
Network Working Group Jon Callas
Category: INTERNET-DRAFT Wave Systems Corporation
draft-ietf-openpgp-rfc2440bis-03.txt
Expires Feb 2002 Lutz Donnerhacke
August 2001 IN-Root-CA Individual Network e.V.

 Hal Finney
 Network Associates

 Rodney Thayer

 OpenPGP Message Format
draft-ietf-openpgp-rfc2440bis-03.txt

 Copyright 2001 by The Internet Society. All Rights Reserved.

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

IESG Note

 This document defines many tag values, yet it doesn't describe a
 mechanism for adding new tags (for new features). Traditionally the
 Internet Assigned Numbers Authority (IANA) handles the allocation of
 new values for future expansion and RFCs usually define the
 procedure to be used by the IANA. However there are subtle (and not
 so subtle) interactions that may occur in this protocol between new
 features and existing features which result in a significant
 reduction in over all security. Therefore this document does not
 define an extension procedure. Instead requests to define new tag
 values (say for new encryption algorithms for example) should be
 forwarded to the IESG Security Area Directors for consideration or

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-rfc2440bis-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-rfc2440bis-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 forwarding to the appropriate IETF Working Group for consideration.

Callas, et al. Expires February 22, 2000 [Page 1]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

Abstract

 This document is maintained in order to publish all necessary
 information needed to develop interoperable applications based on
 the OpenPGP format. It is not a step-by-step cookbook for writing an
 application. It describes only the format and methods needed to
 read, check, generate, and write conforming packets crossing any
 network. It does not deal with storage and implementation questions.
 It does, however, discuss implementation issues necessary to avoid
 security flaws.

 Open-PGP software uses a combination of strong public-key and
 symmetric cryptography to provide security services for electronic
 communications and data storage. These services include
 confidentiality, key management, authentication, and digital
 signatures. This document specifies the message formats used in
 OpenPGP.

Callas, et al. Expires February 22, 2000 [Page 2]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

Table of Contents

 Status of this Memo 1
 IESG Note 1
 Abstract 2
 Table of Contents 3
 1. Introduction 6
 1.1. Terms 6
 2. General functions 6
 2.1. Confidentiality via Encryption 6
 2.2. Authentication via Digital signature 7
 2.3. Compression 8
 2.4. Conversion to Radix-64 8
 2.5. Signature-Only Applications 8
 3. Data Element Formats 9
 3.1. Scalar numbers 9
 3.2. Multi-Precision Integers 9
 3.3. Key IDs 9
 3.4. Text 9
 3.5. Time fields 10
 3.6. Keyrings 10
 3.7. String-to-key (S2K) specifiers 10
 3.7.1. String-to-key (S2k) specifier types 10
 3.7.1.1. Simple S2K 10
 3.7.1.2. Salted S2K 11
 3.7.1.3. Iterated and Salted S2K 11
 3.7.2. String-to-key usage 12
 3.7.2.1. Secret key encryption 12
 3.7.2.2. Symmetric-key message encryption 12
 4. Packet Syntax 12
 4.1. Overview 13
 4.2. Packet Headers 13
 4.2.1. Old-Format Packet Lengths 13
 4.2.2. New-Format Packet Lengths 14
 4.2.2.1. One-Octet Lengths 14
 4.2.2.2. Two-Octet Lengths 14
 4.2.2.3. Five-Octet Lengths 15
 4.2.2.4. Partial Body Lengths 15
 4.2.3. Packet Length Examples 15
 4.3. Packet Tags 16
 5. Packet Types 16
 5.1. Public-Key Encrypted Session Key Packets (Tag 1) 16
 5.2. Signature Packet (Tag 2) 17
 5.2.1. Signature Types 18
 5.2.2. Version 3 Signature Packet Format 20
 5.2.3. Version 4 Signature Packet Format 22
 5.2.3.1. Signature Subpacket Specification 23
 5.2.3.2. Signature Subpacket Types 24
 5.2.3.3. Notes on Self-Signatures 25

 5.2.3.4. Signature creation time 25
 5.2.3.5. Issuer 26
 5.2.3.6. Key expiration time 26

Callas, et al. Expires February 22, 2000 [Page 3]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 5.2.3.7. Preferred symmetric algorithms 26
 5.2.3.8. Preferred hash algorithms 26
 5.2.3.9. Preferred compression algorithms 26
 5.2.3.10.Signature expiration time 27
 5.2.3.11.Exportable Certification 27
 5.2.3.12.Revocable 27
 5.2.3.13.Trust signature 27
 5.2.3.14.Regular expression 28
 5.2.3.15.Revocation key 28
 5.2.3.16.Notation Data 28
 5.2.3.17.Key server preferences 29
 5.2.3.18.Preferred key server 30
 5.2.3.19.Primary user id 30
 5.2.3.20.Policy URL 30
 5.2.3.21.Key Flags 30
 5.2.3.22.Signer's User ID 31
 5.2.3.23.Reason for Revocation 31
 5.2.3.24.Features 32
 5.2.4. Computing Signatures 32
 5.2.4.1. Subpacket Hints 33
 5.3. Symmetric-Key Encrypted Session-Key Packets (Tag 3) 34
 5.4. One-Pass Signature Packets (Tag 4) 35
 5.5. Key Material Packet 35
 5.5.1. Key Packet Variants 35
 5.5.1.1. Public Key Packet (Tag 6) 35
 5.5.1.2. Public Subkey Packet (Tag 14) 36
 5.5.1.3. Secret Key Packet (Tag 5) 36
 5.5.1.4. Secret Subkey Packet (Tag 7) 36
 5.5.2. Public Key Packet Formats 36
 5.5.3. Secret Key Packet Formats 38
 5.6. Compressed Data Packet (Tag 8) 39
 5.7. Symmetrically Encrypted Data Packet (Tag 9) 40
 5.8. Marker Packet (Obsolete Literal Packet) (Tag 10) 41
 5.9. Literal Data Packet (Tag 11) 41
 5.10. Trust Packet (Tag 12) 42
 5.11. User ID Packet (Tag 13) 42
 5.12. Sym. Encrypted Integrity Protected Data Packet (Tag 18) 42
 5.13. Modification Detection Code Packet (Tag 19) 44
 6. Radix-64 Conversions 44
 6.1. An Implementation of the CRC-24 in "C" 45
 6.2. Forming ASCII Armor 45
 6.3. Encoding Binary in Radix-64 47
 6.4. Decoding Radix-64 49
 6.5. Examples of Radix-64 49
 6.6. Example of an ASCII Armored Message 50
 7. Cleartext signature framework 50
 7.1. Dash-Escaped Text 50
 8. Regular Expressions 51
 9. Constants 51

 9.1. Public Key Algorithms 52
 9.2. Symmetric Key Algorithms 52
 9.3. Compression Algorithms 53

Callas, et al. Expires February 22, 2000 [Page 4]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 9.4. Hash Algorithms 53
 10. Packet Composition 53
 10.1. Transferable Public Keys 53
 10.2. OpenPGP Messages 54
 10.3. Detached Signatures 55
 11. Enhanced Key Formats 55
 11.1. Key Structures 55
 11.2. Key IDs and Fingerprints 56
 12. Notes on Algorithms 57
 12.1. Symmetric Algorithm Preferences 57
 12.2. Other Algorithm Preferences 58
 12.2.1. Compression Preferences 58
 12.2.2. Hash Algorithm Preferences 59
 12.3. Plaintext 59
 12.4. RSA 59
 12.5. Elgamal 60
 12.6. DSA 60
 12.7. Reserved Algorithm Numbers 60
 12.8. OpenPGP CFB mode 61
 13. Security Considerations 62
 14. Implementation Nits 63
 15. Authors and Working Group Chair 65
 16. References 66
 17. Full Copyright Statement 68

Callas, et al. Expires February 22, 2000 [Page 5]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

1. Introduction

 This document provides information on the message-exchange packet
 formats used by OpenPGP to provide encryption, decryption, signing,
 and key management functions. It is a revision of RFC2440, "OpenPGP
 Message Format", which itself replaces RFC 1991, "PGP Message
 Exchange Formats."

1.1. Terms

 * OpenPGP - This is a definition for security software that uses
 PGP 5.x as a basis, formalized in RFC 2440 and this document.

 * PGP - Pretty Good Privacy. PGP is a family of software systems
 developed by Philip R. Zimmermann from which OpenPGP is based.

 * PGP 2.6.x - This version of PGP has many variants, hence the
 term PGP 2.6.x. It used only RSA, MD5, and IDEA for its
 cryptographic transforms. An informational RFC, RFC1991, was
 written describing this version of PGP.

 * PGP 5.x - This version of PGP is formerly known as "PGP 3" in
 the community and also in the predecessor of this document,

RFC1991. It has new formats and corrects a number of problems in
 the PGP 2.6.x design. It is referred to here as PGP 5.x because
 that software was the first release of the "PGP 3" code base.

 "PGP", "Pretty Good", and "Pretty Good Privacy" are trademarks of
 Network Associates, Inc. and are used with permission.

 This document uses the terms "MUST", "SHOULD", and "MAY" as defined
 in RFC2119, along with the negated forms of those terms.

2. General functions

 OpenPGP provides data integrity services for messages and data files
 by using these core technologies:

 - digital signatures

 - encryption

 - compression

 - radix-64 conversion

 In addition, OpenPGP provides key management and certificate
 services, but many of these are beyond the scope of this document.

2.1. Confidentiality via Encryption

https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc2119

 OpenPGP uses two encryption methods to provide confidentiality:

Callas, et al. Expires February 22, 2000 [Page 6]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 symmetric-key encryption and public key encryption. With public-key
 encryption, the object is encrypted using a symmetric encryption
 algorithm. Each symmetric key is used only once. A new "session
 key" is generated as a random number for each message. Since it is
 used only once, the session key is bound to the message and
 transmitted with it. To protect the key, it is encrypted with the
 receiver's public key. The sequence is as follows:

 1. The sender creates a message.

 2. The sending OpenPGP generates a random number to be used as a
 session key for this message only.

 3. The session key is encrypted using each recipient's public key.
 These "encrypted session keys" start the message.

 4. The sending OpenPGP encrypts the message using the session key,
 which forms the remainder of the message. Note that the message
 is also usually compressed.

 5. The receiving OpenPGP decrypts the session key using the
 recipient's private key.

 6. The receiving OpenPGP decrypts the message using the session
 key. If the message was compressed, it will be decompressed.

 With symmetric-key encryption, an object may be encrypted with a
 symmetric key derived from a passphrase (or other shared secret), or
 a two-stage mechanism similar to the public-key method described
 above in which a session key is itself encrypted with a symmetric
 algorithm keyed from a shared secret.

 Both digital signature and confidentiality services may be applied
 to the same message. First, a signature is generated for the message
 and attached to the message. Then, the message plus signature is
 encrypted using a symmetric session key. Finally, the session key is
 encrypted using public-key encryption and prefixed to the encrypted
 block.

2.2. Authentication via Digital signature

 The digital signature uses a hash code or message digest algorithm,
 and a public-key signature algorithm. The sequence is as follows:

 1. The sender creates a message.

 2. The sending software generates a hash code of the message.

 3. The sending software generates a signature from the hash code
 using the sender's private key.

Callas, et al. Expires February 22, 2000 [Page 7]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 4. The binary signature is attached to the message.

 5. The receiving software keeps a copy of the message signature.

 6. The receiving software generates a new hash code for the
 received message and verifies it using the message's signature.
 If the verification is successful, the message is accepted as
 authentic.

2.3. Compression

 OpenPGP implementations SHOULD compress the message after applying
 the signature but before encryption.

 Note that while all past implementations of PGP properly handle
 messages that have not been compressed, they all have compressed
 messages by default. If an implementation does not implement
 compression, its authors should be aware that most PGP messages in
 the world are compressed. Thus, it may even be wise for a
 space-constrained implementation to implement decompression, but not
 compression.

2.4. Conversion to Radix-64

 OpenPGP's underlying native representation for encrypted messages,
 signature certificates, and keys is a stream of arbitrary octets.
 Some systems only permit the use of blocks consisting of seven-bit,
 printable text. For transporting OpenPGP's native raw binary octets
 through channels that are not safe to raw binary data, a printable
 encoding of these binary octets is needed. OpenPGP provides the
 service of converting the raw 8-bit binary octet stream to a stream
 of printable ASCII characters, called Radix-64 encoding or ASCII
 Armor.

 Implementations SHOULD provide Radix-64 conversions.

 Note that many applications, particularly messaging applications,
 will want more advanced features as described in the OpenPGP-MIME
 document, RFC2015. An application that implements OpenPGP for
 messaging SHOULD implement OpenPGP-MIME.

2.5. Signature-Only Applications

 OpenPGP is designed for applications that use both encryption and
 signatures, but there are a number of problems that are solved by a
 signature-only implementation. Although this specification requires
 both encryption and signatures, it is reasonable for there to be
 subset implementations that are non-comformant only in that they
 omit encryption.

https://datatracker.ietf.org/doc/html/rfc2015

Callas, et al. Expires February 22, 2000 [Page 8]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

3. Data Element Formats

 This section describes the data elements used by OpenPGP.

3.1. Scalar numbers

 Scalar numbers are unsigned, and are always stored in big-endian
 format. Using n[k] to refer to the kth octet being interpreted, the
 value of a two-octet scalar is ((n[0] << 8) + n[1]). The value of a
 four-octet scalar is ((n[0] << 24) + (n[1] << 16) + (n[2] << 8) +
 n[3]).

3.2. Multi-Precision Integers

 Multi-Precision Integers (also called MPIs) are unsigned integers
 used to hold large integers such as the ones used in cryptographic
 calculations.

 An MPI consists of two pieces: a two-octet scalar that is the length
 of the MPI in bits followed by a string of octets that contain the
 actual integer.

 These octets form a big-endian number; a big-endian number can be
 made into an MPI by prefixing it with the appropriate length.

 Examples:

 (all numbers are in hexadecimal)

 The string of octets [00 01 01] forms an MPI with the value 1. The
 string [00 09 01 FF] forms an MPI with the value of 511.

 Additional rules:

 The size of an MPI is ((MPI.length + 7) / 8) + 2 octets.

 The length field of an MPI describes the length starting from its
 most significant non-zero bit. Thus, the MPI [00 02 01] is not
 formed correctly. It should be [00 01 01].

3.3. Key IDs

 A Key ID is an eight-octet scalar that identifies a key.
 Implementations SHOULD NOT assume that Key IDs are unique. The
 section, "Enhanced Key Formats" below describes how Key IDs are
 formed.

3.4. Text

 The default character set for text is the UTF-8 [RFC2279] encoding

https://datatracker.ietf.org/doc/html/rfc2279

 of Unicode [ISO10646].

Callas, et al. Expires February 22, 2000 [Page 9]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

3.5. Time fields

 A time field is an unsigned four-octet number containing the number
 of seconds elapsed since midnight, 1 January 1970 UTC.

3.6. Keyrings

 A keyring is a collection of one or more keys in a file or database.
 Traditionally, a keyring is simply a sequential list of keys, but
 may be any suitable database. It is beyond the scope of this
 standard to discuss the details of keyrings or other databases.

3.7. String-to-key (S2K) specifiers

 String-to-key (S2K) specifiers are used to convert passphrase
 strings into symmetric-key encryption/decryption keys. They are
 used in two places, currently: to encrypt the secret part of private
 keys in the private keyring, and to convert passphrases to
 encryption keys for symmetrically encrypted messages.

3.7.1. String-to-key (S2k) specifier types

 There are three types of S2K specifiers currently supported, as
 follows:

3.7.1.1. Simple S2K

 This directly hashes the string to produce the key data. See below
 for how this hashing is done.

