
Workgroup: OPSAWG

Internet-Draft: draft-ietf-opsawg-l3sm-l3nm-16

Published: 30 September 2021

Intended Status: Standards Track

Expires: 3 April 2022

Authors: S. Barguil

Telefonica

O. Gonzalez de Dios, Ed.

Telefonica

M. Boucadair, Ed.

Orange

L. Munoz

Vodafone

A. Aguado

Nokia

A Layer 3 VPN Network YANG Model

Abstract

As a complement to the Layer 3 Virtual Private Network Service YANG

data Model (L3SM), used for communication between customers and

service providers, this document defines an L3VPN Network YANG Model

(L3NM) that can be used for the provisioning of Layer 3 Virtual

Private Network (VPN) services within a service provider network.

The model provides a network-centric view of L3VPN services.

L3NM is meant to be used by a network controller to derive the

configuration information that will be sent to relevant network

devices. The model can also facilitate the communication between a

service orchestrator and a network controller/orchestrator.

Editorial Note (To be removed by RFC Editor)

Please update these statements within the document with the RFC

number to be assigned to this document:

"This version of this YANG module is part of RFC XXXX;"

"RFC XXXX: Layer 3 VPN Network Model";

reference: RFC XXXX

Please update "RFC UUUU" to the RFC number to be assigned to I-

D.ietf-opsawg-vpn-common.

Also, please update the "revision" date of the YANG module.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Acronyms

4. L3NM Reference Architecture

5. Relation with other YANG Models

6. Sample Uses of the L3NM Data Model

6.1. Enterprise Layer 3 VPN Services

6.2. Multi-Domain Resource Management

6.3. Management of Multicast Services

7. Description of the L3NM YANG Module

7.1. Overall Structure of the Module

7.2. VPN Profiles

7.3. VPN Services

7.4. VPN Instance Profiles

7.5. VPN Nodes

7.6. VPN Network Accesses

7.6.1. Connection

7.6.2. IP Connection

7.6.3. CE-PE Routing Protocols

7.6.3.1. Static Routing

7.6.3.2. BGP

7.6.3.3. OSPF

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

7.6.3.4. IS-IS

7.6.3.5. RIP

7.6.3.6. VRRP

7.6.4. OAM

7.6.5. Security

7.6.6. Services

7.6.6.1. Overview

7.6.6.2. QoS

7.7. Multicast

8. L3NM YANG Module

9. Security Considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. L3VPN Examples

A.1. 4G VPN Provisioning Example

A.2. Loopback Interface

A.3. Overriding VPN Instance Profile Parameters

A.4. Multicast VPN Provisioning Example

Appendix B. Implementation Status

B.1. Nokia Implementation

B.2. Huawei Implementation

B.3. Infinera Implementation

B.4. Ribbon-ECI Implementation

B.5. Juniper Implementation

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

[RFC8299] defines a Layer 3 Virtual Private Network Service YANG

data Model (L3SM) that can be used for communication between

customers and service providers. Such a model focuses on describing

the customer view of the Virtual Private Network (VPN) services and

provides an abstracted view of the customer's requested services.

That approach limits the usage of the L3SM to the role of a customer

service model (as per [RFC8309]).

This document defines a YANG module called L3VPN Network Model

(L3NM). The L3NM is aimed at providing a network-centric view of

Layer 3 (L3) VPN services. This data model can be used to facilitate

communication between the service orchestrator and the network

controller/orchestrator by allowing for more network-centric

information to be included. It enables further capabilities such as

resource management or serves as a multi-domain orchestration

interface, where logical resources (such as route targets or route

distinguishers) must be coordinated.

¶

¶

This document uses the common VPN YANG module defined in [I-D.ietf-

opsawg-vpn-common].

This document does not obsolete [RFC8299]. These two modules are

used for similar objectives but with different scopes and views.

The L3NM YANG module was initially built with a prune and extend

approach, taking as a starting points the YANG module described in

[RFC8299]. Nevertheless, the L3NM is not defined as an augment to

L3SM because a specific structure is required to meet network-

oriented L3 needs.

Some information captured in the L3SM can be passed by the

orchestrator in the L3NM (e.g., customer) or be used to feed some

L3NM attributes (e.g., actual forwarding policies). Also, some

information captured in the L3SM may be maintained locally within

the orchestrator; which is in charge of maintaining the correlation

between a customer view and its network instantiation. Likewise,

some information captured and exposed using the L3NM can feed the

service layer (e.g., capabilities) to drive VPN service order

handling, and thus the L3SM.

Section 5.1 of [RFC8969] illustrates how the L3NM can be used within

the network management automation architecture.

The L3NM does not attempt to address all deployment cases,

especially those where the L3VPN connectivity is supported through

the coordination of different VPNs in different underlying networks.

More complex deployment scenarios involving the coordination of

different VPN instances and different technologies to provide an

end-to-end VPN connectivity are addressed by complementary YANG

modules, e.g., [I-D.evenwu-opsawg-yang-composed-vpn].

The L3NM focuses on BGP Provider Edge (PE) based Layer 3 VPNs as

described in [RFC4026][RFC4110][RFC4364] and Multicast VPNs as

described in [RFC6037][RFC6513].

The YANG data model in this document conforms to the Network

Management Datastore Architecture (NMDA) defined in [RFC8342].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Layer 3 VPN Customer Service Model (L3SM):

Layer 3 VPN Service Network Model (L3NM):

Service orchestrator:

Network orchestrator:

Network controller:

VPN node:

This document assumes that the reader is familiar with the contents

of [RFC6241], [RFC7950], [RFC8299], [RFC8309], and [RFC8453] and

uses the terminology defined in those documents.

This document uses the term "network model" defined in Section 2.1

of [RFC8969].

The meaning of the symbols in the tree diagrams is defined in

[RFC8340].

This document makes use of the following terms:

A YANG module that

describes the service requirements of an L3VPN that interconnects

a set of sites from the point of view of the customer. The

customer service model does not provide details on the service

provider network. The L3VPN customer service model is defined in

[RFC8299].

A YANG module that

describes a VPN service in the service provider network. It

contains information of the service provider network and might

include allocated resources. It can be used by network

controllers to manage and control the VPN service configuration

in the service provider network. The YANG module can be consumed

by a service orchestrator to request a VPN service to a network

controller.

A functional entity that interacts with the

customer of an L3VPN. The service orchestrator interacts with the

customer using the L3SM. The service orchestrator is responsible

for the Customer Edge (CE) - Provider Edge (PE) attachment

circuits, the PE selection, and requesting the VPN service to the

network controller.

A functional entity that is hierarchically

intermediate between a service orchestrator and network

controllers. A network orchestrator can manage one or several

network controllers.

A functional entity responsible for the control

and management of the service provider network.

An abstraction that represents a set of policies applied

on a PE and that belong to a single VPN service. A VPN service

involves one or more VPN nodes. As it is an abstraction, the

network controller will take on how to implement a VPN node. For

example, typically, in a BGP-based VPN, a VPN node could be

mapped into a Virtual Routing and Forwarding (VRF).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

VPN network access:

VPN site:

VPN service provider:

Service provider network:

ACL

AS

ASM

ASN

BSR

BFD

BGP

CE

CsC

IGMP

L3VPN

L3SM

L3NM

MLD

MSDP

MVPN

NAT

OAM

OSPF

PE

PIM

QoS

RD

An abstraction that represents the network

interfaces that are associated to a given VPN node. Traffic

coming from the VPN network access belongs to the VPN. The

attachment circuits (bearers) between CEs and PEs are terminated

in the VPN network access. A reference to the bearer is

maintained to allow keeping the link between L3SM and L3NM when

both models are used in a given deployment.

A VPN customer's location that is connected to the

service provider network via a CE-PE link, which can access at

least one VPN [RFC4176].

A service provider that offers VPN-related

services [RFC4176].

A network that is able to provide VPN-

related services.

The document is aimed at modeling BGP PE-based VPNs in a service

provider network, so the terms defined in [RFC4026] and [RFC4176]

are used.

3. Acronyms

The following acronyms are used in the document:

Access Control List

Autonomous System

Any-Source Multicast

AS Number

Bootstrap Router

Bidirectional Forwarding Detection

Border Gateway Protocol

Customer Edge

Carriers' Carriers

Internet Group Management Protocol

Layer 3 Virtual Private Network

L3VPN Service Model

L3VPN Network Model

Multicast Listener Discovery

Multicast Source Discovery Protocol

Multicast VPN

Network Address Translation

Operations, Administration, and Maintenance

Open Shortest Path First

Provider Edge

Protocol Independent Multicast

Quality of Service

Route Distinguisher

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

RP

RT

SA

SSM

VPN

VRF

Rendezvous Point

Route Target

Security Association

Source-Specific Multicast

Virtual Private Network

Virtual Routing and Forwarding

4. L3NM Reference Architecture

Figure 1 depicts the reference architecture for the L3NM. The figure

is an expansion of the architecture presented in Section 5 of

[RFC8299]; it decomposes the box marked "orchestration" in that

section into three separate functional components: Service

Orchestration, Network Orchestration, and Domain Orchestration.

Although some deployments may choose to construct a monolithic

orchestration component (covering both service and network matters),

this document advocates for a clear separation between service and

network orchestration components for the sake of better flexibility.

Such design adheres to the L3VPN reference architecture defined in

Section 1.3 of [RFC4176]. This separation relies upon a dedicated

communication interface between these components and appropriate

YANG modules that reflect network-related information. Such

information is hidden to customers.

The intelligence for translating customer-facing information into

network-centric one (and vice versa) is implementation specific.

The terminology from [RFC8309] is introduced to show the distinction

between the customer service model, the service delivery model, the

network configuration model, and the device configuration model. In

that context, the "Domain Orchestration" and "Config Manager" roles

may be performed by "Controllers".

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: L3NM Reference Architecture

The customer may use a variety of means to request a service that

may trigger the instantiation of an L3NM. The customer may use the

L3SM or more abstract models to request a service that relies upon

an L3VPN service. For example, the customer may supply an IP

Connectivity Provisioning Profile (CPP) that characterizes the

requested service [RFC7297], an enhanced VPN (VPN+) service [I-

D.ietf-teas-enhanced-vpn], or an IETF network slice service [I-

D.ietf-teas-ietf-network-slices].

Note also that both the L3SM and the L3NM may be used in the context

of the Abstraction and Control of TE Networks (ACTN) Framework

[RFC8453]. Figure 2 shows the Customer Network Controller (CNC), the

 +---------------+

 | Customer |

 +-------+-------+

 Customer Service Model |

 e.g., l3vpn-svc |

 +-------+-------+

 | Service |

 | Orchestration |

 +-------+-------+

 Service Delivery Model |

 l3vpn-ntw |

 +-------+-------+

 | Network |

 | Orchestration |

 +-------+-------+

 Network Configuration Model |

 +-----------+-----------+

 | |

 +--------+------+ +--------+------+

 | Domain | | Domain |

 | Orchestration | | Orchestration |

 +---+-----------+ +--------+------+

 Device | | |

 Configuration | | |

 Model | | |

 +----+----+ | |

 | Config | | |

 | Manager | | |

 +----+----+ | |

 | | |

 | NETCONF/CLI..................

 | | |

 +--+

 Network

¶

Multi-Domain Service Coordinator (MDSC), and the Provisioning

Network Controller (PNC) components and the interfaces where L3SM/

L3NM are used.

