
Workgroup: HTTPBIS

Internet-Draft: draft-ietf-ohai-ohttp-00

Published: 25 November 2021

Intended Status: Standards Track

Expires: 29 May 2022

Authors: M. Thomson

Mozilla

C.A. Wood

Cloudflare

Oblivious HTTP

Abstract

This document describes a system for the forwarding of encrypted

HTTP messages. This allows a client to make multiple requests of a

server without the server being able to link those requests to the

client or to identify the requests as having come from the same

client.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/unicorn-wg/oblivious-http.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/unicorn-wg/oblivious-http
https://github.com/unicorn-wg/oblivious-http
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Overview

3.1. Applicability

4. Key Configuration

4.1. Key Configuration Encoding

4.2. Key Configuration Media Type

5. HPKE Encapsulation

5.1. Encapsulation of Requests

5.2. Encapsulation of Responses

6. HTTP Usage

6.1. Informational Responses

6.2. Errors

7. Media Types

7.1. message/ohttp-req Media Type

7.2. message/ohttp-res Media Type

8. Security Considerations

8.1. Client Responsibilities

8.2. Proxy Responsibilities

8.2.1. Denial of Service

8.2.2. Linkability Through Traffic Analysis

8.3. Server Responsibilities

8.4. Replay Attacks

8.5. Post-Compromise Security

9. Privacy Considerations

10. Operational and Deployment Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Complete Example of a Request and Response

Acknowledgments

Authors' Addresses

1. Introduction

The act of making a request using HTTP reveals information about the

client identity to a server. Though the content of requests might

reveal information, that is information under the control of the

¶

Encapsulated Request:

client. In comparison, the source address on the connection reveals

information that a client has only limited control over.

Even where an IP address is not directly attributed to an

individual, the use of an address over time can be used to correlate

requests. Servers are able to use this information to assemble

profiles of client behavior, from which they can make inferences

about the people involved. The use of persistent connections to make

multiple requests improves performance, but provides servers with

additional certainty about the identity of clients in a similar

fashion.

Use of an HTTP proxy can provide a degree of protection against

servers correlating requests. Systems like virtual private networks

or the Tor network [Dingledine2004], provide other options for

clients.

Though the overhead imposed by these methods varies, the cost for

each request is significant. Preventing request linkability requires

that each request use a completely new TLS connection to the server.

At a minimum, this requires an additional round trip to the server

in addition to that required by the request. In addition to having

high latency, there are significant secondary costs, both in terms

of the number of additional bytes exchanged and the CPU cost of

cryptographic computations.

This document describes a method of encapsulation for binary HTTP

messages [BINARY] using Hybrid Public Key Encryption (HPKE; [HPKE]).

This protects the content of both requests and responses and enables

a deployment architecture that can separate the identity of a

requester from the request.

Though this scheme requires that servers and proxies explicitly

support it, this design represents a performance improvement over

options that perform just one request in each connection. With

limited trust placed in the proxy (see Section 8), clients are

assured that requests are not uniquely attributed to them or linked

to other requests.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

An HTTP request that is encapsulated in an

HPKE-encrypted message; see Section 5.1.

¶

¶

¶

¶

¶

¶

¶

¶

Encapsulated Response:

Oblivious Proxy Resource:

Oblivious Request Resource:

Oblivious Target Resource:

An HTTP response that is encapsulated in an

HPKE-encrypted message; see Section 5.2.

An intermediary that forwards requests

and responses between clients and a single oblivious request

resource.

A resource that can receive an

encapsulated request, extract the contents of that request,

forward it to an oblivious target resource, receive a response,

encapsulate that response, then return that response.

The resource that is the target of an

encapsulated request. This resource logically handles only

regular HTTP requests and responses and so might be ignorant of

the use of oblivious HTTP to reach it.

This draft includes pseudocode that uses the functions and

conventions defined in [HPKE].

Encoding an integer to a sequence of bytes in network byte order is

described using the function encode(n, v), where n is the number of

bytes and v is the integer value. The function len() returns the

length of a sequence of bytes.

Formats are described using notation from Section 1.3 of [QUIC].

3. Overview

A client learns the following:

The identity of an oblivious request resource. This might include

some information about oblivious target resources that the

oblivious request resource supports.

The details of an HPKE public key that the oblivious request

resource accepts, including an identifier for that key and the

HPKE algorithms that are used with that key.

The identity of an oblivious proxy resource that will forward

encapsulated requests and responses to the oblivious request

resource.

This information allows the client to make a request of an oblivious

target resource without that resource having only a limited ability

to correlate that request with the client IP or other requests that

the client might make to that server.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-1.3

Client Proxy Request Target
Resource Resource Resource

Encapsulated
Request

Encapsulated
Request

Request

Response
Encapsulated

Response
Encapsulated

Response

Figure 1: Overview of Oblivious HTTP

In order to make a request to an oblivious target resource, the

following steps occur, as shown in Figure 1:

The client constructs an HTTP request for an oblivious target

resource.

The client encodes the HTTP request in a binary HTTP message

and then encapsulates that message using HPKE and the process

from Section 5.1.

