
Open Pluggable Edge Services A. Beck
Internet-Draft Lucent Technologies
Expires: March 21, 2004 A. Rousskov
 The Measurement Factory
 September 21, 2003

P: Message Processing Language
draft-ietf-opes-rules-p-01

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 21, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 P is a simple configuration language designed for specification of
 message processing instructions at application proxies. P can be used
 to instruct an intermediary how to manipulate the application message
 being proxied. Such instructions are needed in an Open Pluggable Edge
 Services (OPES) context.

Beck & Rousskov Expires March 21, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft P: Message Processing Language September 2003

Table of Contents

1. Introduction . 3
2. Syntax . 5
3. Language elements . 7
3.1 Objects . 7
3.2 Type conversion . 8
3.3 Operators . 8
3.4 Expressions . 11
3.5 Statements . 11
3.6 Assignments . 12
4. Modules . 14
4.1 Interpreter-module interface 15
4.2 Modules and namespace . 15
5. OPES Services . 17
6. Failures . 18
7. Security Considerations 20
8. Compliance . 21
A. Examples . 22
B. To-do . 23
C. Acknowledgments . 25
D. Change Log . 26

 Normative References . 27
 Informative References . 28
 Authors' Addresses . 28
 Intellectual Property and Copyright Statements 29

Beck & Rousskov Expires March 21, 2004 [Page 2]

Internet-Draft P: Message Processing Language September 2003

1. Introduction

 The Open Pluggable Edge Services (OPES) architecture
 [I-D.ietf-opes-architecture], enables cooperative application
 services (OPES services) between a data provider, a data consumer,
 and zero or more OPES processors. The application services under
 consideration analyze and possibly transform application-level
 messages exchanged between the data provider and the data consumer.
 OPES processors need to be told what services are to be applied to
 what application messages. P language can be used for this
 configuration task.

 In other words, P language primary objective is to express statements
 similar to:

 if message meets criteria C,
 then apply service S;

 Figure 1

 Thus, P programs mostly deal with formulating message-dependent
 conditions and executing services.

 P design attempts to satisfy several conflicting goals:

 flexibility: Application intermediaries deal with a wide range of
 applications and protocols (SMTP, HTTP, RTSP, IM, etc.). The
 language must be able to accommodate virtually all known tasks in
 selecting a desired adaptation service for a message of a known
 application protocol (and conceivable future applications).

 efficiency: Language interpretation must be efficient enough to be
 comparable with other message processing overheads at a typical
 application proxy (e.g., interpreting HTTP headers to determine
 response cachability).

 simplicity: Typical configurations must be easy to write and
 understand for a typical OPES system administrator.

 correctness: Many message handling configurations are written without
 direct access to intermediaries that will use those
 configurations. The extent of off-line (compile-time) correctness
 checks should catch all syntax errors and many common semantic
 errors such as undefined values and type conflicts.

 compactness: It is possible that some processing instructions will be
 piggybacked as headers/metadata to messages they refer to, placing
 stringent size requirements on language code.

Beck & Rousskov Expires March 21, 2004 [Page 3]

Internet-Draft P: Message Processing Language September 2003

 security: It should be difficult if not impossible to write malicious
 code that would result in security vulnerability of compliant
 language interpreter.

 While P addresses OPES needs, its design is meant to be applicable
 for a variety of similar intermediary configuration tasks such as
 access control list (ACL) specification and message routing in proxy
 meshes or load-balancing environments.

 P design is based on a minimal useful subset of features from several
 programming languages such as R (S), Smalltalk, and C++. Technically
 speaking, P is a single-assignment, lazy evaluation, strongly typed
 functional programming language.