Figure 2: L3SM and L3NM in the Context of ACTN

¶

 +----------------------------------+

 | Customer |

 | +-----------------------------+ |

 | | CNC | |

 | +-----------------------------+ |

 +----+-----------------------+-----+

 | |

 | L3SM | L3SM

 | |

 +---------+---------+ +---------+---------+

 | MDSC | | MDSC |

 | +---------------+ | | (parent) |

 | | Service | | +---------+---------+

 | | Orchestration | | |

 | +-------+-------+ | | L3NM

 | | | |

 | | L3NM | +---------+---------+

 | | | | MDSC |

 | +-------+-------+ | | (child) |

 | | Network | | +---------+---------+

 | | Orchestration | | |

 | +---------------+ | |

 +---------+---------+ |

 | |

 | Network Configuration |

 | |

 +------------+-------+ +---------+------------+

 | Domain | | Domain |

 | Controller | | Controller |

 | +---------+ | | +---------+ |

 | | PNC | | | | PNC | |

 | +---------+ | | +---------+ |

 +------------+-------+ +---------+------------+

 | |

 | Device Configuration |

 | |

 +----+---+ +----+---+

 | Device | | Device |

 +--------+ +--------+

L3SM:

Network Topology Modules:

5. Relation with other YANG Models

The "ietf-vpn-common" module [I-D.ietf-opsawg-vpn-common] includes a

set of identities, types, and groupings that are meant to be reused

by VPN-related YANG modules independently of the layer (e.g., Layer

2, Layer 3) and the type of the module (e.g., network model, service

model) including future revisions of existing models (e.g.,

[RFC8299] or [RFC8466]). The L3NM reuses these common types and

groupings.

In order to avoid data duplication and to ease passing data between

layers when required (service layer to network layer and vice

versa), early versions of the L3NM reused many of the data nodes

that are defined in [RFC8299]. Nevertheless, that approach was

abandoned in favor of the "ietf-vpn-common" module because that

initial design was interpreted as if the deployment of L3NM depends

on L3SM, while this is not the case. For example, a service provider

may decide to use the L3NM to build its L3VPN services without

exposing the L3SM.

As discussed in Section 4, the L3NM is meant to manage L3VPN

services within a service provider network. The module provides a

network view of the service. Such a view is only visible within the

service provider and is not exposed outside (to customers, for

example). The following discusses how L3NM interfaces with other

YANG modules:

L3NM is not a customer service model.

The internal view of the service (i.e., L3NM) may be mapped to an

external view which is visible to customers: L3VPN Service YANG

data Model (L3SM) [RFC8299].

The L3NM can be fed with inputs that are requested by customers,

typically, relying upon an L3SM template. Concretely, some parts

of the L3SM module can be directly mapped into L3NM while other

parts are generated as a function of the requested service and

local guidelines. Some other parts are local to the service

provider and do not map directly to L3SM.

Note that the use of L3NM within a service provider does not

assume nor preclude exposing the VPN service via the L3SM. This

is deployment-specific. Nevertheless, the design of L3NM tries to

align as much as possible with the features supported by the L3SM

to ease grafting both L3NM and L3SM for the sake of highly

automated VPN service provisioning and delivery.

An L3VPN involves nodes that are part of

a topology managed by the service provider network. The topology

can be represented using the network topology YANG module defined

¶

¶

¶

¶

¶

¶

¶

Device Modules:

in [RFC8345] or its extension such as a User-Network Interface

(UNI) topology module (e.g., [I-D.ogondio-opsawg-uni-topology]).

L3NM is not a device model.

Once a global VPN service is captured by means of L3NM, the

actual activation and provisioning of the VPN service will

involve a variety of device modules to tweak the required

functions for the delivery of the service. These functions are

supported by the VPN nodes and can be managed using device YANG

modules. A non-comprehensive list of such device YANG modules is

provided below:

Routing management [RFC8349].

BGP [I-D.ietf-idr-bgp-model].

PIM [I-D.ietf-pim-yang].

NAT management [RFC8512].

QoS management [I-D.ietf-rtgwg-qos-model].

ACLs [RFC8519].

How L3NM is used to derive device-specific actions is

implementation-specific.

6. Sample Uses of the L3NM Data Model

This section provides a non-exhaustive list of examples to

illustrate contexts where the L3NM can be used.

6.1. Enterprise Layer 3 VPN Services

Enterprise L3VPNs are one of the most demanded services for

carriers, and therefore, L3NM can be useful to automate the

provisioning and maintenance of these VPNs. Templates and batch

processes can be built, and as a result many parameters are needed

for the creation from scratch of a VPN that can be abstracted to the

upper Software-Defined Networking (SDN) [RFC7149][RFC7426] layer,

but some manual intervention will still be required.

A common function that is supported by VPNs is the addition or

removal of VPN nodes. Workflows can use the L3NM in these scenarios

to add or prune nodes from the network data model as required.

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

6.2. Multi-Domain Resource Management

The implementation of L3VPN services which span across

administratively separated domains (i.e., that are under the

administration of different management systems or controllers)

requires some network resources to be synchronized between systems.

Particularly, resources must be adequately managed in each domain to

avoid broken configuration.

For example, route targets (RTs) shall be synchronized between PEs.

When all PEs are controlled by the same management system, RT

allocation can be performed by that management system. In cases

where the service spans across multiple management systems, the task

of allocating RTs has to be aligned across the domains, therefore,

the network model must provide a way to specify RTs. In addition,

route distinguishers (RDs) must also be synchronized to avoid

collisions in RD allocation between separate management systems. An

incorrect allocation might lead to the same RD and IP prefixes being

exported by different PEs.

6.3. Management of Multicast Services

Multicast services over L3VPN can be implemented using dual PIM

MVPNs (also known as, Draft Rosen model) [RFC6037] or Multiprotocol

BGP (MP-BGP)-based MVPNs [RFC6513][RFC6514]. Both methods are

supported and equally effective, but the main difference is that

MBGP-based MVPN does not require multicast configuration on the

service provider network. MBGP MVPNs employ the intra-autonomous

system BGP control plane and PIM sparse mode as the data plane. The

PIM state information is maintained between PEs using the same

architecture that is used for unicast VPNs.

On the other hand, [RFC6037] has limitations such as reduced options

for transport, control plane scalability, availability, operational

inconsistency, and the need of maintaining state in the backbone.

Because of these limitations, MBGP MVPN is the architectural model

that has been taken as the base for implementing multicast service

in L3VPNs. In this scenario, BGP is used to auto-discover MVPN PE

members and the customer PIM signaling is sent across the provider's

core through MP-BGP. The multicast traffic is transported on MPLS

P2MP LSPs.

7. Description of the L3NM YANG Module

The L3NM ('ietf-l3vpn-ntw') is defined to manage L3VPNs in a service

provider network. In particular, the 'ietf-l3vpn-ntw' module can be

used to create, modify, and retrieve L3VPN services of a network.

The full tree diagram of the module can be generated using the

"pyang" tool [PYANG]. That tree is not included here because it is

¶

¶

¶

¶

¶

too long (Section 3.3 of [RFC8340]). Instead, subtrees are provided

for the reader's convenience.

7.1. Overall Structure of the Module

The 'ietf-l3vpn-ntw' module uses two main containers: 'vpn-services'

and 'vpn-profiles' (see Figure 3).

The 'vpn-profiles' container is used by the provider to maintain a

set of common VPN profiles that apply to one or several VPN services

(Section 7.2).

The 'vpn-services' container maintains the set of VPN services

managed within the service provider network. 'vpn-service' is the

data structure that abstracts a VPN service (Section 7.3).

Figure 3: Overall L3NM Tree Structure

Some of the data nodes are keyed by the address-family. For the sake

of data representation compactness, It is RECOMMENDED to use the

dual-stack address-family for data nodes that have the same value

for both IPv4 and IPv6. If, for some reasons, a data node is present

for both dual-stack and IPv4 (or IPv6), the value that is indicated

under dual-stack takes precedence over the one that is indicated

under IPv4 (or IPv6).

7.2. VPN Profiles

The 'vpn-profiles' container (Figure 4) allows the VPN service

provider to define and maintain a set of VPN profiles [I-D.ietf-

opsawg-vpn-common] that apply to one or several VPN services.

¶

¶

¶

¶

module: ietf-l3vpn-ntw

 +--rw l3vpn-ntw

 +--rw vpn-profiles

 | ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 ...

 +--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 ...

 +--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

¶

¶

'external-connectivity-identifier':

'encryption-profile-identifier':

'qos-profile-identifier':

'bfd-profile-identifier':

'forwarding-profile-identifier':

Figure 4: VPN Profiles Subtree Structure

This document does not make any assumption about the exact

definition of these profiles. The exact definition of the profiles

is local to each VPN service provider. The model only includes an

identifier to these profiles in order to facilitate identifying and

binding local policies when building a VPN service. As shown in

Figure 4, the following identifiers can be included:

This identifier refers to a

profile that defines the external connectivity provided to a VPN

service (or a subset of VPN sites). An external connectivity may

be an access to the Internet or a restricted connectivity such as

access to a public/private cloud.

An encryption profile refers to a

set of policies related to the encryption schemes and setup that

can be applied when building and offering a VPN service.

A Quality of Service (QoS) profile refers

to a set of policies such as classification, marking, and actions

(e.g., [RFC3644]).

A Bidirectional Forwarding Detection

(BFD) profile refers to a set of BFD [RFC5880] policies that can

be invoked when building a VPN service.

A forwarding profile refers to the

policies that apply to the forwarding of packets conveyed within

 +--rw l3vpn-ntw

 +--rw vpn-profiles

 | +--rw valid-provider-identifiers

 | +--rw external-connectivity-identifier* [id]

 | | {external-connectivity}?

 | | +--rw id string

 | +--rw encryption-profile-identifier* [id]

 | | +--rw id string

 | +--rw qos-profile-identifier* [id]

 | | +--rw id string

 | +--rw bfd-profile-identifier* [id]

 | | +--rw id string

 | +--rw forwarding-profile-identifier* [id]

 | | +--rw id string

 | +--rw routing-profile-identifier* [id]

 | +--rw id string

 +--rw vpn-services

 ...

¶

¶

¶

¶

¶

'routing-profile-identifier':

a VPN. Such policies may consist, for example, of applying Access

Control Lists (ACLs).

A routing profile refers to a set of

routing policies that will be invoked (e.g., BGP policies) when

delivering the VPN service.

7.3. VPN Services

The 'vpn-service' is the data structure that abstracts a VPN service

in the service provider network. Each 'vpn-service' is uniquely

identified by an identifier: 'vpn-id'. Such 'vpn-id' is only

meaningful locally (e.g., the network controller). The subtree of

the 'vpn-services' is shown in Figure 5.

¶

¶

¶

'vpn-id':

'vpn-name':

'vpn-description':

Figure 5: VPN Services Subtree Structure

The description of the VPN service data nodes that are depicted in

Figure 5 are as follows:

Is an identifier that is used to uniquely identify the

L3VPN service within L3NM scope.

Associates a name with the service in order to

facilitate the identification of the service.

Includes a textual description of the service.

 +--rw l3vpn-ntw

 +--rw vpn-profiles

 | ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 +--rw vpn-id vpn-common:vpn-id

 +--rw vpn-name? string

 +--rw vpn-description? string

 +--rw customer-name? string

 +--rw parent-service-id? vpn-common:vpn-id

 +--rw vpn-type? identityref

 +--rw vpn-service-topology? identityref

 +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw vpn-instance-profiles

 | ...

 +--rw underlay-transport

 | +-- (type)?

 | +--:(abstract)

 | | +-- transport-instance-id? string

 | +--:(protocol)

 | +-- protocol* identityref

 +--rw external-connectivity

 | {external-connectivity}

 | +--rw (profile)?

 | +--:(profile)

 | +--rw profile-name? leafref

 +--rw vpn-nodes

 ...

¶

¶

¶

¶

'customer-name':

'parent-service-id':

'vpn-type':

'vpn-service-topology':

'status':

'vpn-instance-profiles':

'underlay-transport':

The internal structure of a VPN description is local to each VPN

service provider.