The client sends a POST request to the oblivious proxy resource

with the encapsulated request as the content of that message.

The oblivious proxy resource forwards this request to the

oblivious request resource.

The oblivious request resource receives this request and

removes the HPKE protection to obtain an HTTP request.

The oblivious request resource makes an HTTP request that

includes the target URI, method, fields, and content of the

request it acquires.

The oblivious target resource answers this HTTP request with an

HTTP response.

The oblivious request resource encapsulates the HTTP response

following the process in Section 5.2 and sends this in response

to the request from the oblivious proxy resource.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

The oblivious proxy resource forwards this response to the

client.

The client removes the encapsulation to obtain the response to

the original request.

3.1. Applicability

Oblivious HTTP has limited applicability. Many uses of HTTP benefit

from being able to carry state between requests, such as with

cookies ([RFC6265]), authentication (Section 11 of [HTTP]), or even

alternative services ([RFC7838]). Oblivious HTTP seeks to prevent

this sort of linkage, which requires that applications not carry

state between requests.

Oblivious HTTP is primarily useful where privacy risks associated

with possible stateful treatment of requests are sufficiently

negative that the cost of deploying this protocol can be justified.

Oblivious HTTP is simpler and less costly than more robust systems,

like Prio ([PRIO]) or Tor ([Dingledine2004]), which can provide

stronger guarantees at higher operational costs.

Oblivious HTTP is more costly than a direct connection to a server.

Some costs, like those involved with connection setup, can be

amortized, but there are several ways in which oblivious HTTP is

more expensive than a direct request:

Each oblivious request requires at least two regular HTTP

requests, which adds latency.

Each request is expanded in size with additional HTTP fields,

encryption-related metadata, and AEAD expansion.

Deriving cryptographic keys and applying them for request and

response protection takes non-negligible computational resources.

Examples of where preventing the linking of requests might justify

these costs include:

DNS queries. DNS queries made to a recursive resolver reveal

information about the requester, particularly if linked to other

queries.

Telemetry submission. Applications that submit reports about

their usage to their developers might use oblivious HTTP for some

types of moderately sensitive data.

9.

¶

10.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-11

4. Key Configuration

A client needs to acquire information about the key configuration of

the oblivious request resource in order to send encapsulated

requests.

In order to ensure that clients do not encapsulate messages that

other entities can intercept, the key configuration MUST be

authenticated and have integrity protection.

This document describes the "application/ohttp-keys" media type; see

Section 4.2. This media type might be used, for example with HTTPS,

as part of a system for configuring or discovering key

configurations. Note however that such a system needs to consider

the potential for key configuration to be used to compromise client

privacy; see Section 9.

Specifying a format for expressing the information a client needs to

construct an encapsulated request ensures that different client

implementations can be configured in the same way. This also enables

advertising key configurations in a consistent format.

A client might have multiple key configurations to select from when

encapsulating a request. Clients are responsible for selecting a

preferred key configuration from those it supports. Clients need to

consider both the key encapsulation method (KEM) and the

combinations of key derivation function (KDF) and authenticated

encryption with associated data (AEAD) in this decision.

Evolution of the key configuration format is supported through the

definition of new formats that are identified by new media types.

4.1. Key Configuration Encoding

A single key configuration consists of a key identifier, a public

key, an identifier for the KEM that the public key uses, and a set

HPKE symmetric algorithms. Each symmetric algorithm consists of an

identifier for a KDF and an identifier for an AEAD.

Figure 2 shows a single key configuration, KeyConfig, that is

expressed using the TLS syntax; see Section 3 of [TLS].

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-3

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

opaque HpkePublicKey[Npk];

uint16 HpkeKemId;

uint16 HpkeKdfId;

uint16 HpkeAeadId;

struct {

 HpkeKdfId kdf_id;

 HpkeAeadId aead_id;

} HpkeSymmetricAlgorithms;

struct {

 uint8 key_id;

 HpkeKemId kem_id;

 HpkePublicKey public_key;

 HpkeSymmetricAlgorithms cipher_suites<4..2^16-4>;

} KeyConfig;

Figure 2: A Single Key Configuration

The types HpkeKemId, HpkeKdfId, and HpkeAeadId identify a KEM, KDF,

and AEAD respectively. The definitions for these identifiers and the

semantics of the algorithms they identify can be found in [HPKE].

The Npk parameter corresponding to the HpkeKdfId can be found in

[HPKE].

4.2. Key Configuration Media Type

The "application/ohttp-keys" format is a media type that identifies

a serialized collection of key configurations. The content of this

media type comprises one or more key configuration encodings (see

Section 4.1) that are concatenated.

application

ohttp-keys

N/A

None

only "8bit" or "binary" is permitted

see Section 8

N/A

this specification

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

5. HPKE Encapsulation

HTTP message encapsulation uses HPKE for request and response

encryption. An encapsulated HTTP message includes the following

values:

A binary-encoded HTTP message; see [BINARY].

Padding of arbitrary length which MUST contain all zeroes.