 Octet 0: 0x00
 Octet 1: hash algorithm

 Simple S2K hashes the passphrase to produce the session key. The
 manner in which this is done depends on the size of the session key
 (which will depend on the cipher used) and the size of the hash
 algorithm's output. If the hash size is greater than or equal to the
 session key size, the high-order (leftmost) octets of the hash are
 used as the key.

 If the hash size is less than the key size, multiple instances of
 the hash context are created -- enough to produce the required key
 data. These instances are preloaded with 0, 1, 2, ... octets of
 zeros (that is to say, the first instance has no preloading, the
 second gets preloaded with 1 octet of zero, the third is preloaded
 with two octets of zeros, and so forth).

 As the data is hashed, it is given independently to each hash
 context. Since the contexts have been initialized differently, they
 will each produce different hash output. Once the passphrase is

 hashed, the output data from the multiple hashes is concatenated,
 first hash leftmost, to produce the key data, with any excess octets

Callas, et al. Expires February 22, 2000 [Page 10]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 on the right discarded.

3.7.1.2. Salted S2K

 This includes a "salt" value in the S2K specifier -- some arbitrary
 data -- that gets hashed along with the passphrase string, to help
 prevent dictionary attacks.

 Octet 0: 0x01
 Octet 1: hash algorithm
 Octets 2-9: 8-octet salt value

 Salted S2K is exactly like Simple S2K, except that the input to the
 hash function(s) consists of the 8 octets of salt from the S2K
 specifier, followed by the passphrase.

3.7.1.3. Iterated and Salted S2K

 This includes both a salt and an octet count. The salt is combined
 with the passphrase and the resulting value is hashed repeatedly.
 This further increases the amount of work an attacker must do to try
 dictionary attacks.

 Octet 0: 0x03
 Octet 1: hash algorithm
 Octets 2-9: 8-octet salt value
 Octet 10: count, a one-octet, coded value

 The count is coded into a one-octet number using the following
 formula:

 #define EXPBIAS 6
 count = ((Int32)16 + (c & 15)) << ((c >> 4) + EXPBIAS);

 The above formula is in C, where "Int32" is a type for a 32-bit
 integer, and the variable "c" is the coded count, Octet 10.

 Iterated-Salted S2K hashes the passphrase and salt data multiple
 times. The total number of octets to be hashed is specified in the
 encoded count in the S2K specifier. Note that the resulting count
 value is an octet count of how many octets will be hashed, not an
 iteration count.

 Initially, one or more hash contexts are set up as with the other
 S2K algorithms, depending on how many octets of key data are needed.
 Then the salt, followed by the passphrase data is repeatedly hashed
 until the number of octets specified by the octet count has been
 hashed. The one exception is that if the octet count is less than
 the size of the salt plus passphrase, the full salt plus passphrase
 will be hashed even though that is greater than the octet count.

 After the hashing is done the data is unloaded from the hash
 context(s) as with the other S2K algorithms.

Callas, et al. Expires February 22, 2000 [Page 11]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

3.7.2. String-to-key usage

 Implementations SHOULD use salted or iterated-and-salted S2K
 specifiers, as simple S2K specifiers are more vulnerable to
 dictionary attacks.

3.7.2.1. Secret key encryption

 An S2K specifier can be stored in the secret keyring to specify how
 to convert the passphrase to a key that unlocks the secret data.
 Older versions of PGP just stored a cipher algorithm octet preceding
 the secret data or a zero to indicate that the secret data was
 unencrypted. The MD5 hash function was always used to convert the
 passphrase to a key for the specified cipher algorithm.

 For compatibility, when an S2K specifier is used, the special value
 255 is stored in the position where the hash algorithm octet would
 have been in the old data structure. This is then followed
 immediately by a one-octet algorithm identifier, and then by the S2K
 specifier as encoded above.

 Therefore, preceding the secret data there will be one of these
 possibilities:

 0: secret data is unencrypted (no pass phrase)
 255: followed by algorithm octet and S2K specifier
 Cipher alg: use Simple S2K algorithm using MD5 hash

 This last possibility, the cipher algorithm number with an implicit
 use of MD5 and IDEA, is provided for backward compatibility; it MAY
 be understood, but SHOULD NOT be generated, and is deprecated.

 These are followed by an Initial Vector of the same length as the
 block size of the cipher for the decryption of the secret values, if
 they are encrypted, and then the secret key values themselves.

3.7.2.2. Symmetric-key message encryption

 OpenPGP can create a Symmetric-key Encrypted Session Key (ESK)
 packet at the front of a message. This is used to allow S2K
 specifiers to be used for the passphrase conversion or to create
 messages with a mix of symmetric-key ESKs and public-key ESKs. This
 allows a message to be decrypted either with a passphrase or a
 public key.

 PGP 2.X always used IDEA with Simple string-to-key conversion when
 encrypting a message with a symmetric algorithm. This is deprecated,
 but MAY be used for backward-compatibility.

4. Packet Syntax

 This section describes the packets used by OpenPGP.

Callas, et al. Expires February 22, 2000 [Page 12]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

4.1. Overview

 An OpenPGP message is constructed from a number of records that are
 traditionally called packets. A packet is a chunk of data that has a
 tag specifying its meaning. An OpenPGP message, keyring,
 certificate, and so forth consists of a number of packets. Some of
 those packets may contain other OpenPGP packets (for example, a
 compressed data packet, when uncompressed, contains OpenPGP
 packets).

 Each packet consists of a packet header, followed by the packet
 body. The packet header is of variable length.

4.2. Packet Headers

 The first octet of the packet header is called the "Packet Tag." It
 determines the format of the header and denotes the packet contents.
 The remainder of the packet header is the length of the packet.

 Note that the most significant bit is the left-most bit, called bit
 7. A mask for this bit is 0x80 in hexadecimal.

 +---------------+
 PTag |7 6 5 4 3 2 1 0|
 +---------------+
 Bit 7 -- Always one
 Bit 6 -- New packet format if set

 PGP 2.6.x only uses old format packets. Thus, software that
 interoperates with those versions of PGP must only use old format
 packets. If interoperability is not an issue, either format may be
 used. Note that old format packets have four bits of content tags,
 and new format packets have six; some features cannot be used and
 still be backward-compatible.

 Also note that packets with a tag greater than or equal to 16 MUST
 use new format packets. The old format packets can only express tags
 less than or equal to 15.

 Old format packets contain:

 Bits 5-2 -- content tag
 Bits 1-0 - length-type

 New format packets contain:

 Bits 5-0 -- content tag

4.2.1. Old-Format Packet Lengths

 The meaning of the length-type in old-format packets is:

Callas, et al. Expires February 22, 2000 [Page 13]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 0 - The packet has a one-octet length. The header is 2 octets long.

 1 - The packet has a two-octet length. The header is 3 octets long.

 2 - The packet has a four-octet length. The header is 5 octets long.

 3 - The packet is of indeterminate length. The header is 1 octet
 long, and the implementation must determine how long the packet
 is. If the packet is in a file, this means that the packet
 extends until the end of the file. In general, an implementation
 SHOULD NOT use indeterminate length packets except where the end
 of the data will be clear from the context, and even then it is
 better to use a definite length, or a new-format header. The
 new-format headers described below have a mechanism for
 precisely encoding data of indeterminate length.

4.2.2. New-Format Packet Lengths

 New format packets have four possible ways of encoding length:

 1. A one-octet Body Length header encodes packet lengths of up to
 191 octets.

 2. A two-octet Body Length header encodes packet lengths of 192 to
 8383 octets.

 3. A five-octet Body Length header encodes packet lengths of up to
 4,294,967,295 (0xFFFFFFFF) octets in length. (This actually
 encodes a four-octet scalar number.)

 4. When the length of the packet body is not known in advance by
 the issuer, Partial Body Length headers encode a packet of
 indeterminate length, effectively making it a stream.

4.2.2.1. One-Octet Lengths

 A one-octet Body Length header encodes a length of from 0 to 191
 octets. This type of length header is recognized because the one
 octet value is less than 192. The body length is equal to:

 bodyLen = 1st_octet;

4.2.2.2. Two-Octet Lengths

 A two-octet Body Length header encodes a length of from 192 to 8383
 octets. It is recognized because its first octet is in the range
 192 to 223. The body length is equal to:

 bodyLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192

Callas, et al. Expires February 22, 2000 [Page 14]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

4.2.2.3. Five-Octet Lengths

 A five-octet Body Length header consists of a single octet holding
 the value 255, followed by a four-octet scalar. The body length is
 equal to:

 bodyLen = (2nd_octet << 24) | (3rd_octet << 16) |
 (4th_octet << 8) | 5th_octet

4.2.2.4. Partial Body Lengths

 A Partial Body Length header is one octet long and encodes the
 length of only part of the data packet. This length is a power of 2,
 from 1 to 1,073,741,824 (2 to the 30th power). It is recognized by
 its one octet value that is greater than or equal to 224, and less
 than 255. The partial body length is equal to:

 partialBodyLen = 1 << (1st_octet & 0x1f);

 Each Partial Body Length header is followed by a portion of the
 packet body data. The Partial Body Length header specifies this
 portion's length. Another length header (of one of the three types
 -- one octet, two-octet, or partial) follows that portion. The last
 length header in the packet MUST NOT be a partial Body Length
 header. Partial Body Length headers may only be used for the
 non-final parts of the packet.

4.2.3. Packet Length Examples

 These examples show ways that new-format packets might encode the
 packet lengths.

 A packet with length 100 may have its length encoded in one octet:
 0x64. This is followed by 100 octets of data.

 A packet with length 1723 may have its length coded in two octets:
 0xC5, 0xFB. This header is followed by the 1723 octets of data.

 A packet with length 100000 may have its length encoded in five
 octets: 0xFF, 0x00, 0x01, 0x86, 0xA0.

 It might also be encoded in the following octet stream: 0xEF, first
 32768 octets of data; 0xE1, next two octets of data; 0xE0, next one
 octet of data; 0xF0, next 65536 octets of data; 0xC5, 0xDD, last
 1693 octets of data. This is just one possible encoding, and many
 variations are possible on the size of the Partial Body Length
 headers, as long as a regular Body Length header encodes the last
 portion of the data. Note also that the last Body Length header can
 be a zero-length header.

Callas, et al. Expires February 22, 2000 [Page 15]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 An implementation MAY use Partial Body Lengths for data packets, be
 they literal, compressed, or encrypted. The first partial length
 MUST be at least 512 octets long. Partial Body Lengths MUST NOT be
 used for any other packet types.

 Please note that in all of these explanations, the total length of
 the packet is the length of the header(s) plus the length of the
 body.

4.3. Packet Tags

 The packet tag denotes what type of packet the body holds. Note that
 old format headers can only have tags less than 16, whereas new
 format headers can have tags as great as 63. The defined tags (in
 decimal) are:

 0 -- Reserved - a packet tag must not have this value
 1 -- Public-Key Encrypted Session Key Packet
 2 -- Signature Packet
 3 -- Symmetric-Key Encrypted Session Key Packet
 4 -- One-Pass Signature Packet
 5 -- Secret Key Packet
 6 -- Public Key Packet
 7 -- Secret Subkey Packet
 8 -- Compressed Data Packet
 9 -- Symmetrically Encrypted Data Packet
 10 -- Marker Packet
 11 -- Literal Data Packet
 12 -- Trust Packet
 13 -- User ID Packet
 14 -- Public Subkey Packet
 18 -- Symmetrically Encrypted and Integrity Protected Data
 Packet
 19 -- Modification Detection Code Packet
 60 to 63 -- Private or Experimental Values

5. Packet Types

5.1. Public-Key Encrypted Session Key Packets (Tag 1)

 A Public-Key Encrypted Session Key packet holds the session key used
 to encrypt a message. Zero or more Encrypted Session Key packets
 (either Public-Key or Symmetric-Key) may precede a Symmetrically
 Encrypted Data Packet, which holds an encrypted message. The
 message is encrypted with the session key, and the session key is
 itself encrypted and stored in the Encrypted Session Key packet(s).
 The Symmetrically Encrypted Data Packet is preceded by one
 Public-Key Encrypted Session Key packet for each OpenPGP key to
 which the message is encrypted. The recipient of the message finds

 a session key that is encrypted to their public key, decrypts the
 session key, and then uses the session key to decrypt the message.

Callas, et al. Expires February 22, 2000 [Page 16]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The body of this packet consists of:

 - A one-octet number giving the version number of the packet type.
 The currently defined value for packet version is 3. An
 implementation should accept, but not generate a version of 2,
 which is equivalent to V3 in all other respects.

 - An eight-octet number that gives the key ID of the public key
 that the session key is encrypted to. If the session key is
 encrypted to a subkey then the key ID of this subkey is used
 here instead of the key ID of the primary key.

 - A one-octet number giving the public key algorithm used.

 - A string of octets that is the encrypted session key. This
 string takes up the remainder of the packet, and its contents
 are dependent on the public key algorithm used.

 Algorithm Specific Fields for RSA encryption

 - multiprecision integer (MPI) of RSA encrypted value m**e mod n.

 Algorithm Specific Fields for Elgamal encryption:

 - MPI of Elgamal (Diffie-Hellman) value g**k mod p.

 - MPI of Elgamal (Diffie-Hellman) value m * y**k mod p.

 The value "m" in the above formulas is derived from the session key
 as follows. First the session key is prefixed with a one-octet
 algorithm identifier that specifies the symmetric encryption
 algorithm used to encrypt the following Symmetrically Encrypted Data
 Packet. Then a two-octet checksum is appended which is equal to the
 sum of the preceding session key octets, not including the algorithm
 identifier, modulo 65536. This value is then encoded as described
 in PKCS-1 block encoding EME-PKCS1-v1_5 [RFC2437] to form the "m"
 value used in the formulas above.

 Note that when an implementation forms several PKESKs with one
 session key, forming a message that can be decrypted by several
 keys, the implementation MUST make new PKCS-1 encoding for each key.

 An implementation MAY accept or use a Key ID of zero as a "wild
 card" or "speculative" Key ID. In this case, the receiving
 implementation would try all available private keys, checking for a
 valid decrypted session key. This format helps reduce traffic
 analysis of messages.

5.2. Signature Packet (Tag 2)

https://datatracker.ietf.org/doc/html/rfc2437

 A signature packet describes a binding between some public key and
 some data. The most common signatures are a signature of a file or a

Callas, et al. Expires February 22, 2000 [Page 17]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 block of text, and a signature that is a certification of a user ID.

 Two versions of signature packets are defined. Version 3 provides
 basic signature information, while version 4 provides an expandable
 format with subpackets that can specify more information about the
 signature. PGP 2.6.x only accepts version 3 signatures.

 Implementations MUST accept V3 signatures. Implementations SHOULD
 generate V4 signatures. Implementations MAY generate a V3 signature
 that can be verified by PGP 2.6.x.

 Note that if an implementation is creating an encrypted and signed
 message that is encrypted to a V3 key, it is reasonable to create a
 V3 signature.

5.2.1. Signature Types

 There are a number of possible meanings for a signature, which are
 specified in a signature type octet in any given signature. These
 meanings are:

 0x00: Signature of a binary document.
 This means the signer owns it, created it, or certifies that it
 has not been modified.

 0x01: Signature of a canonical text document.
 This means the signer owns it, created it, or certifies that it
 has not been modified. The signature is calculated over the
 text data with its line endings converted to <CR><LF> and
 trailing blanks removed.

 0x02: Standalone signature.
 This signature is a signature of only its own subpacket
 contents. It is calculated identically to a signature over a
 zero-length binary document. Note that it doesn't make sense to
 have a V3 standalone signature.

