
Workgroup:

Oblivious HTTP Application Intermediation

Internet-Draft: draft-ietf-ohai-ohttp-03

Published: 8 August 2022

Intended Status: Standards Track

Expires: 9 February 2023

Authors: M. Thomson

Mozilla

C. A. Wood

Cloudflare

Oblivious HTTP

Abstract

This document describes a system for forwarding encrypted HTTP

messages. This allows a client to make multiple requests to an

origin server without that server being able to link those requests

to the client or to identify the requests as having come from the

same client, while placing only limited trust in the nodes used to

forward the messages.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://ietf-wg-

ohai.github.io/oblivious-http/draft-ietf-ohai-ohttp.html. Status

information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-ohai-ohttp/.

Discussion of this document takes place on the Oblivious HTTP

Application Intermediation Working Group mailing list

(mailto:ohai@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/ohai/. Subscribe at https://

www.ietf.org/mailman/listinfo/ohai/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-ohai/oblivious-http.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

¶

https://ietf-wg-ohai.github.io/oblivious-http/draft-ietf-ohai-ohttp.html
https://ietf-wg-ohai.github.io/oblivious-http/draft-ietf-ohai-ohttp.html
https://datatracker.ietf.org/doc/draft-ietf-ohai-ohttp/
https://datatracker.ietf.org/doc/draft-ietf-ohai-ohttp/
mailto:ohai@ietf.org
https://mailarchive.ietf.org/arch/browse/ohai/
https://mailarchive.ietf.org/arch/browse/ohai/
https://www.ietf.org/mailman/listinfo/ohai/
https://www.ietf.org/mailman/listinfo/ohai/
https://github.com/ietf-wg-ohai/oblivious-http
https://github.com/ietf-wg-ohai/oblivious-http
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Overview

2.1. Applicability

2.2. Conventions and Definitions

3. Key Configuration

3.1. Key Configuration Encoding

3.2. Key Configuration Media Type

4. HPKE Encapsulation

4.1. Encapsulation of Requests

4.2. Encapsulation of Responses

4.3. Request and Response Media Types

5. HTTP Usage

5.1. Informational Responses

5.2. Errors

6. Security Considerations

6.1. Client Responsibilities

6.2. Relay Responsibilities

6.2.1. Differential Treatment

6.2.2. Denial of Service

6.2.3. Traffic Analysis

6.3. Server Responsibilities

6.4. Key Management

6.5. Replay Attacks

6.5.1. Use of Date for Anti-Replay

6.5.2. Correcting Clock Differences

6.6. Forward Secrecy

6.7. Post-Compromise Security

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6.8. Client Clock Exposure

7. Privacy Considerations

8. Operational and Deployment Considerations

8.1. Performance Overhead

8.2. Resource Mappings

8.3. Network Management

9. Repurposing the Encapsulation Format

10. IANA Considerations

10.1. message/ohttp-keys Media Type

10.2. message/ohttp-req Media Type

10.3. message/ohttp-res Media Type

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Complete Example of a Request and Response

Acknowledgments

Authors' Addresses

1. Introduction

A HTTP request reveals information about the client's identity to

the server. Some of that information is in the request content, and

therefore under the control of the client. However, the source IP

address of the underlying connection reveals information that the

client has only limited control over.

Even where an IP address is not directly associated with an

individual, the requests made from it can be correlated over time to

assemble a profile of client behavior. In particular, connection

reuse improves performance, but provides servers with the ability to

correlate requests that share a connection.

Client-configured HTTP proxies can provide a degree of protection

against IP address tracking, and systems like virtual private

networks and the Tor network [Dingledine2004] provide additional

options for clients.

However, even when IP address tracking is mitigated using one of

these techniques, each request needs to be on a completely new TLS

connection to avoid the connection itself being used to correlate

behavior. This imposes considerable performance and efficiency

overheads, due to the additional round trip to the server (at a

minumum), additional data exchanged, and additional CPU cost of

cryptographic computations.

This document defines two kinds of HTTP resources -- Oblivious Relay

Resources and Oblivious Gateway Resources -- that process

encapsulated binary HTTP messages [BINARY] using Hybrid Public Key

Encryption (HPKE; [HPKE]). They can be composed to protect the

¶

¶

¶

¶

content of encapsulated requests and responses, thereby separating

the identity of a requester from the request.

Although this scheme requires support for two new kinds of oblivious

resources, it represents a performance improvement over options that

perform just one request in each connection. With limited trust

placed in the Oblivious Relay Resource (see Section 6), clients are

assured that requests are not uniquely attributed to them or linked

to other requests.

2. Overview

A client must initially know the following:

The identity of an Oblivious Gateway Resource. This might include

some information about what Target Resources the Oblivious

Gateway Resource supports.

The details of an HPKE public key that the Oblivious Gateway

Resource accepts, including an identifier for that key and the

HPKE algorithms that are used with that key.

The identity of an Oblivious Relay Resource that will accept

relay requests carrying an encapsulated request as its content

and forward the content in these requests to a single Oblivious

Gateway Resource. See Section 8.2 for more information about the

mapping between Oblivious Relay and Gateway Resources.

This information allows the client to make a request of a Target

Resource with that resource having only a limited ability to

correlate that request with the client IP or other requests that the

client might make to that server.

¶

¶

¶

*

¶

*

¶

*

¶

¶

Client Relay Gateway Target
Resource Resource Resource

Relay
Request
[+ Encapsulated

Request]
Gateway
Request
[+ Encapsulated

Request]
Request

Response
Gateway

Response
[+ Encapsulated

Response]
Relay

Response
[+ Encapsulated

Response]

Figure 1: Overview of Oblivious HTTP

In order to make a request to a Target Resource, the following steps

occur, as shown in Figure 1:

The client constructs an HTTP request for a Target Resource.

The client encodes the HTTP request in a binary HTTP message

and then encapsulates that message using HPKE and the process

from Section 4.1.

The client sends a POST request to the Oblivious Relay Resource

with the Encapsulated Request as the content of that message.

The Oblivious Relay Resource forwards this request to the

Oblivious Gateway resource.

The Oblivious Gateway Resource receives this request and

removes the HPKE protection to obtain an HTTP request.

The Oblivious Gateway Resource makes an HTTP request that

includes the target URI, method, fields, and content of the

request it acquires.

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

The Target Resource answers this HTTP request with an HTTP

response.

The Oblivious Gateway Resource encapsulates the HTTP response

following the process in Section 4.2 and sends this in response

to the request from the Oblivious Relay Resource.

The Oblivious Relay Resource forwards this response to the

client.

The client removes the encapsulation to obtain the response to

the original request.

2.1. Applicability

Oblivious HTTP has limited applicability. Many uses of HTTP benefit

from being able to carry state between requests, such as with

cookies ([RFC6265]), authentication (Section 11 of [HTTP]), or even

alternative services ([RFC7838]). Oblivious HTTP removes linkage at

the transport layer, which must be used in conjunction with

applications that do not carry state between requests.

Oblivious HTTP is primarily useful where privacy risks associated

with possible stateful treatment of requests are sufficiently large

that the cost of deploying this protocol can be justified. Oblivious

HTTP is simpler and less costly than more robust systems, like Prio

([PRIO]) or Tor ([Dingledine2004]), which can provide stronger

guarantees at higher operational costs.

Oblivious HTTP is more costly than a direct connection to a server.