The encoding of an HTTP message is as follows:

An Encapsulated Request is comprised of a length-prefixed key

identifier and a HPKE-protected request message. HPKE protection

includes an encapsulated KEM shared secret (or enc), plus the AEAD-

protected request message. An Encapsulated Request is shown in

Figure 3. Section 5.1 describes the process for constructing and

processing an Encapsulated Request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

¶

Plaintext Message {

 Message Length (i),

 Message (..),

 Padding Length (i),

 Padding (..),

}

¶

¶

Figure 3: Encapsulated Request

The Nenc parameter corresponding to the HpkeKdfId can be found in

[HPKE].

Responses are bound to responses and so consist only of AEAD-

protected content. Section 5.2 describes the process for

constructing and processing an Encapsulated Response.

Figure 4: Encapsulated Response

The size of the Nonce field in an Encapsulated Response corresponds

to the size of an AEAD key for the corresponding HPKE ciphersuite.

5.1. Encapsulation of Requests

Clients encapsulate a request request using values from a key

configuration:

the key identifier from the configuration, keyID, with the

corresponding KEM identified by kemID,

the public key from the configuration, pkR, and

a selected combination of KDF, identified by kdfID, and AEAD,

identified by aeadID.

The client then constructs an encapsulated request, enc_request, as

follows:

Compute an HPKE context using pkR, yielding context and

encapsulation key enc.

Encapsulated Request {

 Key Identifier (8),

 KEM Identifier (16),

 KDF Identifier (16),

 AEAD Identifier (16),

 Encapsulated KEM Shared Secret (8*Nenc),

 AEAD-Protected Request (..),

}

¶

¶

Encapsulated Response {

 Nonce (Nk),

 AEAD-Protected Response (..),

}

¶

¶

*

¶

* ¶

*

¶

¶

1.

¶

Construct associated data, aad, by concatenating the values of

keyID, kemID, kdfID, and aeadID, as one 8-bit integer and three

16-bit integers, respectively, each in network byte order.

Encrypt (seal) request with aad as associated data using

context, yielding ciphertext ct.

Concatenate the values of aad, enc, and ct, yielding an

Encapsulated Request enc_request.

Note that enc is of fixed-length, so there is no ambiguity in

parsing this structure.

In pseudocode, this procedure is as follows:

Servers decrypt an Encapsulated Request by reversing this process.

Given an Encapsulated Request enc_request, a server:

Parses enc_request into keyID, kemID, kdfID, aeadID, enc, and

ct (indicated using the function parse() in pseudocode). The

server is then able to find the HPKE private key, skR,

corresponding to keyID.

a. If keyID does not identify a key matching the type of kemID,

the server returns an error.

b. If kdfID and aeadID identify a combination of KDF and AEAD

that the server is unwilling to use with skR, the server

returns an error.

Compute an HPKE context using skR and the encapsulated key enc,

yielding context.

Construct additional associated data, aad, from keyID, kemID,

kdfID, and aeadID or as the first seven bytes of enc_request.

Decrypt ct using aad as associated data, yielding request or an

error on failure. If decryption fails, the server returns an

error.

In pseudocode, this procedure is as follows:

2.

¶

3.

¶

4.

¶

¶

¶

enc, context = SetupBaseS(pkR, "request")

aad = concat(encode(1, keyID),

 encode(2, kemID),

 encode(2, kdfID),

 encode(2, aeadID))

ct = context.Seal(aad, request)

enc_request = concat(aad, enc, ct)

¶

¶

1.

¶

¶

¶

2.

¶

3.

¶

4.

¶

¶

5.2. Encapsulation of Responses

Given an HPKE context context, a request message request, and a

response response, servers generate an Encapsulated Response

enc_response as follows:

Export a secret secret from context, using the string

"response" as context. The length of this secret is max(Nn,

Nk), where Nn and Nk are the length of AEAD key and nonce

associated with context.

Generate a random value of length max(Nn, Nk) bytes, called

response_nonce.

Extract a pseudorandom key prk using the Extract function

provided by the KDF algorithm associated with context. The ikm

input to this function is secret; the salt input is the

concatenation of enc (from enc_request) and response_nonce

Use the Expand function provided by the same KDF to extract an

AEAD key key, of length Nk - the length of the keys used by the

AEAD associated with context. Generating key uses a label of

"key".

Use the same Expand function to extract a nonce nonce of length

Nn - the length of the nonce used by the AEAD. Generating nonce

uses a label of "nonce".

Encrypt response, passing the AEAD function Seal the values of

key, nonce, empty aad, and a pt input of request, which yields

ct.

Concatenate response_nonce and ct, yielding an Encapsulated

Response enc_response. Note that response_nonce is of fixed-

length, so there is no ambiguity in parsing either

response_nonce or ct.

In pseudocode, this procedure is as follows:

keyID, kemID, kdfID, aeadID, enc, ct = parse(enc_request)

aad = concat(encode(1, keyID),

 encode(2, kemID),

 encode(2, kdfID),

 encode(2, aeadID))

context = SetupBaseR(enc, skR, "request")

request, error = context.Open(aad, ct)

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

¶

Clients decrypt an Encapsulated Request by reversing this process.

That is, they first parse enc_response into response_nonce and ct.

They then follow the same process to derive values for aead_key and

aead_nonce.