Beck & Rousskov Expires March 21, 2004 [Page 4]

Internet-Draft P: Message Processing Language September 2003

2. Syntax

 P syntax is defined by the following Augmented Backus-Naur Form
 (ABNF) [RFC2234]:

 code = *statement

 statement =
 expression-statement /
 assignment-statement /
 compound-statement /
 if-statement /
 comment /
 ";"

 if-statement = if-head *if-alt [if-tail]
 if-head = "if" "(" expression ")" "{" code "}"
 if-alt = "elsif" "(" expression ")" "{" code "}"
 if-tail = "else" "{" code "}"

 compound-statement = "{" code "}"

 assignment = identifier ":=" expression ";"

 expression-statement = expression ";"

 expression =
 constant-expression /
 name /
 function-call /
 "{" code "}" /
 unary-op expression /
 expression binary-op expression

 constant-expression = boolean / number / string

 name = identifier *("." identifier)

 function-call = name "(" [call-parameters] ")"

 call-parameters = expression *("," expression)

 identifier = (ALPHA / "_") *(ALPHA / DIGIT / "_")

 unary-op =
 "+" / "-" /
 identifier

https://datatracker.ietf.org/doc/html/rfc2234

Beck & Rousskov Expires March 21, 2004 [Page 5]

Internet-Draft P: Message Processing Language September 2003

 binary-op =
 "==" / "!=" /
 "<" / ">" / ">=" / "<=" /
 "+" / "-" / "*" / "/" / "%" /
 identifier

 comment = "/*" OCTET "*/" ; no nesting allowed

 boolean = "true" / "false"

 number = 1*DIGIT ; no leading zeros

 string = DQUOTE *string-char DQUOTE

 string-char =
 %x00-21 / %x23-5B / %x5D-FF / ; any but quote and backslash
 escape-sequence ; C++ or XML escape sequence? XXX

 Figure 2

Beck & Rousskov Expires March 21, 2004 [Page 6]

Internet-Draft P: Message Processing Language September 2003

3. Language elements

3.1 Objects

 P is centered around the concept of an "object" that is similar to
 objects from other object-oriented languages. An object is,
 essentially, a piece of data or information. The value of an object
 is indistinguishable from the object itself. Object type is defined
 by the semantics of applicable operations and manipulations. Almost
 everything in P is an object, even a piece of code. Here are a few P
 objects, listed one per line:

 0
 "http://www.ietf.org/"
 Core
 { a := 1/0; }

 Many objects contain other objects, often called members. Members
 are accessible by their name, using the member access operator (".").
 Member access operator has a single parameter: the name of the member
 to access. All P objects support "." operator, but not all objects
 have members. Here are a few examples:

 Http.message.headers
 Core.interpreter.stop
 "string".nosuchmember

 Many objects support operators other than member access. For example,
 member objects that support function call "()" operator are often
 call methods.

 Http.message.headers.have(header)
 Core.interpreter.stop()
 1 / 0
 "string" + "string"

 P operators are described in Section 3.3. below.

 P does not have built-in facilities for describing object types. When
 writing a P program, only objects known to interpreter (e.g., Core)
 and objects generated by known objects (e.g., Http.message.headers)
 can be used. P supports loadable modules that can be used to add
 objects to support new application protocols. In fact, P core
 supports no application protocols directly. Instead, modules like
 "HTTP" can be used to process messages depending on application
 protocol being proxied.

Beck & Rousskov Expires March 21, 2004 [Page 7]

Internet-Draft P: Message Processing Language September 2003

3.2 Type conversion

 Interpreters MUST NOT silently convert (cast) object types. When
 explicit conversion (casting) is needed objects should provide
 polymorphic methods (methods with the same name but different formal
 parameter types).

3.3 Operators

 Operators are used in P to denote common operations on built-in
 object types and language constructs. No operators are defined for
 objects provided by modules. P operators do not modify their
 operands. Note that all operators may result a failure.

 Unary Operators

 +--------------+-------------+-------------+------------------------+
 | operator | operand | result type | semantics |
 | | type | | |
 +--------------+-------------+-------------+------------------------+
+	number	number	returns operand
-	number	number	returns zero minus
			operand
import	string	module	imports module members
			into global namespace
			and returns a module
			object that can be
			used to access this
			module members
			explicitly; operand is
			module identifier, a
			URI; fails on any
			error
not	boolean	boolean	logical negation
try	code	boolean	interpret operand and
			return true or fail;
			try is the only
			operator defined for
			code; try never
			returns false
 +--------------+-------------+-------------+------------------------+

Beck & Rousskov Expires March 21, 2004 [Page 8]

