
Open Pluggable Edge Services A. Beck
Internet-Draft Lucent Technologies
Expires: March 16, 2004 A. Rousskov
 The Measurement Factory
 September 16, 2003

P: Message Processing Language
draft-ietf-opes-rules-p-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 16, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 P is a simple configuration language designed for specification of
 message processing instructions at application proxies. P can be used
 to instruct an intermediary how to manipulate the application message
 being proxied. Such instructions are needed in an Open Pluggable Edge
 Services (OPES) context.

Beck & Rousskov Expires March 16, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft P: Message Processing Language September 2003

Table of Contents

1. Introduction . 3
2. Syntax . 5
3. Language elements . 6
3.1 Objects . 6
3.2 Operators . 7
3.3 Expressions . 8
3.4 Statements . 9
3.5 Assignments . 9
4. Modules . 11
5. OPES Services . 12
6. Failures . 13
7. Security Considerations 15
8. Compliance . 16
A. Examples . 17
B. Change Log . 18

 Normative References . 19
 Informative References . 20
 Authors' Addresses . 20
 Intellectual Property and Copyright Statements 21

Beck & Rousskov Expires March 16, 2004 [Page 2]

Internet-Draft P: Message Processing Language September 2003

1. Introduction

 The Open Pluggable Edge Services (OPES) architecture
 [I-D.ietf-opes-architecture], enables cooperative application
 services (OPES services) between a data provider, a data consumer,
 and zero or more OPES processors. The application services under
 consideration analyze and possibly transform application-level
 messages exchanged between the data provider and the data consumer.
 OPES processors need to be told what services are to be applied to
 what application messages. P language can be used for this
 configuration task.

 In other words, P language primary objective is to express statements
 similar to:

 if message meets criteria C,
 then apply service S;

 Figure 1

 Thus, P programs mostly deal with formulating message-dependent
 conditions and executing services.

 P design attempts to satisfy several conflicting goals:

 flexibility: Application intermediaries deal with a wide range of
 applications and protocols (SMTP, HTTP, RTSP, IM, etc.). The
 language must be able to accommodate virtually all known tasks in
 selecting a desired adaptation service for a message of a known
 application protocol (and conceivable future applications).

 efficiency: Language interpretation must be efficient enough to be
 comparable with other message processing overheads at a typical
 application proxy (e.g., interpreting HTTP headers to determine
 response cachability).

 simplicity: Typical configurations must be easy to write and
 understand for a typical OPES system administrator.

 correctness: Many message handling configurations are written without
 direct access to intermediaries that will use those
 configurations. The extent of off-line (compile-time) correctness
 checks should catch all syntax errors and many common semantic
 errors such as undefined values and type conflicts.

 compactness: It is possible that some processing instructions will be
 piggybacked as headers/metadata to messages they refer to, placing
 stringent size requirements on language code.

Beck & Rousskov Expires March 16, 2004 [Page 3]

Internet-Draft P: Message Processing Language September 2003

 security: It should be difficult if not impossible to write malicious
 code that would result in security vulnerability of compliant
 language interpreter.

 While P addresses OPES needs, its design is meant to be applicable
 for a variety of similar intermediary configuration tasks such as
 access control list (ACL) specification and message routing in proxy
 meshes or load-balancing environments.

 P design is based on a minimal useful subset of features from several
 programming languages such as R (S), Smalltalk, and C++. Technically
 speaking, P is a single-assignment, lazy evaluation, strongly typed
 functional programming language.

Beck & Rousskov Expires March 16, 2004 [Page 4]

Internet-Draft P: Message Processing Language September 2003

2. Syntax

 P syntax is defined by the following Augmented Backus-Naur Form
 (ABNF) [RFC2234]:

 code = *(statement ";")

 statement = assignment / function-call / if-statement

 assignment = identifier ":=" expression

 if-statement = "if" "(" expression ")" "{" code "}"

 expression =
 name / function-call / "{" code "}"
 ... ; more to be defined (logical and arithmetic expressions)

 name = identifier *("." identifier)

 function-call = name "(" [params] ")"

 params = expression *("," expression)

 identifier = ALPHA *(ALPHA / DIGIT / "_")

 ... ; more primitives to be defined as needed

 Figure 2

 XXX: add /* comments */.

https://datatracker.ietf.org/doc/html/rfc2234

Beck & Rousskov Expires March 16, 2004 [Page 5]