The client uses these values to decrypt ct using the Open function

provided by the AEAD. Decrypting might produce an error, as follows:

6. HTTP Usage

A client interacts with the oblivious proxy resource by constructing

an encapsulated request. This encapsulated request is included as

the content of a POST request to the oblivious proxy resource. This

request MUST only contain those fields necessary to carry the

encapsulated request: a method of POST, a target URI of the

oblivious proxy resource, a header field containing the content type

(see (Section 7), and the encapsulated request as the request

content. Clients MAY include fields that do not reveal information

about the content of the request, such as Alt-Used [ALT-SVC], or

information that it trusts the oblivious proxy resource to remove,

such as fields that are listed in the Connection header field.

The oblivious proxy resource interacts with the oblivious request

resource by constructing a request using the same restrictions as

the client request, except that the target URI is the oblivious

request resource. The content of this request is copied from the

client. The oblivious proxy resource MUST NOT add information about

the client to this request.

When a response is received from the oblivious request resource, the

oblivious proxy resource forwards the response according to the

rules of an HTTP proxy; see Section 7.6 of [HTTP].

An oblivious request resource, if it receives any response from the

oblivious target resource, sends a single 200 response containing

the encapsulated response. Like the request from the client, this

response MUST only contain those fields necessary to carry the

encapsulated response: a 200 status code, a header field indicating

the content type, and the encapsulated response as the response

secret = context.Export("response", Nk)

response_nonce = random(max(Nn, Nk))

salt = concat(enc, response_nonce)

prk = Extract(salt, secret)

aead_key = Expand(prk, "key", Nk)

aead_nonce = Expand(prk, "nonce", Nn)

ct = Seal(aead_key, aead_nonce, "", response)

enc_response = concat(response_nonce, ct)

¶

¶

¶

reponse, error = Open(aead_key, aead_nonce, "", ct)¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.6

content. As with requests, additional fields MAY be used to convey

information that does not reveal information about the encapsulated

response.

An oblivious request resource acts as a gateway for requests to the

oblivious target resource (see Section 7.6 of [HTTP]). The one

exception is that any information it might forward in a response

MUST be encapsulated, unless it is responding to errors it detects

before removing encapsulation of the request; see Section 6.2.

6.1. Informational Responses

This encapsulation does not permit progressive processing of

responses. Though the binary HTTP response format does support the

inclusion of informational (1xx) status codes, the AEAD

encapsulation cannot be removed until the entire message is

received.

In particular, the Expect header field with 100-continue (see

Section 10.1.1 of [HTTP]) cannot be used. Clients MUST NOT construct

a request that includes a 100-continue expectation; the oblivious

request resource MUST generate an error if a 100-continue

expectation is received.

6.2. Errors

A server that receives an invalid message for any reason MUST

generate an HTTP response with a 4xx status code.

Errors detected by the oblivious proxy resource and errors detected

by the oblivious request resource before removing protection

(including being unable to remove encapsulation for any reason)

result in the status code being sent without protection in response

to the POST request made to that resource.

Errors detected by the oblivious request resource after successfully

removing encapsulation and errors detected by the oblivious target

resource MUST be sent in an encapsulated response.

7. Media Types

Media types are used to identify encapsulated requests and

responses.

Evolution of the format of encapsulated requests and responses is

supported through the definition of new formats that are identified

by new media types.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.6

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

7.1. message/ohttp-req Media Type

The "message/ohttp-req" identifies an encapsulated binary HTTP

request. This is a binary format that is defined in Section 5.1.

message

ohttp-req

N/A

None

only "8bit" or "binary" is permitted

see Section 8

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.2. message/ohttp-res Media Type

The "message/ohttp-res" identifies an encapsulated binary HTTP

response. This is a binary format that is defined in Section 5.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

message

ohttp-res

N/A

None

only "8bit" or "binary" is permitted

see Section 8

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

8. Security Considerations

In this design, a client wishes to make a request of a server that

is authoritative for the oblivious target resource. The client

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

wishes to make this request without linking that request with

either:

The identity at the network and transport layer of the client

(that is, the client IP address and TCP or UDP port number the

client uses to create a connection).

Any other request the client might have made in the past or

might make in the future.

In order to ensure this, the client selects a proxy (that serves the

oblivious proxy resource) that it trusts will protect this

information by forwarding the encapsulated request and response

without passing the server (that serves the oblivious request

resource).

In this section, a deployment where there are three entities is

considered:

A client makes requests and receives responses

A proxy operates the oblivious proxy resource

A server operates both the oblivious request resource and the

oblivious target resource

To achieve the stated privacy goals, the oblivious proxy resource

cannot be operated by the same entity as the oblivious request

resource. However, colocation of the oblivious request resource and

oblivious target resource simplifies the interactions between those

resources without affecting client privacy.

As a consequence of this configuration, Oblivious HTTP prevents

linkability described above. Informally, this means:

Requests and responses are known only to clients and targets in

possession of the corresponding response encapsulation key and

HPKE keying material. In particular, the oblivious proxy knows

the origin and destination of an encapsulated request and

response, yet does not know the decapsulated contents.

