E. Hammer-Lahav, TOC

Network Working Group Ed

Internet-Draft Yahoo!

Intended status: Standards

July 06, 2009
Track y

Expires: January 7, 2010

The OAuth Protocol: Web Delegation
draft-ietf-oauth-web-delegation-00

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 7, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document specifies the OAuth protocol web delegation method. OAuth
allows clients to access server resources on behalf of another party
(such a different client or an end user). This document defines a
redirection-based user-agent process for end users to authorize access
to clients by substituting their credentials (typically, a username and
password pair) with a different set of delegation-specific credentials.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction

1.1. Terminology

Notational Conventions

Redirection-Based Authorization

3.1. Temporary Credentials

3.2. Resource Owner Authorization

3.3. Token Credentials

IANA Considerations

Security Considerations

5.1. Credentials Transmission

5.2. Phishing Attacks

5.3. Scoping of Access Requests

5.4. Entropy of Secrets

5.5. Denial of Service / Resource Exhaustion Attacks
5.6. Cross-Site Request Forgery (CSRF)

5.7. User Interface Redress

5.8. Automatic Processing of Repeat Authorizations

Appendix A. Examples

=

[

e

Appendix A.1. Obtaining Temporary Credentials
Appendix A.2. Requesting Resource Owner Authorization
Appendix A.3. Obtaining Token Credentials

Appendix A.4. Accessing protected resources

Appendix A.4.1. Generating Signature Base String
Appendix A.4.2. Calculating Signature Value

Appendix A.4.3. Requesting protected resource
Appendix B. Acknowledgments
Appendix C. Document History
6. References
6.1. Normative References
6.2. Informative References
8§ Author's Address

1. Introduction TOC

The OAuth protocol provides a method for servers to allow third-party
access to protected resources, without forcing their end users to share
their credentials. This pattern is common among services that allow
third-party developers to extend the service functionality, by building
applications using an open API.

For example, a web user (resource owner) can grant a printing service
(client) access to its private photos stored at a photo sharing service
(server), without sharing its credentials with the printing service.

Instead, the user authenticates directly with the photo sharing service
and issue the printing service delegation-specific credentials.

OAuth introduces a third role to the traditional client-server
authentication model: the resource owner. In the OAuth model, the
client requests access to resources hosted by the server but not
controlled by the client, but by the resource owner. In addition, OAuth
allows the server to verify not only the resource owner's credentials,
but also those of the client making the request.

In order for the client to access resources, it first has to obtain
permission from the resource owner. This permission is expressed in the
form of a token and matching shared-secret. The purpose of the token is
to substitute the need for the resource owner to share its server
credentials (usually a username and password pair) with the client.
Unlike server credentials, tokens can be issued with a restricted scope
and limited lifetime.

This specification consists of two parts.
[draft-ietf-oauth-authentication] (Hammer-Lahav, E., Ed., “The OAuth
Protocol: Authentication,” .) defines a method for making authenticated
HTTP requests using two sets of credentials, one identifying the client
making the request, and a second identifying the resource owner on
whose behalf the request is being made.

This document defines a redirection-based user agent process for end
users to authorize client access to their resources, by authenticating
directly with the server and provisioning tokens to the client for use
with the authentication method.

1.1. Terminology TOC

client An HTTP client (per [RFC2616] (Fielding, R., Gettys, J.,
Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.))
capable of making OAuth-authenticated requests per
[draft-ietf-ocauth-authentication] (Hammer-Lahav, E., Ed., “The
OAuth Protocol: Authentication,” .).

server An HTTP server (per [RFC2616] (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.))
capable of accepting OAuth-authenticated requests per
[draft-ietf-oauth-authentication] (Hammer-Lahav, E., Ed., “The
OAuth Protocol: Authentication,” .).

protected resource An access-restricted resource (per [RFC2616]
(Fielding, R., Gettys, J., Moqul, J., Frystyk, H., Masinter, L.,
Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.1,” June 1999.)) which can be obtained from the server

using an OAuth-authenticated request per
[draft-ietf-oauth-authentication] (Hammer-Lahav, E., Ed., “The
OAuth Protocol: Authentication,” .).

resource owner An entity capable of accessing and controlling
protected resources by using credentials to authenticate with the
server,

token An unique identifier issued by the server and used by the
client to associate authenticated requests with the resource
owner whose authorization is requested or has been obtained by
the client. Tokens have a matching shared-secret that is used by
the client to establish its ownership of the token, and its
authority to represent the resource owner.