Some costs, like those involved with connection setup, can be

amortized, but there are several ways in which Oblivious HTTP is

more expensive than a direct request:

Each request requires at least two regular HTTP requests, which

adds latency.

Each request is expanded in size with additional HTTP fields,

encryption-related metadata, and AEAD expansion.

Deriving cryptographic keys and applying them for request and

response protection takes non-negligible computational resources.

Examples of where preventing the linking of requests might justify

these costs include:

DNS queries. DNS queries made to a recursive resolver reveal

information about the requester, particularly if linked to other

queries.

7.

¶

8.

¶

9.

¶

10.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc9110#section-11

Client:

Encapsulated Request:

Encapsulated Response:

Oblivious Relay Resource:

Oblivious Gateway Resource:

Target Resource:

Relay Request:

Relay Response:

Telemetry submission. Applications that submit reports about

their usage to their developers might use Oblivious HTTP for some

types of moderately sensitive data.

These are examples of requests where there is information in a

request that - if it were connected to the identity of the user -

might allow a server to learn something about that user even if the

identity of the user is pseudonymous. Other examples include the

submission of anonymous surveys, making search queries, or

requesting location-specific content (such as retrieving tiles of a

map display).

2.2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses its own definition of client. When

referring to the HTTP definition of client (Section 3.3 of

[HTTP]), the term "HTTP client" is used; see Section 5.

An HTTP request that is encapsulated in an

HPKE-encrypted message; see Section 4.1.

An HTTP response that is encapsulated in an

HPKE-encrypted message; see Section 4.2.

An intermediary that forwards

encapsulated requests and responses between clients and a single

Oblivious Gateway Resource.

A resource that can receive an

encapsulated request, extract the contents of that request,

forward it to a Target Resource, receive a response, encapsulate

that response, then return that response.

The resource that is the target of an encapsulated

request. This resource logically handles only regular HTTP

requests and responses and so might be ignorant of the use of

Oblivious HTTP to reach it.

An HTTP request from Client to Relay that contains

an encapsulated request as the content.

An HTTP response from Relay to Client that contains

an encapsulated response as the content.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-3.3

Gateway Request:

Gateway Response:

An HTTP request from Relay to Gateway that

contains an encapsulated request as the content.

An HTTP response from Gateway to Relay that

contains an encapsulated response as the content.

This draft includes pseudocode that uses the functions and

conventions defined in [HPKE].

Encoding an integer to a sequence of bytes in network byte order is

described using the function encode(n, v), where n is the number of

bytes and v is the integer value. ASCII [ASCII] encoding of a string

s is indicated using the function encode_str(s). The function len()

returns the length of a sequence of bytes.

Formats are described using notation from Section 1.3 of [QUIC].

3. Key Configuration

A client needs to acquire information about the key configuration of

the Oblivious Gateway Resource in order to send encapsulated

requests. In order to ensure that clients do not encapsulate

messages that other entities can intercept, the key configuration

MUST be authenticated and have integrity protection.

This document does not define how that acquisition occurs. However,

in order to help facilitate interoperability, it does specify a

format for the keys. This ensures that different client

implementations can be configured in the same way and also enables

advertising key configurations in a consistent format. This format

might be used, for example with HTTPS, as part of a system for

configuring or discovering key configurations. Note however that

such a system needs to consider the potential for key configuration

to be used to compromise client privacy; see Section 7.

A client might have multiple key configurations to select from when

encapsulating a request. Clients are responsible for selecting a

preferred key configuration from those it supports. Clients need to

consider both the key encapsulation method (KEM) and the

combinations of key derivation function (KDF) and authenticated

encryption with associated data (AEAD) in this decision.

3.1. Key Configuration Encoding

A single key configuration consists of a key identifier, a public

key, an identifier for the KEM that the public key uses, and a set

HPKE symmetric algorithms. Each symmetric algorithm consists of an

identifier for a KDF and an identifier for an AEAD.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-1.3

Figure 2 shows a single key configuration.

HPKE Symmetric Algorithms {

 HPKE KDF ID (16),

 HPKE AEAD ID (16),

}

OHTTP Key Config {

 Key Identifier (8),

 HPKE KEM ID (16),

 HPKE Public Key (Npk * 8),

 HPKE Symmetric Algorithms Length (16),

 HPKE Symmetric Algorithms (32..262140),

}

Figure 2: A Single Key Configuration

The definitions for the identifiers used in HPKE and the semantics

of the algorithms they identify can be found in [HPKE]. The Npk

parameter is determined by the choice of HPKE KEM, which can also be

found in [HPKE].

3.2. Key Configuration Media Type

The "application/ohttp-keys" format is a media type that identifies

a serialized collection of key configurations. The content of this

media type comprises one or more key configuration encodings (see

Section 3.1) that are concatenated; see Section 10.1 for a

definition of the media type.

Evolution of the key configuration format is supported through the

definition of new formats that are identified by new media types.

4. HPKE Encapsulation

HTTP message encapsulation uses HPKE for request and response

encryption.

An encapsulated HTTP request contains a binary-encoded HTTP message

[BINARY] and no other fields; see Figure 3.

Figure 3: Plaintext Request Content

¶

¶

¶

¶

¶

¶

Request {

 Binary HTTP Message (..),

}

An Encapsulated Request is comprised of a key identifier and a HPKE-

protected request message. HPKE protection includes an encapsulated

KEM shared secret (or enc), plus the AEAD-protected request message.

An Encapsulated Request is shown in Figure 4. Section 4.1 describes

the process for constructing and processing an Encapsulated Request.

Figure 4: Encapsulated Request

The Nenc parameter corresponding to the HpkeKdfId can be found in

Section 7.1 of [HPKE].

An encrypted HTTP response includes a binary-encoded HTTP message

[BINARY] and no other content; see Figure 5.

Figure 5: Plaintext Response Content

Responses are bound to requests and so consist only of AEAD-

protected content. Section 4.2 describes the process for

constructing and processing an Encapsulated Response.

Figure 6: Encapsulated Response

The Nenc and Nk parameters corresponding to the HpkeKdfId can be

found in [HPKE]. Nenc refers to the size of the encapsulated KEM

shared secret, in bytes; Nk refers to the size of the AEAD key for

the HPKE ciphersuite, in bits.

¶

Encapsulated Request {

 Key Identifier (8),

 KEM Identifier (16),

 KDF Identifier (16),

 AEAD Identifier (16),

 Encapsulated KEM Shared Secret (8*Nenc),

 AEAD-Protected Request (..),

}

¶

¶

Response {

 Binary HTTP Message (..),

}

¶

Encapsulated Response {

 Nonce (Nk),

 AEAD-Protected Response (..),

}

¶

https://rfc-editor.org/rfc/rfc9180#section-7.1

4.1. Encapsulation of Requests

Clients encapsulate a request request using values from a key

configuration:

the key identifier from the configuration, keyID, with the

corresponding KEM identified by kemID,

the public key from the configuration, pkR, and

a selected combination of KDF, identified by kdfID, and AEAD,

identified by aeadID.

The client then constructs an Encapsulated Request, enc_request,

from a binary encoded HTTP request, request, as follows:

Construct a message header, hdr, by concatenating the values

of keyID, kemID, kdfID, and aeadID, as one 8-bit integer and

three 16-bit integers, respectively, each in network byte

order.