Likewise, targets know only the oblivious request origin, i.e.,

the proxy, and the decapsulated request. Only the client knows

both the plaintext request and response.

Targets cannot link requests from the same client in the

absence of unique per-client keys.

Traffic analysis that might affect these properties are outside the

scope of this document; see Section 8.2.2.

¶

1.

¶

2.

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

1.

¶

2.

¶

¶

A formal analysis of Oblivious HTTP is in [OHTTP-ANALYSIS].

8.1. Client Responsibilities

Clients MUST ensure that the key configuration they select for

generating encapsulated requests is integrity protected and

authenticated so that it can be attributed to the oblivious request

resource; see Section 4.

Since clients connect directly to the proxy instead of the target,

application configurations wherein clients make policy decisions

about target connections, e.g., to apply certificate pinning, are

incompatible with Oblivious HTTP. In such cases, alternative

technologies such as HTTP CONNECT (Section 9.3.6 of [HTTP]) can be

used. Applications could implement related policies on key

configurations and proxy connections, though these might not provide

the same properties as policies enforced directly on target

connections. When this difference is relevant, applications can

instead connect directly to the target at the cost of either privacy

or performance.

Clients MUST NOT include identifying information in the request that

is encapsulated. Identifying information includes cookies [COOKIES],

authentication credentials or tokens, and any information that might

reveal client-specific information such as account credentials.

Clients cannot carry connection-level state between requests as they

only establish direct connections to the proxy responsible for the

oblivious proxy resource. However, clients need to ensure that they

construct requests without any information gained from previous

requests. Otherwise, the server might be able to use that

information to link requests. Cookies [COOKIES] are the most obvious

feature that MUST NOT be used by clients. However, clients need to

include all information learned from requests, which could include

the identity of resources.

Clients MUST generate a new HPKE context for every request, using a

good source of entropy ([RANDOM]) for generating keys. Key reuse not

only risks requests being linked, reuse could expose request and

response contents to the proxy.

The request the client sends to the oblivious proxy resource only

requires minimal information; see Section 6. The request that

carries the encapsulated request and is sent to the oblivious proxy

resource MUST NOT include identifying information unless the client

ensures that this information is removed by the proxy. A client MAY

include information only for the oblivious proxy resource in header

fields identified by the Connection header field if it trusts the

proxy to remove these as required by Section 7.6.1 of [HTTP]. The

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-9.3.6

client needs to trust that the proxy does not replicate the source

addressing information in the request it forwards.

Clients rely on the oblivious proxy resource to forward encapsulated

requests and responses. However, the proxy can only refuse to

forward messages, it cannot inspect or modify the contents of

encapsulated requests or responses.

8.2. Proxy Responsibilities

The proxy that serves the oblivious proxy resource has a very simple

function to perform. For each request it receives, it makes a

request of the oblivious request resource that includes the same

content. When it receives a response, it sends a response to the

client that includes the content of the response from the oblivious

request resource. When generating a request, the proxy MUST follow

the forwarding rules in Section 7.6 of [HTTP].

A proxy can also generate responses, though it assumed to not be

able to examine the content of a request (other than to observe the

choice of key identifier, KDF, and AEAD), so it is also assumed that

it cannot generate an encapsulated response.

A proxy MUST NOT add information about the client identity when

forwarding requests. This includes the Via field, the Forwarded

field [FORWARDED], and any similar information. A client does not

depend on the proxy using an authenticated and encrypted connection

to the oblivious request resource, only that information about the

client not be attached to forwarded requests.

8.2.1. Denial of Service

As there are privacy benefits from having a large rate of requests

forwarded by the same proxy (see Section 8.2.2), servers that

operate the oblivious request resource might need an arrangement

with proxies. This arrangement might be necessary to prevent having

the large volume of requests being classified as an attack by the

server.

If a server accepts a larger volume of requests from a proxy, it

needs to trust that the proxy does not allow abusive levels of

request volumes from clients. That is, if a server allows requests

from the proxy to be exempt from rate limits, the server might want

to ensure that the proxy applies a rate limiting policy that is

acceptable to the server.

Servers that enter into an agreement with a proxy that enables a

higher request rate might choose to authenticate the proxy to enable

the higher rate.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.6

8.2.2. Linkability Through Traffic Analysis

As the time at which encapsulated request or response messages are

sent can reveal information to a network observer. Though messages

exchanged between the oblivious proxy resource and the oblivious

request resource might be sent in a single connection, traffic

analysis could be used to match messages that are forwarded by the

proxy.

A proxy could, as part of its function, add delays in order to

increase the anonymity set into which each message is attributed.

This could latency to the overall time clients take to receive a

response, which might not be what some clients want.

A proxy can use padding to reduce the effectiveness of traffic

analysis.

A proxy that forwards large volumes of exchanges can provide better

privacy by providing larger sets of messages that need to be

matched.

8.3. Server Responsibilities

A server that operates both oblivious request and oblivious target

resources is responsible for removing request encapsulation,

generating a response the encapsulated request, and encapsulating

the response.

Servers should account for traffic analysis based on response size

or generation time. Techniques such as padding or timing delays can

help protect against such attacks; see Section 8.2.2.