 0x10: Generic certification of a User ID and Public Key packet.
 The issuer of this certification does not make any particular
 assertion as to how well the certifier has checked that the
 owner of the key is in fact the person described by the user ID.
 Note that all PGP "key signatures" are this type of
 certification.

 0x11: Persona certification of a User ID and Public Key packet.
 The issuer of this certification has not done any verification
 of the claim that the owner of this key is the user ID
 specified.

 0x12: Casual certification of a User ID and Public Key packet.

 The issuer of this certification has done some casual
 verification of the claim of identity.

Callas, et al. Expires February 22, 2000 [Page 18]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 0x13: Positive certification of a User ID and Public Key packet.
 The issuer of this certification has done substantial
 verification of the claim of identity.

 Please note that the vagueness of these certification claims is
 not a flaw, but a feature of the system. Because PGP places
 final authority for validity upon the receiver of a
 certification, it may be that one authority's casual
 certification might be more rigorous than some other authority's
 positive certification. These classifications allow a
 certification authority to issue fine-grained claims.

 0x18: Subkey Binding Signature
 This signature is a statement by the top-level signing key
 indicates that it owns the subkey. This signature is calculated
 directly on the subkey itself, not on any User ID or other
 packets.

 0x1F: Signature directly on a key
 This signature is calculated directly on a key. It binds the
 information in the signature subpackets to the key, and is
 appropriate to be used for subpackets that provide information
 about the key, such as the revocation key subpacket. It is also
 appropriate for statements that non-self certifiers want to make
 about the key itself, rather than the binding between a key and
 a name.

 0x20: Key revocation signature
 The signature is calculated directly on the key being revoked.
 A revoked key is not to be used. Only revocation signatures by
 the key being revoked, or by an authorized revocation key,
 should be considered valid revocation signatures.

 0x28: Subkey revocation signature
 The signature is calculated directly on the subkey being
 revoked. A revoked subkey is not to be used. Only revocation
 signatures by the top-level signature key that is bound to this
 subkey, or by an authorized revocation key, should be considered
 valid revocation signatures.

 0x30: Certification revocation signature
 This signature revokes an earlier user ID certification
 signature (signature class 0x10 through 0x13). It should be
 issued by the same key that issued the revoked signature or an
 authorized revocation key The signature should have a later
 creation date than the signature it revokes.

 0x40: Timestamp signature.
 This signature is only meaningful for the timestamp contained in

 it.

Callas, et al. Expires February 22, 2000 [Page 19]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

5.2.2. Version 3 Signature Packet Format

 The body of a version 3 Signature Packet contains:

 - One-octet version number (3).

 - One-octet length of following hashed material. MUST be 5.

 - One-octet signature type.

 - Four-octet creation time.

 - Eight-octet key ID of signer.

 - One-octet public key algorithm.

 - One-octet hash algorithm.

 - Two-octet field holding left 16 bits of signed hash value.

 - One or more multi-precision integers comprising the signature.
 This portion is algorithm specific, as described below.

 The data being signed is hashed, and then the signature type and
 creation time from the signature packet are hashed (5 additional
 octets). The resulting hash value is used in the signature
 algorithm. The high 16 bits (first two octets) of the hash are
 included in the signature packet to provide a quick test to reject
 some invalid signatures.

 Algorithm Specific Fields for RSA signatures:

 - multiprecision integer (MPI) of RSA signature value m**d mod n.

 Algorithm Specific Fields for DSA signatures:

 - MPI of DSA value r.

 - MPI of DSA value s.

 The signature calculation is based on a hash of the signed data, as
 described above. The details of the calculation are different for
 DSA signature than for RSA signatures.

 Algorithm Specific Fields for ElGamal signatures:

 - MPI of ElGamal value a = g**k mod p.

 - MPI of ElGamal value b = (h-a*x)/k mod p-1.

Callas, et al. Expires February 22, 2000 [Page 20]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The hash h is PKCS-1 padded exactly the same way as for the above

 described RSA signatures.

 With RSA signatures, the hash value is encoded as described in
 PKCS-1 section 9.2.1 encoded using PKCS-1 encoding type
 EMSA-PKCS1-v1_5 [RFC2437]. This requires inserting the hash value
 as an octet string into an ASN.1 structure. The object identifier
 for the type of hash being used is included in the structure. The
 hexadecimal representations for the currently defined hash
 algorithms are:

 - MD2: 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x02

 - MD5: 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05

 - RIPEMD-160: 0x2B, 0x24, 0x03, 0x02, 0x01

 - SHA-1: 0x2B, 0x0E, 0x03, 0x02, 0x1A

 - SHA256: 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01

 - SHA384: 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02

 - SHA512: 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03

 The ASN.1 OIDs are:

 - MD2: 1.2.840.113549.2.2

 - MD5: 1.2.840.113549.2.5

 - RIPEMD-160: 1.3.36.3.2.1

 - SHA-1: 1.3.14.3.2.26

 - SHA256: 2.16.840.1.101.3.4.2.1

 - SHA384: 2.16.840.1.101.3.4.2.2

 - SHA512: 2.16.840.1.101.3.4.2.3

 The full hash prefixes for these are:

 MD2: 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86,
 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x02, 0x05, 0x00,
 0x04, 0x10

 MD5: 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86,
 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, 0x05, 0x00,
 0x04, 0x10

https://datatracker.ietf.org/doc/html/rfc2437

Callas, et al. Expires February 22, 2000 [Page 21]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 RIPEMD-160: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24,
 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14

 SHA-1: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0E,
 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14

 SHA256: 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
 0x00, 0x04, 0x20

 SHA384: 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
 0x00, 0x04, 0x30

 SHA512: 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
 0x00, 0x04, 0x40

 DSA signatures MUST use hashes with a size of 160 bits, to match q,
 the size of the group generated by the DSA key's generator value.
 The hash function result is treated as a 160 bit number and used
 directly in the DSA signature algorithm.

5.2.3. Version 4 Signature Packet Format

 The body of a version 4 Signature Packet contains:

 - One-octet version number (4).

 - One-octet signature type.

 - One-octet public key algorithm.

 - One-octet hash algorithm.

 - Two-octet scalar octet count for following hashed subpacket
 data. Note that this is the length in octets of all of the
 hashed subpackets; a pointer incremented by this number will
 skip over the hashed subpackets.

 - Hashed subpacket data. (two or more subpackets)

 - Two-octet scalar octet count for following unhashed subpacket
 data. Note that this is the length in octets of all of the
 unhashed subpackets; a pointer incremented by this number will
 skip over the unhashed subpackets.

 - Unhashed subpacket data. (zero or more subpackets)

 - Two-octet field holding left 16 bits of signed hash value.

Callas, et al. Expires February 22, 2000 [Page 22]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - One or more multi-precision integers comprising the signature.
 This portion is algorithm specific, as described above.

 The data being signed is hashed, and then the signature data from
 the version number through the hashed subpacket data (inclusive) is
 hashed. The resulting hash value is what is signed. The left 16
 bits of the hash are included in the signature packet to provide a
 quick test to reject some invalid signatures.

 There are two fields consisting of signature subpackets. The first
 field is hashed with the rest of the signature data, while the
 second is unhashed. The second set of subpackets is not
 cryptographically protected by the signature and should include only
 advisory information.

 The algorithms for converting the hash function result to a
 signature are described in a section below.

5.2.3.1. Signature Subpacket Specification

 The subpacket fields consist of zero or more signature subpackets.
 Each set of subpackets is preceded by a two-octet scalar count of
 the length of the set of subpackets.

 Each subpacket consists of a subpacket header and a body. The
 header consists of:

 - the subpacket length (1, 2, or 5 octets)

 - the subpacket type (1 octet)

 and is followed by the subpacket specific data.

 The length includes the type octet but not this length. Its format
 is similar to the "new" format packet header lengths, but cannot
 have partial body lengths. That is:

 if the 1st octet < 192, then
 lengthOfLength = 1
 subpacketLen = 1st_octet

 if the 1st octet >= 192 and < 255, then
 lengthOfLength = 2
 subpacketLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192

 if the 1st octet = 255, then
 lengthOfLength = 5
 subpacket length = [four-octet scalar starting at 2nd_octet]

 The value of the subpacket type octet may be:

Callas, et al. Expires February 22, 2000 [Page 23]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 2 = signature creation time
 3 = signature expiration time
 4 = exportable certification
 5 = trust signature
 6 = regular expression
 7 = revocable
 9 = key expiration time
 10 = placeholder for backward compatibility
 11 = preferred symmetric algorithms
 12 = revocation key
 16 = issuer key ID
 20 = notation data
 21 = preferred hash algorithms
 22 = preferred compression algorithms
 23 = key server preferences
 24 = preferred key server
 25 = primary user id
 26 = policy URL
 27 = key flags
 28 = signer's user id
 29 = reason for revocation
 30 = features
 100 to 110 = internal or user-defined

 An implementation SHOULD ignore any subpacket of a type that it does
 not recognize.

 Bit 7 of the subpacket type is the "critical" bit. If set, it
 denotes that the subpacket is one that is critical for the evaluator
 of the signature to recognize. If a subpacket is encountered that
 is marked critical but is unknown to the evaluating software, the
 evaluator SHOULD consider the signature to be in error.

 An evaluator may "recognize" a subpacket, but not implement it. The
 purpose of the critical bit is to allow the signer to tell an
 evaluator that it would prefer a new, unknown feature to generate an
 error than be ignored.

 Implementations SHOULD implement "preferences" and the "reason for
 revocation" subpackets. Note, however, that if an implementation
 chooses not to implement some of the preferences, it is required to
 behave in a polite manner to respect the wishes of those users who
 do implement these preferences.

5.2.3.2. Signature Subpacket Types

 A number of subpackets are currently defined. Some subpackets apply
 to the signature itself and some are attributes of the key.
 Subpackets that are found on a self-signature are placed on a user

 id certification made by the key itself. Note that a key may have
 more than one user id, and thus may have more than one
 self-signature, and differing subpackets.

Callas, et al. Expires February 22, 2000 [Page 24]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 A subpacket may be found either in the hashed or unhashed subpacket
 sections of a signature. If a subpacket is not hashed, then the
 information in it cannot be considered definitive because it is not
 part of the signature proper.

5.2.3.3. Notes on Self-Signatures

 A self-signature is a binding signature made by the key the
 signature refers to. There are three types of self-signatures, the
 certification signatures (types 0x10-0x13), the direct-key signature
 (type 0x1f), and the subkey binding signature (type 0x18). For
 certification self-signatures, each user ID may have a
 self-signature, and thus different subpackets in those
 self-signatures. For subkey binding signatures, each subkey in fact
 has a self-signature. Subpackets that appear in a certification
 self-signature apply to the username, and subpackets that appear in
 the subkey self-signature apply to the subkey. Lastly, subpackets on
 the direct key signature apply to the entire key.

 Implementing software should interpret a self-signature's preference
 subpackets as narrowly as possible. For example, suppose a key has
 two usernames, Alice and Bob. Suppose that Alice prefers the
 symmetric algorithm CAST5, and Bob prefers IDEA or Triple-DES. If
 the software locates this key via Alice's name, then the preferred
 algorithm is CAST5, if software locates the key via Bob's name, then
 the preferred algorithm is IDEA. If the key is located by key id,
 then algorithm of the default user id of the key provides the
 default symmetric algorithm.

 Revoking a self-signature has defined semantic meanings. Revoking
 the self-signature on a certification effectively retires that user
 name. The self-signature is a statement, "My name X is tied to my
 signing key K" and is corroborated by other users' certifications.
 If another user revokes their certification, they are effectively
 saying that they no longer believe that name and that key are tied
 together. Similarly, if the user themselves revokes their
 self-signature, it means the user no longer goes by that name, no
 longer has that email address, etc. Revoking a binding signature
 effectively retires that subkey. Please see the "Reason for
 Revocation" subpacket below for more relevant detail.

 Since a self-signatures contain important information about the
 key's use, an implementation SHOULD allow the user to rewrite the
 self-signature, and important information in it, such as preferences
 and key expiration.

5.2.3.4. Signature creation time

 (4 octet time field)

Callas, et al. Expires February 22, 2000 [Page 25]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The time the signature was made.

 MUST be present in the hashed area.

5.2.3.5. Issuer

 (8 octet key ID)

 The OpenPGP key ID of the key issuing the signature.

5.2.3.6. Key expiration time

 (4 octet time field)

 The validity period of the key. This is the number of seconds after
 the key creation time that the key expires. If this is not present
 or has a value of zero, the key never expires. This is found only on
 a self-signature.

5.2.3.7. Preferred symmetric algorithms

 (sequence of one-octet values)

 Symmetric algorithm numbers that indicate which algorithms the key
 holder prefers to use. The subpacket body is an ordered list of
 octets with the most preferred listed first. It is assumed that only
 algorithms listed are supported by the recipient's software.
 Algorithm numbers in section 9. This is only found on a
 self-signature.

5.2.3.8. Preferred hash algorithms

 (array of one-octet values)

 Message digest algorithm numbers that indicate which algorithms the
 key holder prefers to receive. Like the preferred symmetric
 algorithms, the list is ordered. Algorithm numbers are in section 6.
 This is only found on a self-signature.

5.2.3.9. Preferred compression algorithms

 (array of one-octet values)

 Compression algorithm numbers that indicate which algorithms the key
 holder prefers to use. Like the preferred symmetric algorithms, the
 list is ordered. Algorithm numbers are in section 6. If this
 subpacket is not included, ZIP is preferred. A zero denotes that
 uncompressed data is preferred; the key holder's software might have
 no compression software in that implementation. This is only found
 on a self-signature.

Callas, et al. Expires February 22, 2000 [Page 26]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

5.2.3.10. Signature expiration time

 (4 octet time field)

 The validity period of the signature. This is the number of seconds
 after the signature creation time that the signature expires. If
 this is not present or has a value of zero, it never expires.

5.2.3.11. Exportable Certification

 (1 octet of exportability, 0 for not, 1 for exportable)

 This subpacket denotes whether a certification signature is
 "exportable," to be used by other users than the signature's issuer.
 The packet body contains a boolean flag indicating whether the
 signature is exportable. If this packet is not present, the
 certification is exportable; it is equivalent to a flag containing a
 1.

 Non-exportable, or "local," certifications are signatures made by a
 user to mark a key as valid within that user's implementation only.
 Thus, when an implementation prepares a user's copy of a key for
 transport to another user (this is the process of "exporting" the
 key), any local certification signatures are deleted from the key.

 The receiver of a transported key "imports" it, and likewise trims
 any local certifications. In normal operation, there won't be any,
 assuming the import is performed on an exported key. However, there
 are instances where this can reasonably happen. For example, if an
 implementation allows keys to be imported from a key database in
 addition to an exported key, then this situation can arise.

 Some implementations do not represent the interest of a single user
 (for example, a key server). Such implementations always trim local
 certifications from any key they handle.

5.2.3.12. Revocable

 (1 octet of revocability, 0 for not, 1 for revocable)

 Signature's revocability status. Packet body contains a boolean
 flag indicating whether the signature is revocable. Signatures that
 are not revocable have any later revocation signatures ignored.
 They represent a commitment by the signer that he cannot revoke his
 signature for the life of his key. If this packet is not present,
 the signature is revocable.