2. Notational Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Redirection-Based Authorization TOC

OAuth uses a set of token credentials to represent the authorization
granted to the client by the resource owner. Typically, token
credentials are issued by the server at the resource owner's request,
after authenticating the resource owner's identity using its server
credentials (usually a username and password pair).

There are many ways in which a resource owner can facilitate the
provisioning of token credentials. This section defines one such way,
using HTTP redirections and the resource owner's user agent. This
redirection-based authorization method includes three steps:

1. The client obtains a set of temporary credentials from the
server.

2. The resource owner authorizes the server to issue token
credentials to the client using the temporary credentials.

3. The client uses the temporary credentials to request a set of
token credentials from the server, which will enable it to

access the resource owner's protected resources. The temporary
credentials discarded.

The temporary credentials MUST be revoked after being used once to
obtain the token credentials. It is RECOMMENDED that the temporary
credentials have a limited lifetime. Servers SHOULD enable resource
owners to revoke token credentials after they have been issued to
clients.

In order for the client to perform these steps, the server needs to
advertise the URIs of these three endpoints, as well as the HTTP method
(GET, POST, etc.) used to make each requests. To assist in
communicating these endpoint, each is given a name:

Temporary Credential Request The endpoint used by the client to
obtain temporary credentials as described in Section 3.1
(Temporary Credentials).

Resource Owner Authorization The endpoint to which the resource
owner is redirected to grant authorization as described in
Section 3.2 (Resource Owner Authorization).

Token Request The endpoint used by the client to request a set of
token credentials using the temporary credentials as described in
Section 3.3 (Token Credentials).

The three URIs MAY include a query component as defined by [RFC3986]
(Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.) section 3, but if
present, the query MUST NOT contain any parameters beginning with the
oauth_ prefix.

The method in which the server advertises its three endpoint is beyond
the scope of this specification.

3.1. Temporary Credentials TOC

The client obtains a set of temporary credentials from the server by
making an authenticated request per [draft-ietf-oauth-authentication]
(Hammer-Lahav, E., Ed., “The OAuth Protocol: Authentication,” .). The
client MUST use the HTTP method advertised by the server. The HTTP POST
method is RECOMMENDED. The client constructs a request URI by adding
the following parameter to the Temporary Credential Request endpoint
URI:

oauth_callback: An absolute URL to which the server will redirect
the resource owner back when the Resource Owner Authorization
step (Section 3.2 (Resource Owner Authorization)) is completed.
If the client is unable to receive callbacks or a callback URI

has been established via other means, the parameter value MUST be
set to oob (case sensitive), to indicate an out-of-band
configuration.

Servers MAY specify additional parameters. When making the request,
the client authenticates using only the client credentials. The client
MUST omit the oauth_token protocol parameter from the request and use
an empty string as the token secret value.

The server MUST verify that the request is valid per
[draft-ietf-oauth-authentication] (Hammer-Lahav, E., Ed., “The OAuth
Protocol: Authentication,” .) and respond back to the client with a set
of temporary credentials. The temporary credentials are included in the
HTTP response body using the application/x-www-form-urlencoded content
type as defined by [W3C.REC-html40-19980424] (Hors, A., Jacobs, I., and
D. Raggett, “HTML 4.0 Specification,” April 1998.).

The response contains the following parameters:

oauth_token The temporary credentials identifier.
oauth_token_secret The temporary credentials shared-secret.

oauth_callback_confirmed: MUST be present and set to true. The
client MAY use this to confirm that the server received the
callback value.