If separate entities provide the oblivious request resource and

oblivious target resource, these entities might need an arrangement

similar to that between server and proxy for managing denial of

service; see Section 8.2.1. It is also necessary to provide

confidentiality protection for the unprotected requests and

responses, plus protections for traffic analysis; see Section 8.2.2.

An oblivious request resource needs to have a plan for replacing

keys. This might include regular replacement of keys, which can be

assigned new key identifiers. If an oblivious request resource

receives a request that contains a key identifier that it does not

understand or that corresponds to a key that has been replaced, the

server can respond with an HTTP 422 (Unprocessable Content) status

code.

A server can also use a 422 status code if the server has a key that

corresponds to the key identifier, but the encapsulated request

cannot be successfully decrypted using the key.

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.4. Replay Attacks

Encapsulated requests can be copied and replayed by the oblivious

proxy resource. The design of oblivious HTTP does not assume that

the oblivious proxy resource will not replay requests. In addition,

if a client sends an encapsulated request in TLS early data (see

Section 8 of [TLS] and [RFC8470]), a network-based adversary might

be able to cause the request to be replayed. In both cases, the

effect of a replay attack and the mitigations that might be employed

are similar to TLS early data.

A client or oblivious proxy resource MUST NOT automatically attempt

to retry a failed request unless it receives a positive signal

indicating that the request was not processed or forwarded. The

HTTP/2 REFUSED_STREAM error code (Section 8.1.4 of [RFC7540]), the

HTTP/3 H3_REQUEST_REJECTED error code (Section 8.1 of [QUIC-HTTP]),

or a GOAWAY frame with a low enough identifier (in either protocol

version) are all sufficient signals that no processing occurred.

Connection failures or interruptions are not sufficient signals that

no processing occurred.

The anti-replay mechanisms described in Section 8 of [TLS] are

generally applicable to oblivious HTTP requests. Servers can use the

encapsulated keying material as a unique key for identifying

potential replays. This depends on clients generating a new HPKE

context for every request.

The mechanism used in TLS for managing differences in client and

server clocks cannot be used as it depends on being able to observe

previous interactions. Oblivious HTTP explicitly prevents such

linkability. Applications can still include an explicit indication

of time to limit the span of time over which a server might need to

track accepted requests. Clock information could be used for client

identification, so reduction in precision or obfuscation might be

necessary.

The considerations in [RFC8470] as they relate to managing the risk

of replay also apply, though there is no option to delay the

processing of a request.

Limiting requests to those with safe methods might not be

satisfactory for some applications, particularly those that involve

the submission of data to a server. The use of idempotent methods

might be of some use in managing replay risk, though it is important

to recognize that different idempotent requests can be combined to

be not idempotent.

Idempotent actions with a narrow scope based on the value of a

protected nonce could enable data submission with limited replay

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-8
https://rfc-editor.org/rfc/rfc8446#section-8

exposure. A nonce might be added as an explicit part of a request,

or, if the oblivious request and target resources are co-located,

the encapsulated keying material can be used to produce a nonce.

The server-chosen response_nonce field ensures that responses have

unique AEAD keys and nonces even when requests are replayed.

8.5. Post-Compromise Security

This design does not provide post-compromise security for responses.

A client only needs to retain keying material that might be used

compromise the confidentiality and integrity of a response until

that response is consumed, so there is negligible risk associated

with a client compromise.

A server retains a secret key that might be used to remove

protection from messages over much longer periods. A server

compromise that provided access to the oblivious request resource

secret key could allow an attacker to recover the plaintext of all

requests sent toward affected keys and all of the responses that

were generated.

Even if server keys are compromised, an adversary cannot access

messages exchanged by the client with the oblivious proxy resource

as messages are protected by TLS. Use of a compromised key also

requires that the oblivious proxy resource cooperate with the

attacker or that the attacker is able to compromise these TLS

connections.

The total number of affected messages affected by server key

compromise can be limited by regular rotation of server keys.

9. Privacy Considerations

One goal of this design is that independent client requests are only

linkable by the chosen key configuration. The oblivious proxy and

request resources can link requests using the same key configuration

by matching KeyConfig.key_id, or, if the oblivious target resource

is willing to use trial decryption, a limited set of key

configurations that share an identifier. An oblivious proxy can link

requests using the public key corresponding to KeyConfig.key_id.

Request resources are capable of linking requests depending on how

KeyConfigs are produced by servers and discovered by clients.

Specifically, servers can maliciously construct key configurations

to track individual clients. A specific method for a client to

acquire key configurations is not included in this specification.

Clients need to consider these tracking vectors when choosing a

discovery method. Applications using this design should provide

accommodations to mitigate tracking using key configurations.

¶

¶

¶

¶

¶

¶

¶

¶

[BINARY]

[HPKE]

[HTTP]

10. Operational and Deployment Considerations

Using Oblivious HTTP adds both cryptographic and latency to requests

relative to a simple HTTP request-response exchange. Deploying proxy

services that are on path between clients and servers avoids adding

significant additional delay due to network topology. A study of a

similar system [ODoH] found that deploying proxies close to servers

was most effective in minimizing additional latency.

