"> plain-string <">) / plain-string
 plain-string = 1*(%x20-21 / %x23-5B / %x5D-7E)

 b64token = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "~" / "+" / "/") *"="

 The header attributes are set as follows:

 kid

 REQUIRED. The key identifier.

 ts

 REQUIRED. The timestamp. The value MUST be a positive integer
 set by the client when making each request to the number of
 milliseconds since 1 January 1970.

 The JavaScript getTime() function or the Java
 System.currentTimeMillis() function, for example, produce such
 a timestamp.

 seq-nr

 OPTIONAL. This optional field includes the initial sequence
 number to be used by the messages exchange between the client
 and the server when the replay protection provided by the

Richer, et al. Expires August 29, 2013 [Page 11]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 timestamp is not sufficient enough replay protection. This
 field specifies the initial sequence number for messages from
 the client to the server. When included in the response
 message, the initial sequence number is that for messages from
 the server to the client. Sequence numbers fall in the range 0
 through 2^64 - 1 and wrap to zero following the value 2^64 - 1.

 The initial sequence number SHOULD be random and uniformly
 distributed across the full space of possible sequence numbers,
 so that it cannot be guessed by an attacker and so that it and
 the successive sequence numbers do not repeat other sequences.
 In the event that more than 2^64 messages are to be generated
 in a series of messages, rekeying MUST be performed before
 sequence numbers are reused. Rekeying requires a new access
 token to be requested.

 access_token

 CONDITIONAL. The access_token MUST be included in the first
 request from the client to the server but MUST NOT be included
 in a subsequent response and in a further protocol exchange.

 mac

 REQUIRED. The result of the keyed message digest computation,
 as described in Section 5.3.

 cb

 OPTIONAL. This field carries the channel binding value from
RFC 5929 [RFC5929] in the following format: cb= channel-

 binding-type ":" channel-binding-content. RFC 5929 offers two
 types of channel bindings for TLS. First, there is the 'tls-
 server-end-point' channel binding, which uses a hash of the TLS
 server's certificate as it appears, octet for octet, in the
 server's Certificate message. The second channel binding is
 'tls-unique', which uses the first TLS Finished message sent
 (note: the Finished struct, not the TLS record layer message
 containing it) in the most recent TLS handshake of the TLS
 connection being bound to. As an example, the cb field may
 contain cb=tls-unique:9382c93673d814579ed1610d3
 h

 OPTIONAL. This field contains a colon-separated list of header
 field names that identify the header fields presented to the
 keyed message digest algorithm. If the 'h' header field is
 absent then the following value is set by default: h="host".
 The field MUST contain the complete list of header fields in

https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5929

Richer, et al. Expires August 29, 2013 [Page 12]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 the order presented to the keyed message digest algorithm. The
 field MAY contain names of header fields that do not exist at
 the time of computing the keyed message digest; nonexistent
 header fields do not contribute to the keyed message digest
 computation (that is, they are treated as the null input,
 including the header field name, the separating colon, the
 header field value, and any CRLF terminator). By including
 header fields that do not actually exist in the keyed message
 digest computation, the client can allow the resource server to
 detect insertion of those header fields by intermediaries.
 However, since the client cannot possibly know what header
 fields might be defined in the future, this mechanism cannot be
 used to prevent the addition of any possible unknown header
 fields. The field MAY contain multiple instances of a header
 field name, meaning multiple occurrences of the corresponding
 header field are included in the header hash. The field MUST
 NOT include the mac header field. Folding whitespace (FWS) MAY
 be included on either side of the colon separator. Header
 field names MUST be compared against actual header field names
 in a case-insensitive manner. This list MUST NOT be empty.
 See Section 8 for a discussion of choosing header fields.

 Attributes MUST NOT appear more than once. Attribute values are
 limited to a subset of ASCII, which does not require escaping, as
 defined by the plain-string ABNF.

5.2. MAC Input String

 An HTTP message can either be a request from client to server or a
 response from server to client. Syntactically, the two types of
 message differ only in the start-line, which is either a request-line
 (for requests) or a status-line (for responses).

 Two parameters serve as input to a keyed message digest function: a
 key and an input string. Depending on the communication direction
 either the request-line or the status-line is used as the first value
 followed by the HTTP header fields listed in the 'h' parameter.
 Then, the timestamp field and the seq-nr field (if present) is
 concatenated.