Internet-Draft P: Message Processing Language September 2003

3. Language elements

3.1 Objects

 P is centered around the concept of an "object" that is similar to
 objects from other object-oriented languages. An object is,
 essentially, a piece of data or information. The value of an object
 is indistinguishable from the object itself. Object type is defined
 by the semantics of applicable operations and manipulations. Almost
 everything in P is an object, even a piece of code. Here are a few P
 objects, listed one per line:

 0
 "http://www.ietf.org/"
 Core
 { a := 1/0; }

 Many objects contain other objects, often called members. Members
 are accessible by their name, using the member access operator (".").
 Member access operator has a single parameter: the name of the member
 to access. All P objects support "." operator, but not all objects
 have members. Here are a few examples:

 Http.message.headers
 Core.interpreter.stop
 "string".nosuchmember

 Many objects support operators other than member access. For example,
 member objects that support function call "()" operator are often
 call methods.

 Http.message.headers.have(header)
 Core.interpreter.stop()
 1 / 0
 "string" + "string"

 P operators are described in Section 3.2. below.

 P does not have built-in facilities for describing object types. When
 writing a P program, only objects known to interpreter (e.g., Core)
 and objects generated by known objects (e.g., Core.import("Http"))
 can be used. P supports loadable modules that can be used to add
 objects to support new application protocols. In fact, P core
 supports no application protocols directly. Instead, modules like
 "Http" can be used to process messages depending on application
 protocol being proxied.

 No default (silent) object type conversion is supported. However,

Beck & Rousskov Expires March 16, 2004 [Page 6]

Internet-Draft P: Message Processing Language September 2003

 explicit conversion (casting) is rarely needed because many methods
 are polymorphic (can work with several object types).

3.2 Operators

 Several operators are used in P to denote common operations. These
 symbols are deemed to improve readability of P code as compared to
 their spelled-out-in-English counterparts.

 P Operators

 +--------------+--+
 | operator | default semantics |
 +--------------+--+
A == B	A is semantically equal to B; does not modify A or
	B.
A != B	semantical inequality, same as !(A == B).
!A	logical negation, same as (A == false)
A and B	logical concatenation, same as !(!A or !B)
A or B	logical disjunction (inclusive), same as !(!A or
	!B)
A + B	sum of A and B; does not modify A or B.
A * B	product of A and B; does not modify A or B.
A - B	difference between A and B; does not modify A or
	B.
A / B	ratio of A to B; does not modify A or B.
A.n	access to A's member named n; does not modify A;
	fails if A has no member named n.
A(...)	object A is to perform a function call with zero
	or more parameters; may modify A and/or parameters
 +--------------+--+

 Operator precedence defines natural evaluation order used in
 mathematics and many programming languages. In the following list,
 operators are ordered based on their precedence. Operators with
 smaller precedence index are evaluated first. Operators with the same
 precedence index are evaluated in the left-to-right order of
 occurrence in an expression.

Beck & Rousskov Expires March 16, 2004 [Page 7]

Internet-Draft P: Message Processing Language September 2003

 1. .

 2. ()

 3. !

 4. * /

 5. + -

 6. == !=

 7. and

 8. or

 Except for the member access operator ("."). operators do not have to
 be supported by an object. Moreover, operator semantics may differ
 from one object to another (or even from one invocation to another
 for the same object though the latter is unlikely to be common in
 practice). Object writers SHOULD follow common operator semantics and
 MUST document actual operator semantics when adding support for these
 operators to their objects. The interpreter MUST NOT allow object
 writers to change operator precedence.

 Operators are not global special symbols but are passed to the object
 for interpretation, along with their parameters. Applying an operator
 is semantically equivalent to calling an object method. For example,
 the following three expressions are equivalent:

 a + b + c
 (a.+(b)) + c
 (a.+(b)).+(c)

 Figure 6

 The "a + b + c" form is preferred for purely visual reasons. Core P
 module provides basic objects and operators for them (e.g., boolean
 and integer). Application-specific modules usually provide
 applications-specific objects; those objects usually have
 application-specific methods and may not have methods to support
 operations common for basic types. For example, an Http module
 supplies an HTTP header object that does not have a "*" method.

3.3 Expressions

 P expressions are used in if-statements to specify the condition for
 the if-statement body to be interpreted.

Beck & Rousskov Expires March 16, 2004 [Page 8]

Internet-Draft P: Message Processing Language September 2003

 if (Http.request.method == "GET" and time.current() > time.noon) {
 ...
 }

 Figure 7

 Evaluation of an expression stops when the value of an expression is
 known and cannot be changed by further evaluation. This
 short-circuiting optimization technique is common to many programming
 languages. In the following example, the value of A will never be
 interpreted when C is interpreted, regardless of the context where C
 is used:

 C := false and A;
 if (C) { ... };
 if (!C) { ... };
 ...