Oblivious HTTP might be incompatible with network interception

regimes, such as those that rely on configuring clients with trust

anchors and intercepting TLS connections. While TLS might be

intercepted successfully, interception middleboxes devices might not

receive updates that would allow Oblivious HTTP to be correctly

identified using the media types defined in Section 7.

Oblivious HTTP has a simple key management design that is not

trivially altered to enable interception by intermediaries. Clients

that are configured to enable interception might choose to disable

Oblivious HTTP in order to ensure that content is accessible to

middleboxes.

11. IANA Considerations

Please update the "Media Types" registry at https://www.iana.org/

assignments/media-types with the registration information in Section

7 for the media types "message/ohttp-req", "message/ohttp-res", and

"application/ohttp-keys".

12. References

12.1. Normative References

Thomson, M., "Binary Representation of HTTP Messages",

Work in Progress, Internet-Draft, draft-thomson-http-

binary-message-latest, 26 November 2021, <https://

datatracker.ietf.org/doc/html/draft-thomson-http-binary-

message-latest>.

Barnes, R. L., Bhargavan, K., Lipp, B., and C. A. Wood,

"Hybrid Public Key Encryption", Work in Progress,

Internet-Draft, draft-irtf-cfrg-hpke-12, 2 September

2021, <https://datatracker.ietf.org/doc/html/draft-irtf-

cfrg-hpke-12>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

¶

¶

¶

¶

https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://datatracker.ietf.org/doc/html/draft-thomson-http-binary-message-latest
https://datatracker.ietf.org/doc/html/draft-thomson-http-binary-message-latest
https://datatracker.ietf.org/doc/html/draft-thomson-http-binary-message-latest
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19

[QUIC]

[QUIC-HTTP]

[RFC2119]

[RFC7540]

[RFC8174]

[RFC8470]

[TLS]

[ALT-SVC]

[COOKIES]

[Dingledine2004]

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bishop, M., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

quic-http-34, 2 February 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-http-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Thomson, M., Nottingham, M., and W. Tarreau, "Using Early

Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September

2018, <https://www.rfc-editor.org/rfc/rfc8470>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

12.2. Informative References

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/rfc/rfc6265>.

Dingledine, R., Mathewson, N., and P. Syverson,

"Tor: The Second-Generation Onion Router", August 2004,

https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8470
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265

[FORWARDED]

[ODoH]

[ODOH]

[OHTTP-ANALYSIS]

[PRIO]

[RANDOM]

[RFC6265]

[RFC7838]

[X25519]

<https://svn.torproject.org/svn/projects/design-paper/

tor-design.html>.

Petersson, A. and M. Nilsson, "Forwarded HTTP

Extension", RFC 7239, DOI 10.17487/RFC7239, June 2014,

<https://www.rfc-editor.org/rfc/rfc7239>.

Singanamalla, S., Chunhapanya, S., Vavrusa, M., Verma,

T., Wu, P., Fayed, M., Heimerl, K., Sullivan, N., and C.

A. Wood, "Oblivious DNS over HTTPS (ODoH): A Practical

Privacy Enhancement to DNS", 7 January 2021, <https://

www.petsymposium.org/2021/files/papers/issue4/

popets-2021-0085.pdf>.

Kinnear, E., McManus, P., Pauly, T., Verma, T., and C. A.

Wood, "Oblivious DNS Over HTTPS", Work in Progress,

Internet-Draft, draft-pauly-dprive-oblivious-doh-07, 2

September 2021, <https://datatracker.ietf.org/doc/html/

draft-pauly-dprive-oblivious-doh-07>.

Hoyland, J., "Tamarin Model of Oblivious HTTP", 23

August 2021, <https://github.com/cloudflare/ohttp-

analysis>.

Corrigan-Gibbs, H. and D. Boneh, "Prio: Private, Robust,

and Scalable Computation of Aggregate Statistics", 14

March 2017, <https://crypto.stanford.edu/prio/paper.pdf>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/rfc/rfc4086>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/rfc/rfc6265>.

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/rfc/rfc7748>.

Appendix A. Complete Example of a Request and Response

A single request and response exchange is shown here. Binary values

(key configuration, secret keys, the content of messages, and

https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://www.rfc-editor.org/rfc/rfc7239
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://datatracker.ietf.org/doc/html/draft-pauly-dprive-oblivious-doh-07
https://datatracker.ietf.org/doc/html/draft-pauly-dprive-oblivious-doh-07
https://github.com/cloudflare/ohttp-analysis
https://github.com/cloudflare/ohttp-analysis
https://crypto.stanford.edu/prio/paper.pdf
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc7748

intermediate values) are shown in hexadecimal. The request and

response here are absolutely minimal; the purpose of this example is

to show the cryptographic operations.