5.2.3.13. Trust signature

 (1 octet "level" (depth), 1 octet of trust amount)

Callas, et al. Expires February 22, 2000 [Page 27]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Signer asserts that the key is not only valid, but also trustworthy,
 at the specified level. Level 0 has the same meaning as an ordinary
 validity signature. Level 1 means that the signed key is asserted
 to be a valid trusted introducer, with the 2nd octet of the body
 specifying the degree of trust. Level 2 means that the signed key is
 asserted to be trusted to issue level 1 trust signatures, i.e. that
 it is a "meta introducer". Generally, a level n trust signature
 asserts that a key is trusted to issue level n-1 trust signatures.
 The trust amount is in a range from 0-255, interpreted such that
 values less than 120 indicate partial trust and values of 120 or
 greater indicate complete trust. Implementations SHOULD emit values
 of 60 for partial trust and 120 for complete trust.

5.2.3.14. Regular expression

 (null-terminated regular expression)

 Used in conjunction with trust signature packets (of level > 0) to
 limit the scope of trust that is extended. Only signatures by the
 target key on user IDs that match the regular expression in the body
 of this packet have trust extended by the trust signature subpacket.
 The regular expression uses the same syntax as the Henry Spencer's
 "almost public domain" regular expression package. A description of
 the syntax is found in a section below.

5.2.3.15. Revocation key

 (1 octet of class, 1 octet of algid, 20 octets of fingerprint)

 Authorizes the specified key to issue revocation signatures for this
 key. Class octet must have bit 0x80 set. If the bit 0x40 is set,
 then this means that the revocation information is sensitive. Other
 bits are for future expansion to other kinds of authorizations. This
 is found on a self-signature.

 If the "sensitive" flag is set, the keyholder feels this subpacket
 contains private trust information that describes a real-world
 sensitive relationship. If this flag is set, implementations SHOULD
 NOT export this signature to other users except in cases where the
 data needs to be available: when the signature is being sent to the
 designated revoker, or when it is accompanied by a revocation
 signature from that revoker. Note that it may be appropriate to
 isolate this subpacket within a separate signature so that it is not
 combined with other subpackets that need to be exported.

5.2.3.16. Notation Data

 (4 octets of flags, 2 octets of name length (M),
 2 octets of value length (N),
 M octets of name data,

 N octets of value data)

Callas, et al. Expires February 22, 2000 [Page 28]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 This subpacket describes a "notation" on the signature that the
 issuer wishes to make. The notation has a name and a value, each of
 which are strings of octets. There may be more than one notation in
 a signature. Notations can be used for any extension the issuer of
 the signature cares to make. The "flags" field holds four octets of
 flags.

 All undefined flags MUST be zero. Defined flags are:

 First octet: 0x80 = human-readable. This note is text, a note
 from one person to another, and has no
 meaning to software.
 Other octets: none.

 Notation names are arbitrary strings encoded in UTF-8. They reside
 two name spaces: The IETF name space and the user name space.

 The IETF name space is registered with IANA. These names MUST NOT
 contain the "@" character (0x40) is this is a tag for the user name
 space.

 Names in the user name space consist of a UTF-8 string tag followed
 by "@" followed by a DNS domain name. Note that the tag MUST NOT
 contain an "@" character. For example, the "sample" tag used by
 Example Corporation could be "sample@example.com".

 Names in a user space are owned and controlled by the owners of that
 domain. Obviously, it's of bad form to create a new name in a DNS
 space that you don't own.

 Since the user name space is in the form of an email address,
 implementors MAY wish to arrange for that address to reach a person
 who can be consulted about the use of the named tag. Note that due
 to UTF-8 encoding, not all valid user space name tags are valid
 email addresses.

5.2.3.17. Key server preferences

 (N octets of flags)

 This is a list of flags that indicate preferences that the key
 holder has about how the key is handled on a key server. All
 undefined flags MUST be zero.

 First octet: 0x80 = No-modify
 the key holder requests that this key only be modified or
 updated by the key holder or an administrator of the key server.

 This is found only on a self-signature.

Callas, et al. Expires February 22, 2000 [Page 29]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

5.2.3.18. Preferred key server

 (String)

 This is a URL of a key server that the key holder prefers be used
 for updates. Note that keys with multiple user ids can have a
 preferred key server for each user id. Note also that since this is
 a URL, the key server can actually be a copy of the key retrieved by
 ftp, http, finger, etc.

5.2.3.19. Primary user id

 (1 octet, boolean)

 This is a flag in a user id's self signature that states whether
 this user id is the main user id for this key. It is reasonable for
 an implementation to resolve ambiguities in preferences, etc. by
 referring to the primary user id. If this flag is absent, its value
 is zero. If more than one user id in a key is marked as primary, the
 implementation may resolve the ambiguity in any way it sees fit.

5.2.3.20. Policy URL

 (String)

 This subpacket contains a URL of a document that describes the
 policy that the signature was issued under.

5.2.3.21. Key Flags

 (Octet string)

 This subpacket contains a list of binary flags that hold information
 about a key. It is a string of octets, and an implementation MUST
 NOT assume a fixed size. This is so it can grow over time. If a list
 is shorter than an implementation expects, the unstated flags are
 considered to be zero. The defined flags are:

 First octet:

 0x01 - This key may be used to certify other keys.

 0x02 - This key may be used to sign data.

 0x04 - This key may be used to encrypt communications.

 0x08 - This key may be used to encrypt storage.

 0x10 - The private component of this key may have been split by
 a secret-sharing mechanism.

Callas, et al. Expires February 22, 2000 [Page 30]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 0x80 - The private component of this key may be in the
 possession of more than one person.

 Usage notes:

 The flags in this packet may appear in self-signatures or in
 certification signatures. They mean different things depending on
 who is making the statement -- for example, a certification
 signature that has the "sign data" flag is stating that the
 certification is for that use. On the other hand, the
 "communications encryption" flag in a self-signature is stating a
 preference that a given key be used for communications. Note
 however, that it is a thorny issue to determine what is
 "communications" and what is "storage." This decision is left wholly
 up to the implementation; the authors of this document do not claim
 any special wisdom on the issue, and realize that accepted opinion
 may change.

 The "split key" (0x10) and "group key" (0x80) flags are placed on a
 self-signature only; they are meaningless on a certification
 signature. They SHOULD be placed only on a direct-key signature
 (type 0x1f) or a subkey signature (type 0x18), one that refers to
 the key the flag applies to.

5.2.3.22. Signer's User ID

 This subpacket allows a keyholder to state which user id is
 responsible for the signing. Many keyholders use a single key for
 different purposes, such as business communications as well as
 personal communications. This subpacket allows such a keyholder to
 state which of their roles is making a signature.

5.2.3.23. Reason for Revocation

 (1 octet of revocation code, N octets of reason string)

 This subpacket is used only in key revocation and certification
 revocation signatures. It describes the reason why the key or
 certificate was revoked.

 The first octet contains a machine-readable code that denotes the
 reason for the revocation:

 0x00 - No reason specified (key revocations or cert revocations)
 0x01 - Key is superceded (key revocations)
 0x02 - Key material has been compromised (key revocations)
 0x03 - Key is retired and no longer used (key revocations)
 0x20 - User id information is no longer valid (cert revocations)

 Following the revocation code is a string of octets which gives

 information about the reason for revocation in human-readable form
 (UTF-8). The string may be null, that is, of zero length. The length

Callas, et al. Expires February 22, 2000 [Page 31]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 of the subpacket is the length of the reason string plus one.

 An implementation SHOULD implement this subpacket, include it in all
 revocation signatures, and interpret revocations appropriately.
 There are important semantic differences between the reasons, and
 there are thus important reasons for revoking signatures.

 If a key has been revoked because of a compromise, all signatures
 created by that key are suspect. However, if it was merely
 superceded or retired, old signatures are still valid. If the
 revoked signature is the self-signature for certifying a user id, a
 revocation denotes that that user name is no longer in use. Such a
 revocation SHOULD include an 0x20 subpacket.

 Note that any signature may be revoked, including a certification on
 some other person's key. There are many good reasons for revoking a
 certification signature, such as the case where the keyholder leaves
 the employ of a business with an email address. A revoked
 certification no longer is a part of validity calculations.

5.2.3.24. Features

 (array of one-octet values)

 The features subpacket denotes which advanced OpenPGP features a
 user's implementation supports. This is so that as features are
 added to OpenPGP that cannot be backwards-compatible, a user can
 state that they can use that feature.

 This subpacket is similar to a preferences subpacket, and only
 appears in a self-signature.

 An implementation SHOULD NOT use a feature listed when sending to a
 user who does not state that they can use it.

 Defined features are:

 1 - Modification Detection (packets 18 and 19)

 If an implementation implements any of the defined features, it
 SHOULD implement the features subpacket, too.

5.2.4. Computing Signatures

 All signatures are formed by producing a hash over the signature
 data, and then using the resulting hash in the signature algorithm.

 The signature data is simple to compute for document signatures
 (types 0x00 and 0x01), for which the document itself is the data.
 For standalone signatures, this is a null string.

Callas, et al. Expires February 22, 2000 [Page 32]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 When a signature is made over a key, the hash data starts with the
 octet 0x99, followed by a two-octet length of the key, and then body
 of the key packet. (Note that this is an old-style packet header for
 a key packet with two-octet length.) A subkey signature (type 0x18)
 then hashes the subkey, using the same format as the main key (also
 using 0x99 as the first octet). Key revocation signatures (types
 0x20 and 0x28) hash only the key being revoked.

 A certification signature (type 0x10 through 0x13) hashes the user
 id being bound to the key into the hash context after the above
 data. A V3 certification hashes the contents of the name packet,
 without any header. A V4 certification hashes the constant 0xb4
 (which is an old-style packet header with the length-of-length set
 to zero), a four-octet number giving the length of the username, and
 then the username data.

 Once the data body is hashed, then a trailer is hashed. A V3
 signature hashes five octets of the packet body, starting from the
 signature type field. This data is the signature type, followed by
 the four-octet signature time. A V4 signature hashes the packet body
 starting from its first field, the version number, through the end
 of the hashed subpacket data. Thus, the fields hashed are the
 signature version, the signature type, the public key algorithm, the
 hash algorithm, the hashed subpacket length, and the hashed
 subpacket body.

 V4 signatures also hash in a final trailer of six octets: the
 version of the signature packet, i.e. 0x04; 0xFF; a four-octet,
 big-endian number that is the length of the hashed data from the
 signature packet (note that this number does not include these final
 six octets.

 After all this has been hashed, the resulting hash field is used in
 the signature algorithm, and placed at the end of the signature
 packet.

5.2.4.1. Subpacket Hints

 An implementation SHOULD put the two mandatory subpackets, creation
 time and issuer, as the first subpackets in the subpacket list,
 simply to make it easier for the implementer to find them.

 It is certainly possible for a signature to contain conflicting
 information in subpackets. For example, a signature may contain
 multiple copies of a preference or multiple expiration times. In
 most cases, an implementation SHOULD use the last subpacket in the
 signature, but MAY use any conflict resolution scheme that makes
 more sense. Please note that we are intentionally leaving conflict
 resolution to the implementer; most conflicts are simply syntax

 errors, and the wishy-washy language here allows a receiver to be
 generous in what they accept, while putting pressure on a creator to
 be stingy in what they generate.

Callas, et al. Expires February 22, 2000 [Page 33]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Some apparent conflicts may actually make sense -- for example,
 suppose a keyholder has an V3 key and a V4 key that share the same
 RSA key material. Either of these keys can verify a signature
 created by the other, and it may be reasonable for a signature to
 contain an issuer subpacket for each key, as a way of explicitly
 tying those keys to the signature.

5.3. Symmetric-Key Encrypted Session-Key Packets (Tag 3)

 The Symmetric-Key Encrypted Session Key packet holds the
 symmetric-key encryption of a session key used to encrypt a message.
 Zero or more Encrypted Session Key packets and/or Symmetric-Key
 Encrypted Session Key packets may precede a Symmetrically Encrypted
 Data Packet that holds an encrypted message. The message is
 encrypted with a session key, and the session key is itself
 encrypted and stored in the Encrypted Session Key packet or the
 Symmetric-Key Encrypted Session Key packet.

 If the Symmetrically Encrypted Data Packet is preceded by one or
 more Symmetric-Key Encrypted Session Key packets, each specifies a
 passphrase that may be used to decrypt the message. This allows a
 message to be encrypted to a number of public keys, and also to one
 or more pass phrases. This packet type is new, and is not generated
 by PGP 2.x or PGP 5.0.

 The body of this packet consists of:

 - A one-octet version number. The only currently defined version
 is 4.

 - A one-octet number describing the symmetric algorithm used.

 - A string-to-key (S2K) specifier, length as defined above.

 - Optionally, the encrypted session key itself, which is decrypted
 with the string-to-key object.

 If the encrypted session key is not present (which can be detected
 on the basis of packet length and S2K specifier size), then the S2K
 algorithm applied to the passphrase produces the session key for
 decrypting the file, using the symmetric cipher algorithm from the
 Symmetric-Key Encrypted Session Key packet.

 If the encrypted session key is present, the result of applying the
 S2K algorithm to the passphrase is used to decrypt just that
 encrypted session key field, using CFB mode with an IV of all zeros.
 The decryption result consists of a one-octet algorithm identifier
 that specifies the symmetric-key encryption algorithm used to
 encrypt the following Symmetrically Encrypted Data Packet, followed
 by the session key octets themselves.

Callas, et al. Expires February 22, 2000 [Page 34]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Note: because an all-zero IV is used for this decryption, the S2K
 specifier MUST use a salt value, either a Salted S2K or an
 Iterated-Salted S2K. The salt value will insure that the decryption
 key is not repeated even if the passphrase is reused.

5.4. One-Pass Signature Packets (Tag 4)

 The One-Pass Signature packet precedes the signed data and contains
 enough information to allow the receiver to begin calculating any
 hashes needed to verify the signature. It allows the Signature
 Packet to be placed at the end of the message, so that the signer
 can compute the entire signed message in one pass.

 A One-Pass Signature does not interoperate with PGP 2.6.x or
 earlier.

 The body of this packet consists of:

 - A one-octet version number. The current version is 3.

 - A one-octet signature type. Signature types are described in
section 5.2.1.

 - A one-octet number describing the hash algorithm used.

 - A one-octet number describing the public key algorithm used.

 - An eight-octet number holding the key ID of the signing key.

 - A one-octet number holding a flag showing whether the signature
 is nested. A zero value indicates that the next packet is
 another One-Pass Signature packet that describes another
 signature to be applied to the same message data.

 Note that if a message contains more than one one-pass signature,
 then the signature packets bracket the message; that is, the first
 signature packet after the message corresponds to the last one-pass
 packet and the final signature packet corresponds to the first
 one-pass packet.

5.5. Key Material Packet

 A key material packet contains all the information about a public or
 private key. There are four variants of this packet type, and two
 major versions. Consequently, this section is complex.

5.5.1. Key Packet Variants

5.5.1.1. Public Key Packet (Tag 6)

 A Public Key packet starts a series of packets that forms an OpenPGP
 key (sometimes called an OpenPGP certificate).

Callas, et al. Expires February 22, 2000 [Page 35]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

5.5.1.2. Public Subkey Packet (Tag 14)

 A Public Subkey packet (tag 14) has exactly the same format as a
 Public Key packet, but denotes a subkey. One or more subkeys may be
 associated with a top-level key. By convention, the top-level key
 provides signature services, and the subkeys provide encryption
 services.

 Note: in PGP 2.6.x, tag 14 was intended to indicate a comment
 packet. This tag was selected for reuse because no previous version
 of PGP ever emitted comment packets but they did properly ignore
 them. Public Subkey packets are ignored by PGP 2.6.x and do not
 cause it to fail, providing a limited degree of backward
 compatibility.

5.5.1.3. Secret Key Packet (Tag 5)

 A Secret Key packet contains all the information that is found in a
 Public Key packet, including the public key material, but also
 includes the secret key material after all the public key fields.