Indicates the name of the customer who ordered the

service.

Refers to an identifier of the parent service

(e.g, L3SM, IETF network slice, VPN+) that triggered the creation

of the VPN service. This identifier is used to easily correlate

the (network) service as built in the network with a service

order. A controller can use that correlation to enrich or

populate some fields (e.g., description fields) as a function of

local deployments.

Indicates the VPN type. The values are taken from [I-

D.ietf-opsawg-vpn-common]. For the L3NM, this is typically set to

BGP/MPLS L3VPN, but other values may be defined in the future to

support specific Layer 3 VPN capabilities (e.g., [I-D.ietf-bess-

evpn-prefix-advertisement]).

Indicates the network topology for the

service: hub-spoke, any-to-any, or custom. The network

implementation of this attribute is defined by the correct usage

of import and export profiles (Section 4.3.5 of [RFC4364]).

Is used to track the service status of a given VPN

service. Both operational and administrative status are

maintained together with a timestamp. For example, a service can

be created, but not put into effect.

Administrative and operational status can be used as a trigger to

detect service anomalies. For example, a service that is declared

at the service layer as being active but still inactive at the

network layer may be an indication that network provision actions

are needed to align the observed service status with the expected

service status.

Defines reusable parameters for the same

'vpn-service'.

More details are provided in Section 7.4.

Describes the preference for the transport

technology to carry the traffic of the VPN service. This

preference is especially useful in networks with multiple domains

and Network-to-Network Interface (NNI) types. The underlay

transport can be expressed as an abstract transport instance

(e.g., an identifier of a VPN+ instance, a virtual network

identifier, or a network slice name) or as an ordered list of the

actual protocols to be enabled in the network.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

'external-connectivity':

'vpn-node':

A rich set of protocol identifiers that can be used to refer to

an underlay transport are defined in [I-D.ietf-opsawg-vpn-

common].

Indicates whether/how external

connectivity is provided to the VPN service. For example, a

service provider may provide an external connectivity to a VPN

customer (e.g., to a public cloud). Such service may involve

tweaking both filtering and NAT rules (e.g., bind a Virtual

Routing and Forwarding (VRF) interface with a NAT instance as

discussed in Section 2.10 of [RFC8512]). These added value

features may be bound to all or a subset of network accesses.

Some of these added value features may be implemented in a PE or

in other nodes than PEs (e.g., a P node or even a dedicated node

that hosts the NAT function).

Only a pointer to a local profile that defines the external

connectivity feature is supported in this document.

Is an abstraction that represents a set of policies

applied to a network node and that belong to a single 'vpn-

service'. A VPN service is typically built by adding instances of

'vpn-node' to the 'vpn-nodes' container.

A 'vpn-node' contains 'vpn-network-accesses', which are the

interfaces attached to the VPN by which the customer traffic is

received. Therefore, the customer sites are connected to the

'vpn-network-accesses'.

Note that, as this is a network data model, the information about

customers sites is not required in the model. Such information is

rather relevant in the L3SM. Whether that information is included

in the L3NM, e.g., to populate the various 'description' data

node is implementation specific.

More details are provided in Section 7.5.

7.4. VPN Instance Profiles

VPN instance profiles are meant to factorize data nodes that are

used at many levels of the model. Generic VPN instance profiles are

defined at the VPN service level and then called at the VPN node and

VPN network access levels. Each VPN instance profile is identified

by 'profile-id'. This identifier is then referenced for one or

multiple VPN nodes (Section 7.5) so that the controller can identify

generic resources (e.g., RTs and RDs) to be configured for a given

VRF.

The subtree of 'vpn-instance-profile' is shown in Figure 6.

¶

¶

¶

¶

¶

¶

¶

¶

¶

 +--rw l3vpn-ntw

 +--rw vpn-profiles

 | ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 +--rw vpn-id vpn-common:vpn-id

 ...

 +--rw vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 | +--rw profile-id string

 | +--rw role? identityref

 | +--rw local-as? inet:as-number

 | | {vpn-common:rtg-bgp}?

 | +--rw (rd-choice)?

 | | +--:(directly-assigned)

 | | | +--rw rd?

 | | | rt-types:route-distinguisher

 | | +--:(directly-assigned-suffix)

 | | | +--rw rd-suffix? uint16

 | | +--:(auto-assigned)

 | | | +--rw rd-auto

 | | | +--rw (auto-mode)?

 | | | | +--:(from-pool)

 | | | | | +--rw rd-pool-name? string

 | | | | +--:(full-auto)

 | | | | +--rw auto? empty

 | | | +--ro auto-assigned-rd?

 | | | rt-types:route-distinguisher

 | | +--:(auto-assigned-suffix)

 | | | +--rw rd-auto-suffix

 | | | +--rw (auto-mode)?

 | | | | +--:(from-pool)

 | | | | | +--rw rd-pool-name? string

 | | | | +--:(full-auto)

 | | | | +--rw auto? empty

 | | | +--ro auto-assigned-rd-suffix? uint16

 | | +--:(no-rd)

 | | +--rw no-rd? empty

 | +--rw address-family* [address-family]

 | | +--rw address-family identityref

 | | +--rw vpn-targets

 | | | +--rw vpn-target* [id]

 | | | | +--rw id uint8

 | | | | +--rw route-targets* [route-target]

 | | | | | +--rw route-target

 | | | | | rt-types:route-target

 | | | | +--rw route-target-type

 | | | | rt-types:route-target-type

 | | | +--rw vpn-policies

 | | | +--rw import-policy? string

 | | | +--rw export-policy? string

 | | +--rw maximum-routes* [protocol]

 | | +--rw protocol identityref

 | | +--rw maximum-routes? uint32

 | +--rw multicast {vpn-common:multicast}?

 | ...

'profile-id':

'role':

'local-as':

'rd':

'directly-assigned':

'full-auto':

'no-rd':

'address-family':

'address-family':

'vpn-targets':

'maximum-routes':

Figure 6: Subtree Structure of VPN Instance Profiles

The description of the listed data nodes is as follows:

Is used to uniquely identify a VPN instance profile.

Indicates the role of the VPN instance profile in the VPN.

Role values are defined in [I-D.ietf-opsawg-vpn-common] (e.g.,

any-to-any-role, spoke-role, hub-role).

Indicates the Autonomous System Number (ASN) that is

configured for the VPN node.

As defined in [I-D.ietf-opsawg-vpn-common], the following RD

assignment modes are supported: direct assignment, automatic

assignment from a given pool, automatic assignment, and no

assignment. For illustration purposes, the following modes can be

used in the deployment cases:

The VPN service provider (service

orchestrator) assigns explicitly RDs. This case will fit with

a brownfield scenario where some existing services need to be

updated by the VPN service provider.

The network controller auto-assigns RDs. This can

apply for the deployment of new services.

The VPN service provider (service orchestrator)

explicitly wants no RD to be assigned. This case can be used

for CE testing within the network or for troubleshooting

proposes.

Also, the module accommodates deployments where only the Assigned

Number subfield of RDs (Section 4.2 of [RFC4364]) is assigned

from a pool while the Administrator subfield is set to, e.g., the

Router ID that is assigned to a VPN node. The module supports

these modes for managing the Assigned Number subfield: explicit

assignment, auto-assignment from a pool, and full auto-

assignment.

Includes a set of per-address family data nodes:

Identifies the address family. It can be set

to IPv4, IPv6, or dual-stack.

Specifies RT import/export rules for the VPN

service (Section 4.3 of [RFC4364]).

Indicates the maximum number of prefixes that

the VPN node can accept for a given routing protocol. If

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

'multicast':

'protocol' is set to 'any', this means that the maximum value

applies to each active routing protocol.

Enables multicast traffic in the VPN service. Refer to

Section 7.7.

7.5. VPN Nodes

The 'vpn-node' is an abstraction that represents a set of common

policies applied on a given network node (typically, a PE) and

belong to one L3VPN service. The 'vpn-node' includes a parameter to

indicate the network node on which it is applied. In the case that

the 'ne-id' points to a specific PE, the 'vpn-node' will likely be

mapped into a VRF in the node. However, the model also allows

pointing to an abstract node. In this case, the network controller

will decide how to split the 'vpn-node' into VRFs.

¶

¶

¶

 +--rw l3vpn-ntw

 +--rw vpn-profiles

 | ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 ...

 +--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 +--rw vpn-node-id vpn-common:vpn-id

 +--rw description? string

 +--rw ne-id? string

 +--rw local-as? inet:as-number

 | {vpn-common:rtg-bgp}?

 +--rw router-id? rt-types:router-id

 +--rw active-vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 | +--rw profile-id leafref

 | +--rw router-id* [address-family]

 | | +--rw address-family identityref

 | | +--rw router-id? inet:ip-address

 | +--rw local-as? inet:as-number

 | | {vpn-common:rtg-bgp}?

 | +--rw (rd-choice)?

 | |

 | +--rw address-family* [address-family]

 | | +--rw address-family identityref

 | | | ...

 | | +--rw vpn-targets

 | | | ...

 | | +--rw maximum-routes* [protocol]

 | | ...

 | +--rw multicast {vpn-common:multicast}?

 | ...

 +--rw msdp {msdp}?

 | +--rw peer? inet:ipv4-address

 | +--rw local-address? inet:ipv4-address

 | +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw groups

 | +--rw group* [group-id]

 | +--rw group-id string

 +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw vpn-network-accesses

 ...

'vpn-node-id':

'description':

'ne-id':

'local-autonomous-system':

'router-id':

'active-vpn-instance-profiles':

'msdp':

Figure 7: VPN Node Subtree Structure

In reference to the subtree shown in Figure 7, the description of

VPN node data nodes is as follows:

Is an identifier that uniquely identifies a node

that enables a VPN network access.

Provides a textual description of the VPN node.

Includes a unique identifier of the network element where

the VPN node is deployed.

Indicates the ASN that is configured for

the VPN node.

Indicates a 32-bit number that is used to uniquely

identify a router within an Autonomous System.

Lists the set of active VPN

instance profiles for this VPN node. Concretely, one or more VPN

instance profiles that are defined at the VPN service level can

be enabled at the VPN node level; each of these profiles is

uniquely identified by means of 'profile-id'. The structure of

'active-vpn-instance-profiles' is the same as the one discussed

in Section 7.4 except 'router-id'. The value of 'router-id'

indicated under 'active-vpn-instance-profiles' takes precedence

over the 'router-id' under the 'vpn-node' for the indicated

address family. For example, Router IDs can be configured per

address family. This capability can be used, for example, to

configure an IPv6 address as a Router ID when such capability is

supported by involved routers.

Values defined in 'active-vpn-instance-profiles' overrides the

ones defined in the VPN service level. An example is shown in

Appendix A.3.

For redundancy purposes, Multicast Source Discovery

Protocol (MSDP) [RFC3618] may be enabled and used to share the

state about sources between multiple Rendezvous Points (RPs). The

purpose of MSDP in this context is to enhance the robustness of

the multicast service. MSDP may be configured on non-RP routers,

¶

¶

¶

¶

¶

¶

¶

¶

'groups':

'status':

'vpn-network-accesses':

which is useful in a domain that does not support multicast

sources, but does support multicast transit.

Lists the groups to which a VPN node belongs to [I-

D.ietf-opsawg-vpn-common]. The 'group-id' is used to associate,

e.g., redundancy or protection constraints with VPN nodes.

Tracks the status of a node involved in a VPN service.

Both operational and administrative status are maintained. A

mismatch between the administrative status vs. the operational

status can be used as a trigger to detect anomalies.

Represents the point to which sites are

connected.

Note that, unlike in the L3SM, the L3NM does not need to model

the customer site, only the points where the traffic from the

site are received (i.e., the PE side of PE-CE connections).