Build info by concatenating the ASCII-encoded string "message/

bhttp request", a zero byte, and the header.

Create a sending HPKE context by invoking SetupBaseS()

(Section 5.1.1 of [HPKE]) with the public key of the receiver

pkR and info. This yields the context sctxt and an

encapsulation key enc.

Encrypt request by invoking the Seal() method on sctxt

(Section 5.2 of [HPKE]) with empty associated data aad,

yielding ciphertext ct.

Concatenate the values of hdr, enc, and ct, yielding an

Encrypted Request enc_request.

Note that enc is of fixed-length, so there is no ambiguity in

parsing this structure.

In pseudocode, this procedure is as follows:

¶

*

¶

* ¶

*

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

https://rfc-editor.org/rfc/rfc9180#section-5.1.1
https://rfc-editor.org/rfc/rfc9180#section-5.2

Servers decrypt an Encapsulated Request by reversing this process.

Given an Encapsulated Request enc_request, a server:

Parses enc_request into keyID, kemID, kdfID, aeadID, enc, and

ct (indicated using the function parse() in pseudocode). The

server is then able to find the HPKE private key, skR,

corresponding to keyID.

a. If keyID does not identify a key matching the type of kemID,

the server returns an error.

b. If kdfID and aeadID identify a combination of KDF and AEAD

that the server is unwilling to use with skR, the server

returns an error.

Build info by concatenating the ASCII-encoded string "message/

bhttp request", a zero byte, keyID as an 8-bit integer, plus

kemID, kdfID, and aeadID as three 16-bit integers.

Create a receiving HPKE context by invoking SetupBaseR()

(Section 5.1.1 of [HPKE]) with skR, enc, and info. This

produces a context rctxt.

Decrypt ct by invoking the Open() method on rctxt (Section 5.2

of [HPKE]), with an empty associated data aad, yielding request

or an error on failure. If decryption fails, the server returns

an error.

In pseudocode, this procedure is as follows:

hdr = concat(encode(1, keyID),

 encode(2, kemID),

 encode(2, kdfID),

 encode(2, aeadID))

info = concat(encode_str("message/bhttp request"),

 encode(1, 0),

 hdr)

enc, sctxt = SetupBaseS(pkR, info)

ct = sctxt.Seal([], request)

enc_request = concat(hdr, enc, ct)

¶

¶

1.

¶

¶

¶

2.

¶

3.

¶

4.

¶

¶

keyID, kemID, kdfID, aeadID, enc, ct = parse(enc_request)

info = concat(encode_str("message/bhttp request"),

 encode(1, 0),

 encode(1, keyID),

 encode(2, kemID),

 encode(2, kdfID),

 encode(2, aeadID))

rctxt = SetupBaseR(enc, skR, info)

request, error = rctxt.Open([], ct)

¶

https://rfc-editor.org/rfc/rfc9180#section-5.1.1
https://rfc-editor.org/rfc/rfc9180#section-5.2

4.2. Encapsulation of Responses

Given an HPKE context context, a request message request, and a

response response, servers generate an Encapsulated Response

enc_response as follows:

Export a secret secret from context, using the string "message/

bhttp response" as context. The length of this secret is

max(Nn, Nk), where Nn and Nk are the length of AEAD key and

nonce associated with context.

Generate a random value of length max(Nn, Nk) bytes, called

response_nonce.

Extract a pseudorandom key prk using the Extract function

provided by the KDF algorithm associated with context. The ikm

input to this function is secret; the salt input is the

concatenation of enc (from enc_request) and response_nonce

Use the Expand function provided by the same KDF to extract an

AEAD key key, of length Nk - the length of the keys used by the

AEAD associated with context. Generating key uses a label of

"key".

Use the same Expand function to extract a nonce nonce of length

Nn - the length of the nonce used by the AEAD. Generating nonce

uses a label of "nonce".

Encrypt response, passing the AEAD function Seal the values of

key, nonce, empty aad, and a pt input of request, which yields

ct.

Concatenate response_nonce and ct, yielding an Encapsulated

Response enc_response. Note that response_nonce is of fixed-

length, so there is no ambiguity in parsing either

response_nonce or ct.

In pseudocode, this procedure is as follows:

Clients decrypt an Encapsulated Response by reversing this process.

That is, they first parse enc_response into response_nonce and ct.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

¶

secret = context.Export("message/bhttp response", Nk)

response_nonce = random(max(Nn, Nk))

salt = concat(enc, response_nonce)

prk = Extract(salt, secret)

aead_key = Expand(prk, "key", Nk)

aead_nonce = Expand(prk, "nonce", Nn)

ct = Seal(aead_key, aead_nonce, "", response)

enc_response = concat(response_nonce, ct)

¶

They then follow the same process to derive values for aead_key and

aead_nonce.

The client uses these values to decrypt ct using the Open function

provided by the AEAD. Decrypting might produce an error, as follows:

4.3. Request and Response Media Types

Media types are used to identify Encapsulated Requests and

Responses; see Section 10.2 and Section 10.3 for definitions of

these media types.

Evolution of the format of Encapsulated Requests and Responses is

supported through the definition of new formats that are identified

by new media types.

5. HTTP Usage

A client interacts with the Oblivious Relay Resource by constructing

an Encapsulated Request. This Encapsulated Request is included as

the content of a POST request to the Oblivious Relay Resource. This

request MUST only contain those fields necessary to carry the

Encapsulated Request: a method of POST, a target URI of the

Oblivious Relay Resource, a header field containing the content type

(see (Section 10.2), and the Encapsulated Request as the request

content. In the request to the Oblivious Relay Resource, clients MAY

include additional fields. However, those fields MUST be independent

of the Encapsulated Request and MUST be fields that the Oblivious

Relay Resource will remove before forwarding the Encapsulated

Request towards the target, such as the Connection or Proxy-

Authorization header fields [SEMANTICS].

The client role in this protocol acts as an HTTP client both with

respect to the Oblivious Relay Resource and the Target Resource. For

the request the clients makes to the Target Resource, this diverges

from typical HTTP assumptions about the use of a connection (see

Section 3.3 of [HTTP]) in that the request and response are

encrypted rather than sent over a connection. The Oblivious Relay

Resource and the Oblivious Gateway Resource also act as HTTP clients

toward the Oblivious Gateway Resource and Target Resource

respectively.

The Oblivious Relay Resource interacts with the Oblivious Gateway

Resource as an HTTP client by constructing a request using the same

restrictions as the client request, except that the target URI is

the Oblivious Gateway Resource. The content of this request is

copied from the client. The Oblivious Relay Resource MUST NOT add

information to the request without the client being aware of the

¶

¶

reponse, error = Open(aead_key, aead_nonce, "", ct)¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-3.3

type of information that might be added; see Section 6.2 for more

information on relay responsibilities.

When a response is received from the Oblivious Gateway Resource, the

Oblivious Relay Resource forwards the response according to the

rules of an HTTP proxy; see Section 7.6 of [HTTP].

An Oblivious Gateway Resource, if it receives any response from the

Target Resource, sends a single 200 response containing the

encapsulated response. Like the request from the client, this

response MUST only contain those fields necessary to carry the

encapsulated response: a 200 status code, a header field indicating

the content type, and the encapsulated response as the response

content. As with requests, additional fields MAY be used to convey

information that does not reveal information about the encapsulated

response.