5.5.1.4. Secret Subkey Packet (Tag 7)

 A Secret Subkey packet (tag 7) is the subkey analog of the Secret
 Key packet, and has exactly the same format.

5.5.2. Public Key Packet Formats

 There are two versions of key-material packets. Version 3 packets
 were first generated by PGP 2.6. Version 2 packets are identical in
 format to Version 3 packets, but are generated by PGP 2.5 or before.
 V2 packets are deprecated and they MUST NOT be generated.

 PGP 5.0 introduced version 4 packets, with new fields and semantics.
 PGP 2.6.x will not accept key-material packets with versions
 greater than 3.

 OpenPGP implementations SHOULD create keys with version 4 format. An
 implementation MAY generate a V3 key to ensure interoperability with
 old software; note, however, that V4 keys correct some security
 deficiencies in V3 keys. These deficiencies are described below. An
 implementation MUST NOT create a V3 key with a public key algorithm
 other than RSA.

 A version 3 public key or public subkey packet contains:

 - A one-octet version number (3).

 - A four-octet number denoting the time that the key was created.

Callas, et al. Expires February 22, 2000 [Page 36]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - A two-octet number denoting the time in days that this key is
 valid. If this number is zero, then it does not expire.

 - A one-octet number denoting the public key algorithm of this key

 - A series of multi-precision integers comprising the key
 material:

 - a multiprecision integer (MPI) of RSA public modulus n;

 - an MPI of RSA public encryption exponent e.

 V3 keys SHOULD only be used for backward compatibility because of
 three weaknesses in them. First, it is relatively easy to construct
 a V3 key that has the same key ID as any other key because the key
 ID is simply the low 64 bits of the public modulus. Secondly,
 because the fingerprint of a V3 key hashes the key material, but not
 its length, which increases the opportunity for fingerprint
 collisions. Third, there are minor weaknesses in the MD5 hash
 algorithm that make developers prefer other algorithms. See below
 for a fuller discussion of key IDs and fingerprints.

 The version 4 format is similar to the version 3 format except for
 the absence of a validity period. This has been moved to the
 signature packet. In addition, fingerprints of version 4 keys are
 calculated differently from version 3 keys, as described in section
 "Enhanced Key Formats."

 A version 4 packet contains:

 - A one-octet version number (4).

 - A four-octet number denoting the time that the key was created.

 - A one-octet number denoting the public key algorithm of this key

 - A series of multi-precision integers comprising the key
 material. This algorithm-specific portion is:

 Algorithm Specific Fields for RSA public keys:

 - multiprecision integer (MPI) of RSA public modulus n;

 - MPI of RSA public encryption exponent e.

 Algorithm Specific Fields for DSA public keys:

 - MPI of DSA prime p;

 - MPI of DSA group order q (q is a prime divisor of p-1);

Callas, et al. Expires February 22, 2000 [Page 37]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - MPI of DSA group generator g;

 - MPI of DSA public key value y (= g**x mod p where x is
 secret).

 Algorithm Specific Fields for Elgamal public keys:

 - MPI of Elgamal prime p;

 - MPI of Elgamal group generator g;

 - MPI of Elgamal public key value y (= g**x mod p where x is
 secret).

5.5.3. Secret Key Packet Formats

 The Secret Key and Secret Subkey packets contain all the data of the
 Public Key and Public Subkey packets, with additional
 algorithm-specific secret key data appended, in encrypted form.

 The packet contains:

 - A Public Key or Public Subkey packet, as described above

 - One octet indicating string-to-key usage conventions. 0
 indicates that the secret key data is not encrypted. 255
 indicates that a string-to-key specifier is being given. Any
 other value is a symmetric-key encryption algorithm specifier.

 - [Optional] If string-to-key usage octet was 255, a one-octet
 symmetric encryption algorithm.

 - [Optional] If string-to-key usage octet was 255, a string-to-key
 specifier. The length of the string-to-key specifier is implied
 by its type, as described above.

 - [Optional] If secret data is encrypted, Initial Vector (IV) of
 the same length as the cipher's block size.

 - Encrypted multi-precision integers comprising the secret key
 data. These algorithm-specific fields are as described below.

 - Two-octet checksum of the plaintext of the algorithm-specific
 portion (sum of all octets, mod 65536). This checksum is
 encrypted together with the algorithm- specific fields.

 Algorithm Specific Fields for RSA secret keys:

 - multiprecision integer (MPI) of RSA secret exponent d.

Callas, et al. Expires February 22, 2000 [Page 38]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - MPI of RSA secret prime value p.

 - MPI of RSA secret prime value q (p < q).

 - MPI of u, the multiplicative inverse of p, mod q.

 Algorithm Specific Fields for DSA secret keys:

 - MPI of DSA secret exponent x.

 Algorithm Specific Fields for Elgamal secret keys:

 - MPI of Elgamal secret exponent x.

 Secret MPI values can be encrypted using a passphrase. If a
 string-to-key specifier is given, that describes the algorithm for
 converting the passphrase to a key, else a simple MD5 hash of the
 passphrase is used. Implementations SHOULD use a string-to-key
 specifier; the simple hash is for backward compatibility. The cipher
 for encrypting the MPIs is specified in the secret key packet.

 Encryption/decryption of the secret data is done in CFB mode using
 the key created from the passphrase and the Initial Vector from the
 packet. A different mode is used with V3 keys (which are only RSA)
 than with other key formats. With V3 keys, the MPI bit count prefix
 (i.e., the first two octets) is not encrypted. Only the MPI
 non-prefix data is encrypted. Furthermore, the CFB state is
 resynchronized at the beginning of each new MPI value, so that the
 CFB block boundary is aligned with the start of the MPI data.

 With V4 keys, a simpler method is used. All secret MPI values are
 encrypted in CFB mode, including the MPI bitcount prefix.

 The 16-bit checksum that follows the algorithm-specific portion is
 the algebraic sum, mod 65536, of the plaintext of all the
 algorithm-specific octets (including MPI prefix and data). With V3
 keys, the checksum is stored in the clear. With V4 keys, the
 checksum is encrypted like the algorithm-specific data. This value
 is used to check that the passphrase was correct.

5.6. Compressed Data Packet (Tag 8)

 The Compressed Data packet contains compressed data. Typically, this
 packet is found as the contents of an encrypted packet, or following
 a Signature or One-Pass Signature packet, and contains literal data
 packets.

 The body of this packet consists of:

 - One octet that gives the algorithm used to compress the packet.

Callas, et al. Expires February 22, 2000 [Page 39]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - The remainder of the packet is compressed data.

 A Compressed Data Packet's body contains an block that compresses
 some set of packets. See section "Packet Composition" for details on
 how messages are formed.

 ZIP-compressed packets are compressed with raw RFC1951 DEFLATE
 blocks. Note that PGP V2.6 uses 13 bits of compression. If an
 implementation uses more bits of compression, PGP V2.6 cannot
 decompress it.

 ZLIB-compressed packets are compressed with RFC1950 ZLIB-style
 blocks.

5.7. Symmetrically Encrypted Data Packet (Tag 9)

 The Symmetrically Encrypted Data packet contains data encrypted with
 a symmetric-key algorithm. When it has been decrypted, it contains
 other packets (usually literal data packets or compressed data
 packets, but in theory other Symmetrically Encrypted Data Packets or
 sequences of packets that form whole OpenPGP messages).

 The body of this packet consists of:

 - Encrypted data, the output of the selected symmetric-key cipher
 operating in PGP's variant of Cipher Feedback (CFB) mode.

 The symmetric cipher used may be specified in an Public-Key or
 Symmetric-Key Encrypted Session Key packet that precedes the
 Symmetrically Encrypted Data Packet. In that case, the cipher
 algorithm octet is prefixed to the session key before it is
 encrypted. If no packets of these types precede the encrypted data,
 the IDEA algorithm is used with the session key calculated as the
 MD5 hash of the passphrase.

 The data is encrypted in CFB mode, with a CFB shift size equal to
 the cipher's block size. The Initial Vector (IV) is specified as
 all zeros. Instead of using an IV, OpenPGP prefixes a string of
 length equal to the block size of the cipher plus two to the data
 before it is encrypted. The first block-length octets (for example,
 8 octets for a 64-bit block length) are random, and the following
 two octets are copies of the last two octets of the IV. For example,
 in an 8 octet block, octet 9 is a repeat of octet 7, and octet 10 is
 a repeat of octet 8. In a cipher of length 16, octet 17 is a repeat
 of octet 15 and octet 18 is a repeat of octet 16. As a pedantic
 clarification, in both these examples, we consider the first octet
 to be numbered 1.

 After encrypting the first block-size-plus-two octets, the CFB state
 is resynchronized. The last block-size octets of ciphertext are

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1950

 passed through the cipher and the block boundary is reset.

Callas, et al. Expires February 22, 2000 [Page 40]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The repetition of 16 bits in the random data prefixed to the message
 allows the receiver to immediately check whether the session key is
 incorrect.

5.8. Marker Packet (Obsolete Literal Packet) (Tag 10)

 An experimental version of PGP used this packet as the Literal
 packet, but no released version of PGP generated Literal packets
 with this tag. With PGP 5.x, this packet has been re-assigned and is
 reserved for use as the Marker packet.

 The body of this packet consists of:

 - The three octets 0x50, 0x47, 0x50 (which spell "PGP" in UTF-8).

 Such a packet MUST be ignored when received. It may be placed at
 the beginning of a message that uses features not available in PGP
 2.6.x in order to cause that version to report that newer software
 is necessary to process the message.

5.9. Literal Data Packet (Tag 11)

 A Literal Data packet contains the body of a message; data that is
 not to be further interpreted.

 The body of this packet consists of:

 - A one-octet field that describes how the data is formatted.

 If it is a 'b' (0x62), then the literal packet contains binary data.
 If it is a 't' (0x74), then it contains text data, and thus may need
 line ends converted to local form, or other text-mode changes. RFC

1991 also defined a value of 'l' as a 'local' mode for machine-local
 conversions. This use is now deprecated.

 - File name as a string (one-octet length, followed by file name),
 if the encrypted data should be saved as a file.

 If the special name "_CONSOLE" is used, the message is considered to
 be "for your eyes only". This advises that the message data is
 unusually sensitive, and the receiving program should process it
 more carefully, perhaps avoiding storing the received data to disk,
 for example.

 - A four-octet number that indicates the modification date of the
 file, or the creation time of the packet, or a zero that
 indicates the present time.

 - The remainder of the packet is literal data.

https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc1991

Callas, et al. Expires February 22, 2000 [Page 41]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Text data is stored with <CR><LF> text endings (i.e. network-normal
 line endings). These should be converted to native line endings by
 the receiving software.

5.10. Trust Packet (Tag 12)

 The Trust packet is used only within keyrings and is not normally
 exported. Trust packets contain data that record the user's
 specifications of which key holders are trustworthy introducers,
 along with other information that implementing software uses for
 trust information.

 Trust packets SHOULD NOT be emitted to output streams that are
 transferred to other users, and they SHOULD be ignored on any input
 other than local keyring files.

5.11. User ID Packet (Tag 13)

 A User ID packet consists of data that is intended to represent the
 name and email address of the key holder. By convention, it
 includes an RFC822 mail name, but there are no restrictions on its
 content. The packet length in the header specifies the length of
 the user id. If it is text, it is encoded in UTF-8.

5.12. Sym. Encrypted Integrity Protected Data Packet (Tag 18)

 The Symmetrically Encrypted Integrity Protected Data Packet is a
 variant of the Symmetrically Encrypted Data Packet. It is a new
 feature created for OpenPGP that addresses the problem of detecting
 a modification to encrypted data. It is used in combination with a
 Modification Detection Code Packet.

 There is a corresponding feature in the features signature subpacket
 that denotes that an implementation can properly use this packet
 type. An implementation SHOULD NOT use this packet when encrypting
 to a recipient that does not state it can use this packet, and
 SHOULD prefer this to older Symmetrically Encrypted Data Packet when
 possible.

 This packet contains data encrypted with a symmetric-key algorithm
 and protected against modification by the SHA-1 hash algorithm. When
 it has been decrypted, it will typically contain other packets
 (often literal data packets or compressed data packets). The last
 decrypted packet in this packet's payload MUST be a Modification
 Detection Code packet.

 The body of this packet consists of:

 - A one-octet version number. The only currently defined value is
 1.

https://datatracker.ietf.org/doc/html/rfc822

Callas, et al. Expires February 22, 2000 [Page 42]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - Encrypted data, the output of the selected symmetric-key cipher
 operating in Cipher Feedback mode with shift amount equal to the
 block size of the cipher (CFB-n where n is the block size).

 The symmetric cipher used MUST be specified in a Public-Key or
 Symmetric-Key Encrypted Session Key packet that precedes the
 Symmetrically Encrypted Data Packet. In either case, the cipher
 algorithm octet is prefixed to the session key before it is
 encrypted.

 The data is encrypted in CFB mode, with a CFB shift size equal to
 the cipher's block size. The Initial Vector (IV) is specified as
 all zeros. Instead of using an IV, OpenPGP prefixes an octet string
 to the data before it is encrypted. The length of the octet string
 equals the block size of the cipher in octets, plus two. The first
 octets in the group, of length equal to the block size of the
 cipher, are random; the last two octets are each copies of their 2nd
 preceding octet. For example, with a cipher whose block size is 128
 bits or 16 octets, the prefix data will contain 16 random octets,
 then two more octets, which are copies of the 15th and 16th octets,
 respectively. Unlike the Symmetrically Encrypted Data Packet, no
 special CFB resynchronization is done after encrypting this prefix
 data.

 The repetition of 16 bits in the random data prefixed to the message
 allows the receiver to immediately check whether the session key is
 incorrect.

 The plaintext of the data to be encrypted is passed through the
 SHA-1 hash function, and the result of the hash is appended to the
 plaintext in a Modification Detection Code packet. Specifically,
 the input to the hash function does not include the prefix data
 described above; it includes all of the plaintext, and then also
 includes two octets of values 0xD0, 0x14. These represent the
 encoding of a Modification Detection Code packet tag and length
 field of 20 octets.

 The resulting hash value is stored in a Modification Detection Code
 packet which MUST use the two octet encoding just given to represent
 its tag and length field. The body of the MDC packet is the 20
 octet output of the SHA-1 hash.

 The Modification Detection Code packet is appended to the plaintext
 and encrypted along with the plaintext using the same CFB context.

 During decryption, the plaintext data should be hashed with SHA-1,
 not including the prefix data but including the packet tag and
 length field of the Modification Detection Code packet. The body of
 the MDC packet, upon decryption, is compared with the result of the

 SHA-1 hash. Any difference in hash values is an indication that the
 message has been modified and SHOULD be reported to the user.
 Likewise, the absence of an MDC packet, or an MDC packet in any

Callas, et al. Expires February 22, 2000 [Page 43]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 position other than the end of the plaintext, also represent message
 modifications and SHOULD also be reported.

 Note: future designs of new versions of this packet should consider
 rollback attacks since it will be possible for an attacker to change
 the version back to 1.

5.13. Modification Detection Code Packet (Tag 19)

 The Modification Detection Code packet contains a SHA-1 hash of
 plaintext data which is used to detect message modification. It is
 only used with a Symmetrically Encrypted Integrity Protected Data
 packet. The Modification Detection Code packet MUST be the last
 packet in the plaintext data which is encrypted in the Symmetrically
 Encrypted Integrity Protected Data packet, and MUST appear in no
 other place.

 A Modification Detection Code packet MUST have a length of 20
 octets.