Note that even though the parameter names include the term 'token',
these credentials are not token credentials, but are used in the next
two steps in a similar manner to token credentials.

For example (line breaks are for display purposes only):

oauth_token=ab3cd9j4ks73hf7g&oauth_token_secret=xyz4992k83j47x0b&
oauth_callback_confirmed=true

3.2. Resource Owner Authorization TOC

Before the client requests a set of token credentials from the server,
it MUST send the user to the server to authorize the request. The
client constructs a request URI by adding the following parameters to
the Resource Owner Authorization endpoint URI:

oauth_token REQUIRED. The temporary credentials identifier obtained
in Section 3.1 (Temporary Credentials) in the oauth_token
parameter. Servers MAY declare this parameter as OPTIONAL, in
which case they MUST provide a way for the resource owner to
indicate the identifier through other means.

Servers MAY specify additional parameters.

The client redirects the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
resource owner's user agent. The request MUST use the HTTP GET method.
The way in which the server handles the authorization request is beyond
the scope of this specification. However, the server MUST first verify
the identity of the resource owner.

When asking the resource owner to authorize the requested access, the
server SHOULD present to the resource owner information about the
client requesting access based on the association of the temporary
credentials with the client identity. When displaying any such
information, the server SHOULD indicate if the information has been
verified.

After receiving an authorization decision from the resource owner, the
server redirects the resource owner to the callback URI if one was
provided in the oauth_callback parameter or by other means.

To make sure that the resource owner granting access is the same
resource owner returning back to the client to complete the process,
the server MUST generate a verification code: an unguessable value
passed to the client via the resource owner and REQUIRED to complete
the process. The server constructs the request URI by adding the
following parameter to the callback URI query component:

oauth_token The temporary credentials identifier the resource owner
authorized or denied access to.

oauth_verifier: The verification code.

If the callback URI already includes a query component, the server MUST
append the OAuth parameters to the end of the existing query.
For example (line breaks are for display purposes only):

http://client.example.net/cbh?state=1&oauth_token=ab3cd9j4ks73hf7g9&
oauth_verifier=473829k9302sa

If the client did not provide a callback URI, the server SHOULD display
the value of the verification code, and instruct the resource owner to
manually inform the client that authorization is completed. If the
server knows a client to be running on a limited device it SHOULD
ensure that the verifier value is suitable for manual entry.

3.3. Token Credentials TOC

The client obtains a set of token credentials from the server by making
an authenticated request per [draft-ietf-oauth-authentication] (Hammer -
Lahav, E., Ed., “The OAuth Protocol: Authentication,” .). The client

MUST use the HTTP method advertised by the server. The HTTP POST method
is RECOMMENDED. The client constructs a request URI by adding the
following parameter to the Token Request endpoint URI:

oauth_verifier: The verification code received from the server in
the previous step.

wWhen making the request, the client authenticates using the client
credentials as well as the temporary credentials. The temporary
credentials are used as a substitution for token credentials in the
authenticated request.

The server MUST verify the validity of the request per
[draft-ietf-oauth-authentication] (Hammer-Lahav, E., Ed., “The OAuth
Protocol: Authentication,” .), ensure that the resource owner has
authorized the provisioning of token credentials to the client, and
that the temporary credentials have not expired or used before. The
server MUST also verify the verification code received from the client.
If the request is valid and authorized, the token credentials are
included in the HTTP response body using the application/x-www-form-
urlencoded content type as defined by [W3C.REC-html40-19980424] (Hors,
A., Jacobs, I., and D. Raggett, “HTML 4.0 Specification,” April 1998.).
The response contains the following parameters:

oauth_token The token identifier.
oauth_token_secret The token shared-secret.
For example:
oauth_token=j49ddk933skd9dks&oauth_token_secret=11399dj47dskfjdk

The token credentials issued by the server MUST reflect the exact
scope, duration, and other attributes approved by the resource owner.
Once the client receives the token credentials, it can proceed to
access protected resources on behalf of the resource owner by making an
authenticated request per [draft-ietf-oauth-authentication] (Hammer-
Lahav, E., Ed., “The OAuth Protocol: Authentication,” .) using the
client credentials and the token credentials received.