 As an example, consider the HTTP request with the new line separator
 character represented by "\n" for editorial purposes only. The h
 parameter is set to h=host, the kid is 314906b0-7c55, and the
 timstamp is 1361471629.

 POST /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2+q HTTP/1.1
 Host: example.com

Richer, et al. Expires August 29, 2013 [Page 13]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Hello World!

 The resulting string is:

 POST /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2+q HTTP/1.1\n
 1361471629\n
 example.com\n

5.3. Keyed Message Digest Algorithms

 The client uses a cryptographic algorithm together with a session key
 to calculate a keyed message digest. This specification defines two
 algorithms: "hmac-sha-1" and "hmac-sha-256", and provides an
 extension registry for additional algorithms.

5.3.1. hmac-sha-1

 "hmac-sha-1" uses the HMAC-SHA1 algorithm, as defined in [RFC2104]:

 mac = HMAC-SHA1 (key, text)

 Where:

 text

 is set to the value of the input string as described in
Section 5.2,

 key

 is set to the session key provided by the authorization server,
 and
 mac

 is used to set the value of the "mac" attribute, after the
 result string is base64-encoded per Section 6.8 of [RFC2045].

5.3.2. hmac-sha-256

 "hmac-sha-256" uses the HMAC algorithm, as defined in [RFC2104], with
 the SHA-256 hash function, defined in [NIST-FIPS-180-3]:

 mac = HMAC-SHA256 (key, text)

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc2104

Richer, et al. Expires August 29, 2013 [Page 14]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Where:

 text

 is set to the value of the input string as described in
Section 5.2,

 key

 is set to the session key provided by the authorization server,
 and
 mac

 is used to set the value of the "mac" attribute, after the
 result string is base64-encoded per Section 6.8 of [RFC2045].

6. Verifying the Authenticator

 When receiving a message with an authenticator the following steps
 are performed:

 1. When the authorization server receives a message with a new
 access token (and consequently a new session key) then it obtains
 the session key by retrieving the content of the access token
 (which requires decryption of the session key contained inside
 the token). The content of the access token, in particular the
 audience field and the scope, MUST be verified as described in
 Alternatively, the kid parameter is used to look-up a cached
 session key from a previous exchange.
 2. Recalculate the keyed message digest, as described in

Section 5.3, and compare the request MAC to the value received
 from the client via the "mac" attribute.
 3. Verify that no replay took place by comparing the value of the ts
 (timestamp) header with the local time. The processing of
 authenticators with stale timestamps is described in Section 6.1.

 Error handling is described in Section 6.2.

6.1. Timestamp Verification

 The timestamp field enables the server to detect replay attacks.
 Without replay protection, an attacker can use an eavesdropped
 request to gain access to a protected resource. The following
 procedure is used to detect replays:

 o At the time the first request is received from the client for each
 key identifier, calculate the difference (in seconds) between the
 request timestamp and the local clock. The difference is stored

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Richer, et al. Expires August 29, 2013 [Page 15]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 locally for later use.
 o For each subsequent request, apply the request time delta to the
 timestamp included in the message to calculate the adjusted
 request time.
 o Verify that the adjusted request time is within the allowed time
 period defined by the authorization server. If the local time and
 the calculated time based in the request differ by more than the
 allowable clock skew (e.g., 5 minutes) a replay has to be assumed.

6.2. Error Handling

 If the protected resource request does not include an access token,
 lacks the keyed message digest, contains an invalid key identifier,
 or is malformed, the server SHOULD return a 401 (Unauthorized) HTTP
 status code.

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: MAC

 The "WWW-Authenticate" request header field uses the framework
 defined by [RFC2617] as follows:

 challenge = "MAC" [1*SP #param]
 param = error / auth-param
 error = "error" "=" (token / quoted-string)

 Each attribute MUST NOT appear more than once.

 If the protected resource request included a MAC "Authorization"
 request header field and failed authentication, the server MAY
 include the "error" attribute to provide the client with a human-
 readable explanation why the access request was declined to assist
 the client developer in identifying the problem.

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: MAC error="The MAC credentials expired"

https://datatracker.ietf.org/doc/html/rfc2617

Richer, et al. Expires August 29, 2013 [Page 16]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

7. Example

 [Editor's Note: Full example goes in here.]

8. Security Considerations

 As stated in [RFC2617], the greatest sources of risks are usually
 found not in the core protocol itself but in policies and procedures
 surrounding its use. Implementers are strongly encouraged to assess
 how this protocol addresses their security requirements and the
 security threats they want to mitigate.