An Oblivious Gateway Resource acts as a gateway for requests to the

Target Resource (see Section 7.6 of [HTTP]). The one exception is

that any information it might forward in a response MUST be

encapsulated, unless it is responding to errors it detects before

removing encapsulation of the request; see Section 5.2.

5.1. Informational Responses

This encapsulation does not permit progressive processing of

responses. Though the binary HTTP response format does support the

inclusion of informational (1xx) status codes, the AEAD

encapsulation cannot be removed until the entire message is

received.

In particular, the Expect header field with 100-continue (see

Section 10.1.1 of [HTTP]) cannot be used. Clients MUST NOT construct

a request that includes a 100-continue expectation; the Oblivious

Gateway Resource MUST generate an error if a 100-continue

expectation is received.

5.2. Errors

A server that receives an invalid message for any reason MUST

generate an HTTP response with a 4xx status code.

Errors detected by the Oblivious Relay Resource and errors detected

by the Oblivious Gateway Resource before removing protection

(including being unable to remove encapsulation for any reason)

result in the status code being sent without protection in response

to the POST request made to that resource.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-7.6
https://rfc-editor.org/rfc/rfc9110#section-7.6
https://rfc-editor.org/rfc/rfc9110#section-10.1.1

Errors detected by the Oblivious Gateway Resource after successfully

removing encapsulation and errors detected by the Target Resource

MUST be sent in an Encapsulated Response.

6. Security Considerations

In this design, a client wishes to make a request of a server that

is authoritative for the Target Resource. The client wishes to make

this request without linking that request with either:

The identity at the network and transport layer of the client

(that is, the client IP address and TCP or UDP port number the

client uses to create a connection).

Any other request the client might have made in the past or

might make in the future.

In order to ensure this, the client selects a relay (that serves the

Oblivious Relay Resource) that it trusts will protect this

information by forwarding the Encapsulated Request and Response

without passing it to the server (that serves the Oblivious Gateway

Resource).

In this section, a deployment where there are three entities is

considered:

A client makes requests and receives responses

A relay operates the Oblivious Relay Resource

A server operates both the Oblivious Gateway Resource and the

Target Resource

To achieve the stated privacy goals, the Oblivious Relay Resource

cannot be operated by the same entity as the Oblivious Gateway

Resource. However, colocation of the Oblivious Gateway Resource and

Target Resource simplifies the interactions between those resources

without affecting client privacy.

As a consequence of this configuration, Oblivious HTTP prevents

linkability described above. Informally, this means:

Requests and responses are known only to clients and targets in

possession of the corresponding response encapsulation key and

HPKE keying material. In particular, the Oblivious Relay knows

the origin and destination of an Encapsulated Request and

Response, yet does not know the decrypted contents. Likewise,

targets know only the Oblivious Gateway origin, i.e., the

relay, and the decrypted request. Only the client knows both

the plaintext request and response.

¶

¶

1.

¶

2.

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

1.

¶

Targets cannot link requests from the same client in the

absence of unique per-client keys.

Traffic analysis that might affect these properties are outside the

scope of this document; see Section 6.2.3.

A formal analysis of Oblivious HTTP is in [OHTTP-ANALYSIS].

6.1. Client Responsibilities

Clients MUST ensure that the key configuration they select for

generating Encapsulated Requests is integrity protected and

authenticated so that it can be attributed to the Oblivious Gateway

Resource; see Section 3.

Since clients connect directly to the relay instead of the target,

application configurations wherein clients make policy decisions

about target connections, e.g., to apply certificate pinning, are

incompatible with Oblivious HTTP. In such cases, alternative

technologies such as HTTP CONNECT (Section 9.3.6 of [HTTP]) can be

used. Applications could implement related policies on key

configurations and relay connections, though these might not provide

the same properties as policies enforced directly on target

connections. When this difference is relevant, applications can

instead connect directly to the target at the cost of either privacy

or performance.

Clients MUST NOT include identifying information in the request that

is encrypted. Identifying information includes cookies [COOKIES],

authentication credentials or tokens, and any information that might

reveal client-specific information such as account credentials.

Clients cannot carry connection-level state between requests as they

only establish direct connections to the relay responsible for the

Oblivious Relay resource. However, clients need to ensure that they

construct requests without any information gained from previous

requests. Otherwise, the server might be able to use that

information to link requests. Cookies [COOKIES] are the most obvious

feature that MUST NOT be used by clients. However, clients need to

include all information learned from requests, which could include

the identity of resources.

Clients MUST generate a new HPKE context for every request, using a

good source of entropy ([RANDOM]) for generating keys. Key reuse not

only risks requests being linked, reuse could expose request and

response contents to the relay.

The request the client sends to the Oblivious Relay Resource only

requires minimal information; see Section 5. The request that

carries the Encapsulated Request and is sent to the Oblivious Relay

2.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-9.3.6

Resource MUST NOT include identifying information unless the client

ensures that this information is removed by the relay. A client MAY

include information only for the Oblivious Relay Resource in header

fields identified by the Connection header field if it trusts the

relay to remove these as required by Section 7.6.1 of [HTTP]. The

client needs to trust that the relay does not replicate the source

addressing information in the request it forwards.

Clients rely on the Oblivious Relay Resource to forward Encapsulated

Requests and responses. However, the relay can only refuse to

forward messages, it cannot inspect or modify the contents of

Encapsulated Requests or responses.

6.2. Relay Responsibilities

The relay that serves the Oblivious Relay Resource has a very simple

function to perform. For each request it receives, it makes a

request of the Oblivious Gateway Resource that includes the same

content. When it receives a response, it sends a response to the

client that includes the content of the response from the Oblivious

Gateway Resource.

When forwarding a request, the relay MUST follow the forwarding

rules in Section 7.6 of [HTTP]. A generic HTTP intermediary

implementation is suitable for the purposes of serving an Oblivious

Relay Resource, but additional care is needed to ensure that client

privacy is maintained.

Firstly, a generic implementation will forward unknown fields. For

Oblivious HTTP, a Oblivious Relay Resource SHOULD NOT forward

unknown fields. Though clients are not expected to include fields

that might contain identifying information, removing unknown fields

removes this privacy risk.

Secondly, generic implementations are often configured to augment

requests with information about the client, such as the Via field or

the Forwarded field [FORWARDED]. A relay MUST NOT add information

when forwarding requests that might be used to identify clients,

with the exception of information that a client is aware of.

Finally, a relay can also generate responses, though it assumed to

not be able to examine the content of a request (other than to

observe the choice of key identifier, KDF, and AEAD), so it is also

assumed that it cannot generate an Encapsulated Response.

6.2.1. Differential Treatment

A relay MAY add information to requests if the client is aware of

the nature of the information that could be added. The client does

not need to be aware of the exact value added for each request, but

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-7.6

needs to know the range of possible values the relay might use.

Importantly, information added by the relay - beyond what is already

revealed through encapsulated requests from clients - can reduce the

size of the anonymity set of clients at a gateway.

Moreover, relays MAY apply differential treatment to clients that

engage in abusive behavior, e.g., by sending too many requests in

comparison to other clients, or as a response to rate limits

signalled from the gateway. Any such differential treatment can

reveal information to the gateway that would not be revealed

otherwise and therefore reduce the size of the anonymity set of

clients using a gateway. For example, if a relay chooses to rate

limit or block an abusive client, this means that any client

requests which are not treated this way are known to be non-abusive

by the gateway. Clients should consider the likelihood of such

differential treatment and the privacy risks when using a relay.