4. IANA Considerations TOC

This memo includes no request to IANA.

T0C

5. Security Considerations

As stated in [RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,” June 1999.),
the greatest sources of risks are usually found not in the core
protocol itself but in policies and procedures surrounding its use.
Implementers are strongly encouraged to assess how this protocol
addresses their security requirements.

5.1. Credentials Transmission TOC

The OAuth specification does not describe any mechanism for protecting
tokens and shared-secrets from eavesdroppers when they are transmitted
from the server to the client during the authorization phase. Servers

should ensure that these transmissions are protected using transport-

layer mechanisms such as TLS or SSL.

5.2. Phishing Attacks TOC

wWide deployment of OAuth and similar protocols may cause resource
owners to become inured to the practice of being redirected to websites
where they are asked to enter their passwords. If resource owners are
not careful to verify the authenticity of these websites before
entering their credentials, it will be possible for attackers to
exploit this practice to steal resource owners' passwords.

Servers should attempt to educate resource owners about the risks
phishing attacks pose, and should provide mechanisms that make it easy
for resource owners to confirm the authenticity of their sites.

5.3. Scoping of Access Requests TOC

By itself, OAuth does not provide any method for scoping the access
rights granted to a client. However, most applications do require
greater granularity of access rights. For example, servers may wish to
make it possible to grant access to some protected resources but not
others, or to grant only limited access (such as read-only access) to
those protected resources.

When implementing OAuth, servers should consider the types of access
resource owners may wish to grant clients, and should provide
mechanisms to do so. Servers should also take care to ensure that

resource owners understand the access they are granting, as well as any
risks that may be involved.

5.4. Entropy of Secrets TOC

Unless a transport-layer security protocol is used, eavesdroppers will
have full access to OAuth requests and signatures, and will thus be
able to mount offline brute-force attacks to recover the credentials
used. Servers should be careful to assign shared-secrets which are long
enough, and random enough, to resist such attacks for at least the
length of time that the shared-secrets are valid.

For example, if shared-secrets are valid for two weeks, servers should
ensure that it is not possible to mount a brute force attack that
recovers the shared-secret in less than two weeks. Of course, servers
are urged to err on the side of caution, and use the longest secrets
reasonable.

It is equally important that the pseudo-random number generator (PRNG)
used to generate these secrets be of sufficiently high quality. Many
PRNG implementations generate number sequences that may appear to be
random, but which nevertheless exhibit patterns or other weaknesses
which make cryptanalysis or brute force attacks easier. Implementers
should be careful to use cryptographically secure PRNGs to avoid these
problems.

5.5. Denial of Service / Resource Exhaustion Attacks TOC

The OAuth protocol has a number of features which may make resource
exhaustion attacks against servers possible. For example, if a server
includes a nontrivial amount of entropy in token shared-secrets as
recommended above, then an attacker may be able to exhaust the server's
entropy pool very quickly by repeatedly obtaining temporary credentials
from the server.

Similarly, OAuth requires servers to track used nonces. If an attacker
is able to use many nonces quickly, the resources required to track
them may exhaust available capacity. And again, OAuth can require
servers to perform potentially expensive computations in order to
verify the signature on incoming requests. An attacker may exploit this
to perform a denial of service attack by sending a large number of
invalid requests to the server.

Resource Exhaustion attacks are by no means specific to OAuth. However,
OAuth implementers should be careful to consider the additional avenues
of attack that OAuth exposes, and design their implementations
accordingly. For example, entropy starvation typically results in
either a complete denial of service while the system waits for new

entropy or else in weak (easily guessable) secrets. When implementing
OAuth, servers should consider which of these presents a more serious
risk for their application and design accordingly.