 Figure 8

3.4 Statements

 Objects are manipulated using if-statements and function-calls.

 if (Http.request.method == "GET") {
 Services.applyOne(serviceFoo);
 }

 Figure 9

3.5 Assignments

 Most procedural programming languages use variables to store
 intermediate processing results. In such languages, a variable is
 essentially a named piece of memory that can be assigned a value and
 can be updated with new values as needed. P does not have such
 variables. Instead, P uses a "single assignment" approach: an
 expression can be tagged with a name and that name can be reused many
 times in the program. On the surface, this is equivalent to having
 all "traditional" variables declared as "constant". The following two
 if-statements are semantically equivalent in P:

 if (Http.request.headers.have(Http.makeHeader("Client-IP"))) {...}

 h := Http.makeHeader("Client-IP");
 hs := Http.request.headers();

Beck & Rousskov Expires March 16, 2004 [Page 9]

Internet-Draft P: Message Processing Language September 2003

 if (hs.have(h)) {...}

 Figure 10

 If the expression changes, a new name must be used to tag the new
 expression. After an assignment statement, the value of the name is
 not the value of the expression, but the expression itself. Thus,
 the following two code fragments are equivalent and make no sense in
 P (the first fragment would make sense in languages such as C++):

 h := Http.makeHeader("Client-IP");
 h := Http.makeHeader("Server-IP");

 h := Http.makeHeader("Client-IP");
 Http.makeHeader("Client-IP") := Http.makeHeader("Server-IP");

 Figure 11

 The interpreter can but does not have to evaluate the expression
 named in the assignment statement until the name is actually used in
 an expression that requires evaluation (e.g., as a parameter of a
 function call statement). This allows for optional performance
 optimizations where only used expressions are evaluated.

 P does not have user-defined functions. However, some code reuse is
 possible because P code is a valid expression and, hence, can be
 named and reused:

 code := { ... complicated service action ... };
 if (condition1) { code; };
 ...
 if (condition2) { code; };

 Figure 12

 XXX: document whether expression has to be evaluated in the
 assignment context or use context. Document name scope.

Beck & Rousskov Expires March 16, 2004 [Page 10]

Internet-Draft P: Message Processing Language September 2003

4. Modules

 Application-specific support is available in P via modules. Basic P
 primitives such as integer types and boolean operations comprise the
 Core module. Module is an object. The Core modules supplies the
 following methods to manipulate other modules:

 Core.import("M"): load a module called "M" and return it as the
 result.

 Core.lookup(M): start looking up unresolved attributes and method
 identifiers in a previously loaded module M.

 The Core module is assumed to be loaded (and being looked up) before
 the interpretation starts.

 XXX: document lookup conflict resolution.

Beck & Rousskov Expires March 16, 2004 [Page 11]

Internet-Draft P: Message Processing Language September 2003

5. OPES Services

 Services module contains basic attributes and methods for searching
 and executing OPES services:

 Services.findOne(URI): returns a service object that corresponds to
 the specified URI. Fails if no corresponding object exists.

 Services.applyOne(service, ...): applies the specified service to the
 current application message and optionally supplies
 service-specific application parameters. XXX: should parameters
 include the part of the message to be modified or just services
 metadata?

 Here is a service application example for a German to French
 translation service:

 Http := import("Http");
 if (Http.response.language_is("german")) {
 service := Services.find("opes://services/tran/german/french");
 service.toDialect("southern");
 Services.applyOne(service, Http.request.headers);
 }

 Figure 13

 XXX: explain how failures are propagated and can be handled

 XXX: add Core.interpreter.stop and Core.interpreter.restart methods.

Beck & Rousskov Expires March 16, 2004 [Page 12]

Internet-Draft P: Message Processing Language September 2003

6. Failures

 Virtually any P statement may fail: expression denominator may be
 zero, named members may not exist, objects may not support applied
 operators, service execution may fail, interpreter may ran out of
 resources during an assignment, etc. A failure immediately stops
 interpretation of the first surrounding code block and assigns that
 block a boolean value of false.

 If the failed block is a part of a larger expression, the interpreter
 MUST continue evaluating the expression containing the failed block
 using usual expression evaluating rules, including short-circuiting
 boolean expressions. If the failed block is a stand-alone statement,
 that statement fails and the failure is propagated using the above
 rules. If the implicit code block surrounding the program fails
 (XXX: document or require an implicit surrounding block like XML
 does), the entire P program interpretation terminates with a failure.