Some patterns of abuse cannot be detected without access to the

request that is made to the target. This means that only the gateway

or target are in a position to identify abuse. A gateway MAY send

signals toward the relay to provide feedback about specific

requests. For example, a gateway could respond differently to

requests it cannot decapsulate, as mentioned in Section 5.2. A relay

that acts on this feedback could - either inadvertently or by design

- lead to client deanonymization.

6.2.2. Denial of Service

As there are privacy benefits from having a large rate of requests

forwarded by the same relay (see Section 6.2.3), servers that

operate the Oblivious Gateway Resource might need an arrangement

with Oblivious Relay Resources. This arrangement might be necessary

to prevent having the large volume of requests being classified as

an attack by the server.

If a server accepts a larger volume of requests from a relay, it

needs to trust that the relay does not allow abusive levels of

request volumes from clients. That is, if a server allows requests

from the relay to be exempt from rate limits, the server might want

to ensure that the relay applies a rate limiting policy that is

acceptable to the server.

Servers that enter into an agreement with a relay that enables a

higher request rate might choose to authenticate the relay to enable

the higher rate.

6.2.3. Traffic Analysis

This document assumes that all communication between different

Oblivious Client, Oblivious Relay Resource, and Oblivious Gateway

¶

¶

¶

¶

¶

¶

Resource is protected by HTTPS. This protects information about

which resources are the subject of request and prevents a network

observer from being able to trivially correlate messages on either

side of a relay. However, it does not mitigate traffic analysis by

such network observers.

The time at which Encapsulated Request or response messages are sent

can reveal information to a network observer. Though messages

exchanged between the Oblivious Relay Resource and the Oblivious

Gateway Resource might be sent in a single connection, traffic

analysis could be used to match messages that are forwarded by the

relay.

A relay could, as part of its function, add delays in order to

increase the anonymity set into which each message is attributed.

This could latency to the overall time clients take to receive a

response, which might not be what some clients want.

A relay that forwards large volumes of exchanges can provide better

privacy by providing larger sets of messages that need to be

matched.

Traffic analysis is not restricted to network observers. A malicious

Oblivious Relay Resource could use traffic analysis to learn

information about otherwise encrypted requests and responses relayed

between clients and gateways. An Oblivious Relay Resource terminates

TLS connections from clients, so they see message boundaries. This

privileged position allows for richer feature extraction from

encrypted data, which might improve traffic analysis.

Clients can use padding to reduce the effectiveness of traffic

analysis. Padding is a capability provided by binary HTTP messages;

see Section 3.8 of [BINARY].

6.3. Server Responsibilities

The Oblivious Gateway Resource can be operated by a different entity

than the Target Resource. However, this means that the client needs

to trust the Oblivious Gateway Resource not to modify requests or

responses. This analysis concerns itself with a deployment scenario

where a single server provides both the Oblivious Gateway Resource

and Target Resource.

A server that operates both Oblivious Gateway and Target Resources

is responsible for removing request encryption, generating a

response to the Encapsulated Request, and encrypting the response.

Servers should account for traffic analysis based on response size

or generation time. Techniques such as padding or timing delays can

help protect against such attacks; see Section 6.2.3.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-binary-message-06#section-3.8

If separate entities provide the Oblivious Gateway Resource and

Target Resource, these entities might need an arrangement similar to

that between server and relay for managing denial of service; see

Section 6.2.2. It is also necessary to provide confidentiality

protection for the unprotected requests and responses, plus

protections for traffic analysis; see Section 6.2.3.

Nonsecure requests - such those with the "http" scheme as opposed to

the "https" scheme - SHOULD NOT be used if the Oblivious Gateway and

Target Resources are operated by different entities as that would

expose both requests and response to modification or inspection by a

network attacker.

6.4. Key Management

An Oblivious Gateway Resource needs to have a plan for replacing

keys. This might include regular replacement of keys, which can be

assigned new key identifiers. If an Oblivious Gateway Resource

receives a request that contains a key identifier that it does not

understand or that corresponds to a key that has been replaced, the

server can respond with an HTTP 422 (Unprocessable Content) status

code.

A server can also use a 422 status code if the server has a key that

corresponds to the key identifier, but the Encapsulated Request

cannot be successfully decrypted using the key.

A server MUST ensure that the HPKE keys it uses are not valid for

any other protocol that uses HPKE with the "message/bhttp request"

label. Designers of protocols that reuse this encryption format,

especially new versions of this protocol, can ensure key diversity

by choosing a different label in their use of HPKE. The "message/

bhttp response" label was chosen for symmetry only as it provides

key diversity only within the HPKE context created using the

"message/bhttp request" label; see Section 9.

6.5. Replay Attacks

A server is responsible for either rejecting replayed requests or

ensuring that the effect of replays does not adversely affect

clients or resources.

Encrypted requests can be copied and replayed by the Oblivious Relay

resource. The threat model for Oblivious HTTP allows the possibility

that an Oblivious Relay Resource might replay requests. Furthermore,

if a client sends an Encapsulated Request in TLS early data (see

Section 8 of [TLS] and [RFC8470]), a network-based adversary might

be able to cause the request to be replayed. In both cases, the

effect of a replay attack and the mitigations that might be employed

are similar to TLS early data.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-8

It is the responsibility of the application that uses Oblivious HTTP

to either reject replayed requests or to ensure that replayed

requests have no adverse affects on their operation. This section

describes some approaches that are universally applicable and

suggestions for more targeted techniques.

A client or Oblivious Relay Resource MUST NOT automatically attempt

to retry a failed request unless it receives a positive signal

indicating that the request was not processed or forwarded. The

HTTP/2 REFUSED_STREAM error code (Section 8.1.4 of [RFC7540]), the

HTTP/3 H3_REQUEST_REJECTED error code (Section 8.1 of [QUIC-HTTP]),

or a GOAWAY frame with a low enough identifier (in either protocol

version) are all sufficient signals that no processing occurred.

Connection failures or interruptions are not sufficient signals that

no processing occurred.

The anti-replay mechanisms described in Section 8 of [TLS] are

generally applicable to Oblivious HTTP requests. The encapsulated

keying material (or enc) can be used in place of a nonce to uniquely

identify a request. This value is a high-entropy value that is

freshly generated for every request, so two valid requests will have

different values with overwhelming probability.

The mechanism used in TLS for managing differences in client and

server clocks cannot be used as it depends on being able to observe

previous interactions. Oblivious HTTP explicitly prevents such

linkability.

The considerations in [RFC8470] as they relate to managing the risk

of replay also apply, though there is no option to delay the

processing of a request.

Limiting requests to those with safe methods might not be

satisfactory for some applications, particularly those that involve

the submission of data to a server. The use of idempotent methods

might be of some use in managing replay risk, though it is important

to recognize that different idempotent requests can be combined to

be not idempotent.

Even without replay prevention, the server-chosen response_nonce

field ensures that responses have unique AEAD keys and nonces even

when requests are replayed.

6.5.1. Use of Date for Anti-Replay

Clients SHOULD include a Date header field in Encapsulated Requests,

unless the Oblivious Gateway Resource does not use Date for anti-

replay purposes.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-8

Though HTTP requests often do not include a Date header field, the

value of this field might be used by a server to limit the amount of

requests it needs to track if it needs to prevent replay attacks.