Hence, the VPN network access contains the connectivity

information between the provider's network and the customer

premises. The VPN profiles ('vpn-profiles') have a set of routing

policies that can be applied during the service creation.

See Section 7.6 for more details.

7.6. VPN Network Accesses

The 'vpn-network-access' includes a set of data nodes that describe

the access information for the traffic that belongs to a particular

L3VPN (Figure 8).

¶

¶

¶

¶

¶

¶

¶

'id':

'interface-id':

'description':

'vpn-network-access-type':

'point-to-point':

Figure 8: VPN Network Access Subtree Structure

In reference to the subtree depicted in Figure 8, a 'vpn-network-

access' includes the following data nodes:

Is an identifier of the VPN network access.

Indicates the physical or logical interface on

which the VPN network access is bound.

Includes a textual description of the VPN network

access.

Is used to select the type of network

interface to be deployed in the devices. The available defined

values are:

...

+--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 ...

 +--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 +--rw id vpn-common:vpn-id

 +--rw interface-id? string

 +--rw description? string

 +--rw vpn-network-access-type? identityref

 +--rw vpn-instance-profile? leafref

 +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw connection

 | ...

 +--rw ip-connection

 | ...

 +--rw routing-protocols

 | ...

 +--rw oam

 | ...

 +--rw security

 | ...

 +--rw service

 ...

¶

¶

¶

¶

¶

'multipoint':

'irb':

'loopback':

'vpn-instance-profile':

Represents a direct connection between the endpoints. The

controller must keep the association between a logical or

physical interface on the device with the 'id' of the 'vpn-

network-access'.

Represents a multipoint connection between the

customer site and the PEs. The controller must keep the

association between a logical or physical interface on the

device with the 'id' of the 'vpn-network-access'.

Represents a connection coming from an L2VPN service. An

identifier of such service ('l2vpn-id') may be included in the

'connection' container as depicted in Figure 9. The controller

must keep the relationship between the logical tunnels or

bridges on the devices with the 'id' of the' vpn-network-

access'.

Represents the creation of a logical interface on a

device. An example to illustrate how a loopback interface can

be used in the L3NM is provided in Appendix A.2.

Provides a pointer to an active VPN

instance profile at the VPN node level. Referencing an active VPN

instance profile implies that all associated data nodes will be

inherited by the VPN network access. However, some inherited data

nodes (e.g., multicast) can be overridden at the VPN network

¶

¶

¶

¶

'status':

'connection':

'ip-connection':

'routing-protocols':

'oam':

'security':

'service':

access level. In such case, adjusted values take precedence over

inherited ones.

Indicates both operational and administrative status of a

VPN network access.

Represents and groups the set of Layer 2 connectivity

from where the traffic of the L3VPN in a particular VPN Network

access is coming. See Section 7.6.1.

Contains Layer 3 connectivity information of a VPN

network access (e.g., IP addressing). See Section 7.6.2.

Includes the CE-PE routing configuration

information. See Section 7.6.3.

Specifies the Operations, Administration, and Maintenance

(OAM) mechanisms used for a VPN network access. See Section

7.6.4.

Specifies the authentication and the encryption to be

applied for a given VPN network access. See Section 7.6.5.

Specifies the service parameters (e.g., QoS, multicast)

to apply for a given VPN network access. See Section 7.6.6.

7.6.1. Connection

The 'connection' container represents the layer 2 connectivity to

the L3VPN for a particular VPN network access. As shown in the tree

depicted in Figure 9, the 'connection' container defines protocols

and parameters to enable such connectivity at layer 2.

The traffic can enter the VPN with or without encapsulation (e.g.,

VLAN, QinQ). The 'encapsulation' container specifies the layer 2

encapsulation to use (if any) and allows to configure the relevant

tags.

The interface that is attached to the L3VPN is identified by the

'interface-id' at the 'vpn-network-access' level. From a network

model perspective, it is expected that the 'interface-id' is

sufficient to identify the interface. However, specific layer 2 sub-

interfaces may be required to be configured in some implementations/

deployments. Such a layer 2 specific interface can be included in

'l2-termination-point'.

If a layer 2 tunnel is needed to terminate the service in the CE-PE

connection, the 'l2-tunnel-service' container is used to specify the

required parameters to set such tunneling service (e.g., VPLS,

VXLAN). An identity, called 'l2-tunnel-type', is defined for layer 2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

tunnel selection. The container can also identify the pseudowire

(Section 6.1 of [RFC8077]).

As discussed in Section 7.6, 'l2vpn-id' is used to identify the

L2VPN service that is associated with an IRB interface.

To accommodate implementations that require internal bridging, a

local bridge reference can be specified in 'local-bridge-reference'.

Such a reference may be a local bridge domain.

A site, as per [RFC4176] represents a VPN customer's location that

is connected to the service provider network via a CE-PE link, which

can access at least one VPN. The connection from the site to the

service provider network is the bearer. Every site is associated

with a list of bearers. A bearer is the layer two connection with

the site. In the L3NM, it is assumed that the bearer has been

allocated by the service provider at the service orchestration

stage. The bearer is associated to a network element and a port.

Hence, a bearer is just a 'bearer-reference' to allow the

association between a service request (e.g., L3SM) and L3NM.

The L3NM can be used to create a LAG interface for a given L3VPN

service ('lag-interface') [IEEE802.1AX]. Such a LAG interface can be

referenced under 'interface-id' (Section 7.6).

¶

¶

¶

¶

¶

Figure 9: Connection Subtree Structure

7.6.2. IP Connection

This container is used to group Layer 3 connectivity information,

particularly the IP addressing information, of a VPN network access.

The allocated address represents the PE interface address

configuration. Note that a distinct layer 3 interface other than the

one indicated under the 'connection' container may be needed to

...

+--rw connection

| +--rw encapsulation

| | +--rw type? identityref

| | +--rw dot1q

| | | +--rw tag-type? identityref

| | | +--rw cvlan-id? uint16

| | +--rw priority-tagged

| | | +--rw tag-type? identityref

| | +--rw qinq

| | +--rw tag-type? identityref

| | +--rw svlan-id uint16

| | +--rw cvlan-id uint16

| +--rw (l2-service)?

| | +--:(l2-tunnel-service)

| | | +--rw l2-tunnel-service

| | | +--rw type? identityref

| | | +--rw pseudowire

| | | | +--rw vcid? uint32

| | | | +--rw far-end? union

| | | +--rw vpls

| | | | +--rw vcid? uint32

| | | | +--rw far-end* union

| | | +--rw vxlan

| | | +--rw vni-id uint32

| | | +--rw peer-mode? identityref

| | | +--rw peer-ip-address* inet:ip-address

| | +--:(l2vpn)

| | +--rw l2vpn-id? vpn-common:vpn-id

| +--rw l2-termination-point? string

| +--rw local-bridge-reference? string

| +--rw bearer-reference? string

| | {vpn-common:bearer-reference}?

| +--rw lag-interface {vpn-common:lag-interface}?

| +--rw lag-interface-id? string

| +--rw member-link-list

| +--rw member-link* [name]

| +--rw name string

...

terminate the layer 3 service. The identifier of such interface is

included in 'l3-termination-point'. For example, this data node can

be used to carry the identifier of a bridge domain interface.

As shown in Figure 10, the 'ip-connection' container can include

IPv4, IPv6, or both if dual-stack is enabled.

Figure 10: IP Connection Subtree Structure

For both IPv4 and IPv6, the IP connection supports three IP address

assignment modes for customer addresses: provider DHCP, DHCP relay,

and static addressing. Note that for the IPv6 case, SLAAC [RFC4862]

can be used. For both IPv4 and IPv6, 'address-allocation-type' is

used to indicate the IP address allocation mode to activate for a

given VPN network access.

When 'address-allocation-type' is set to 'provider-dhcp', DHCP

assignments can be made locally or by an external DHCP server. Such

as behavior is controlled by setting 'dhcp-service-type'.

Figure 11 shows the structure of the dynamic IPv4 address assignment

(i.e., by means of DHCP).

¶

¶

...

+--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw ip-connection

 | +--rw l3-termination-point? string

 | +--rw ipv4 {vpn-common:ipv4}?

 | | ...

 | +--rw ipv6 {vpn-common:ipv6}?

 | ...

 ...

¶

¶

¶

Figure 11: IP Connection Subtree Structure (IPv4)

Figure 12 shows the structure of the dynamic IPv6 address assignment

(i.e., DHCPv6 and/or SLAAC). Note that if 'address-allocation-type'

is set to 'slaac', the Prefix Information option of Router

Advertisements that will be issued for SLAAC purposes, will carry

the IPv6 prefix that is determined by 'local-address' and 'prefix-

length'. For example, if 'local-address' is set to '2001:db8:0:1::1'

and 'prefix-length' is set to '64', the IPv6 prefix that will be

used is '2001:db8:0:1::/64'.

...

+--rw ip-connection

| +--rw l3-termination-point? string

| +--rw ipv4 {vpn-common:ipv4}?

| | +--rw local-address? inet:ipv4-address

| | +--rw prefix-length? uint8

| | +--rw address-allocation-type? identityref

| | +--rw (allocation-type)?

| | +--:(provider-dhcp)

| | | +--rw dhcp-service-type? enumeration

| | | +--rw (service-type)?

| | | +--:(relay)

| | | | +--rw server-ip-address*

| | | | inet:ipv4-address

| | | +--:(server)

| | | +--rw (address-assign)?

| | | +--:(number)

| | | | +--rw number-of-dynamic-address?

| | | | uint16

| | | +--:(explicit)

| | | +--rw customer-addresses

| | | +--rw address-pool* [pool-id]

| | | +--rw pool-id string

| | | +--rw start-address

| | | | inet:ipv4-address

| | | +--rw end-address?

| | | inet:ipv4-address

| | +--:(dhcp-relay)

| | | +--rw customer-dhcp-servers

| | | +--rw server-ip-address* inet:ipv4-address

| | +--:(static-addresses)

| | ...

...

¶

Figure 12: IP Connection Subtree Structure (IPv6)

In the case of the static addressing (Figure 13), the model supports

the assignment of several IP addresses in the same 'vpn-network-

access'. To identify which of the addresses is the primary address

of a connection, the 'primary-address' reference MUST be set with

the corresponding 'address-id'.

...

+--rw ip-connection

| +--rw l3-termination-point? string

| +--rw ipv4 {vpn-common:ipv4}?

| | ...

| +--rw ipv6 {vpn-common:ipv6}?

| +--rw local-address? inet:ipv6-address

| +--rw prefix-length? uint8

| +--rw address-allocation-type? identityref

| +--rw (allocation-type)?

| +--:(provider-dhcp)

| | +--rw provider-dhcp

| | +--rw dhcp-service-type?

| | | enumeration

| | +--rw (service-type)?

| | +--:(relay)

| | | +--rw server-ip-address*

| | | inet:ipv6-address

| | +--:(server)

| | +--rw (address-assign)?

| | +--:(number)

| | | +--rw number-of-dynamic-address?

| | | uint16

| | +--:(explicit)

| | +--rw customer-addresses

| | +--rw address-pool* [pool-id]

| | +--rw pool-id string

| | +--rw start-address

| | | inet:ipv6-address

| | +--rw end-address?

| | inet:ipv6-address

| +--:(dhcp-relay)

| | +--rw customer-dhcp-servers

| | +--rw server-ip-address*

| | inet:ipv6-address

| +--:(static-addresses)

| ...

¶

Figure 13: IP Connection Subtree Structure (Static Mode)

7.6.3. CE-PE Routing Protocols

A VPN service provider can configure one or more routing protocols

associated with a particular 'vpn-network-access'. Such routing

protocols are enabled between the PE and the CE. Each instance is

uniquely identified to accommodate scenarios where multiple

instances of the same routing protocol have to be configured on the

same link.