5.6. Cross-Site Request Forgery (CSRF) _TOC

Cross-Site Request Forgery (CSRF) is a web-based attack whereby HTTP
requests are transmitted from a user that the website trusts or has
authenticated. CSRF attacks on OAuth approvals can allow an attacker to
obtain authorization to protected resources without the consent of the
User. Servers SHOULD strongly consider best practices in CSRF
prevention at all OAuth endpoints.

CSRF attacks on OAuth callback URIs hosted by client are also possible.
Clients should prevent CSRF attacks on OAuth callback URIs by verifying
that the resource owner at the client site intended to complete the
OAuth negotiation with the server.

5.7. User Interface Redress TOC

Servers should protect the authorization process against UI Redress
attacks (also known as "clickjacking"). As of the time of this writing,
no complete defenses against UI redress are available. Servers can
mitigate the risk of UI redress attacks through the following
techniques:

*Javascript frame busting.

*Javascript frame busting, and requiring that browsers have
javascript enabled on the authorization page.

*Browser-specific anti-framing techniques.

*Requiring password reentry before issuing OAuth tokens.

5.8. Automatic Processing of Repeat Authorizations TOC

Servers may wish to automatically process authorization requests
(Section 3.2 (Resource Owner Authorization)) from clients which have
been previously authorized by the resource owner. When the resource
owner is redirected to the server to grant access, the server detects
that the resource owner has already granted access to that particular

client. Instead of prompting the resource owner for approval, the
server automatically redirects the resource owner back to the client.
If the client credentials are compromised, automatic processing creates
additional security risks. An attacker can use the stolen client
credentials to redirect the resource owner to the server with an
authorization request. The server will then grant access to the
resource owner's data without the resource owner's explicit approval,
or even awareness of an attack. If no automatic approval is
implemented, an attacker must use social engineering to convince the
resource owner to approve access.

Servers can mitigate the risks associated with automatic processing by
limiting the scope of token credentials obtained through automated
approvals. Tokens credentials obtained through explicit resource owner
consent can remain unaffected. clients can mitigate the risks
associated with automatic processing by protecting their client
credentials.

Appendix A. Examples _TOC _

In this example, photos.example.net is a photo sharing website
(server), and printer.example.com is a photo printing service (client).
Jane (resource owner) would like printer.example.com to print a private
photo stored at photos.example.net.

When Jane signs-into photos.example.net using her username and
password, she can access the photo by requesting the URI http://
photos.example.net/photo?file=vacation.jpg (which also supports the
optional size parameter). Jane does not want to share her username and
password with printer.example.com, but would like it to access the
photo and print it.

The server documentation advertises support for the HMAC-SHAl and
PLAINTEXT methods, with PLAINTEXT restricted to secure (HTTPS) requests.
It also advertises the following endpoint URIs:

Temporary Credential Request https://photos.example.net/initiate,
using HTTP POST

Resource Owner Authorization URI: http://photos.example.net/
authorize, using HTTP GET

Token Request URI: https://photos.example.net/token, using HTTP
POST

The printer.example.com has already established client credentials with
photos.example.net:

Client Identifier dpf43f3p214k3163

Client Shared-Secret:
kd94hf93k423kf44

When printer.example.com attempts to print the request photo, it
receives an HTTP response with a 401 (Unauthorized) status code, and a
challenge to use OAuth:

WwWW-Authenticate: OAuth realm="http://photos.example.net/"

Appendix A.1. Obtaining Temporary Credentials TOC
The client sends the following HTTPS POST request to the server:

POST /initiate HTTP/1.1

Host: photos.example.net

Authorization: OAuth realm="http://photos.example.com/",
oauth_consumer_key="dpf43f3p214k3103",
oauth_signature_method="PLAINTEXT",
oauth_signature="kd94hf93k423kf44%26",
oauth_timestamp="1191242090",
oauth_nonce="hsu94j3884jdopsl",
oauth_version="1.0",
oauth_callback="http%3A%2F%2Fprinter.example.com%2Fready"