An Oblivious Gateway Resource can maintain state for requests for a

small window of time over which it wishes to accept requests. The

Oblivious Gateway Resource can store all requests it processes

within this window. Storing just the enc field of a request, which

should be unique to each request, is sufficient. The Oblivious

Gateway Resource then rejects requests if the request is the same as

one that was previously answered within that time window, or if the

Date header field from the decrypted request is outside of the

current time window.

Oblivious Gateway Resources SHOULD allow for the time it takes

requests to arrive from the client, with a time window that is large

enough to allow for differences in clocks.

Oblivious Gateway Resources MUST NOT treat the time window as secret

information. An attacker can actively probe with different values

for the Date field to determine the time window over which the

server will accept responses.

6.5.2. Correcting Clock Differences

An Oblivious Gateway Resource can reject requests that contain a

Date value that is outside of its active window with a 400 series

status code. The problem type [PROBLEM] of "https://iana.org/

assignments/http-problem-types#date" is defined to allow the server

to signal that the Date value in the request was unacceptable.

Figure 7 shows an example response in HTTP/1.1 format.

HTTP/1.1 400 Bad Request

Date: Mon, 07 Feb 2022 00:28:05 GMT

Content-Type: application/problem+json

Content-Length: 128

{"type":"https://iana.org/assignments/http-problem-types#date",

"title": "date field in request outside of acceptable range"}

Figure 7: Example Rejection of Request Date Field

Disagreements about time are unlikely if both client and Oblivious

Gateway Resource have a good source of time; see [NTP]. However,

clock differences are known to be commonplace; see Section 7.1 of

[CLOCKSKEW].

¶

¶

¶

¶

¶

¶

¶

Including a Date header field in the response allows the client to

correct clock errors by retrying the same request using the value of

the Date field provided by the Oblivious Gateway Resource. The value

of the Date field can be copied if the request is fresh, with an

adjustment based on the Age field otherwise. When retrying a

request, the client MUST create a fresh encryption of the modified

request, using a new HPKE context.

Client Relay and Gateway Target
Resources Resource

Request

400 Response
+ Date

Request
+ Updated Date

|

Figure 8: Retrying with an Update Date Field

Intermediaries can sometimes rewrite the Date field when forwarding

responses. This might cause problems if the Oblivious Gateway

Resource and intermediary clocks differ by enough to cause the retry

to be rejected. Therefore, clients MUST NOT retry a request with an

adjusted date more than once.

Oblivious Gateway Resources that condition their responses on the

Date header field SHOULD either ensure that intermediaries do not

cache responses (by including a Cache-Control directive of no-store)

or designate the response as conditional on the value of the Date

request header field (by including the token "date" in a Vary header

field).

Clients MUST NOT use the date provided by the Oblivious Gateway

Resource for any other purpose, including future requests to any

resource. Any request that uses information provided by the

Oblivious Gateway Resource might be correlated using that

information.

¶

¶

¶

¶

¶

6.6. Forward Secrecy

This document does not provide forward secrecy for either requests

or responses during the lifetime of the key configuration. A measure

of forward secrecy can be provided by generating a new key

configuration then deleting the old keys after a suitable period.

6.7. Post-Compromise Security

This design does not provide post-compromise security for responses.

A client only needs to retain keying material that might be used

compromise the confidentiality and integrity of a response until

that response is consumed, so there is negligible risk associated

with a client compromise.

A server retains a secret key that might be used to remove

protection from messages over much longer periods. A server

compromise that provided access to the Oblivious Gateway Resource

secret key could allow an attacker to recover the plaintext of all

requests sent toward affected keys and all of the responses that

were generated.

Even if server keys are compromised, an adversary cannot access

messages exchanged by the client with the Oblivious Relay Resource

as messages are protected by TLS. Use of a compromised key also

requires that the Oblivious Relay Resource cooperate with the

attacker or that the attacker is able to compromise these TLS

connections.

The total number of affected messages affected by server key

compromise can be limited by regular rotation of server keys.

6.8. Client Clock Exposure

Including a Date field in requests reveals some information about

the client clock. This might be used to fingerprint clients [UWT] or

to identify clients that are vulnerable to attacks that depend on

incorrect clocks.

Clients can randomize the value that they provide for Date to

obscure the true value of their clock and reduce the chance of

linking of requests over time. However, this increases the risk that

their request is rejected as outside the acceptable window.

7. Privacy Considerations

One goal of this design is that independent client requests are only

linkable by their content. However, the choice of client

configuration might be used to correlate requests. A client

¶

¶

¶

¶

¶

¶

¶

¶

configuration includes the Oblivious Relay Resource URI, the

Oblivious Gateway key configuration (KeyConfig), and Oblivious

Gateway Resource URI. A configuration is active if clients can

successfully use it for interacting with with a target.

Oblivious Relay and Gateway Resources can identify when requests use

the same configuration by matching KeyConfig.key_id or the

Oblivious Gateway Resource URI. The Oblivious Gateway Resource might

use the source address of requests to correlate requests that use an

Oblivious Relay Resource run by the same operator. If the Oblivious

Gateway Resource is willing to use trial decryption, requests can be

further separated into smaller groupings based on the keys that are

used.

Each active client configuration partitions the client anonymity

set. In practice, it is infeasible to reduce the number of active

configurations to one. Enabling diversity in choice of Oblivious

Relay Resource naturally increases the number of active

configurations. A small number of configurations might need to be

active to allow for key rotation and server maintenance.

Client privacy depends on having each configuration used by many

other clients. It is critical prevent the use of unique client

configurations, which might be used to track of individual clients,

but it is also important to avoid creating small groupings of

clients that might weaken privacy protections.

A specific method for a client to acquire configurations is not

included in this specification. Applications using this design MUST

provide accommodations to mitigate tracking using client

configurations. [CONSISTENCY] provides options for ensuring that

client configurations are consistent between clients.

The content of requests or responses, if used in forming new

requests, can be used to correlate requests. This includes obvious

methods of linking requests, like cookies [COOKIES], but it also

includes any information in either message that might affect how

subsequent requests are formulated. For example, [FIELDING]

describes how interactions that are individually stateless can be

used to build a stateful system when a client acts on the content of

a response.

8. Operational and Deployment Considerations

This section discusses various operational and deployment

considerations.

¶

¶

¶

¶

¶

¶

¶

8.1. Performance Overhead

Using Oblivious HTTP adds both cryptographic and latency to requests

relative to a simple HTTP request-response exchange. Deploying relay

services that are on path between clients and servers avoids adding

significant additional delay due to network topology. A study of a

similar system [ODoH] found that deploying proxies close to servers

was most effective in minimizing additional latency.

8.2. Resource Mappings

This protocol assumes a fixed, one-to-one mapping between the

Oblivious Relay Resource and the Oblivious Gateway Resource. This

means that any encrypted request sent to the Oblivious Relay

Resource will always be forwarded to the Oblivious Gateway Resource.

This constraint was imposed to simplify relay configuration and

mitigate against the Oblivious Relay Resource being used as a

generic relay for unknown Oblivious Gateway Resources. The relay

will only forward for Oblivious Gateway Resources that it has

explicitly configured and allowed.