Internet-Draft P: Message Processing Language September 2003

 Binary Operators

 +-------------+-----------+----------+------------------------------+
 | operator | operands | result | semantics |
 | | type | type | |
 +-------------+-----------+----------+------------------------------+
==	boolean	boolean	simple value equality
	or		
	integer		
!=	boolean	boolean	simple value inequality
	or number		
<	number	boolean	less than; ">", "<=" and
			">=" are defined similarly
equal	string	boolean	left string equals right
			string
contains	string	boolean	left contains right
begins_with	string	boolean	left string begins with the
			right string
ends_with	string	boolean	left string ends with the
			right string
and	boolean	boolean	short-circuited logical
			conjunction: the right
			expression is evaluated only
			if the left expression is
			true
or	boolean	boolean	short-circuited logical
			disjunction: the right
			expression is evaluated only
			if the left expression is
			false
xor	boolean	boolean	exclusive logical
			conjunction; cannot be
			short-circuited: both
			operands are evaluated
otherwise	statement	any	short-circuited failure
			detection: the right
			expression is evaluated only
			if the left expression

Beck & Rousskov Expires March 21, 2004 [Page 9]

Internet-Draft P: Message Processing Language September 2003

			fails; returns the value of
			the last expression
			evaluated
-	number	number	arithmetic difference
+	number	number	arithmetic sum
*	number	number	arithmetic product
/	number	number	arithmetic ratio; rounded to
			the closest integer (XXX?)
%	number	number	arithmetic modulo
.	name	object	object member access; fails
		member	if the object produced by
			expression on the right does
			not have the member named by
			the expression on the left.
 +-------------+-----------+----------+------------------------------+

 A function call is an n-ary operator. Besides the function name, it
 takes zero or more actual parameters as operands.

 All string operators described above are case-sensitive and come with
 the corresponding case-insensitive operators: EqualS, ContainS,
 Begins_witH, and Ends_witH (XXX: bad idea to name using case?) (XXX:
 should we force programmers to pick the right variant instead of
 providing efficient, but usually wrong default: contains_s and
 contains_i?)

 Operator precedence defines natural evaluation order used in
 mathematics and many programming languages. In the following list,
 operators are ordered based on their precedence. Operators with
 smaller precedence index are evaluated first. Operators with the same
 precedence index are evaluated in the left-to-right order of
 occurrence in an expression.

 1. .

 2. ()

 3. not

 4. * /

 5. + -

Beck & Rousskov Expires March 21, 2004 [Page 10]

Internet-Draft P: Message Processing Language September 2003

 6. all binary operators on string: equals, contains, ...

 7. import

 8. == != < <= > >=

 9. and

 10. or

 11. xor (XXX: misplaced?)

 12. try (XXX: misplaced?)

 13. otherwise

3.4 Expressions

 P expressions are used in if-statements to specify the condition for
 the if-statement body to be interpreted.

 if (Http.request.method == "GET" and time.current() > time.noon) {
 ...
 }

 Figure 6

 Evaluation of an expression stops when the value of an expression is
 known and cannot be changed by further evaluation. This
 short-circuiting optimization technique is common to many programming
 languages. In the following example, the value of A will never be
 interpreted when C is interpreted, regardless of the context where C
 is used:

 C := false and A;
 if (C) { ... };
 if (!C) { ... };
 ...

 Figure 7

3.5 Statements

 Objects are manipulated using if-statements and function-calls.

 if (Http.request.method == "GET") {

Beck & Rousskov Expires March 21, 2004 [Page 11]

Internet-Draft P: Message Processing Language September 2003

 Services.applyOne(serviceFoo);
 }

 Figure 8

3.6 Assignments

 Most procedural programming languages use variables to store
 intermediate processing results. In such languages, a variable is
 essentially a named piece of memory that can be assigned a value and
 can be updated with new values as needed. P does not have such
 variables. Instead, P uses a "single assignment" approach: an
 expression can be tagged with a name and that name can be reused many
 times in the program. On the surface, this is equivalent to having
 all "traditional" variables declared as "constant". The following two
 if-statements are semantically equivalent in P:

 if (Http.request.headers.have(Http.makeHeader("Client-IP"))) {...}

 h := Http.makeHeader("Client-IP");
 hs := Http.request.headers();
 if (hs.have(h)) {...}