 The body of this packet consists of:

 - A 20-octet SHA-1 hash of the preceding plaintext data of the
 Symmetrically Encrypted Integrity Protected Data packet, not
 including prefix data but including the tag and length byte of
 the Modification Detection Code packet.

 Note that the Modification Detection Code packet MUST always use a
 new-format encoding of the packet tag, and a one-octet encoding of
 the packet length. The reason for this is that the hashing rules for
 modification detection include a one-octet tag and one-octet length
 in the data hash. While this is a bit restrictive, it reduces
 complexity.

6. Radix-64 Conversions

 As stated in the introduction, OpenPGP's underlying native
 representation for objects is a stream of arbitrary octets, and some
 systems desire these objects to be immune to damage caused by
 character set translation, data conversions, etc.

 In principle, any printable encoding scheme that met the
 requirements of the unsafe channel would suffice, since it would not
 change the underlying binary bit streams of the native OpenPGP data
 structures. The OpenPGP standard specifies one such printable
 encoding scheme to ensure interoperability.

 OpenPGP's Radix-64 encoding is composed of two parts: a base64
 encoding of the binary data, and a checksum. The base64 encoding is
 identical to the MIME base64 content-transfer-encoding [RFC 2045].

https://datatracker.ietf.org/doc/html/rfc2045

 An OpenPGP implementation MAY use ASCII Armor to protect the raw
 binary data.

Callas, et al. Expires February 22, 2000 [Page 44]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The checksum is a 24-bit CRC converted to four characters of
 radix-64 encoding by the same MIME base64 transformation, preceded
 by an equals sign (=). The CRC is computed by using the generator
 0x864CFB and an initialization of 0xB704CE. The accumulation is
 done on the data before it is converted to radix-64, rather than on
 the converted data. A sample implementation of this algorithm is in
 the next section.

 The checksum with its leading equal sign MAY appear on the first
 line after the Base64 encoded data.

 Rationale for CRC-24: The size of 24 bits fits evenly into printable
 base64. The nonzero initialization can detect more errors than a
 zero initialization.

6.1. An Implementation of the CRC-24 in "C"

 #define CRC24_INIT 0xb704ceL
 #define CRC24_POLY 0x1864cfbL

 typedef long crc24;
 crc24 crc_octets(unsigned char *octets, size_t len)
 {
 crc24 crc = CRC24_INIT;
 int i;

 while (len--) {
 crc ^= (*octets++) << 16;
 for (i = 0; i < 8; i++) {
 crc <<= 1;
 if (crc & 0x1000000)
 crc ^= CRC24_POLY;
 }
 }
 return crc & 0xffffffL;
 }

6.2. Forming ASCII Armor

 When OpenPGP encodes data into ASCII Armor, it puts specific headers
 around the data, so OpenPGP can reconstruct the data later. OpenPGP
 informs the user what kind of data is encoded in the ASCII armor
 through the use of the headers.

 Concatenating the following data creates ASCII Armor:

 - An Armor Header Line, appropriate for the type of data

 - Armor Headers

Callas, et al. Expires February 22, 2000 [Page 45]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - A blank (zero-length, or containing only whitespace) line

 - The ASCII-Armored data

 - An Armor Checksum

 - The Armor Tail, which depends on the Armor Header Line.

 An Armor Header Line consists of the appropriate header line text
 surrounded by five (5) dashes ('-', 0x2D) on either side of the
 header line text. The header line text is chosen based upon the
 type of data that is being encoded in Armor, and how it is being
 encoded. Header line texts include the following strings:

 BEGIN PGP MESSAGE
 Used for signed, encrypted, or compressed files.

 BEGIN PGP PUBLIC KEY BLOCK
 Used for armoring public keys

 BEGIN PGP PRIVATE KEY BLOCK
 Used for armoring private keys

 BEGIN PGP MESSAGE, PART X/Y
 Used for multi-part messages, where the armor is split amongst Y
 parts, and this is the Xth part out of Y.

 BEGIN PGP MESSAGE, PART X
 Used for multi-part messages, where this is the Xth part of an
 unspecified number of parts. Requires the MESSAGE-ID Armor
 Header to be used.

 BEGIN PGP SIGNATURE
 Used for detached signatures, OpenPGP/MIME signatures, and
 signatures following clearsigned messages. Note that PGP 2.x
 uses BEGIN PGP MESSAGE for detached signatures.

 Note that all these Armor Header Lines are to consist of a complete
 line. That is to say, there is always a line ending preceding the
 starting five dashes, and following the ending five dashes. The
 header lines, therefore, MUST start at the beginning of a line, and
 MUST NOT have text following them on the same line. These line
 endings are considered a part of the Armor Header Line for the
 purposes of determining the content they delimit. This is
 particularly important when computing a cleartext signature (see
 below).

 The Armor Headers are pairs of strings that can give the user or the
 receiving OpenPGP implementation some information about how to
 decode or use the message. The Armor Headers are a part of the

 armor, not a part of the message, and hence are not protected by any
 signatures applied to the message.

Callas, et al. Expires February 22, 2000 [Page 46]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The format of an Armor Header is that of a key-value pair. A colon
 (':' 0x38) and a single space (0x20) separate the key and value.
 OpenPGP should consider improperly formatted Armor Headers to be
 corruption of the ASCII Armor. Unknown keys should be reported to
 the user, but OpenPGP should continue to process the message.

 Currently defined Armor Header Keys are:

 - "Version", that states the OpenPGP Version used to encode the
 message.

 - "Comment", a user-defined comment.

 - "MessageID", a 32-character string of printable characters. The
 string must be the same for all parts of a multi-part message
 that uses the "PART X" Armor Header. MessageID strings should
 be unique enough that the recipient of the mail can associate
 all the parts of a message with each other. A good checksum or
 cryptographic hash function is sufficient.

 The MessageID SHOULD NOT appear unless it is in a multi-part
 message. If it appears at all, it MUST be computed from the
 finished (encrypted, signed, etc.) message in a deterministic
 fashion, rather than contain a purely random value. This is to
 allow the legitimate recipient to determine that the MessageID
 cannot serve as a covert means of leaking cryptographic key
 information.

 - "Hash", a comma-separated list of hash algorithms used in this
 message. This is used only in clear-signed messages.

 - "Charset", a description of the character set that the plaintext
 is in. Please note that OpenPGP defines text to be in UTF-8 by
 default. An implementation will get best results by translating
 into and out of UTF-8. However, there are many instances where
 this is easier said than done. Also, there are communities of
 users who have no need for UTF-8 because they are all happy with
 a character set like ISO Latin-5 or a Japanese character set. In
 such instances, an implementation MAY override the UTF-8 default
 by using this header key. An implementation MAY implement this
 key and any translations it cares to; an implementation MAY
 ignore it and assume all text is UTF-8.

 The Armor Tail Line is composed in the same manner as the Armor
 Header Line, except the string "BEGIN" is replaced by the string
 "END."

6.3. Encoding Binary in Radix-64

 The encoding process represents 24-bit groups of input bits as

 output strings of 4 encoded characters. Proceeding from left to
 right, a 24-bit input group is formed by concatenating three 8-bit

Callas, et al. Expires February 22, 2000 [Page 47]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 input groups. These 24 bits are then treated as four concatenated
 6-bit groups, each of which is translated into a single digit in the
 Radix-64 alphabet. When encoding a bit stream with the Radix-64
 encoding, the bit stream must be presumed to be ordered with the
 most-significant-bit first. That is, the first bit in the stream
 will be the high-order bit in the first 8-bit octet, and the eighth
 bit will be the low-order bit in the first 8-bit octet, and so on.

 +--first octet--+-second octet--+--third octet--+
 |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
 +-----------+---+-------+-------+---+-----------+
 |5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
 +--1.index--+--2.index--+--3.index--+--4.index--+

 Each 6-bit group is used as an index into an array of 64 printable
 characters from the table below. The character referenced by the
 index is placed in the output string.

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w (pad) =
 15 P 32 g 49 x
 16 Q 33 h 50 y

 The encoded output stream must be represented in lines of no more
 than 76 characters each.

 Special processing is performed if fewer than 24 bits are available
 at the end of the data being encoded. There are three possibilities:

 1. The last data group has 24 bits (3 octets). No special
 processing is needed.

 2. The last data group has 16 bits (2 octets). The first two 6-bit
 groups are processed as above. The third (incomplete) data group
 has two zero-value bits added to it, and is processed as above.

 A pad character (=) is added to the output.

Callas, et al. Expires February 22, 2000 [Page 48]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 3. The last data group has 8 bits (1 octet). The first 6-bit group
 is processed as above. The second (incomplete) data group has
 four zero-value bits added to it, and is processed as above. Two
 pad characters (=) are added to the output.

6.4. Decoding Radix-64

 Any characters outside of the base64 alphabet are ignored in
 Radix-64 data. Decoding software must ignore all line breaks or
 other characters not found in the table above.

 In Radix-64 data, characters other than those in the table, line
 breaks, and other white space probably indicate a transmission
 error, about which a warning message or even a message rejection
 might be appropriate under some circumstances.

 Because it is used only for padding at the end of the data, the
 occurrence of any "=" characters may be taken as evidence that the
 end of the data has been reached (without truncation in transit). No
 such assurance is possible, however, when the number of octets
 transmitted was a multiple of three and no "=" characters are
 present.

6.5. Examples of Radix-64

 Input data: 0x14fb9c03d97e
 Hex: 1 4 f b 9 c | 0 3 d 9 7 e
 8-bit: 00010100 11111011 10011100 | 00000011 11011001
 11111110
 6-bit: 000101 001111 101110 011100 | 000000 111101 100111
 111110
 Decimal: 5 15 46 28 0 61 37 62
 Output: F P u c A 9 l +

 Input data: 0x14fb9c03d9
 Hex: 1 4 f b 9 c | 0 3 d 9
 8-bit: 00010100 11111011 10011100 | 00000011 11011001
 pad with 00
 6-bit: 000101 001111 101110 011100 | 000000 111101 100100
 Decimal: 5 15 46 28 0 61 36
 pad with =
 Output: F P u c A 9 k =

 Input data: 0x14fb9c03
 Hex: 1 4 f b 9 c | 0 3
 8-bit: 00010100 11111011 10011100 | 00000011
 pad with 0000
 6-bit: 000101 001111 101110 011100 | 000000 110000
 Decimal: 5 15 46 28 0 48

 pad with = =
 Output: F P u c A w = =

Callas, et al. Expires February 22, 2000 [Page 49]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

6.6. Example of an ASCII Armored Message

 -----BEGIN PGP MESSAGE-----
 Version: OpenPrivacy 0.99

 yDgBO22WxBHv7O8X7O/jygAEzol56iUKiXmV+XmpCtmpqQUKiQrFqclFqUDBovzS
 vBSFjNSiVHsuAA==
 =njUN
 -----END PGP MESSAGE-----

 Note that this example is indented by two spaces.

7. Cleartext signature framework

 It is desirable to sign a textual octet stream without ASCII
 armoring the stream itself, so the signed text is still readable
 without special software. In order to bind a signature to such a
 cleartext, this framework is used. (Note that RFC 2015 defines
 another way to clear sign messages for environments that support
 MIME.)

 The cleartext signed message consists of:

 - The cleartext header '-----BEGIN PGP SIGNED MESSAGE-----' on a
 single line,

 - One or more "Hash" Armor Headers,

 - Exactly one empty line not included into the message digest,

 - The dash-escaped cleartext that is included into the message
 digest,

 - The ASCII armored signature(s) including the '-----BEGIN PGP
 SIGNATURE-----' Armor Header and Armor Tail Lines.

 If the "Hash" armor header is given, the specified message digest
 algorithm is used for the signature. If there are no such headers,
 MD5 is used, an implementation MAY omit them for V2.x compatibility.
 If more than one message digest is used in the signature, the "Hash"
 armor header contains a comma-delimited list of used message
 digests.

 Current message digest names are described below with the algorithm
 IDs.

7.1. Dash-Escaped Text

 The cleartext content of the message must also be dash-escaped.

https://datatracker.ietf.org/doc/html/rfc2015

Callas, et al. Expires February 22, 2000 [Page 50]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Dash escaped cleartext is the ordinary cleartext where every line
 starting with a dash '-' (0x2D) is prefixed by the sequence dash '-'
 (0x2D) and space ' ' (0x20). This prevents the parser from
 recognizing armor headers of the cleartext itself. The message
 digest is computed using the cleartext itself, not the dash escaped
 form.

 As with binary signatures on text documents, a cleartext signature
 is calculated on the text using canonical <CR><LF> line endings.
 The line ending (i.e. the <CR><LF>) before the '-----BEGIN PGP
 SIGNATURE-----' line that terminates the signed text is not
 considered part of the signed text.

 Also, any trailing whitespace (spaces, and tabs, 0x09) at the end of
 any line is ignored when the cleartext signature is calculated.

8. Regular Expressions

 A regular expression is zero or more branches, separated by '|'. It
 matches anything that matches one of the branches.

 A branch is zero or more pieces, concatenated. It matches a match
 for the first, followed by a match for the second, etc.

 A piece is an atom possibly followed by '*', '+', or '?'. An atom
 followed by '*' matches a sequence of 0 or more matches of the atom.
 An atom followed by '+' matches a sequence of 1 or more matches of
 the atom. An atom followed by '?' matches a match of the atom, or
 the null string.

 An atom is a regular expression in parentheses (matching a match for
 the regular expression), a range (see below), '.' (matching any
 single character), '^' (matching the null string at the beginning of
 the input string), '$' (matching the null string at the end of the
 input string), a '\' followed by a single character (matching that
 character), or a single character with no other significance
 (matching that character).

 A range is a sequence of characters enclosed in '[]'. It normally
 matches any single character from the sequence. If the sequence
 begins with '^', it matches any single character not from the rest
 of the sequence. If two characters in the sequence are separated by
 '-', this is shorthand for the full list of ASCII characters between
 them (e.g. '[0-9]' matches any decimal digit). To include a literal
 ']' in the sequence, make it the first character (following a
 possible '^'). To include a literal '-', make it the first or last
 character.

9. Constants

 This section describes the constants used in OpenPGP.

Callas, et al. Expires February 22, 2000 [Page 51]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Note that these tables are not exhaustive lists; an implementation
 MAY implement an algorithm not on these lists.

 See the section "Notes on Algorithms" below for more discussion of
 the algorithms.

9.1. Public Key Algorithms

 ID Algorithm
 -- ---------
 1 - RSA (Encrypt or Sign)
 2 - RSA Encrypt-Only
 3 - RSA Sign-Only
 16 - Elgamal (Encrypt-Only), see [ELGAMAL]
 17 - DSA (Digital Signature Standard) [SCHNEIER]
 18 - Reserved for Elliptic Curve
 19 - Reserved for ECDSA
 20 - Elgamal (Encrypt or Sign)
 21 - Reserved for Diffie-Hellman (X9.42,
 as defined for IETF-S/MIME)
 100 to 110 - Private/Experimental algorithm.

 Implementations MUST implement DSA for signatures, and Elgamal for
 encryption. Implementations SHOULD implement RSA keys.
 Implementations MAY implement any other algorithm.

9.2. Symmetric Key Algorithms

 ID Algorithm
 -- ---------
 0 - Plaintext or unencrypted data
 1 - IDEA [IDEA]
 2 - Triple-DES (DES-EDE, [SCHNEIER] -
 168 bit key derived from 192)
 3 - CAST5 (128 bit key, as per RFC2144)
 4 - Blowfish (128 bit key, 16 rounds) [BLOWFISH]
 5 - SAFER-SK128 (13 rounds) [SAFER]
 6 - Reserved for DES/SK [AES]
 7 - AES with 128-bit key
 8 - AES with 192-bit key
 9 - AES with 256-bit key
 10 - Twofish with 256-bit key [TWOFISH]
 100 to 110 - Private/Experimental algorithm.