The server validates the request and replies with a set of temporary
credentials in the body of the HTTP response:

oauth_token=hh5s93j4hdidpola&oauth_token_secret=hdhd0244k9j7a003&
oauth_callback_confirmed=true

Appendix A.2. Requesting Resource Owner Authorization TOC

The client redirects Jane's browser to the server's Resource Owner
Authorization endpoint URI to obtain Jane's approval for accessing her
private photos.

http://photos.example.net/authorize?oauth_token=hh5s93j4hdidpola

The server asks Jane to sign-in using her username and password and if
successful, asks her if she approves granting printer.example.com
access to her private photos. Jane approves the request and is
redirects her back to the client's callback URI:

http://printer.example.com/ready?
oauth_token=hh5s93j4hdidpola&oauth_verifier=hfdp7dh39dks9884

Appendix A.3. Obtaining Token Credentials TOC

After being informed by the callback request that Jane approved
authorized access, printer.example.com requests a set of token
credentials using its temporary credentials:

POST /token HTTP/1.1

Host: photos.example.net

Authorization: OAuth realm="http://photos.example.com/",
oauth_consumer_key="dpf43f3p214k3163",
oauth_token="hh5s93j4hdidpola",
oauth_signature_method="PLAINTEXT",
oauth_signature="kd94hf93k423kf44%26hdhd0244k9j7a003",
oauth_timestamp="1191242092",
oauth_nonce="dji430splmx33448",
oauth_version="1.0"
oauth_verifier="hfdp7dh39dks9884"

The server validates the request and replies with a set of token
credentials in the body of the HTTP response:

oauth_token=nnch734d00sl2jdk&oauth_token_secret=pfkkdhi9sl3r4s00

Appendix A.4. Accessing protected resources TOC

The printer is now ready to request the private photo. Since the photo
URI does not use HTTPS, the HMAC-SHA1l method is required.

Appendix A.4.1. Generating Signature Base String TOC

To generate the signature, it first needs to generate the signature
base string. The request contains the following parameters
(oauth_signature excluded) which need to be ordered and concatenated
into a normalized string:

oauth_consumer_key dpf43f3p214k3103

oauth_token
nnch734d00s12jdk

oauth_signature_method HMAC-SHAl
oauth_timestamp 1191242096
oauth_nonce kl109940pd9333jh
oauth_version 1.0
file vacation.jpg
size original
The following inputs are used to generate the signature base string:
1. The HTTP request method: GET
2. The request URI: http://photos.example.net/photos
3. The encoded normalized request parameters string:
file=vacation.jpg&oauth_consumer_key=dpf43f3p214k3103&oauth_nonce=k1109940pd9333jh&o:
SHA1&oauth_timestamp=1191242096&oauth_token=nnch734d00s12jdk&oauth_version=1.0&size=(

The signature base string is (line breaks are for display purposes
only):

GET&http%3A%2F%2Fphotos.example.net%2Fphotos&file%3Dvacation. jpg%26
oauth_consumer_key%3Ddpf43f3p214k3103%260auth_nonce%3Dk1109940pd933
3jh%260auth_signature_method%3DHMAC-SHA1%260auth_timestamp%3D119124
2096%260auth_token%3Dnnch734d00s12jdk%260auth_version%3D1.0%26size%
3Doriginal

Appendix A.4.2. Calculating Signature Value TOC
HMAC-SHA1 produces the following digest value as a base64-encoded
string (using the signature base string as text and

kd94hf93k423kf44&pfkkdhios13r4s00 as key):

tR3+Ty811MeYAr/FidOkMTYa/WM=

TOC

Appendix A.4.3. Requesting protected resource
All together, the client request for the photo is:

GET /photos?file=vacation.jpg&size=original HTTP/1.1

Host: photos.example.com

Authorization: OAuth realm="http://photos.example.net/",
oauth_consumer_key="dpf43f3p214k3103",
oauth_token="nnch734d00s12jdk",
oauth_signature_method="HMAC-SHA1",
oauth_signature="tR3%2BTy811MeYAr%2FFidOkMTYa%2FWM%3D",
oauth_timestamp="1191242096",
oauth_nonce="k1109940pd9333jh",
oauth_version="1.0"

The photos.example.net sever validates the request and responds with
the requested photo.