 Figure 9

 If the expression changes, a new name must be used to tag the new
 expression. After an assignment statement, the value of the name is
 not the value of the expression, but the expression itself. Thus,
 the following two code fragments are equivalent and make no sense in
 P (the first fragment would make sense in languages such as C++):

 h := Http.makeHeader("Client-IP");
 h := Http.makeHeader("Server-IP");

 h := Http.makeHeader("Client-IP");
 Http.makeHeader("Client-IP") := Http.makeHeader("Server-IP");

 Figure 10

 The interpreter can but does not have to evaluate the expression
 named in the assignment statement until the name is actually used in
 an expression that requires evaluation (e.g., as a parameter of a
 function call statement). This allows for optional performance
 optimizations where only used expressions are evaluated.

 P does not have user-defined functions. However, some code reuse is
 possible because P code is a valid expression and, hence, can be

Beck & Rousskov Expires March 21, 2004 [Page 12]

Internet-Draft P: Message Processing Language September 2003

 named and reused:

 code := { ... complicated service action ... };
 if (condition1) { code; };
 ...
 if (condition2) { code; };

 Figure 11

 XXX: document whether expression has to be evaluated in the
 assignment context or use context.

 Names introduced using assignments have global scope. Global scope
 makes it possible to select among alternative values without
 user-defined functions or true variables:

 if (condition) {
 /* no "service" name exists at this point */
 service := Services.findOne(uri1);
 } else {
 /* no "service" name exists at this point */
 service := Services.findOne(uri2);
 service.authorization(myAuth);
 }
 Services.applyOne(service); /* service name is still visible */

 Figure 12

Beck & Rousskov Expires March 21, 2004 [Page 13]

Internet-Draft P: Message Processing Language September 2003

4. Modules

 Application-specific support is available in P via modules. Module is
 an object. Interpreters MUST supply two modules named Core and
 Services. The Core module contains members for manipulating built-in
 P object types such as integers and strings. The Services module
 manages OPES services. Application specific modules can be loaded
 into the namespace of a P program via the import operator (see

Section 3.3). For example, the following P code imports an HTTP
 module, names the result (the module itself) "Http", and checks for
 the presence of a certain HTTP message header:

 Http := import "http://ietf.org/opes/rules/p/HTTP";
 if (Http.message.headers.have("Accept")) { ... }

 Figure 13

 It is not possible to import a Core or Services module explicitly.
 Instead, interpreters MUST provide access to Core and Services
 members as if those modules were imported just before the program
 text.

 Modules are identified by their URIs [RFC2396]. A module
 specification SHOULD contain a globally unique URI for that module.
 Module URIs are usually not used to fetch module implementation
 remotely, but to identify a suitable local copy of a module; they are
 identifiers, not locators. Interpreters maintain a directory of
 known-to-them module URIs. When a module needs to be imported, the
 interpreter checks internal metadata and loads the requested module
 using module-specific interface. If the module is not known or
 loading fails, the import operator fails and the failure is
 propagated using standard failure propagation rules (see Section 6).
 The following example attempts to import one of the SMTP modules.

 /* load one of the available SMTP modules */
 Smtp := import "http://ietf.org/opes/rules/p/SMTP" otherwise
 import "http://examle.org/opes/optimized/SMTPv3";

 Figure 14

 Import operation has program scope. It is not possible to "unload" an
 imported module.

 {
 M := import "http://ietf.org/opes/rules/p/HTTP";
 ...
 }
 /* M and M members are still visible here */

https://datatracker.ietf.org/doc/html/rfc2396

Beck & Rousskov Expires March 21, 2004 [Page 14]

Internet-Draft P: Message Processing Language September 2003

 if (M.connection.is_persistent()) { ... }

 Figure 15

4.1 Interpreter-module interface

 Most modules are not written in P since the language lacks native
 mechanisms for defining module or function interface. Most modules
 are tightly integrated with OPES processors because application
 adaptation requires access to processor's internal state. For
 example, an HTTP intermediary implemented in C++ can use modules
 written in C++ and may require that implementors inherit their
 modules from a given C++ class. Such modules may be loaded using,
 for example, a "dynamically loadable module" mechanism supported by
 most modern operating systems. Similarly, a Java OPES processor may
 require that all modules implement a given Java interface and use
 Java importing mechanism. This specification does not document any
 specific interface between an interpreter and third-party modules.