 Implementations MUST implement Triple-DES. Implementations SHOULD
 implement AES-128 and CAST5. Implementations that interoperate with
 PGP 2.6 or earlier need to support IDEA, as that is the only
 symmetric cipher those versions use. Implementations MAY implement
 any other algorithm.

https://datatracker.ietf.org/doc/html/rfc2144

Callas, et al. Expires February 22, 2000 [Page 52]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

9.3. Compression Algorithms

 ID Algorithm
 -- ---------
 0 - Uncompressed
 1 - ZIP (RFC1951)
 2 - ZLIB (RFC1950)
 100 to 110 - Private/Experimental algorithm.

 Implementations MUST implement uncompressed data. Implementations
 SHOULD implement ZIP. Implementations MAY implement ZLIB.

9.4. Hash Algorithms

 ID Algorithm Text Name
 -- --------- ---- ----
 1 - MD5 "MD5"
 2 - SHA-1 "SHA1"
 3 - RIPE-MD/160 "RIPEMD160"
 4 - Reserved for double-width SHA (experimental,
 obviated)
 5 - MD2 "MD2"
 6 - Reserved for TIGER/192 "TIGER192"
 7 - Reserved for HAVAL (5 pass, 160-bit) "HAVAL-5-160"
 8 - SHA256 "SHA256"
 9 - SHA384 "SHA384"
 10 - SHA512 "SHA512"
 100 to 110 - Private/Experimental algorithm.

 Implementations MUST implement SHA-1. Implementations SHOULD
 implement MD5.

10. Packet Composition

 OpenPGP packets are assembled into sequences in order to create
 messages and to transfer keys. Not all possible packet sequences
 are meaningful and correct. This describes the rules for how
 packets should be placed into sequences.

10.1. Transferable Public Keys

 OpenPGP users may transfer public keys. The essential elements of a
 transferable public key are:

 - One Public Key packet

 - Zero or more revocation signatures

 - One or more User ID packets

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1950

Callas, et al. Expires February 22, 2000 [Page 53]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 - After each User ID packet, zero or more signature packets
 (certifications)

 - Zero or more Subkey packets

 - After each Subkey packet, one signature packet, optionally a
 revocation.

 The Public Key packet occurs first. Each of the following User ID
 packets provides the identity of the owner of this public key. If
 there are multiple User ID packets, this corresponds to multiple
 means of identifying the same unique individual user; for example, a
 user may have more than one email address, and construct a User ID
 for each one.

 Immediately following each User ID packet, there are zero or more
 signature packets. Each signature packet is calculated on the
 immediately preceding User ID packet and the initial Public Key
 packet. The signature serves to certify the corresponding public key
 and user ID. In effect, the signer is testifying to his or her
 belief that this public key belongs to the user identified by this
 user ID.

 After the User ID packets there may be one or more Subkey packets.
 In general, subkeys are provided in cases where the top-level public
 key is a signature-only key. However, any V4 key may have subkeys,
 and the subkeys may be encryption-only keys, signature-only keys, or
 general-purpose keys.

 Each Subkey packet must be followed by one Signature packet, which
 should be a subkey binding signature issued by the top level key.

 Subkey and Key packets may each be followed by a revocation
 Signature packet to indicate that the key is revoked. Revocation
 signatures are only accepted if they are issued by the key itself,
 or by a key that is authorized to issue revocations via a revocation
 key subpacket in a self-signature by the top level key.

 Transferable public key packet sequences may be concatenated to
 allow transferring multiple public keys in one operation.

10.2. OpenPGP Messages

 An OpenPGP message is a packet or sequence of packets that
 corresponds to the following grammatical rules (comma represents
 sequential composition, and vertical bar separates alternatives):

 OpenPGP Message :- Encrypted Message | Signed Message |
 Compressed Message | Literal Message.

Callas, et al. Expires February 22, 2000 [Page 54]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Compressed Message :- Compressed Data Packet.

 Literal Message :- Literal Data Packet.

 ESK :- Public Key Encrypted Session Key Packet |
 Symmetric-Key Encrypted Session Key Packet.

 ESK Sequence :- ESK | ESK Sequence, ESK.

 Encrypted Data :- Symmetrically Encrypted Data Packet |
 Symmetrically Encrypted Integrity Protected Data Packet

 Encrypted Message :- Encrypted Data | ESK Sequence, Encrypted Data.

 One-Pass Signed Message :- One-Pass Signature Packet,
 OpenPGP Message, Corresponding Signature Packet.

 Signed Message :- Signature Packet, OpenPGP Message |
 One-Pass Signed Message.

 In addition, decrypting a Symmetrically Encrypted Data Packet or a
 Symmetrically Encrypted Integrity Protected Data Packet as well as

 decompressing a Compressed Data packet must yield a valid OpenPGP
 Message.

10.3. Detached Signatures

 Some OpenPGP applications use so-called "detached signatures." For
 example, a program bundle may contain a file, and with it a second
 file that is a detached signature of the first file. These detached
 signatures are simply a signature packet stored separately from the
 data that they are a signature of.

11. Enhanced Key Formats

11.1. Key Structures

 The format of an OpenPGP V3 key is as follows. Entries in square
 brackets are optional and ellipses indicate repetition.

 RSA Public Key
 [Revocation Self Signature]
 User ID [Signature ...]
 [User ID [Signature ...] ...]

 Each signature certifies the RSA public key and the preceding user
 ID. The RSA public key can have many user IDs and each user ID can
 have many signatures.

Callas, et al. Expires February 22, 2000 [Page 55]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 The format of an OpenPGP V4 key that uses two public keys is similar
 except that the other keys are added to the end as 'subkeys' of the
 primary key.

 Primary-Key
 [Revocation Self Signature]
 [Direct Key Self Signature...]
 User ID [Signature ...]
 [User ID [Signature ...] ...]
 [[Subkey [Binding-Signature-Revocation]
 Primary-Key-Binding-Signature] ...]

 A subkey always has a single signature after it that is issued using
 the primary key to tie the two keys together. This binding
 signature may be in either V3 or V4 format, but V4 is preferred, of
 course.

 In the above diagram, if the binding signature of a subkey has been
 revoked, the revoked binding signature may be removed, leaving only
 one signature.

 In a key that has a main key and subkeys, the primary key MUST be a
 key capable of signing. The subkeys may be keys of any other type.
 There may be other constructions of V4 keys, too. For example, there
 may be a single-key RSA key in V4 format, a DSA primary key with an
 RSA encryption key, or RSA primary key with an Elgamal subkey, etc.

 It is also possible to have a signature-only subkey. This permits a
 primary key that collects certifications (key signatures) but is
 used only used for certifying subkeys that are used for encryption
 and signatures.

11.2. Key IDs and Fingerprints

 For a V3 key, the eight-octet key ID consists of the low 64 bits of
 the public modulus of the RSA key.

 The fingerprint of a V3 key is formed by hashing the body (but not
 the two-octet length) of the MPIs that form the key material (public
 modulus n, followed by exponent e) with MD5.

 A V4 fingerprint is the 160-bit SHA-1 hash of the one-octet Packet
 Tag, followed by the two-octet packet length, followed by the entire
 Public Key packet starting with the version field. The key ID is
 the low order 64 bits of the fingerprint. Here are the fields of
 the hash material, with the example of a DSA key:

 a.1) 0x99 (1 octet)

 a.2) high order length octet of (b)-(f) (1 octet)

Callas, et al. Expires February 22, 2000 [Page 56]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 a.3) low order length octet of (b)-(f) (1 octet)

 b) version number = 4 (1 octet);

 c) time stamp of key creation (4 octets);

 d) algorithm (1 octet): 17 = DSA (example);

 e) Algorithm specific fields.

 Algorithm Specific Fields for DSA keys (example):

 e.1) MPI of DSA prime p;

 e.2) MPI of DSA group order q (q is a prime divisor of p-1);

 e.3) MPI of DSA group generator g;

 e.4) MPI of DSA public key value y (= g**x mod p where x is secret).

 Note that it is possible for there to be collisions of key IDs --
 two different keys with the same key ID. Note that there is a much
 smaller, but still non-zero probability that two different keys have
 the same fingerprint.

 Also note that if V3 and V4 format keys share the same RSA key
 material, they will have different key ids as well as different
 fingerprints.

 Finally, the key ID and fingerprint of a subkey are calculated in
 the same way as for a primary key, including the 0x99 as the first
 byte (even though this is not a valid packet ID for a public
 subkey).

12. Notes on Algorithms

12.1. Symmetric Algorithm Preferences

 The symmetric algorithm preference is an ordered list of algorithms
 that the keyholder accepts. Since it is found on a self-signature,
 it is possible that a keyholder may have different preferences. For
 example, Alice may have TripleDES only specified for
 "alice@work.com" but CAST5, Blowfish, and TripleDES specified for
 "alice@home.org". Note that it is also possible for preferences to
 be in a subkey's binding signature.

 Since TripleDES is the MUST-implement algorithm, if it is not
 explicitly in the list, it is tacitly at the end. However, it is
 good form to place it there explicitly. Note also that if an
 implementation does not implement the preference, then it is

 implicitly a TripleDES-only implementation.

Callas, et al. Expires February 22, 2000 [Page 57]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 An implementation MUST not use a symmetric algorithm that is not in
 the recipient's preference list. When encrypting to more than one
 recipient, the implementation finds a suitable algorithm by taking
 the intersection of the preferences of the recipients. Note that the
 MUST-implement algorithm, TripleDES, ensures that the intersection
 is not null. The implementation may use any mechanism to pick an
 algorithm in the intersection.

 If an implementation can decrypt a message that a keyholder doesn't
 have in their preferences, the implementation SHOULD decrypt the
 message anyway, but MUST warn the keyholder than protocol has been
 violated. (For example, suppose that Alice, above, has software that
 implements all algorithms in this specification. Nonetheless, she
 prefers subsets for work or home. If she is sent a message encrypted
 with IDEA, which is not in her preferences, the software warns her
 that someone sent her an IDEA-encrypted message, but it would
 ideally decrypt it anyway.)

 An implementation that is striving for backward compatibility MAY
 consider a V3 key with a V3 self-signature to be an implicit
 preference for IDEA, and no ability to do TripleDES. This is
 technically non-compliant, but an implementation MAY violate the
 above rule in this case only and use IDEA to encrypt the message,
 provided that the message creator is warned. Ideally, though, the
 implementation would follow the rule by actually generating two
 messages, because it is possible that the OpenPGP user's
 implementation does not have IDEA, and thus could not read the
 message. Consequently, an implementation MAY, but SHOULD NOT use
 IDEA in an algorithm conflict with a V3 key.

12.2. Other Algorithm Preferences

 Other algorithm preferences work similarly to the symmetric
 algorithm preference, in that they specify which algorithms the
 keyholder accepts. There are two interesting cases that other
 comments need to be made about, though, the compression preferences
 and the hash preferences.

12.2.1. Compression Preferences

 Compression has been an integral part of PGP since its first days.
 OpenPGP and all previous versions of PGP have offered compression.
 And in this specification, the default is for messages to be
 compressed, although an implementation is not required to do so.
 Consequently, the compression preference gives a way for a keyholder
 to request that messages not be compressed, presumably because they
 are using a minimal implementation that does not include
 compression. Additionally, this gives a keyholder a way to state
 that it can support alternate algorithms.

Callas, et al. Expires February 22, 2000 [Page 58]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Like the algorithm preferences, an implementation MUST NOT use an
 algorithm that is not in the preference vector. If the preferences
 are not present, then they are assumed to be [ZIP(1),
 UNCOMPRESSED(0)].

 Additionally, an implementation MUST implement this preference to
 the degree of recognizing when to send an uncompressed message. A
 robust implementation would satisfy this requirement by looking at
 the recipient's preference and acting accordingly. A minimal
 implementation can satisfy this requirement by never generating a
 compressed message, since all implementations can handle messages
 that have not been compressed.

12.2.2. Hash Algorithm Preferences

 Typically, the choice of a hash algorithm is something the signer
 does, rather than the verifier, because a signer rarely knows who is
 going to be verifying the signature. This preference, though, allows
 a protocol based upon digital signatures ease in negotiation.

 Thus, if Alice is authenticating herself to Bob with a signature, it
 makes sense for her to use a hash algorithm that Bob's software
 uses. This preference allows Bob to state in his key which
 algorithms Alice may use.

12.3. Plaintext

 Algorithm 0, "plaintext," may only be used to denote secret keys
 that are stored in the clear. Implementations MUST NOT use plaintext
 in Symmetrically Encrypted Data Packets; they must use Literal Data
 Packets to encode unencrypted or literal data.

12.4. RSA

 There are algorithm types for RSA-signature-only, and
 RSA-encrypt-only keys. These types are deprecated. The "key flags"
 subpacket in a signature is a much better way to express the same
 idea, and generalizes it to all algorithms. An implementation SHOULD
 NOT create such a key, but MAY interpret it.

 An implementation SHOULD NOT implement RSA keys of size less than
 768 bits.

 It is permissible for an implementation to support RSA merely for
 backward compatibility; for example, such an implementation would
 support V3 keys with IDEA symmetric cryptography. Note that this is
 an exception to the other MUST-implement rules. An implementation
 that supports RSA in V4 keys MUST implement the MUST-implement
 features.

Callas, et al. Expires February 22, 2000 [Page 59]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

12.5. Elgamal

 If an Elgamal key [ELGAMAL] is to be used for both signing and
 encryption, extra care must be taken in creating the key.

 An Elgamal key consists of a generator g, a prime modulus p, a
 secret exponent x, and a public value y = g^x mod p.

 The generator and prime must be chosen so that solving the discrete
 log problem is intractable. The group g should generate the
 multiplicative group mod p-1 or a large subgroup of it, and the
 order of g should have at least one large prime factor. A good
 choice is to use a "strong" Sophie-Germain prime in choosing p, so
 that both p and (p-1)/2 are primes. In fact, this choice is so good
 that implementers SHOULD do it, as it avoids a small subgroup
 attack.

 In addition, a result of Bleichenbacher [BLEICHENBACHER] shows that
 if the generator g has only small prime factors, and if g divides
 the order of the group it generates, then signatures can be forged.
 In particular, choosing g=2 is a bad choice if the group order may
 be even. On the other hand, a generator of 2 is a fine choice for an
 encryption-only key, as this will make the encryption faster.

 While verifying Elgamal signatures, note that it is important to
 test that r and s are less than p. If this test is not done then
 signatures can be trivially forged by using large r values of
 approximately twice the length of p. This attack is also discussed
 in the Bleichenbacher paper.

 Details on safe use of Elgamal signatures may be found in [MENEZES],
 which discusses all the weaknesses described above. Please note that
 Elgamal signatures are controversial; because of the care that must
 be taken with Elgamal keys, many implementations forego them.

 If an implementation allows Elgamal signatures, then it MUST use the
 algorithm identifier 20 for an Elgamal public key that can sign.

 An implementation SHOULD NOT implement Elgamal keys of size less
 than 768 bits. For long-term security, Elgamal keys should be 1024
 bits or longer.

12.6. DSA

 An implementation SHOULD NOT implement DSA keys of size less than
 768 bits. Note that present DSA is limited to a maximum of 1024 bit
 keys, which are recommended for long-term use. Also, DSA keys MUST
 be an even multiple of 64 bits long.

12.7. Reserved Algorithm Numbers

 A number of algorithm IDs have been reserved for algorithms that

Callas, et al. Expires February 22, 2000 [Page 60]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 would be useful to use in an OpenPGP implementation, yet there are
 issues that prevent an implementer from actually implementing the
 algorithm. These are marked in the Public Algorithms section as
 "(reserved for)".