The oblivious request resource generates a key pair. In this example

the server chooses DHKEM(X25519, HKDF-SHA256) and generates an

X25519 key pair [X25519]. The X25519 secret key is:

The oblivious request resource constructs a key configuration that

includes the corresponding public key as follows:

This key configuration is somehow obtained by the client. Then when

a client wishes to send an HTTP request of a GET request to https://

example.com, it constructs the following binary HTTP message:

The client then reads the oblivious request resource key

configuration and selects a mutually supported KDF and AEAD. In this

example, the client selects HKDF-SHA256 and AES-128-GCM. The client

then generates an HPKE context that uses the server public key. This

results in the following encapsulated key:

The corresponding private key is:

Applying the Seal operation from the HPKE context produces an

encrypted message, allowing the client to construct the following

encapsulated request:

The client then sends this to the oblivious proxy resource in a POST

request, which might look like the following HTTP/1.1 request:

¶

¶

cb14d538a70d8a74d47fb7e3ac5052a086da127c678d3585dcad72f98e3bff83¶

¶

01002012a45279412ea6ef11e9f839bb5a422fc1262b5c023d787e4e636e70ae

d3d56e00080001000100010003

¶

¶

00034745540568747470730b6578616d706c652e636f6d012f¶

¶

cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674db72730623ca3b¶

¶

c20afd33a2f2663faf023acf5d56fc08fddd38aada29b21b3b96e16f4326ccf7¶

¶

01002000010001cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674

db72730623ca3b68b9e75a0576745da12c4fa5053b7ec06d7f625197564a6087

ec299f8d6fffa2a8addfc1c0f64b4b05

¶

¶

POST /request.example.net/proxy HTTP/1.1

Host: proxy.example.org

Content-Type: message/ohttp-req

Content-Length: 78

<content is the encapsulated request above>

The oblivious proxy resource receives this request and forwards it

to the oblivious request resource, which might look like:

POST /oblivious/request HTTP/1.1

Host: example.com

Content-Type: message/ohttp-req

Content-Length: 78

<content is the encapsulated request above>

The oblivous request resource receives this request, selects the key

it generated previously using the key identifier from the message,

and decrypts the message. As this request is directed to the same

server, the oblivious request resource does not need to initiate an

HTTP request to the oblivious target resource. The request can be

served directly by the oblivious target resource, which generates a

minimal response (consisting of just a 200 status code) as follows:

The response is constructed by extracting a secret from the HPKE

context:

The key derivation for the encapsulated response uses both the

encapsulated KEM key from the request and a randomly selected nonce.

This produces a salt of:

The salt and secret are both passed to the Extract function of the

selected KDF (HKDF-SHA256) to produce a pseudorandom key of:

¶

¶

¶

¶

0140c8¶

¶

9c0b96b577b9fc7a5beef536e0ff3a64¶

¶

cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674db72730623ca3b

061d62d5df5832c6c9fa4617ceb848a7

¶

¶

a0ab55d3b1811694943bb72c386f59bd030e1278692a3db2f30d8aac2f89a5fc¶

The pseudorandom key is used with the Expand function of the KDF and

an info field of "key" to produce a 16-byte key for the selected

AEAD (AES-128-GCM):

With the same KDF and pseudorandom key, an info field of "nonce" is

used to generate a 12-byte nonce:

The AEAD Seal function is then used to encrypt the response, which

is added to the randomized nonce value to produce the encapsulated

response:

The oblivious request resource then constructs a response:

HTTP/1.1 200 OK

Date: Wed, 27 Jan 2021 04:45:07 GMT

Cache-Control: private, no-store

Content-Type: message/ohttp-res

Content-Length: 38

<content is the encapsulated response>

The same response might then be generated by the oblivious proxy

resource which might change as little as the Date header. The client

is then able to use the HPKE context it created and the nonce from

the encapsulated response to construct the AEAD key and nonce and

decrypt the response.

Acknowledgments

This design is based on a design for oblivious DoH, described in

[ODOH]. David Benjamin and Eric Rescorla made technical

contributions.

Authors' Addresses

Martin Thomson

Mozilla

Email: mt@lowentropy.net

Christopher A. Wood

¶

1dae9d7fe263d23e51a768bcaf310aa5¶

¶

e520beec147740e4f8a3b553¶

¶

061d62d5df5832c6c9fa4617ceb848a7a6f694da45accc3c32ad576cb204f7cd

3bf23e

¶

¶

¶

¶

¶

mailto:mt@lowentropy.net

Cloudflare

Email: caw@heapingbits.net

mailto:caw@heapingbits.net

	Oblivious HTTP
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	3.1. Applicability

	4. Key Configuration
	4.1. Key Configuration Encoding
	4.2. Key Configuration Media Type

	5. HPKE Encapsulation
	5.1. Encapsulation of Requests
	5.2. Encapsulation of Responses

	6. HTTP Usage
	6.1. Informational Responses
	6.2. Errors

	7. Media Types
	7.1. message/ohttp-req Media Type
	7.2. message/ohttp-res Media Type

	8. Security Considerations
	8.1. Client Responsibilities
	8.2. Proxy Responsibilities
	8.2.1. Denial of Service
	8.2.2. Linkability Through Traffic Analysis

	8.3. Server Responsibilities
	8.4. Replay Attacks
	8.5. Post-Compromise Security

	9. Privacy Considerations
	10. Operational and Deployment Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Complete Example of a Request and Response
	Acknowledgments
	Authors' Addresses