It is possible for a server to be configured with multiple Oblivious

Relay Resources, each for a different Oblivious Gateway Resource as

needed. If the goal is to support a large number of Oblivious

Gateway Resources, clients might be provided with a URI template

[TEMPLATE], from which multiple Oblivious Relay Resources could be

constructed.

8.3. Network Management

Oblivious HTTP might be incompatible with network interception

regimes, such as those that rely on configuring clients with trust

anchors and intercepting TLS connections. While TLS might be

intercepted successfully, interception middleboxes devices might not

receive updates that would allow Oblivious HTTP to be correctly

identified using the media types defined in Section 10.2 and Section

10.3.

Oblivious HTTP has a simple key management design that is not

trivially altered to enable interception by intermediaries. Clients

that are configured to enable interception might choose to disable

Oblivious HTTP in order to ensure that content is accessible to

middleboxes.

9. Repurposing the Encapsulation Format

The encrypted payload of an OHTTP request and response is a binary

HTTP message [BINARY]. Client and target agree on this encrypted

payload type by specifying the media type "message/bhttp" in the

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

HPKE info string and HPKE export context string for request and

response encryption, respectively.

Future specifications may repurpose the encapsulation mechanism

described in Section 4, provided that the content type of the

encrypted payload is appropriately reflected in the HPKE info and

context strings. For example, if a future specification were to use

the encryption mechanism in this specification for DNS messages,

identified by the "application/dns-message" media type, then the

HPKE info string SHOULD be "application/dns-message request" for

request encryption, and the HPKE export context string should be

"application/dns-message response" for response encryption.

10. IANA Considerations

Please update the "Media Types" registry at https://www.iana.org/

assignments/media-types for the media types "application/ohttp-keys"

(Section 10.1), "message/ohttp-req" (Section 10.2), and "message/

ohttp-res" (Section 10.3).

10.1. message/ohttp-keys Media Type

The "application/ohttp-keys" media type identifies a key

configuration used by Oblivious HTTP.

application

ohttp-keys

N/A

None

only "8bit" or "binary" is permitted

see Section 6

N/A

this specification

Oblivious HTTP and

applications that use Oblivious HTTP

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

10.2. message/ohttp-req Media Type

The "message/ohttp-req" identifies an encrypted binary HTTP request.

This is a binary format that is defined in Section 4.1.

message

ohttp-req

N/A

None

only "8bit" or "binary" is permitted

see Section 6

N/A

this specification

Oblivious HTTP and

applications that use Oblivious HTTP

N/A

N/A

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

10.3. message/ohttp-res Media Type

The "message/ohttp-res" identifies an encrypted binary HTTP

response. This is a binary format that is defined in Section 4.2.

¶

¶

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type URI:

Title:

Recommended HTTP Status Code:

message

ohttp-res

N/A

None

only "8bit" or "binary" is permitted

see Section 6

N/A

this specification

Oblivious HTTP and

applications that use Oblivious HTTP

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

IANA are requested to create a new entry in the "HTTP Problem Type"

registry established by [PROBLEM].

https://iana.org/assignments/http-problem-types#date

Date Not Acceptable

400

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Reference:

[ASCII]

[BINARY]

[HPKE]

[HTTP]

[PROBLEM]

[QUIC]

[QUIC-HTTP]

[RFC2119]

[RFC7540]

Section 6.5.2 of this document

11. References

11.1. Normative References

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/rfc/rfc20>.

Thomson, M. and C. A. Wood, "Binary Representation of

HTTP Messages", Work in Progress, Internet-Draft, draft-

ietf-httpbis-binary-message-06, 6 July 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-binary-

message-06>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Nottingham, M., Wilde, E., and S. Dalal, "Problem Details

for HTTP APIs", Work in Progress, Internet-Draft, draft-

ietf-httpapi-rfc7807bis-03, 25 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpapi-

rfc7807bis-03>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bishop, M., "HTTP/3", Work in Progress, Internet-Draft,

draft-ietf-quic-http-34, 2 February 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-http-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

¶

https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc20
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-binary-message-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-binary-message-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-binary-message-06
https://www.rfc-editor.org/rfc/rfc9180
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-rfc7807bis-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-rfc7807bis-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-rfc7807bis-03
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540

[RFC8174]

[RFC8470]

[TLS]

[CLOCKSKEW]

[CONSISTENCY]

[COOKIES]

[Dingledine2004]

[FIELDING]

[FORWARDED]

[NTP]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Thomson, M., Nottingham, M., and W. Tarreau, "Using Early

Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September

2018, <https://www.rfc-editor.org/rfc/rfc8470>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

11.2. Informative References

Acer, M., Stark, E., Felt, A., Fahl, S., Bhargava, R.,

Dev, B., Braithwaite, M., Sleevi, R., and P. Tabriz,

"Where the Wild Warnings Are: Root Causes of Chrome HTTPS

Certificate Errors", Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, DOI

10.1145/3133956.3134007, October 2017, <https://doi.org/

10.1145/3133956.3134007>.

Davidson, A., Finkel, M., Thomson, M., and C. A. Wood,

"Key Consistency and Discovery", Work in Progress,

Internet-Draft, draft-wood-key-consistency-02, 4 March

2022, <https://datatracker.ietf.org/doc/html/draft-wood-

key-consistency-02>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/rfc/rfc6265>.

Dingledine, R., Mathewson, N., and P. Syverson,

"Tor: The Second-Generation Onion Router", August 2004,

<https://svn.torproject.org/svn/projects/design-paper/

tor-design.html>.

Fielding, R. T., "Architectural Styles and the Design of

Network-based Software Architectures", 2000, <https://

www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf>.

Petersson, A. and M. Nilsson, "Forwarded HTTP

Extension", RFC 7239, DOI 10.17487/RFC7239, June 2014,

<https://www.rfc-editor.org/rfc/rfc7239>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8470
https://www.rfc-editor.org/rfc/rfc8446
https://doi.org/10.1145/3133956.3134007
https://doi.org/10.1145/3133956.3134007
https://datatracker.ietf.org/doc/html/draft-wood-key-consistency-02
https://datatracker.ietf.org/doc/html/draft-wood-key-consistency-02
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265
https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.rfc-editor.org/rfc/rfc7239

[ODoH]

[ODOH]

[OHTTP-ANALYSIS]

[PRIO]

[RANDOM]

[RFC6265]

[RFC7838]

[SEMANTICS]

[TEMPLATE]

[UWT]

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/rfc/rfc5905>.

Singanamalla, S., Chunhapanya, S., Vavrusa, M., Verma,

T., Wu, P., Fayed, M., Heimerl, K., Sullivan, N., and C.

A. Wood, "Oblivious DNS over HTTPS (ODoH): A Practical

Privacy Enhancement to DNS", 7 January 2021, <https://

www.petsymposium.org/2021/files/papers/issue4/

popets-2021-0085.pdf>.

Kinnear, E., McManus, P., Pauly, T., Verma, T., and C.A.

Wood, "Oblivious DNS over HTTPS", RFC 9230, DOI 10.17487/

RFC9230, June 2022, <https://www.rfc-editor.org/rfc/

rfc9230>.

Hoyland, J., "Tamarin Model of Oblivious HTTP", 23

August 2021, <https://github.com/cloudflare/ohttp-

analysis>.

Corrigan-Gibbs, H. and D. Boneh, "Prio: Private, Robust,

and Scalable Computation of Aggregate Statistics", 14

March 2017, <https://crypto.stanford.edu/prio/paper.pdf>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/rfc/rfc4086>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/rfc/rfc6265>.