 The reserved public key algorithms, Elliptic Curve (18), ECDSA (19),
 and X9.42 (21) do not have the necessary parameters, parameter
 order, or semantics defined.

 The reserved symmetric key algorithm, DES/SK (6), does not have
 semantics defined.

 The reserved hash algorithms, TIGER192 (6), and HAVAL-5-160 (7), do
 not have OIDs. The reserved algorithm number 4, reserved for a
 double-width variant of SHA1, is not presently defined.

12.8. OpenPGP CFB mode

 OpenPGP does symmetric encryption using a variant of Cipher Feedback
 Mode (CFB mode). This section describes the procedure it uses in
 detail. This mode is what is used for Symmetrically Encrypted Data
 Packets; the mechanism used for encrypting secret key material is
 similar, but described in those sections above.

 In the description below, the value BS is the block size in octets
 of the cipher. Most ciphers have a block size of 8 octets. The AES
 and Twofish have a blocksize of 16 octets. Also note that the
 description below assumes that the IV and CFB arrays start with an
 index of 1 (unlike the C language, which assumes arrays start with a
 zero index).

 OpenPGP CFB mode uses an initialization vector (IV) of all zeros,
 and prefixes the plaintext with BS+2 octets of random data, such
 that octets BS+1 and BS+2 match octets BS-1 and BS. It does a CFB
 "resync" after encrypting those BS+2 octets.

 Thus, for an algorithm that has a block size of 8 octets (64 bits),
 the IV is 10 octets long and octets 7 and 8 of the IV are the same
 as octets 9 and 10. For an algorithm with a blocksize of 16 octets
 (128 bits), the IV is 18 octets long, and octets 17 and 18 replicate
 octets 15 and 16. Those extra two octets are an easy check for a
 correct key.

 Step by step, here is the procedure:

 1. The feedback register (FR) is set to the IV, which is all zeros.

 2. FR is encrypted to produce FRE (FR Encrypted). This is the
 encryption of an all-zero value.

Callas, et al. Expires February 22, 2000 [Page 61]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 3. FRE is xored with the first BS octets of random data prefixed to
 the plaintext to produce C[1] through C[BS], the first BS octets
 of ciphertext.

 4. FR is loaded with C[1] through C[BS].

 5. FR is encrypted to produce FRE, the encryption of the first BS
 octets of ciphertext.

 6. The left two octets of FRE get xored with the next two octets of
 data that were prefixed to the plaintext. This produces C[BS+1]
 and C[BS+2], the next two octets of ciphertext.

 7. (The resync step) FR is loaded with C[3] through C[BS+2].

 8. FR is encrypted to produce FRE.

 9. FRE is xored with the first BS octets of the given plaintext,
 now that we have finished encrypting the BS+2 octets of prefixed
 data. This produces C[BS+3] through C[BS+(BS+2)], the next BS
 octets of ciphertext.

 10. FR is loaded with C[BS+3] to C[BS + (BS+2)] (which is C11-C18
 for an 8-octet block).

 11. FR is encrypted to produce FRE.

 12. FRE is xored with the next BS octets of plaintext, to produce
 the next BS octets of ciphertext. These are loaded into FR and
 the process is repeated until the plaintext is used up.

13. Security Considerations

 * As with any technology involving cryptography, you should check
 the current literature to determine if any algorithms used here
 have been found to be vulnerable to attack.

 * This specification uses Public Key Cryptography technologies.
 Possession of the private key portion of a public-private key
 pair is assumed to be controlled by the proper party or parties.

 * Certain operations in this specification involve the use of
 random numbers. An appropriate entropy source should be used to
 generate these numbers. See RFC 1750.

 * The MD5 hash algorithm has been found to have weaknesses
 (pseudo-collisions in the compress function) that make some
 people deprecate its use. They consider the SHA-1 algorithm
 better.

https://datatracker.ietf.org/doc/html/rfc1750

Callas, et al. Expires February 22, 2000 [Page 62]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 * Many security protocol designers think that it is a bad idea to
 use a single key for both privacy (encryption) and integrity
 (signatures). In fact, this was one of the motivating forces
 behind the V4 key format with separate signature and encryption
 keys. If you as an implementer promote dual-use keys, you should
 at least be aware of this controversy.

 * The DSA algorithm will work with any 160-bit hash, but it is
 sensitive to the quality of the hash algorithm, if the hash
 algorithm is broken, it can leak the secret key. The Digital
 Signature Standard (DSS) specifies that DSA be used with SHA-1.
 RIPEMD-160 is considered by many cryptographers to be as strong.
 An implementation should take care which hash algorithms are
 used with DSA, as a weak hash can not only allow a signature to
 be forged, but could leak the secret key. These same
 considerations about the quality of the hash algorithm apply to
 Elgamal signatures.

 * There is a somewhat-related potential security problem in
 signatures. If an attacker can find a message that hashes to the
 same hash with a different algorithm, a bogus signature
 structure can be constructed that evaluates correctly.

 For example, suppose Alice DSA signs message M using hash
 algorithm H. Suppose that Mallet finds a message M' that has the
 same hash value as M with H'. Mallet can then construct a
 signature block that verifies as Alice's signature of M' with
 H'. However, this would also constitute a weakness in either H
 or H' or both. Should this ever occur, a revision will have to
 be made to this document to revise the allowed hash algorithms.

 * If you are building an authentication system, the recipient may
 specify a preferred signing algorithm. However, the signer would
 be foolish to use a weak algorithm simply because the recipient
 requests it.

 * Some of the encryption algorithms mentioned in this document
 have been analyzed less than others. For example, although
 CAST5 is presently considered strong, it has been analyzed less
 than Triple-DES. Other algorithms may have other controversies
 surrounding them.

 * Some technologies mentioned here may be subject to government
 control in some countries.

14. Implementation Nits

 This section is a collection of comments to help an implementer,
 particularly with an eye to backward compatibility. Previous

 implementations of PGP are not OpenPGP-compliant. Often the
 differences are small, but small differences are frequently more
 vexing than large differences. Thus, this is a non-comprehensive

Callas, et al. Expires February 22, 2000 [Page 63]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 list of potential problems and gotchas for a developer who is trying
 to be backward-compatible.

 * PGP 5.x does not accept V4 signatures for anything other than
 key material.

 * PGP 5.x does not recognize the "five-octet" lengths in
 new-format headers or in signature subpacket lengths.

 * PGP 5.0 rejects an encrypted session key if the keylength
 differs from the S2K symmetric algorithm. This is a bug in its
 validation function.

 * PGP 5.0 does not handle multiple one-pass signature headers and
 trailers. Signing one will compress the one-pass signed literal
 and prefix a V3 signature instead of doing a nested one-pass
 signature.

 * When exporting a private key, PGP 2.x generates the header
 "BEGIN PGP SECRET KEY BLOCK" instead of "BEGIN PGP PRIVATE KEY
 BLOCK". All previous versions ignore the implied data type, and
 look directly at the packet data type.

 * In a clear-signed signature, PGP 5.0 will figure out the correct
 hash algorithm if there is no "Hash:" header, but it will reject
 a mismatch between the header and the actual algorithm used. The
 "standard" (i.e. Zimmermann/Finney/et al.) version of PGP 2.x
 rejects the "Hash:" header and assumes MD5. There are a number
 of enhanced variants of PGP 2.6.x that have been modified for
 SHA-1 signatures.

 * PGP 5.0 can read an RSA key in V4 format, but can only recognize
 it with a V3 key id, and can properly use only a V3 format RSA
 key.

 * Neither PGP 5.x nor PGP 6.0 recognize Elgamal Encrypt and Sign
 keys. They only handle Elgamal Encrypt-only keys.

 * There are many ways possible for two keys to have the same key
 material, but different fingerprints (and thus key ids). Perhaps
 the most interesting is an RSA key that has been "upgraded" to
 V4 format, but since a V4 fingerprint is constructed by hashing
 the key creation time along with other things, two V4 keys
 created at different times, yet with the same key material will
 have different fingerprints.

 * If an implementation is using zlib to interoperate with PGP 2.x,
 then the "windowBits" parameter should be set to -13.

 * PGP 2.6.X and 5.0 do not trim trailing whitespace from a

 "canonical text" signature. They only remove it from cleartext
 signatures. These signatures are not OpenPGP compliant --

Callas, et al. Expires February 22, 2000 [Page 64]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 OpenPGP requires trimming the whitespace. If you wish to
 interoperate with PGP 2.6.X or PGP 5, you may wish to accept
 these non-compliant signatures.

 * PGP 6.0 introduced a photographic user id and represents this id
 in packet number 17. The format of this packet is proprietary to
 its authors. Strictly speaking, an OpenPGP key that contains
 such a packet is not compliant to this document, and that packet
 number is reserved by this document for future use. However, if
 an implementation wishes to be compatible with such keys, the
 packet may be considered to be a user id packet with opaque
 contents.

15. Authors and Working Group Chair

 The working group can be contacted via the current chair:

 John W. Noerenberg, II
 Qualcomm, Inc
 6455 Lusk Blvd
 San Diego, CA 92131 USA
 Email: jwn2@qualcomm.com
 Tel: +1 (619) 658-3510

 The principal authors of this draft are:

 Jon Callas
 Wave Systems Corp.
 1601 S. DeAnza Blvd, Suite 200
 Cupertino, CA 95014, USA

 Email: jon@callas.org, jcallas@wavesys.com
 Tel: +1 (408) 448-6801

 Lutz Donnerhacke
 IKS GmbH
 Wildenbruchstr. 15
 07745 Jena, Germany

 EMail: lutz@iks-jena.de
 Tel: +49-3641-675642

 Hal Finney
 Network Associates, Inc.
 3965 Freedom Circle
 Santa Clara, CA 95054, USA

 Email: hal@pgp.com

 Rodney Thayer

Callas, et al. Expires February 22, 2000 [Page 65]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Email: rodney@tillerman.to

 This memo also draws on much previous work from a number of other
 authors who include: Derek Atkins, Charles Breed, Dave Del Torto,
 Marc Dyksterhouse, Gail Haspert, Gene Hoffman, Paul Hoffman, Raph
 Levien, Colin Plumb, Will Price, William Stallings, Mark Weaver, and
 Philip R. Zimmermann.

16. References

 [AES] Advanced Encryption Standards Questions and Answers
 <http://csrc.nist.gov/encryption/aes/round2/

aesfact.html>

 <http://csrc.nist.gov/encryption/aes/round2/
r2algs.html#Rijndael>

 [BLEICHENBACHER] Bleichenbacher, Daniel, "Generating ElGamal
 signatures without knowing the secret key,"
 Eurocrypt 96. Note that the version in the
 proceedings has an error. A revised version is
 available at the time of writing from
 <ftp://ftp.inf.ethz.ch/pub/publications/papers/ti

/isc/ElGamal.ps>

 [BLOWFISH] Schneier, B. "Description of a New Variable-Length
 Key, 64-Bit Block Cipher (Blowfish)" Fast Software
 Encryption, Cambridge Security Workshop Proceedings
 (December 1993), Springer-Verlag, 1994, pp191-204
 <http://www.counterpane.com/bfsverlag.html>

 [DONNERHACKE] Donnerhacke, L., et. al, "PGP263in - an improved
 international version of PGP", ftp://ftp.iks-

jena.de/mitarb/lutz/crypt/software/pgp/

 [ELGAMAL] T. ElGamal, "A Public-Key Cryptosystem and a
 Signature Scheme Based on Discrete Logarithms,"
 IEEE Transactions on Information Theory, v. IT-31,
 n. 4, 1985, pp. 469-472.

 [IDEA] Lai, X, "On the design and security of block
 ciphers", ETH Series in Information Processing,
 J.L. Massey (editor), Vol. 1, Hartung-Gorre Verlag
 Knostanz, Technische Hochschule (Zurich), 1992

 [ISO10646] ISO/IEC 10646-1:1993. International Standard --
 Information technology -- Universal Multiple-Octet
 Coded Character Set (UCS) -- Part 1: Architecture
 and Basic Multilingual Plane.

http://csrc.nist.gov/encryption/aes/round2/aesfact.html
http://csrc.nist.gov/encryption/aes/round2/aesfact.html
http://csrc.nist.gov/encryption/aes/round2/r2algs.html#Rijndael
http://csrc.nist.gov/encryption/aes/round2/r2algs.html#Rijndael
ftp://ftp.inf.ethz.ch/pub/publications/papers/ti/isc/ElGamal.ps
ftp://ftp.inf.ethz.ch/pub/publications/papers/ti/isc/ElGamal.ps
http://www.counterpane.com/bfsverlag.html
ftp://ftp.iks-jena.de/mitarb/lutz/crypt/software/pgp/
ftp://ftp.iks-jena.de/mitarb/lutz/crypt/software/pgp/

 [MENEZES] Alfred Menezes, Paul van Oorschot, and Scott

Callas, et al. Expires February 22, 2000 [Page 66]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 Vanstone, "Handbook of Applied Cryptography," CRC
 Press, 1996.

 [RFC822] Crocker, D., "Standard for the format of ARPA
 Internet text messages", STD 11, RFC 822, August
 1982.

 [RFC1423] Balenson, D., "Privacy Enhancement for Internet
 Electronic Mail: Part III: Algorithms, Modes, and
 Identifiers", RFC 1423, October 1993.

 [RFC1641] Goldsmith, D. and M. Davis, "Using Unicode with
 MIME", RFC 1641, July 1994.

 [RFC1750] Eastlake, D., Crocker, S. and J. Schiller,
 "Randomness Recommendations for Security", RFC

1750, December 1994.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3.", RFC 1951, May 1996.

 [RFC1983] Malkin, G., "Internet Users' Glossary", FYI 18, RFC
1983, August 1996.

 [RFC1991] Atkins, D., Stallings, W. and P. Zimmermann, "PGP
 Message Exchange Formats", RFC 1991, August 1996.

 [RFC2015] Elkins, M., "MIME Security with Pretty Good Privacy
 (PGP)", RFC 2015, October 1996.

 [RFC2045] Borenstein, N. and N. Freed, "Multipurpose Internet
 Mail Extensions (MIME) Part One: Format of Internet
 Message Bodies.", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Level", BCP 14, RFC 2119, March 1997.

 [RFC2144] Adams, C., "The CAST-128 Encryption Algorithm", RFC
2144, May 1997.

 [RFC2279] Yergeau., F., "UTF-8, a transformation format of
 Unicode and ISO 10646", RFC 2279, January 1998.

 [RFC2437] B. Kaliski and J. Staddon, " PKCS #1: RSA
 Cryptography Specifications Version 2.0",

RFC 2437, October 1998.

 [SAFER] Massey, J.L. "SAFER K-64: One Year Later", B.
 Preneel, editor, Fast Software Encryption, Second
 International Workshop (LNCS 1008) pp212-241,

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1423
https://datatracker.ietf.org/doc/html/rfc1641
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1983
https://datatracker.ietf.org/doc/html/rfc1983
https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc2015
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2437

 Springer-Verlag 1995

Callas, et al. Expires February 22, 2000 [Page 67]

INTERNET-DRAFT OpenPGP Message Format August 22, 2000

 [SCHNEIER] Schneier, B., "Applied Cryptography Second Edition:
 protocols, algorithms, and source code in C", 1996.

 [TWOFISH] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.
 Hall, and N. Ferguson, "The Twofish Encryption
 Algorithm", John Wiley & Sons, 1999.

17. Full Copyright Statement

 Copyright 2001 by The Internet Society. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

Callas, et al. Expires February 22, 2000 [Page 68]