 Nevertheless, an interpreter MAY support loading of modules written
 in P (similar to C++ #include directives). The interface for
 distinguishing URIs of P programs from integrated modules is
 implementation-dependent and is not described here. For example, an
 interpreter may assume that all unknown module URIs correspond to raw
 P programs and attempt to include such a program if the URI scheme is
 known to the interpreter:

 MyLibrary := import "file://usr/local/lib/globalrules.p";

 Figure 16

4.2 Modules and namespace

 Members of imported modules belong to the global namespace and are
 directly accessible (visible) without the module name prefix. This
 simple rule may lead to conflicts when two imported modules contain a
 member with the same name. Interpreters MUST fail if any name
 resolution is ambiguous. Interpreters MUST NOT use heuristics to
 guess programmer's intent. Programmers have to use fully qualified
 names to resolve ambiguities.

 For example, all of the import statements below pollute global name
 space, but the first two provide a way for a programmer to resolve
 conflicts, if any:

 /* import HTTP module */

Beck & Rousskov Expires March 21, 2004 [Page 15]

Internet-Draft P: Message Processing Language September 2003

 Http := import "http://ietf.org/opes/rules/p/HTTP";

 /* import SMTP module */
 Smtp := import "http://ietf.org/opes/rules/p/SMTP";

 /* import a local file without naming it */
 import "file:///usr/local/globalrules.p";

 Figure 17

 In the following example, both the Http and Smtp modules have the
 same member named "message", and the code leads to an ambiguity, even
 though Smtp module's message does not have a "method" member:

 Smtp := import "http://ietf.org/opes/rules/p/SMTP";
 Http := import "http://ietf.org/opes/rules/p/HTTP";

 method1 := message.method; /* error: HTTP or SMTP "message"? */
 method2 := Http.message.method; /* OK: HTTP "message" */

 Figure 18

Beck & Rousskov Expires March 21, 2004 [Page 16]

Internet-Draft P: Message Processing Language September 2003

5. OPES Services

 Services module contains basic attributes and methods for searching
 and executing OPES services:

 Services.findOne(URI): returns a service object that corresponds to
 the specified URI. Fails if no corresponding object exists.

 Services.applyOne(service, ...): applies the specified service to the
 current application message and optionally supplies
 service-specific application parameters. XXX: should parameters
 include the part of the message to be modified or just services
 metadata?

 Here is a service application example for a German to French
 translation service:

 Http := import("Http");
 if (Http.response.language_is("german")) {
 service := Services.findOne("opes://svs/tran/german/french");
 service.toDialect("southern");
 Services.applyOne(service, Http.request.headers);
 }

 Figure 19

 XXX: explain how failures are propagated and can be handled

 XXX: add Core.interpreter.stop and Core.interpreter.restart methods.

Beck & Rousskov Expires March 21, 2004 [Page 17]

Internet-Draft P: Message Processing Language September 2003

6. Failures

 Virtually any P statement may fail: expression denominator may be
 zero, named members may not exist, functions may not support supplied
 parameters, service execution may fail, interpreter may ran out of
 resources during an assignment, etc. A failure immediately stops
 interpretation of the expression that caused it.

 Failure is propagated up the expression and statement stack until the
 stack is empty or an "otherwise" alternative is reached (see Section

3.3). If the stack is empty, the entire P program interpretation
 terminates with a failure. If an "otherwise" alternative is
 encountered, the failure is forgotten and interpretation resumes with
 that alternative.