The subtree of the 'routing-protocols' is shown in Figure 14.

...

+--rw ip-connection

| +--rw l3-termination-point? string

| +--rw ipv4 {vpn-common:ipv4}?

| | +--rw address-allocation-type? identityref

| | +--rw (allocation-type)?

| | ...

| | +--:(static-addresses)

| | +--rw primary-address? -> ../address/address-id

| | +--rw address* [address-id]

| | +--rw address-id string

| | +--rw customer-address? inet:ipv4-address

| +--rw ipv6 {vpn-common:ipv6}?

| +--rw address-allocation-type? identityref

| +--rw (allocation-type)?

| ...

| +--:(static-addresses)

| +--rw primary-address? -> ../address/address-id

| +--rw address* [address-id]

| +--rw address-id string

| +--rw customer-address? inet:ipv6-address

...

¶

¶

Figure 14: Routing Subtree Structure

Multiple routing instances can be defined; each uniquely identified

by an 'id'. The type of routing instance is indicated in 'type'. The

values of these attributes are those defined in [I-D.ietf-opsawg-

vpn-common] ('routing-protocol-type' identity).

Configuring multiple instances of the same routing protocol does not

automatically imply that, from a device configuration perspective,

there will be parallel instances (e.g., multiple processes) running

on the PE-CE link. It is up to each implementation (typically,

network orchestration shown in Figure 1) to decide about the

appropriate configuration as a function of underlying capabilities

and service provider operational guidelines. As an example, when

multiple BGP peers need to be implemented, multiple instances of BGP

must be configured as part of this model. However, from a device

configuration point of view, this could be implemented as:

Multiple BGP processes with a single neighbor running in each

process.

A single BGP process with multiple neighbors running.

 ...

 +--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw routing-protocols

 | +--rw routing-protocol* [id]

 | +--rw id string

 | +--rw type? identityref

 | +--rw routing-profiles* [id]

 | | +--rw id leafref

 | | +--rw type? identityref

 | +--rw static

 | | ...

 | +--rw bgp

 | | ...

 | +--rw ospf

 | | ...

 | +--rw isis

 | | ...

 | +--rw rip

 | | ...

 | +--rw vrrp

 | ...

 +--rw security

 ...

¶

¶

*

¶

* ¶

A combination thereof.

Routing configuration does not include low-level policies. Such

policies are handled at the device configuration level. Local

policies of a service provider (e.g., filtering) are implemented as

part of the device configuration; these are not captured in the

L3NM, but the model allows local profiles to be associated with

routing instances ('routing-profiles'). Note that these routing

profiles can be scoped to capture parameters that are globally

applied to all L3VPN services within a service provider network,

while customized L3VPN parameters are captured by means of the L3NM.

The provisioning of an L3VPN service will, thus, rely upon the

instantiation of these global routing profiles and the customized

L3NM.

7.6.3.1. Static Routing

The L3NM supports the configuration of one or more IPv4/IPv6 static

routes. Since the same structure is used for both IPv4 and IPv6, it

was considered to have one single container to group both static

entries independently of their address family, but that design was

abandoned to ease the mapping with the structure in [RFC8299].

* ¶

¶

¶

Figure 15: Static Routing Subtree Structure

As depicted in Figure 15, the following data nodes can be defined

for a given IP prefix:

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw static

| | +--rw cascaded-lan-prefixes

| | +--rw ipv4-lan-prefixes*

| | | [lan next-hop]

| | | {vpn-common:ipv4}?

| | | +--rw lan inet:ipv4-prefix

| | | +--rw lan-tag? string

| | | +--rw next-hop union

| | | +--rw bfd-enable? boolean

| | | +--rw metric? uint32

| | | +--rw preference? uint32

| | | +--rw status

| | | +--rw admin-status

| | | | +--rw status? identityref

| | | | +--rw last-change? yang:date-and-time

| | | +--ro oper-status

| | | +--ro status? identityref

| | | +--ro last-change? yang:date-and-time

| | +--rw ipv6-lan-prefixes*

| | [lan next-hop]

| | {vpn-common:ipv6}?

| | +--rw lan inet:ipv6-prefix

| | +--rw lan-tag? string

| | +--rw next-hop union

| | +--rw bfd-enable? boolean

| | +--rw metric? uint32

| | +--rw preference? uint32

| | +--rw status

| | +--rw admin-status

| | | +--rw status? identityref

| | | +--rw last-change? yang:date-and-time

| | +--ro oper-status

| | +--ro status? identityref

| | +--ro last-change? yang:date-and-time

...

¶

'lan-tag':

'next-hop':

'bfd-enable':

'metric':

'preference':

'status':

Indicates a local tag (e.g., "myfavourite-lan") that is

used to enforce local policies.

Indicates the next-hop to be used for the static route.

It can be identified by an IP address, an interface, etc.

Indicates whether BFD is enabled or disabled for this

static route entry.

Indicates the metric associated with the static route

entry.

Indicates the preference associated with the static

route entry. This preference is used to selecting a preferred

route among routes to the same destination prefix.

Used to convey the status of a static route entry. This

data node can also be used to control the (de)activation of

individual static route entries.

7.6.3.2. BGP

The L3NM allows the configuration of a BGP neighbor, including a set

for parameters that are pertinent to be tweaked at the network level

for service customization purposes. The 'bgp' container does not aim

to include every BGP parameter; a comprehensive set of parameters

belongs more to the BGP device model.

¶

¶

¶

¶

¶

¶

¶

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw bgp

| | +--rw description? string

| | +--rw local-as? inet:as-number

| | +--rw peer-as inet:as-number

| | +--rw address-family? identityref

| | +--rw local-address? union

| | +--rw neighbor* inet:ip-address

| | +--rw multihop? uint8

| | +--rw as-override? boolean

| | +--rw allow-own-as? uint8

| | +--rw prepend-global-as? boolean

| | +--rw send-default-route? boolean

| | +--rw site-of-origin? rt-types:route-origin

| | +--rw ipv6-site-of-origin? rt-types:ipv6-route-origin

| | +--rw redistribute-connected* [address-family]

| | | +--rw address-family identityref

| | | +--rw enable? boolean

| | +--rw bgp-max-prefix

| | | +--rw max-prefix? uint32

| | | +--rw warning-threshold? decimal64

| | | +--rw violate-action? enumeration

| | | +--rw restart-timer? uint32

| | +--rw bgp-timers

| | | +--rw keepalive? uint16

| | | +--rw hold-time? uint16

| | +--rw authentication

| | | +--rw enable? boolean

| | | +--rw keying-material

| | | +--rw (option)?

| | | +--:(ao)

| | | | +--rw enable-ao? boolean

| | | | +--rw ao-keychain? key-chain:key-chain-ref

| | | +--:(md5)

| | | | +--rw md5-keychain? key-chain:key-chain-ref

| | | +--:(explicit)

| | | | +--rw key-id? uint32

| | | | +--rw key? string

| | | | +--rw crypto-algorithm? identityref

| | | +--:(ipsec)

| | | +--rw sa? string

| | +--rw status

| | +--rw admin-status

| | | +--rw status? identityref

| | | +--rw last-change? yang:date-and-time

| | +--ro oper-status

| | +--ro status? identityref

| | +--ro last-change? yang:date-and-time

...

'description':

'local-as':

'peer-as':

'address-family':

'local-address':

'neighbor':

'multihop':

'as-override':

'allow-own-as':

'prepend-global-as':

Figure 16: BGP Routing Subtree Structure

The following data nodes are captured in Figure 16. It is up to the

implementation (e.g., network orchestrator) to derive the

corresponding BGP device configuration:

Includes a description of the BGP session.

Indicates a local AS Number (ASN) if a distinct ASN is

required, other than the one configured at the VPN node level.

Conveys the customer's ASN.

Indicates the address-family of the peer. It can

be set to IPv4, IPv6, or dual-stack.

This address family will be used together with the 'vpn-type' to

derive the appropriate Address Family Identifiers (AFIs)/

Subsequent Address Family Identifiers (SAFIs) that will be part

of the derived device configurations (e.g., Unicast IPv4 MPLS

L3VPN (AFI,SAFI = 1,128) defined in Section 4.3.4 of [RFC4364]).

Specifies an address or a reference to an

interface to use when establishing the BGP transport session.

Can indicate two neighbors (each for a given address-

family) or one neighbor (if 'address-family' attribute is set to

dual-stack). A list of IP address(es) of the BGP neighbors can be

then conveyed in this data node.

Indicates the number of allowed IP hops between a PE

and its BGP peer.

If set, this parameter indicates whether ASN

override is enabled, i.e., replace the ASN of the customer

specified in the AS_PATH BGP attribute with the ASN identified in

the 'local-as' attribute.

Is used in some topologies (e.g., hub-and-spoke) to

allow the provider's ASN to be included in the AS_PATH BGP

attribute received from a CE. Loops are prevented by setting

'allow-own-as' to a maximum number of provider's ASN occurrences.

This parameter is set by default to '0' (that is, reject any

AS_PATH attribute that includes the provider's ASN).

When distinct ASNs are configured in the VPN

node and network access levels, this parameter controls whether

the ASN provided at the VPN node level is prepended to the

AS_PATH attribute.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

'send-default-route':

'site-of-origin':

'ipv6-site-of-origin':

'redistribute-connected':

'bgp-max-prefix':

'max-prefix':

'warning-threshold':

'violate-action':

'bgp-timers':

'authentication':

Controls whether default routes can be

advertised to the peer.

Is meant to uniquely identify the set of routes

learned from a site via a particular CE/PE connection and is used

to prevent routing loops (Section 7 of [RFC4364]). The Site of

Origin attribute is encoded as a Route Origin Extended Community.

Carries an IPv6 Address Specific BGP

Extended Community that is used to indicate the Site of Origin

for VRF information [RFC5701]. It is used to prevent routing

loops.

Controls whether the PE-CE link is

advertised to other PEs.

Controls the behavior when a prefix maximum is

reached.

Indicates the maximum number of BGP prefixes

allowed in the BGP session. If the limit is reached, the

action indicated in 'violate-action' will be followed.

A warning notification is triggered when

this limit is reached.

Indicates which action to execute when the

maximum number of BGP prefixes is reached. Examples of such

actions are: send a warning message, discard extra paths from

the peer, or restart the session.

Two timers can be captured in this container: (1)

'hold-time' which is the time interval that will be used for the

HoldTimer (Section 4.2 of [RFC4271]) when establishing a BGP

session. (2) 'keepalive' which is the time interval for the

KeepAlive timer between a PE and a BGP peer (Section 4.4 of

[RFC4271]).

The module adheres to the recommendations in

Section 13.2 of [RFC4364] as it allows enabling TCP-AO [RFC5925]

and accommodates the installed base that makes use of MD5. In

addition, the module includes a provision for the use of IPsec.

This version of the L3NM assumes that TCP-AO specific parameters

are preconfigured as part of the key-chain that is referenced in

the L3NM. No assumption is made about how such a key-chain is

pre-configured. However, the structure of the key-chain should

cover data nodes beyond those in [RFC8177], mainly SendID and

RecvID (Section 3.1 of [RFC5925]).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

'status':
Indicates the status of the BGP routing instance.

7.6.3.3. OSPF

OSPF can be configured to run as a routing protocol on the 'vpn-

network-access'.