8.1. Key Distribution

 This specification describes a key distribution mechanism for
 providing the session key (and parameters) from the authorization
 server to the client. The interaction between the client and the
 authorization server requires Transport Layer Security (TLS) with a
 ciphersuite offering confidentiality protection. The session key
 MUST NOT be transmitted in clear since this would completely destroy
 the security benefits of the proposed scheme. Furthermore, the
 obtained session key MUST be stored so that only the client instance
 has access to it. Storing the session key, for example, in a cookie
 allows other parties to gain access to this confidential information
 and compromises the security of the protocol.

8.2. Offering Confidentiality Protection for Access to Protected
 Resources

 This specification can be used with and without Transport Layer
 Security (TLS).

 Without TLS this protocol provides a mechanism for verifying the
 integrity of requests and responses, it provides no confidentiality
 protection. Consequently, eavesdroppers will have full access to
 request content and further messages exchanged between the client and
 the resource server. This could be problematic when data is
 exchanged that requires care, such as personal data.

 When TLS is used then confidentiality can be ensured and with the use
 of the TLS channel binding feature it ensures that the TLS channel is
 cryptographically bound to the used MAC token. TLS in combination
 with channel bindings bound to the MAC token provide security
 superiour to the OAuth Bearer Token.

 The use of TLS in combination with the MAC token is highly
 recommended to ensure the confidentiality of the user's data.

https://datatracker.ietf.org/doc/html/rfc2617

Richer, et al. Expires August 29, 2013 [Page 17]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

8.3. Authentication of Resource Servers

 This protocol allows clients to verify the authenticity of resource
 servers in two ways:
 1. The resource server demonstrates possession of the session key by
 computing a keyed message digest function over a number of HTTP
 fields in the response to the request from the client.
 2. When TLS is used the resource server is authenticated as part of
 the TLS handshake.

8.4. Plaintext Storage of Credentials

 The MAC key works in the same way passwords do in traditional
 authentication systems. In order to compute the keyed message
 digest, the client and the resource server must have access to the
 MAC key in plaintext form.

 If an attacker were to gain access to these MAC keys - or worse, to
 the resource server's or the authorization server's database of all
 such MAC keys - he or she would be able to perform any action on
 behalf of any client.

 It is therefore paramount to the security of the protocol that these
 session keys are protected from unauthorized access.

8.5. Entropy of Session Keys

 Unless TLS is used between the client and the resource server,
 eavesdroppers will have full access to requests sent by the client.
 They will thus be able to mount offline brute-force attacks to
 recover the session key used to compute the keyed message digest.
 Authorization servers should be careful to generate fresh and unique
 session keys with sufficient entrophy to resist such attacks for at
 least the length of time that the session keys are valid.

 For example, if a session key is valid for one day, authorization
 servers must ensure that it is not possible to mount a brute force
 attack that recovers the session key in less than one day. Of
 course, servers are urged to err on the side of caution, and use the
 longest session key reasonable.

 It is equally important that the pseudo-random number generator
 (PRNG) used to generate these session keys be of sufficiently high
 quality. Many PRNG implementations generate number sequences that
 may appear to be random, but which nevertheless exhibit patterns,
 which make cryptanalysis easier. Implementers are advised to follow
 the guidance on random number generation in [RFC4086].

https://datatracker.ietf.org/doc/html/rfc4086

Richer, et al. Expires August 29, 2013 [Page 18]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

8.6. Denial of Service / Resource Exhaustion Attacks

 This specification includes a number of features which may make
 resource exhaustion attacks against resource servers possible. For
 example, a resource server may need to need to consult backend
 databases and the authorization server to verify an incoming request
 including an access token before granting access to the protected
 resource.

 An attacker may exploit this to perform a denial of service attack by
 sending a large number of invalid requests to the server. The
 computational overhead of verifying the keyed message digest alone
 is, however, not sufficient to mount a denial of service attack since
 keyed message digest functions belong to the computationally fastest
 cryptographic algorithms. The usage of TLS does, however, require
 additional computational capabity to perform the asymmetric
 cryptographic operations. For a brief discussion about denial of
 service vulnerabilities of TLS please consult Appendix F.5 of RFC

5246 [RFC5246].

8.7. Timing Attacks

 This specification makes use of HMACs, for which a signature
 verification involves comparing the received MAC string to the
 expected one. If the string comparison operator operates in
 observably different times depending on inputs, e.g. because it
 compares the strings character by character and returns a negative
 result as soon as two characters fail to match, then it may be
 possible to use this timing information to determine the expected
 MAC, character by character.