 Failure propagation rules allow to catch failures, similar to an
 exception mechanisms in languages like C++ or Java, except that P
 exceptions are not objects (they carry no information). For example,
 here is a simple way to introduce a backup/failover service:

 {
 ...
 Services.applyOne(unsafeService);
 } or {
 ...
 Services.applyOne(failoverService);
 };

 Figure 14

 The following example illustrates how a failure-prone service can be
 retried twice if needed:

 code := {
 /* code executing the service */
 };
 code or code or code;

 Figure 15

 It is possible to force the interpreter to fail using the
 "Core.interpreter.fail(reason)" call. This is handy when there is a
 logical failure that the interpreter cannot detect on its own:

 {

Beck & Rousskov Expires March 16, 2004 [Page 13]

Internet-Draft P: Message Processing Language September 2003

 /* large piece of code executing several services,
 each manipulating the current HTTP message ... */

 /* checkpoint */
 if (!Http.message.headers.have("Content-Length")) {
 Core.interpreter.fail("services did not set
CL");
 }

 /* OK, continue message manipulation ... */
 } or {
 /* recover from failure ... */
 }

 Figure 16

Beck & Rousskov Expires March 16, 2004 [Page 14]

Internet-Draft P: Message Processing Language September 2003

7. Security Considerations

 XXX: document non-obvious vulnerabilities: too many names, too deep
 nesting, invalid math, too much error logging; execution of
 unauthorized services, unauthorized exposure of sensitive information
 to authorized services.

Beck & Rousskov Expires March 16, 2004 [Page 15]

Internet-Draft P: Message Processing Language September 2003

8. Compliance

 XXX: define what a compliant interpreter is.

Beck & Rousskov Expires March 16, 2004 [Page 16]

Internet-Draft P: Message Processing Language September 2003

Appendix A. Examples

 This appendix contains half-baked examples to illustrate P usage in
 common OPES environments. Example themes are taken from
 [I-D.beck-opes-irml] to ease the comparison with IRML.

 Here is a data provider example:

 interpreter.languageVersion("1.0"); // fails if incompatible

 Http := import("Http");
 lookup(Http);

 // Is the requested web document our home page?
 isHome := request.uri.looksLikeHome();

 // Does the user send us a specific cookie?
 cookie := makeHeader("Cookie", "sew=23");
 haveCookie := request.headers.have(cookie);

 if (isHome and haveCookie) {
 Services := import("Services");
 service := Services.findOne("opes://local.net/add-lcl-
content");
 service.clientIp(request.clientIp);
 Services.applyOne(service);
 }

 Figure 17

 Here is a data consumer example:

 Services := import("Services");
 service := Services.findOne("opes://privacy.net/priv-serv");
 service.action("remove-referer");
 Services.applyOne(service);

 Figure 18

Beck & Rousskov Expires March 16, 2004 [Page 17]

Internet-Draft P: Message Processing Language September 2003

Appendix B. Change Log

 Internal WG revision control IDs: $RCSfile: rules-lang.xml,v $
 $Revision: 1.5 $.

Beck & Rousskov Expires March 16, 2004 [Page 18]

Internet-Draft P: Message Processing Language September 2003

Normative References

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [I-D.ietf-opes-architecture]
 Barbir, A., "An Architecture for Open Pluggable Edge
 Services (OPES)", draft-ietf-opes-architecture-04 (work in
 progress), December 2002.

Beck & Rousskov Expires March 16, 2004 [Page 19]

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/draft-ietf-opes-architecture-04

Internet-Draft P: Message Processing Language September 2003

Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Nielsen, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [I-D.beck-opes-irml]
 Beck, A. and M. Hofmann, "IRML: A Rule Specification
 Language for Intermediary Services",

draft-beck-opes-irml-03 (work in progress), June 2003.

Authors' Addresses

 Andre Beck
 Lucent Technologies
 101 Crawfords Corner Rd.
 Holmdel, NJ
 US

 Phone: +1 732 332-5983
 EMail: abeck@bell-labs.com

 Alex Rousskov
 The Measurement Factory

 EMail: rousskov@measurement-factory.com
 URI: http://www.measurement-factory.com/

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-beck-opes-irml-03
http://www.measurement-factory.com/

Beck & Rousskov Expires March 16, 2004 [Page 20]

Internet-Draft P: Message Processing Language September 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Beck & Rousskov Expires March 16, 2004 [Page 21]

Internet-Draft P: Message Processing Language September 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Beck & Rousskov Expires March 16, 2004 [Page 22]