 Failure propagation rules allow to catch failures, similar to an
 exception mechanisms in languages like C++ or Java, except that P
 exceptions are not objects (they carry no information). For example,
 here is a simple way to introduce a backup/failover service:

 {
 ...
 Services.applyOne(unsafeService);
 } otherwise {
 ...
 Services.applyOne(failoverService);
 };

 Figure 20

 The "otherwise" operator makes it simple to select among
 failure-prone alternatives:

 service := findOne(uri1) otherwise findOne(uri2);

 Figure 21

 The following example illustrates how a failure-prone service can be
 retried twice if needed:

 code := {
 /* code executing the service */
 };
 try code otherwise try code otherwise try code;

 Figure 22

 It is possible to force the interpreter to fail using the

Beck & Rousskov Expires March 21, 2004 [Page 18]

Internet-Draft P: Message Processing Language September 2003

 "Core.interpreter.fail(reason)" call. This is handy when there is a
 logical failure that the interpreter cannot detect on its own:

 {
 /* large piece of code executing several services,
 each manipulating the current HTTP message ... */

 /* checkpoint */
 if (!Http.message.headers.have("Content-Length")) {
 Core.interpreter.fail("services did not set CL");
 }

 /* OK, continue message manipulation ... */
 } otherwise {
 /* recover from failure ... */
 }

 Figure 23

 This specification has no failure reporting requirements. The extent
 and form of failure reporting depends on the environment: Developer
 environments would benefit from extensive and detailed reporting of
 failures. Stand-alone intermediaries processing P instructions may
 benefit from some reporting, appropriately implemented not to bring
 down the proxy due to high volume of failures. User environments,
 especially mobile and similarly resource-constraint applications
 should probably conserve scarce resources and produce no reports by
 default.

Beck & Rousskov Expires March 21, 2004 [Page 19]

Internet-Draft P: Message Processing Language September 2003

7. Security Considerations

 XXX: document non-obvious vulnerabilities: too many names, too deep
 nesting, invalid math, too much error logging; execution of
 unauthorized services, unauthorized exposure of sensitive information
 to authorized services.

Beck & Rousskov Expires March 21, 2004 [Page 20]

Internet-Draft P: Message Processing Language September 2003

8. Compliance

 XXX: define what a compliant interpreter is.

Beck & Rousskov Expires March 21, 2004 [Page 21]

Internet-Draft P: Message Processing Language September 2003

Appendix A. Examples

 This appendix contains half-baked examples to illustrate P usage in
 common OPES environments. Example themes are taken from
 [I-D.beck-opes-irml] to ease the comparison with IRML.

 Here is a data provider example:

 interpreter.languageVersion("1.0"); // fails if incompatible

 Http := import("Http");
 lookup(Http);

 // Is the requested web document our home page?
 isHome := request.uri.looksLikeHome();

 // Does the user send us a specific cookie?
 cookie := makeHeader("Cookie", "sew=23");
 haveCookie := request.headers.have(cookie);

 if (isHome and haveCookie) {
 Services := import("Services");
 service := Services.findOne("opes://local.net/add-lcl-
content");
 service.clientIp(request.clientIp);
 Services.applyOne(service);
 }

 Figure 24

 Here is a data consumer example:

 Services := import("Services");
 service := Services.findOne("opes://privacy.net/priv-serv");
 service.action("remove-referer");
 Services.applyOne(service);

 Figure 25

Beck & Rousskov Expires March 21, 2004 [Page 22]

Internet-Draft P: Message Processing Language September 2003

Appendix B. To-do

 i18n: What are IETF and real-world internationalization requirements
 for languages? Can we say that everything is Unicode UTF-8 and be
 done with it? Does UTF have a notion of space characters like
 ASCII does? If not, how can we separate grammar tokens without
 requiring them to be ASCII?

 namespaces: Module lookup facility leads to potential conflicts among
 identical names from different modules. What is the best way to
 resolve these conflicts? How other languages do it?

 security: Write Security Considerations section. A lot can be moved
 from the IRML security section. Some can be borrowed from OCP
 Core.

 module URI: Is there an IETF document that tells us how to assign/
 manage URIs for new "things" like modules? For example, do we use

http://ietf.org/opes/http for HTTP module? Or do we use iana.org
 domain name instead? Is http:// a good choice for the scheme or
 should we use opes:// or even p://?!. Do we use de-facto file://
 for local filenames from where raw P code can be included
 directly? Note that modules like HTTP are not written in P!

 examples: Add more simple but realistic and illustrative examples:
 HTTP header anonymization, OPES/HTTP trace entry management (e.g.,
 removing trace entries of a given OPES service), removing a virus
 attachment from an SMTP message. Ask filtering/ICAP people to
 supply use cases.