 Implementers are encouraged to use fixed-time string comparators for
 MAC verification. This means that the comparison operation is not
 terminated once a mismatch is found.

8.8. CSRF Attacks

 A Cross-Site Request Forgery attack occurs when a site, evil.com,
 initiates within the victim's browser the loading of a URL from or
 the posting of a form to a web site where a side-effect will occur,
 e.g. transfer of money, change of status message, etc. To prevent
 this kind of attack, web sites may use various techniques to
 determine that the originator of the request is indeed the site
 itself, rather than a third party. The classic approach is to
 include, in the set of URL parameters or form content, a nonce
 generated by the server and tied to the user's session, which
 indicates that only the server could have triggered the action.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Richer, et al. Expires August 29, 2013 [Page 19]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Recently, the Origin HTTP header has been proposed and deployed in
 some browsers. This header indicates the scheme, host, and port of
 the originator of a request. Some web applications may use this
 Origin header as a defense against CSRF.

 To keep this specification simple, HTTP headers are not part of the
 string to be MAC'ed. As a result, MAC authentication cannot defend
 against header spoofing, and a web site that uses the Host header to
 defend against CSRF attacks cannot use MAC authentication to defend
 against active network attackers. Sites that want the full
 protection of MAC Authentication should use traditional, cookie-tied
 CSRF defenses.

8.9. Protecting HTTP Header Fields

 This specification provides flexibility for selectively protecting
 header fields and even the body of the message. At a minimum the
 following fields are included in the keyed message digest.

9. IANA Considerations

9.1. JSON Web Token Claims

 This document adds the following claims to the JSON Web Token Claims
 registry established with [I-D.ietf-oauth-json-web-token]:
 o Claim Name: "kid"
 o Change Controller: IETF
 o Specification Document(s): [[this document]]
 o Claim Name: "mac_key"
 o Change Controller: IETF
 o Specification Document(s): [[this document]]

9.2. MAC Token Algorithm Registry

 This specification establishes the MAC Token Algorithm registry.

 Additional keyed message digest algorithms are registered on the
 advice of one or more Designated Experts (appointed by the IESG or
 their delegate), with a Specification Required (using terminology
 from [RFC5226]). However, to allow for the allocation of values
 prior to publication, the Designated Expert(s) may approve
 registration once they are satisfied that such a specification will
 be published.

 Registration requests should be sent to the [TBD]@ietf.org mailing
 list for review and comment, with an appropriate subject (e.g.,
 "Request for MAC Algorithm: example"). [[Note to RFC-EDITOR: The

https://datatracker.ietf.org/doc/html/rfc5226

Richer, et al. Expires August 29, 2013 [Page 20]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 name of the mailing list should be determined in consultation with
 the IESG and IANA. Suggested name: http-mac-ext-review.]]

 Within at most 14 days of the request, the Designated Expert(s) will
 either approve or deny the registration request, communicating this
 decision to the review list and IANA. Denials should include an
 explanation and, if applicable, suggestions as to how to make the
 request successful.

 Decisions (or lack thereof) made by the Designated Expert can be
 first appealed to Application Area Directors (contactable using
 app-ads@tools.ietf.org email address or directly by looking up their
 email addresses on http://www.iesg.org/ website) and, if the
 appellant is not satisfied with the response, to the full IESG (using
 the iesg@iesg.org mailing list).

 IANA should only accept registry updates from the Designated
 Expert(s), and should direct all requests for registration to the
 review mailing list.

9.2.1. Registration Template

 Algorithm name:

 The name requested (e.g., "example").
 Change controller:

 For standards-track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 e-mail address, home page URI) may also be included.
 Specification document(s):

 Reference to document that specifies the algorithm, preferably
 including a URI that can be used to retrieve a copy of the
 document. An indication of the relevant sections may also be
 included, but is not required.

9.2.2. Initial Registry Contents

 The HTTP MAC authentication scheme algorithm registry's initial
 contents are:

 o Algorithm name: hmac-sha-1
 o Change controller: IETF
 o Specification document(s): [[this document]]

http://www.iesg.org/

Richer, et al. Expires August 29, 2013 [Page 21]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 o Algorithm name: hmac-sha-256
 o Change controller: IETF
 o Specification document(s): [[this document]]

9.3. OAuth Access Token Type Registration

 This specification registers the following access token type in the
 OAuth Access Token Type Registry.