Appendix B. Acknowledgments TOC

This specification is directly based on the [OAuth Core 1.0 Revision A]

(OAuth, OCW., “OAuth Core 1.0,” .) community specification which was
the product of the OAuth community. OAuth was modeled after existing
proprietary protocols and best practices that have been independently
implemented by various web sites. This specification was orignially
authored by: Mark Atwood, Dirk Balfanz, Darren Bounds, Richard M.
Conlan, Blaine Cook, Leah Culver, Breno de Medeiros, Brian Eaton,
Kellan Elliott-McCrea, Larry Halff, Eran Hammer-Lahav, Ben Laurie,
Chris Messina, John Panzer, Sam Quigley, David Recordon, Eran Sandler,
Jonathan Sergent, Todd Sieling, Brian Slesinsky, and Andy Smith.

Appendix C. Document History TOC

[[To be removed by the RFC editor before publication as an RFC.]]
-00

*Transitioned from the individual submission draft-hammer-oauth-02
to working group draft.

*Split draft-hammer-oauth-02 into two drafts, one dealing with web
delegation (this draft) and another dealing with authentication
draft-ietf-oauth-web-authentication.

*Updated draft with changes from OAuth Core 1.0 Revision A to fix
a session fixation exploit.

6. References

T0C

6.1. Normative References

[RFC2119]

[RFC2616]

[RFC2617]

[RFC3986]

[W3C.REC-
htm140-19980424]

[draft-ietf-oauth-
authentication]

TOC
Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).
Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).
Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999
(TXT, HTML, XML).
Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).
Hors, A., Jacobs, I., and D. Raggett, “HTML 4.0
Specification,” World Wide Web Consortium
Recommendation REC-html40-19980424, April 1998
(HTML).
Hammer-Lahav, E., Ed., “The OAuth Protocol:
Authentication.”

6.2. Informative References

TOC
[OAuth Core 1.0 Revision A] OAuth, OCW., “OAuth Core 1.0.”"
Author's Address
TOC

Eran Hammer-Lahav (editor)
Yahoo!

Email: eran@hueniverse.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
mailto:eran@hueniverse.com
http://www.ietf.org/internet-drafts/draft-ietf-oauth-authentication-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-authentication-00.txt
http://oauth.net/core/1.0a
mailto:eran@hueniverse.com

URI: http://hueniverse.com

http://hueniverse.com

	The OAuth Protocol: Web Delegationdraft-ietf-oauth-web-delegation-00
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	1.1. Terminology
	2. Notational Conventions
	3. Redirection-Based Authorization
	3.1. Temporary Credentials
	3.2. Resource Owner Authorization
	3.3. Token Credentials
	4. IANA Considerations
	5. Security Considerations
	5.1. Credentials Transmission
	5.2. Phishing Attacks
	5.3. Scoping of Access Requests
	5.4. Entropy of Secrets
	5.5. Denial of Service / Resource Exhaustion Attacks
	5.6. Cross-Site Request Forgery (CSRF)
	5.7. User Interface Redress
	5.8. Automatic Processing of Repeat Authorizations
	Appendix A. Examples
	Appendix A.1. Obtaining Temporary Credentials
	Appendix A.2. Requesting Resource Owner Authorization
	Appendix A.3. Obtaining Token Credentials
	Appendix A.4. Accessing protected resources
	Appendix A.4.1. Generating Signature Base String
	Appendix A.4.2. Calculating Signature Value
	Appendix A.4.3. Requesting protected resource
	Appendix B. Acknowledgments
	Appendix C. Document History
	6. References
	6.1. Normative References
	6.2. Informative References
	Author's Address