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Nottingham, M., "Unsanctioned Web Tracking", 17 July

2015, <https://www.w3.org/2001/tag/doc/unsanctioned-

tracking/>.

https://www.rfc-editor.org/rfc/rfc5905
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.rfc-editor.org/rfc/rfc9230
https://www.rfc-editor.org/rfc/rfc9230
https://github.com/cloudflare/ohttp-analysis
https://github.com/cloudflare/ohttp-analysis
https://crypto.stanford.edu/prio/paper.pdf
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/

[X25519]
Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/rfc/rfc7748>.

Appendix A. Complete Example of a Request and Response

A single request and response exchange is shown here. Binary values

(key configuration, secret keys, the content of messages, and

intermediate values) are shown in hexadecimal. The request and

response here are minimal; the purpose of this example is to show

the cryptographic operations. In this example, the client is

configured with the Oblivious Relay Resource URI of https://

proxy.example.org/request.example.net/proxy, and the proxy is

configured to map requests to this URI to the Oblivious Gateway URI

https://example.com/oblivious/request. The Target Resource URI,

i.e., the resource the client ultimately wishes to query, is

https://example.com.

To begin the process, the Oblivious Gateway Resource generates a key

pair. In this example the server chooses DHKEM(X25519, HKDF-SHA256)

and generates an X25519 key pair [X25519]. The X25519 secret key is:

The Oblivious Gateway Resource constructs a key configuration that

includes the corresponding public key as follows:

This key configuration is somehow obtained by the client. Then when

a client wishes to send an HTTP request of a GET request to the

target https://example.com, it constructs the following binary HTTP

message:

The client then reads the Oblivious Gateway Resource key

configuration and selects a mutually supported KDF and AEAD. In this

example, the client selects HKDF-SHA256 and AES-128-GCM. The client

then generates an HPKE sending context that uses the server public

key. This context is constructed from the following ephemeral secret

key:

The corresponding public key is:

¶

¶

3c168975674b2fa8e465970b79c8dcf09f1c741626480bd4c6162fc5b6a98e1a¶

¶

01002031e1f05a740102115220e9af918f738674aec95f54db6e04eb705aae8e

79815500080001000100010003

¶

¶

00034745540568747470730b6578616d706c652e636f6d012f¶

¶

bc51d5e930bda26589890ac7032f70ad12e4ecb37abb1b65b1256c9c48999c73¶

¶

4b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c208b472¶

https://www.rfc-editor.org/rfc/rfc7748

And an info parameter of:

Applying the Seal operation from the HPKE context produces an

encrypted message, allowing the client to construct the following

Encapsulated Request:

The client then sends this to the Oblivious Relay Resource in a POST

request, which might look like the following HTTP/1.1 request:

POST /request.example.net/proxy HTTP/1.1

Host: proxy.example.org

Content-Type: message/ohttp-req

Content-Length: 78

<content is the Encapsulated Request above>

The Oblivious Relay Resource receives this request and forwards it

to the Oblivious Gateway Resource, which might look like:

POST /oblivious/request HTTP/1.1

Host: example.com

Content-Type: message/ohttp-req

Content-Length: 78

<content is the Encapsulated Request above>

The Oblivous Gateway Resource receives this request, selects the key

it generated previously using the key identifier from the message,

and decrypts the message. As this request is directed to the same

server, the Oblivious Gateway Resource does not need to initiate an

HTTP request to the Target Resource. The request can be served

directly by the Target Resource, which generates a minimal response

(consisting of just a 200 status code) as follows:

The response is constructed by extracting a secret from the HPKE

context:

¶

6d6573736167652f626874747020726571756573740001002000010001¶

¶

010020000100014b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad1

9dec96c208b4726374e469135906992e1268c594d2a10c695d858c40a026e796

5e7d86b83dd440b2c0185204b4d63525

¶

¶

¶

¶

¶

¶

0140c8¶

¶

62d87a6ba569ee81014c2641f52bea36¶

The key derivation for the Encapsulated Response uses both the

encapsulated KEM key from the request and a randomly selected nonce.

This produces a salt of:

The salt and secret are both passed to the Extract function of the

selected KDF (HKDF-SHA256) to produce a pseudorandom key of:

The pseudorandom key is used with the Expand function of the KDF and

an info field of "key" to produce a 16-byte key for the selected

AEAD (AES-128-GCM):

With the same KDF and pseudorandom key, an info field of "nonce" is

used to generate a 12-byte nonce:

The AEAD Seal() function is then used to encrypt the response, which

is added to the randomized nonce value to produce the Encapsulated

Response:

The Oblivious Gateway Resource constructs a response with the same

content:

HTTP/1.1 200 OK

Date: Wed, 27 Jan 2021 04:45:07 GMT

Cache-Control: private, no-store

Content-Type: message/ohttp-res

Content-Length: 38

<content is the Encapsulated Response>

The same response might then be generated by the Oblivious Relay

Resource which might change as little as the Date header. The client

is then able to use the HPKE context it created and the nonce from

the Encapsulated Response to construct the AEAD key and nonce and

decrypt the response.

¶

4b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c208b472

c789e7151fcba46158ca84b04464910d

¶

¶

979aaeae066cf211ab407b31ae49767f344e1501e475c84e8aff547cc5a683db¶

¶

5d0172a080e428b16d298c4ea0db620d¶

¶

f6bf1aeb88d6df87007fa263¶

¶

c789e7151fcba46158ca84b04464910d86f9013e404feea014e7be4a441f234f

857fbd

¶

¶

¶

¶

Acknowledgments

This design is based on a design for Oblivious DoH, described in

[ODOH]. David Benjamin, Mark Nottingham, and Eric Rescorla made

technical contributions.

Authors' Addresses

Martin Thomson

Mozilla

Email: mt@lowentropy.net

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

¶

mailto:mt@lowentropy.net
mailto:caw@heapingbits.net

	Oblivious HTTP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	2.1. Applicability
	2.2. Conventions and Definitions

	3. Key Configuration
	3.1. Key Configuration Encoding
	3.2. Key Configuration Media Type

	4. HPKE Encapsulation
	4.1. Encapsulation of Requests
	4.2. Encapsulation of Responses
	4.3. Request and Response Media Types

	5. HTTP Usage
	5.1. Informational Responses
	5.2. Errors

	6. Security Considerations
	6.1. Client Responsibilities
	6.2. Relay Responsibilities
	6.2.1. Differential Treatment
	6.2.2. Denial of Service
	6.2.3. Traffic Analysis

	6.3. Server Responsibilities
	6.4. Key Management
	6.5. Replay Attacks
	6.5.1. Use of Date for Anti-Replay
	6.5.2. Correcting Clock Differences

	6.6. Forward Secrecy
	6.7. Post-Compromise Security
	6.8. Client Clock Exposure

	7. Privacy Considerations
	8. Operational and Deployment Considerations
	8.1. Performance Overhead
	8.2. Resource Mappings
	8.3. Network Management

	9. Repurposing the Encapsulation Format
	10. IANA Considerations
	10.1. message/ohttp-keys Media Type
	10.2. message/ohttp-req Media Type
	10.3. message/ohttp-res Media Type

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Complete Example of a Request and Response
	Acknowledgments
	Authors' Addresses