 interpreter API: Document that we do not document interpreter API --
 how, for example, an implemented HTTP module is actually "loaded".
 Mention that the solution would depend on the interpreter
 implementation and the same HTTP module is unlikely to be
 compatible with different interpreters.

 define interpreter: Add terminology section. Define interpreter to
 mean compiler, or run-time interpreter, or bytecode generator, or
 anything of that kind.

 op keywords: Document that operator names (via identifier BNF entry)
 are not keywords: object members can use identifiers that clash
 with operator names since there can be no ambiguity.

 statement value: Document values of all statements (e.g.,
 compound-statement value is the value of the last statement in a
 compound)?

http://ietf.org/opes/http

Beck & Rousskov Expires March 21, 2004 [Page 23]

Internet-Draft P: Message Processing Language September 2003

 RE: Decide whether we should support regular expression matching
 natively.

 if-else-if: Make if-else-if syntax compact.

 str ==: Remove "==" for strings in examples. There is no such
 operator for strings anymore.

Beck & Rousskov Expires March 21, 2004 [Page 24]

Internet-Draft P: Message Processing Language September 2003

Appendix C. Acknowledgments

 The author gratefully acknowledges contributions of: Anwar M. Haneef
 (Motorola).

Beck & Rousskov Expires March 21, 2004 [Page 25]

Internet-Draft P: Message Processing Language September 2003

Appendix D. Change Log

 Internal WG revision control IDs: $RCSfile: rules-lang.xml,v $
 $Revision: 1.20 $.

 2003/09/21

 * Explained undocumented relationship between interpreters and
 third-party modules.

 2003/09/19

 * Simplified module importing and lookup facilities. Import is
 now a built-in operator and not a Core method. Explicit lookup
 control is gone in favor of always-lookup default.

 2003/09/18

 * Completed syntax BNF except for escape sequences.

 * Distinguish interpretation failure from boolean false: use
 "otherwise" and "or" operators respectively. With just "or" it
 was impossible to say whether, say, "h.has(foo)" failed or "h"
 just does not have "foo".

 * Use Perl semantics for "otherwise" -- return the value of last
 evaluated expression, not true/false.

 * Nearly completed a set of supported operators, including
 operators for strings.

 * Operators should only be supported for built-in objects because
 it is difficult to define how "5 + object" is interpreted
 without running into problems with "object + object" ("object +
 5" is easy but we need symmetry). It is unlikely that we are
 losing much with this limitation anyway -- protocol objects
 would rarely have good semantics for operators.

 * Defined scope rules for new names introduced by assignments.

 * Added Acknowledgments section.

Beck & Rousskov Expires March 21, 2004 [Page 26]

Internet-Draft P: Message Processing Language September 2003

Normative References

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [I-D.ietf-opes-architecture]
 Barbir, A., "An Architecture for Open Pluggable Edge
 Services (OPES)", draft-ietf-opes-architecture-04 (work in
 progress), December 2002.

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/draft-ietf-opes-architecture-04

Beck & Rousskov Expires March 21, 2004 [Page 27]

Internet-Draft P: Message Processing Language September 2003

Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Nielsen, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [I-D.beck-opes-irml]
 Beck, A. and M. Hofmann, "IRML: A Rule Specification
 Language for Intermediary Services",

draft-beck-opes-irml-03 (work in progress), June 2003.

Authors' Addresses

 Andre Beck
 Lucent Technologies
 101 Crawfords Corner Rd.
 Holmdel, NJ
 US

 Phone: +1 732 332-5983
 EMail: abeck@bell-labs.com

 Alex Rousskov
 The Measurement Factory

 EMail: rousskov@measurement-factory.com
 URI: http://www.measurement-factory.com/

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-beck-opes-irml-03
http://www.measurement-factory.com/

Beck & Rousskov Expires March 21, 2004 [Page 28]

Internet-Draft P: Message Processing Language September 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Beck & Rousskov Expires March 21, 2004 [Page 29]

Internet-Draft P: Message Processing Language September 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Beck & Rousskov Expires March 21, 2004 [Page 30]