Figure 17: OPSF Routing Subtree Structure

The following data nodes are captured in Figure 17:

¶

¶

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw ospf

| | +--rw address-family? identityref

| | +--rw area-id yang:dotted-quad

| | +--rw metric? uint16

| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?

| | | +--rw sham-link* [target-site]

| | | +--rw target-site

| | | | vpn-common:vpn-id

| | | +--rw metric? uint16

| | +--rw max-lsa? uint32

| | +--rw authentication

| | | +--rw enable? boolean

| | | +--rw keying-material

| | | +--rw (option)?

| | | +--:(auth-key-chain)

| | | | +--rw key-chain?

| | | | key-chain:key-chain-ref

| | | +--:(auth-key-explicit)

| | | | +--rw key-id? uint32

| | | | +--rw key? string

| | | | +--rw crypto-algorithm?

| | | | identityref

| | | +--:(ipsec)

| | | +--rw sa? string

| | +--rw status

| | +--rw admin-status

| | | +--rw status? identityref

| | | +--rw last-change? yang:date-and-time

| | +--ro oper-status

| | +--ro status? identityref

| | +--ro last-change? yang:date-and-time

...

¶

'address-family':

'area-id':

'metric':

'sham-links':

'max-lsa':

'authentication':

'status':

Indicates whether IPv4, IPv6, or both address

families are to be activated.

When the IPv4 or dual-stack address-family is requested, it is up

to the implementation (e.g., network orchestrator) to decide

whether OSPFv2 [RFC4577] or OSPFv3 [RFC6565] is used to announce

IPv4 routes. Such decision will be typically reflected in the

device configurations that will be derived to implement the

L3VPN.

Indicates the OSPF Area ID.

Associates a metric with OSPF routes.

Is used to create OSPF sham links between two VPN

network accesses sharing the same area and having a backdoor link

(Section 4.2.7 of [RFC4577] and Section 5 of [RFC6565]).

Sets the maximum number of LSAs that the OSPF instance

will accept.

Controls the authentication schemes to be enabled

for the OSPF instance. The following options are supported: IPsec

for OSPFv3 authentication [RFC4552], authentication trailer for

OSPFv2 [RFC5709] [RFC7474] and OSPFv3 [RFC7166].

Indicates the status of the OSPF routing instance.

7.6.3.4. IS-IS

The model (Figure 18) allows the user to configure IS-IS [ISO10589]

[RFC1195][RFC5308] to run on the 'vpn-network-access' interface.

¶

¶

¶

¶

¶

¶

¶

¶

¶

'address-family':

'area-address':

'level':

'metric':

'mode':

'authentication':

Figure 18: IS-IS Routing Subtree Structure

The following IS-IS data nodes are supported:

Indicates whether IPv4, IPv6, or both address

families are to be activated.

Indicates the IS-IS area address.

Indicates the IS-IS level: Level 1, Level 2, or both.

Associates a metric with IS-IS routes.

Indicates the IS-IS interface mode type. It can be set to

'active' (that is, send or receive IS-IS protocol control

packets) or 'passive' (that is, suppress the sending of IS-IS

updates through the interface).

Controls the authentication schemes to be enabled

for the IS-IS instance. Both the specification of a key-chain

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw isis

| | +--rw address-family? identityref

| | +--rw area-address area-address

| | +--rw level? identityref

| | +--rw metric? uint16

| | +--rw mode? enumeration

| | +--rw authentication

| | | +--rw enable? boolean

| | | +--rw keying-material

| | | +--rw (option)?

| | | +--:(auth-key-chain)

| | | | +--rw key-chain?

| | | | key-chain:key-chain-ref

| | | +--:(auth-key-explicit)

| | | +--rw key-id? uint32

| | | +--rw key? string

| | | +--rw crypto-algorithm? identityref

| | +--rw status

| | +--rw admin-status

| | | +--rw status? identityref

| | | +--rw last-change? yang:date-and-time

| | +--ro oper-status

| | +--ro status? identityref

| | +--ro last-change? yang:date-and-time

...

¶

¶

¶

¶

¶

¶

'status':

'address-family':

[RFC8177] and the direct specification of key and authentication

algorithm are supported.

Indicates the status of the OSPF routing instance.

7.6.3.5. RIP

The model (Figure 19) allows the user to configure RIP to run on the

'vpn-network-access' interface.

Figure 19: RIP Subtree Structure

As shown in Figure 19, the following RIP data nodes are supported:

Indicates whether IPv4, IPv6, or both address

families are to be activated. This parameter is used to determine

whether RIPv2 [RFC2453] and/or RIPng are to be enabled [RFC2080].

¶

¶

¶

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw rip

| | +--rw address-family? identityref

| | +--rw timers

| | | +--rw update-interval? uint16

| | | +--rw invalid-interval? uint16

| | | +--rw holddown-interval? uint16

| | | +--rw flush-interval? uint16

| | +--rw neighbor* inet:ip-address

| | +--rw default-metric? uint8

| | +--rw authentication

| | | +--rw enable? boolean

| | | +--rw keying-material

| | | +--rw (option)?

| | | +--:(auth-key-chain)

| | | | +--rw key-chain?

| | | | key-chain:key-chain-ref

| | | +--:(auth-key-explicit)

| | | +--rw key? string

| | | +--rw crypto-algorithm? identityref

| | +--rw status

| | +--rw admin-status

| | | +--rw status? identityref

| | | +--rw last-change? yang:date-and-time

| | +--ro oper-status

| | +--ro status? identityref

| | +--ro last-change? yang:date-and-time

...

¶

¶

'timers':

'update-interval':

'invalid-interval':

'holddown-interval':

'flush-interval':

'default-metric':

'authentication':

'status':

Indicates the following timers:

Is the interval at which RIP updates are

sent.

Is the interval before a RIP route is

declared invalid.

Is the interval before better RIP routes

are released.

Is the interval before a route is removed from

the routing table.

Sets the default RIP metric.

Controls the authentication schemes to be enabled

for the RIP instance.

Indicates the status of the RIP routing instance.

7.6.3.6. VRRP

The model (Figure 20) allows enabling VRRP on the 'vpn-network-

access' interface.

Figure 20: VRRP Subtree Structure

¶

¶

¶

¶

¶

¶

¶

¶

¶

...

+--rw routing-protocols

| +--rw routing-protocol* [id]

| ...

| +--rw vrrp

| +--rw address-family* identityref

| +--rw vrrp-group? uint8

| +--rw backup-peer? inet:ip-address

| +--rw virtual-ip-address* inet:ip-address

| +--rw priority? uint8

| +--rw ping-reply? boolean

| +--rw status

| +--rw admin-status

| | +--rw status? identityref

| | +--rw last-change? yang:date-and-time

| +--ro oper-status

| +--ro status? identityref

| +--ro last-change? yang:date-and-time

...

'address-family':

'vrrp-group':

'backup-peer':

'virtual-ip-address':

'priority':

'ping-reply':

'status':

The following data nodes are supported:

Indicates whether IPv4, IPv6, or both address

families are to be activated. Note that VRRP version 3 [RFC5798]

supports both IPv4 and IPv6.

Is used to identify the VRRP group.

Carries the IP address of the peer.

Includes virtual IP addresses for a single

VRRP group.

Assigns the VRRP election priority for the backup

virtual router.

Controls whether ping requests can be replied to.

Indicates the status of the VRRP instance.

Note that no authentication data node is included for VRRP as there

isn't currently any type of VRRP authentication (see Section 9 of

[RFC5798]).

7.6.4. OAM

This container (Figure 21) defines the Operations, Administration,

and Maintenance (OAM) mechanisms used for a VPN network access. In

the current version of the L3NM, only BFD is supported.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

'session-type':

Figure 21: IP Connection Subtree Structure (OAM)

The following OAM data nodes can be specified:

Indicates which BFD flavor is used to set up the

session (e.g., classic BFD [RFC5880], Seamless BFD [RFC7880]). By

...

+--rw oam

| +--rw bfd {vpn-common:bfd}?

| +--rw session-type? identityref

| +--rw desired-min-tx-interval? uint32

| +--rw required-min-rx-interval? uint32

| +--rw local-multiplier? uint8

| +--rw holdtime? uint32

| +--rw profile? leafref

| +--rw authentication!

| | +--rw key-chain? key-chain:key-chain-ref

| | +--rw meticulous? boolean

| +--rw status

| +--rw admin-status

| | +--rw status? identityref

| | +--rw last-change? yang:date-and-time

| +--ro oper-status

| +--ro status? identityref

| +--ro last-change? yang:date-and-time

...

¶

'desired-min-tx-interval':

'required-min-rx-interval':

'local-multiplier':

'holdtime':

'profile':

'authentication':

'status':

default, the BFD session is assumed to follow the behavior

specified in [RFC5880].

Is the minimum interval, in

microseconds, that a PE would like to use when transmitting BFD

Control packets less any jitter applied.

Is the minimum interval, in

microseconds, between received BFD Control packets that a PE is

capable of supporting, less any jitter applied by the sender.

The negotiated transmit interval, multiplied by

this value, provides the detection time for the peer.

Is used to indicate the expected BFD holddown time.

This value may be inherited from the service request (see Section

6.3.2.2.2 of [RFC8299]).

Refers to a BFD profile (Section 7.2). Such a profile

can be set by the provider or inherited from the service request

(see Section 6.3.2.2.2 of [RFC8299]).

Includes the required information to enable the

BFD authentication modes discussed in Section 6.7 of [RFC5880].

In particular 'meticulous' controls the activation of the

meticulous mode discussed in Sections 6.7.3 and 6.7.4 of

[RFC5880].

Indicates the status of BFD.

7.6.5. Security

The 'security' container specifies the authentication and the

encryption to be applied for a given VPN network access traffic. As

depicted in the subtree shown in Figure 22, the L3NM can be used to

directly control the encryption to put in place (e.g., Layer 2 or

Layer 3 encryption) or invoke a local encryption profile.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 22: Security Subtree Structure

7.6.6. Services

7.6.6.1. Overview

The 'service' container specifies the service parameters to apply

for a given VPN network access (Figure 23).

 ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 ...

 +--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 ...

 +--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw security

 | +--rw encryption {vpn-common:encryption}?

 | | +--rw enabled? boolean

 | | +--rw layer? enumeration

 | +--rw encryption-profile

 | +--rw (profile)?

 | +--:(provider-profile)

 | | +--rw profile-name? leafref

 | +--:(customer-profile)

 | +--rw customer-key-chain?

 | kc:key-chain-ref

 +--rw service

 ...

¶

Figure 23: Services Subtree Structure

The following data nodes are defined:

...

+--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw service

 +--rw inbound-bandwidth? uint64 {vpn-common:inbound-bw}?

 +--rw outbound-bandwidth? uint64 {vpn-common:outbound-bw}?

 +--rw mtu? uint32

 +--rw qos {vpn-common:qos}?

 | ...

 +--rw carriers-carrier

 | {vpn-common:carriers-carrier}?

 | +--rw signaling-type? enumeration

 +--rw ntp

 | +--rw broadcast? enumeration

 | +--rw auth-profile

 | | +--rw profile-id? string

 | +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw multicast {vpn-common:multicast}?

 ...

¶

'inbound-bandwidth':

'outbound-bandwidth':

'mtu':

'qos':

'carriers-carrier':

'ntp':

'multicast':

Indicates the inbound bandwidth of the

connection (i.e., download bandwidth from the service provider to

the site).

Indicates the outbound bandwidth of the

connection (i.e., upload bandwidth from the site to the service

provider).

Indicates the MTU at the service level.

Is used to define a set of QoS policies to apply on a given

connection (refer to Section 7.6.6.2 for more details).

Groups a set of parameters that are used when

Carriers' Carriers (CsC) is enabled such the use of BGP for

signaling purposes [RFC8277].

Time synchronization may be needed in some VPNs such as

infrastructure and management VPNs. This container is used to

enable the NTP service [RFC5905].

Specifies the multicast mode and other data nodes such

as the address-family. Refer to Section 7.7.