9.3.1. The "mac" OAuth Access Token Type

 Type name:

 mac
 Additional Token Endpoint Response Parameters:

 secret, algorithm
 HTTP Authentication Scheme(s):

 MAC
 Change controller:

 IETF
 Specification document(s):

 [[this document]]

9.4. OAuth Parameters Registration

 This specification registers the following parameters in the OAuth
 Parameters Registry established by [RFC6749].

9.4.1. The "mac_key" OAuth Parameter

 Parameter name: mac_key
 Parameter usage location: authorization response, token response
 Change controller: IETF
 Specification document(s): [[this document]]
 Related information: None

9.4.2. The "mac_algorithm" OAuth Parameter

 Parameter name: mac_algorithm
 Parameter usage location: authorization response, token response

https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires August 29, 2013 [Page 22]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Change controller: IETF
 Specification document(s): [[this document]]
 Related information: None

9.4.3. The "kid" OAuth Parameter

 Parameter name: kid
 Parameter usage location: authorization response, token response
 Change controller: IETF
 Specification document(s): [[this document]]
 Related information: None

10. Acknowledgments

 This document is based on OAuth 1.0 and we would like to thank Eran
 Hammer-Lahav for his work on incorporating the ideas into OAuth 2.0.
 As part of this initial work the following persons provided feedback:
 Ben Adida, Adam Barth, Phil Hunt, Rasmus Lerdorf, James Manger,
 William Mills, Scott Renfro, Justin Richer, Toby White, Peter
 Wolanin, and Skylar Woodward

 Further work in this document was done as part of OAuth working group
 conference calls late 2012/early 2013 and in design team conference
 calls February 2013. The following persons (in addition to the OAuth
 WG chairs, Hannes Tschofenig, and Derek Atkins) provided their input
 during these calls: Bill Mills, Justin Richer, Phil Hunt, Prateek
 Mishra, Mike Jones, George Fletcher, John Bradley, Tony Nadalin,
 Thomas Hardjono, Brian Campbell

11. References

11.1. Normative References

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing",

draft-ietf-httpbis-p1-messaging-22 (work in progress),
 February 2013.

 [I-D.ietf-jose-json-web-encryption]
 Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web
 Encryption (JWE)", draft-ietf-jose-json-web-encryption-08
 (work in progress), December 2012.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-22
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-08

Richer, et al. Expires August 29, 2013 [Page 23]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 (JWT)", draft-ietf-oauth-json-web-token-06 (work in
 progress), December 2012.

 [I-D.richer-oauth-introspection]
 Richer, J., "OAuth Token Introspection",

draft-richer-oauth-introspection-03 (work in progress),
 February 2013.

 [I-D.tschofenig-oauth-audience]
 Tschofenig, H., "OAuth 2.0: Audience Information",

draft-tschofenig-oauth-audience-00 (work in progress),
 February 2013.

 [NIST-FIPS-180-3]
 National Institute of Standards and Technology, "Secure
 Hash Standard (SHS). FIPS PUB 180-3, October 2008".

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-06
https://datatracker.ietf.org/doc/html/draft-richer-oauth-introspection-03
https://datatracker.ietf.org/doc/html/draft-tschofenig-oauth-audience-00
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Richer, et al. Expires August 29, 2013 [Page 24]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

 [W3C.REC-html401-19991224]
 Hors, A., Raggett, D., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium
 Recommendation REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

11.2. Informative References

 [I-D.tschofenig-oauth-security]
 Tschofenig, H. and P. Hunt, "OAuth 2.0 Security: Going
 Beyond Bearer Tokens", draft-tschofenig-oauth-security-01
 (work in progress), December 2012.

Authors' Addresses

 Justin Richer
 The MITRE Corporation

 Email: jricher@mitre.org

 William Mills
 Yahoo! Inc.

 Phone:
 Email: wmills@yahoo-inc.com

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6749
http://www.w3.org/TR/1999/REC-html401-19991224
https://datatracker.ietf.org/doc/html/draft-tschofenig-oauth-security-01

Richer, et al. Expires August 29, 2013 [Page 25]

Internet-Draft OAuth 2.0 MAC Tokens February 2013

 Hannes Tschofenig (editor)
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Richer, et al. Expires August 29, 2013 [Page 26]

http://www.tschofenig.priv.at