7.6.6.2. QoS

'qos' container is used to define a set of QoS policies to apply on

a given connection (Figure 24). A QoS policy may be a classification

or an action policy. For example, a QoS action can be defined to

rate limit inbound/outbound traffic of a given class of service.

¶

¶

¶

¶

¶

¶

¶

¶

Layer 3:

Figure 24: Services Subtree Structure

QoS classification can be based on many criteria such as:

As shown in Figure 25, classification can be based on any

IP header field or a combination thereof. Both IPv4 and IPv6 are

supported.

...

+--rw qos {vpn-common:qos}?

| +--rw qos-classification-policy

| | +--rw rule* [id]

| | +--rw id string

| | +--rw (match-type)?

| | | +--:(match-flow)

| | | | +--rw (l3)?

| | | | | +--:(ipv4)

| | | | | | ...

| | | | | +--:(ipv6)

| | | | | ...

| | | | +--rw (l4)?

| | | | +--:(tcp)

| | | | | ...

| | | | +--:(udp)

| | | | ...

| | | +--:(match-application)

| | | +--rw match-application?

| | | identityref

| | +--rw target-class-id?

| | string

| +--rw qos-action

| | +--rw rule* [id]

| | +--rw id string

| | +--rw target-class-id? string

| | +--rw inbound-rate-limit? decimal64

| | +--rw outbound-rate-limit? decimal64

| +--rw qos-profile

| +--rw qos-profile* [profile]

| +--rw profile leafref

| +--rw direction? identityref

...

¶

¶

Layer 4:

Figure 25: QoS Subtree Structure (L3)

As discussed in [I-D.ietf-opsawg-vpn-common], any layer 4

protocol can be indicated in the 'protocol' data node under 'l3'

+--rw qos {vpn-common:qos}?

| +--rw qos-classification-policy

| | +--rw rule* [id]

| | +--rw id string

| | +--rw (match-type)?

| | | +--:(match-flow)

| | | | +--rw (l3)?

| | | | | +--:(ipv4)

| | | | | | +--rw ipv4

| | | | | | +--rw dscp? inet:dscp

| | | | | | +--rw ecn? uint8

| | | | | | +--rw length? uint16

| | | | | | +--rw ttl? uint8

| | | | | | +--rw protocol? uint8

| | | | | | +--rw ihl? uint8

| | | | | | +--rw flags? bits

| | | | | | +--rw offset? uint16

| | | | | | +--rw identification? uint16

| | | | | | +--rw (destination-network)?

| | | | | | | +--:(destination-ipv4-network)

| | | | | | | +--rw destination-ipv4-network?

| | | | | | | inet:ipv4-prefix

| | | | | | +--rw (source-network)?

| | | | | | +--:(source-ipv4-network)

| | | | | | +--rw source-ipv4-network?

| | | | | | inet:ipv4-prefix

| | | | | +--:(ipv6)

| | | | | +--rw ipv6

| | | | | +--rw dscp? inet:dscp

| | | | | +--rw ecn? uint8

| | | | | +--rw length? uint16

| | | | | +--rw ttl? uint8

| | | | | +--rw protocol? uint8

| | | | | +--rw (destination-network)?

| | | | | | +--:(destination-ipv6-network)

| | | | | | +--rw destination-ipv6-network?

| | | | | | inet:ipv6-prefix

| | | | | +--rw (source-network)?

| | | | | | +--:(source-ipv6-network)

| | | | | | +--rw source-ipv6-network?

| | | | | | inet:ipv6-prefix

| | | | | +--rw flow-label?

| | | | | inet:ipv6-flow-label

...

(Figure 25), but only TCP and UDP specific match criteria are

elaborated in this version as these protocols are widely used in

the context of VPN services. Augmentations can be considered in

the future to add other Layer 4 specific data nodes, if needed.

TCP or UDP-related match criteria can be specified in the L3NM as

shown in Figure 26.

As discussed in [I-D.ietf-opsawg-vpn-common], some transport

protocols use existing protocols (e.g., TCP or UDP) as substrate.

The match criteria for such protocols may rely upon the

'protocol' under 'l3', TCP/UDP match criteria shown in Figure 26,

part of the TCP/UDP payload, or a combination thereof. This

version of the module does not support such advanced match

criteria. Future revisions of the VPN common module or

augmentations to the L3NM may consider adding match criteria

based on the transport protocol payload (e.g., by means of a

bitmask match).

¶

¶

¶

+--rw qos {vpn-common:qos}?

| +--rw qos-classification-policy

| | +--rw rule* [id]

| | +--rw id string

| | +--rw (match-type)?

| | | +--:(match-flow)

| | | | +--rw (l3)?

| | | | | ...

| | | | +--rw (l4)?

| | | | +--:(tcp)

| | | | | +--rw tcp

| | | | | +--rw sequence-number? uint32

| | | | | +--rw acknowledgement-number? uint32

| | | | | +--rw data-offset? uint8

| | | | | +--rw reserved? uint8

| | | | | +--rw flags? bits

| | | | | +--rw window-size? uint16

| | | | | +--rw urgent-pointer? uint16

| | | | | +--rw options? binary

| | | | | +--rw (source-port)?

| | | | | | +--:(source-port-range-or-operator)

| | | | | | +--rw source-port-range-or-operator

| | | | | | +--rw (port-range-or-operator)?

| | | | | | +--:(range)

| | | | | | | +--rw lower-port

| | | | | | | | inet:port-number

| | | | | | | +--rw upper-port

| | | | | | | inet:port-number

| | | | | | +--:(operator)

| | | | | | +--rw operator? operator

| | | | | | +--rw port

| | | | | | inet:port-number

| | | | | +--rw (destination-port)?

| | | | +--:(destination-port-range-or-operator)

| | | | | +--rw destination-port-range-or-operator

| | | | | +--rw (port-range-or-operator)?

| | | | | +--:(range)

| | | | | | +--rw lower-port

| | | | | | | inet:port-number

| | | | | | +--rw upper-port

| | | | | | inet:port-number

| | | | | +--:(operator)

| | | | | +--rw operator? operator

| | | | | +--rw port

| | | | | inet:port-number

| | | | +--:(udp)

| | | | +--rw udp

| | | | +--rw length? uint16

| | | | +--rw (source-port)?

| | | | | +--:(source-port-range-or-operator)

| | | | | +--rw source-port-range-or-operator

| | | | | +--rw (port-range-or-operator)?

| | | | | +--:(range)

| | | | | | +--rw lower-port

| | | | | | | inet:port-number

| | | | | | +--rw upper-port

| | | | | | inet:port-number

| | | | | +--:(operator)

| | | | | +--rw operator? operator

| | | | | +--rw port

| | | | | inet:port-number

| | | | +--rw (destination-port)?

| | | | +--:(destination-port-range-or-operator)

| | | | +--rw destination-port-range-or-operator

| | | | +--rw (port-range-or-operator)?

| | | | +--:(range)

| | | | | +--rw lower-port

| | | | | | inet:port-number

| | | | | +--rw upper-port

| | | | | inet:port-number

| | | | +--:(operator)

| | | | +--rw operator? operator

| | | | +--rw port

| | | | inet:port-number

...

Application match:

Figure 26: QoS Subtree Structure (L4)

Relies upon application-specific classification.

7.7. Multicast

Multicast may be enabled for a particular VPN at the VPN node and

VPN network access levels (see Figure 27). Some data nodes (e.g.,

max-groups) can be controlled at various levels: VPN service, VPN

node level, or VPN network access.

Figure 27: Overall Multicast Subtree Structure

Multicast-related data nodes at the VPN instance profile level has

the structure that is shown in Figure 30.

¶

¶

 ...

 +--rw vpn-services

 +--rw vpn-service* [vpn-id]

 ...

 +--rw vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 |

 | +--rw multicast {vpn-common:multicast}?

 | ...

 +--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 ...

 +--rw active-vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 | ...

 | +--rw multicast {vpn-common:multicast}?

 | ...

 +--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw service

 ...

 +--rw multicast {vpn-common:multicast}?

 ...

¶

...

+--rw vpn-services

 +--rw vpn-service* [vpn-id]

 ...

 +--rw vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 |

 | +--rw multicast {vpn-common:multicast}?

 | +--rw tree-flavor? identityref

 | +--rw rp

 | | +--rw rp-group-mappings

 | | | +--rw rp-group-mapping* [id]

 | | | +--rw id uint16

 | | | +--rw provider-managed

 | | | | +--rw enabled? boolean

 | | | | +--rw rp-redundancy? boolean

 | | | | +--rw optimal-traffic-delivery? boolean

 | | | | +--rw anycast

 | | | | +--rw local-address? inet:ip-address

 | | | | +--rw rp-set-address* inet:ip-address

 | | | +--rw rp-address inet:ip-address

 | | | +--rw groups

 | | | +--rw group* [id]

 | | | +--rw id uint16

 | | | +--rw (group-format)

 | | | +--:(group-prefix)

 | | | | +--rw group-address? inet:ip-prefix

 | | | +--:(startend)

 | | | +--rw group-start? inet:ip-address

 | | | +--rw group-end? inet:ip-address

 | | +--rw rp-discovery

 | | +--rw rp-discovery-type? identityref

 | | +--rw bsr-candidates

 | | +--rw bsr-candidate-address* inet:ip-address

 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?

 | | +--rw static-group* [group-addr]

 | | | +--rw group-addr

 | | | | rt-types:ipv4-multicast-group-address

 | | | +--rw source-addr?

 | | | rt-types:ipv4-multicast-source-address

 | | +--rw max-groups? uint32

 | | +--rw max-entries? uint32

 | | +--rw version? identityref

 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?

 | | +--rw static-group* [group-addr]

 | | | +--rw group-addr

 | | | | rt-types:ipv6-multicast-group-address

 | | | +--rw source-addr?

 | | | rt-types:ipv6-multicast-source-address

 | | +--rw max-groups? uint32

 | | +--rw max-entries? uint32

 | | +--rw version? identityref

 | +--rw pim {vpn-common:pim}?

 | +--rw hello-interval? rt-types:timer-value-seconds16

 | +--rw dr-priority? uint32

 ...

Figure 28: Multicast Subtree Structure (VPN Instance Profile Level)

The model supports a single type of tree per VPN access ('tree-

flavor'): Any-Source Multicast (ASM), Source-Specific Multicast

(SSM), or bidirectional.

When ASM is used, the model supports the configuration of Rendezvous

Points (RPs). RP discovery may be 'static', 'bsr-rp', or 'auto-rp'.

When set to 'static', RP to multicast grouping mappings MUST be

configured as part of the 'rp-group-mappings' container. The RP MAY

be a provider node or a customer node. When the RP is a customer

node, the RP address must be configured using the 'rp-address' leaf.

The model supports RP redundancy through the 'rp-redundancy' leaf.

How the redundancy is achieved is out of scope.

When a particular VPN using ASM requires a more optimal traffic

delivery (e.g., requested using [RFC8299]), 'optimal-traffic-

delivery' can be set. When set to 'true', the implementation must

use any mechanism to provide a more optimal traffic delivery for the

customer. For example, anycast is one of the mechanisms to enhance

RPs redundancy, resilience against failures, and to recover from

failures quickly.

The same structure as the one depicted in Figure 30 is used when

configuring multicast-related parameters at the VPN node level. When

defined at the VPN node level (Figure 29), Internet Group Management

Protocol (IGMP) [RFC1112][RFC2236][RFC3376], Multicast Listener

Discovery (MLD) [RFC2710][RFC3810], and Protocol Independent

Multicast (PIM) [RFC7761] parameters are applicable to all VPN

network accesses of that VPN node unless corresponding nodes are

overridden at the VPN network access level.

¶

¶

¶

¶

¶

Figure 29: Multicast Subtree Structure (VPN Node Level)

Multicast-related data nodes at the VPN network access level are

shown in Figure 30. The values configured at the VPN network access

level override the values configured for the corresponding data

nodes in other levels.

...

+--rw vpn-nodes

 +--rw vpn-node* [vpn-node-id]

 ...

 +--rw active-vpn-instance-profiles

 | +--rw vpn-instance-profile* [profile-id]

 | ...

 | +--rw multicast {vpn-common:multicast}?

 | +--rw tree-flavor* identityref

 | +--rw rp

 | | ...

 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?

 | | ...

 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?

 | | ...

 | +--rw pim {vpn-common:pim}?

 | ...

¶

...

+--rw vpn-network-accesses

 +--rw vpn-network-access* [id]

 ...

 +--rw service

 ...

 +--rw multicast {vpn-common:multicast}?

 +--rw access-type? enumeration

 +--rw address-family? identityref

 +--rw protocol-type? enumeration

 +--rw remote-source? boolean

 +--rw igmp {vpn-common:igmp}?

 | +--rw static-group* [group-addr]

 | | +--rw group-addr

 | | rt-types:ipv4-multicast-group-address

 | | +--rw source-addr?

 | | rt-types:ipv4-multicast-source-address

 | +--rw max-groups? uint32

 | +--rw max-entries? uint32

 | +--rw max-group-sources? uint32

 | +--rw version? identityref

 | +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw mld {vpn-common:mld}?

 | +--rw static-group* [group-addr]

 | | +--rw group-addr

 | | rt-types:ipv6-multicast-group-address

 | | +--rw source-addr?

 | | rt-types:ipv6-multicast-source-address

 | +--rw max-groups? uint32

 | +--rw max-entries? uint32

 | +--rw max-group-sources? uint32

 | +--rw version? identityref

 | +--rw status

 | +--rw admin-status

 | | +--rw status? identityref

 | | +--rw last-change? yang:date-and-time

 | +--ro oper-status

 | +--ro status? identityref

 | +--ro last-change? yang:date-and-time

 +--rw pim {vpn-common:pim}?

 +--rw hello-interval? rt-types:timer-value-seconds16

 +--rw dr-priority? uint32

 +--rw status

 +--rw admin-status

 | +--rw status? identityref

 | +--rw last-change? yang:date-and-time

 +--ro oper-status

 +--ro status? identityref

 +--ro last-change? yang:date-and-time

Figure 30: Multicast Subtree Structure (VPN Network Access Level)

8. L3NM YANG Module

This module uses types defined in [RFC6991] and [RFC8343]. It also

uses groupings defined in [RFC8519], [RFC8177], and [RFC8294].¶

<CODE BEGINS> file "ietf-l3vpn-ntw@2021-09-28.yang"

module ietf-l3vpn-ntw {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw";

 prefix l3nm;

 import ietf-vpn-common {

 prefix vpn-common;

 reference

 "RFC UUUU: A Layer 2/3 VPN Common YANG Model";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types, Section 4";

 }

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types, Section 3";

 }

 import ietf-key-chain {

 prefix key-chain;

 reference

 "RFC 8177: YANG Key Chain.";

 }

 import ietf-routing-types {

 prefix rt-types;

 reference

 "RFC 8294: Common YANG Data Types for the Routing Area";

 }

 import ietf-interfaces {

 prefix if;

 reference

 "RFC 8343: A YANG Data Model for Interface Management";

 }

 organization

 "IETF OPSAWG (Operations and Management Area Working Group)";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Samier Barguil

 <mailto:samier.barguilgiraldo.ext@telefonica.com>

 Editor: Oscar Gonzalez de Dios

 <mailto:oscar.gonzalezdedios@telefonica.com>

 Editor: Mohamed Boucadair

 <mailto:mohamed.boucadair@orange.com>

 Author: Luis Angel Munoz

 <mailto:luis-angel.munoz@vodafone.com>

 Author: Alejandro Aguado

 <mailto:alejandro.aguado_martin@nokia.com>";

 description

 "This YANG module defines a generic network-oriented model

 for the configuration of Layer 3 Virtual Private Networks.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2021-09-28 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: A Layer 3 VPN Network YANG Model";

 }

 /* Features */

 feature msdp {

 description

 "This feature indicates that Multicast Source Discovery Protocol

 (MSDP) capabilities are supported by the VPN.";

 reference

 "RFC 3618: Multicast Source Discovery Protocol (MSDP)";

 }

 /* Identities */

 identity address-allocation-type {

 description

 "Base identity for address allocation type in the

 Provider Edge (PE)-Customer Edge (CE) link.";

 }

 identity provider-dhcp {

 base address-allocation-type;

 description

 "The Provider's network provides a DHCP service to the customer.";

 }

 identity provider-dhcp-relay {

 base address-allocation-type;

 description

 "The Provider's network provides a DHCP relay service to the

 customer.";

 }

 identity provider-dhcp-slaac {

 if-feature "vpn-common:ipv6";

 base address-allocation-type;

 description

 "The Provider's network provides a DHCP service to the customer

 as well as IPv6 Stateless Address Autoconfiguration (SLAAC).";

 reference

 "RFC 4862: IPv6 Stateless Address Autoconfiguration";

 }

 identity static-address {

 base address-allocation-type;

 description

 "The Provider's network provides static IP addressing to the

 customer.";

 }

 identity slaac {

 if-feature "vpn-common:ipv6";

 base address-allocation-type;

 description

 "The Provider's network uses IPv6 SLAAC to provide addressing

 to the customer.";

 reference

 "RFC 4862: IPv6 Stateless Address Autoconfiguration";

 }

 identity local-defined-next-hop {

 description

 "Base identity of local defined next-hops.";

 }

 identity discard {

 base local-defined-next-hop;

 description

 "Indicates an action to discard traffic for the

 corresponding destination.

 For example, this can be used to blackhole traffic.";

 }

 identity local-link {

 base local-defined-next-hop;

 description

 "Treat traffic towards addresses within the specified next-hop

 prefix as though they are connected to a local link.";

 }

 identity l2-tunnel-type {

 description

 "Base identity for layer-2 tunnel selection under the VPN

 network access.";

 }

 identity pseudowire {

 base l2-tunnel-type;

 description

 "Pseudowire tunnel termination in the VPN network access.";

 }

 identity vpls {

 base l2-tunnel-type;

 description

 "Virtual Private LAN Service (VPLS) tunnel termination in

 the VPN network access.";

 }

 identity vxlan {

 base l2-tunnel-type;

 description

 "Virtual eXtensible Local Area Network (VXLAN) tunnel

 termination in the VPN network access.";

 }

 /* Typedefs */

 typedef predefined-next-hop {

 type identityref {

 base local-defined-next-hop;

 }

 description

 "Pre-defined next-hop designation for locally generated routes.";

 }

 typedef area-address {

 type string {

 pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';

 }

 description

 "This type defines the area address format.";

 }

 /* Groupings */

 grouping vpn-instance-profile {

 description

 "Grouping for data nodes that may be factorized

 among many levels of the model. The grouping can

 be used to define generic profiles at the VPN service

 level and then referenced at the VPN node and VPN

 network access levels.";

 leaf local-as {

 if-feature "vpn-common:rtg-bgp";

 type inet:as-number;

 description

 "Provider's Autonomous System (AS) number. Used if the

 customer requests BGP routing.";

 }

 uses vpn-common:route-distinguisher;

 list address-family {

 key "address-family";

 description

 "Set of per-address family parameters.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates the address family (IPv4 and/or IPv6).";

 }

 container vpn-targets {

 description

 "Set of route targets to match for import and export routes

 to/from VRF.";

 uses vpn-common:vpn-route-targets;

 }

 list maximum-routes {

 key "protocol";

 description

 "Defines the maximum number of routes for the VRF.";

 leaf protocol {

 type identityref {

 base vpn-common:routing-protocol-type;

 }

 description

 "Indicates the routing protocol. 'any' value can

 be used to identify a limit that will apply for

 each active routing protocol.";

 }

 leaf maximum-routes {

 type uint32;

 description

 "Indicates the maximum number of prefixes that the

 VRF can accept for this address family and protocol.";

 }

 }

 }

 container multicast {

 if-feature "vpn-common:multicast";

 description

 "Global multicast parameters.";

 leaf tree-flavor {

 type identityref {

 base vpn-common:multicast-tree-type;

 }

 description

 "Type of the multicast tree to be used.";

 }

 container rp {

 description

 "Rendezvous Point (RP) parameters.";

 container rp-group-mappings {

 description

 "RP-to-group mappings parameters.";

 list rp-group-mapping {

 key "id";

 description

 "List of RP-to-group mappings.";

 leaf id {

 type uint16;

 description

 "Unique identifier for the mapping.";

 }

 container provider-managed {

 description

 "Parameters for a provider-managed RP.";

 leaf enabled {

 type boolean;

 default "false";

 description

 "Set to true if the Rendezvous Point (RP)

 must be a provider-managed node. Set to

 false if it is a customer-managed node.";

 }

 leaf rp-redundancy {

 type boolean;

 default "false";

 description

 "If set to true, it indicates that a redundancy

 mechanism for the RP is required.";

 }

 leaf optimal-traffic-delivery {

 type boolean;

 default "false";

 description

 "If set to true, the service provider (SP) must

 ensure that the traffic uses an optimal path.

 An SP may use Anycast RP or RP-tree-to-SPT

 switchover architectures.";

 }

 container anycast {

 when "../rp-redundancy = 'true' and

 ../optimal-traffic-delivery = 'true'" {

 description

 "Only applicable if both RP redundancy and

 delivery through optimal path are

 activated.";

 }

 description

 "PIM Anycast-RP parameters.";

 leaf local-address {

 type inet:ip-address;

 description

 "IP local address for PIM RP. Usually, it

 corresponds to the Router ID or the

 primary address.";

 }

 leaf-list rp-set-address {

 type inet:ip-address;

 description

 "Specifies the IP address of other RP routers

 that share the same RP IP address.";

 }

 }

 }

 leaf rp-address {

 when "../provider-managed/enabled = 'false'" {

 description

 "Relevant when the RP is not

 provider-managed.";

 }

 type inet:ip-address;

 mandatory true;

 description

 "Defines the address of the RP.

 Used if the RP is customer-managed.";

 }

 container groups {

 description

 "Multicast groups associated with the RP.";

 list group {

 key "id";

 description

 "List of multicast groups.";

 leaf id {

 type uint16;

 description

 "Identifier for the group.";

 }

 choice group-format {

 mandatory true;

 description

 "Choice for multicast group format.";

 case group-prefix {

 leaf group-address {

 type inet:ip-prefix;

 description

 "A single multicast group prefix.";

 }

 }

 case startend {

 leaf group-start {

 type inet:ip-address;

 description

 "The first multicast group address in

 the multicast group address range.";

 }

 leaf group-end {

 type inet:ip-address;

 description

 "The last multicast group address in

 the multicast group address range.";

 }

 }

 }

 }

 }

 }

 }

 container rp-discovery {

 description

 "RP discovery parameters.";

 leaf rp-discovery-type {

 type identityref {

 base vpn-common:multicast-rp-discovery-type;

 }

 default "vpn-common:static-rp";

 description

 "Type of RP discovery used.";

 }

 container bsr-candidates {

 when "derived-from-or-self(../rp-discovery-type, "

 + "'vpn-common:bsr-rp')" {

 description

 "Only applicable if discovery type is BSR-RP.";

 }

 description

 "Container for the customer Bootstrap Router (BSR)

 candidate's addresses.";

 leaf-list bsr-candidate-address {

 type inet:ip-address;

 description

 "Specifies the address of candidate BSR.";

 }

 }

 }

 }

 container igmp {

 if-feature "vpn-common:igmp and vpn-common:ipv4";

 description

 "Includes IGMP-related parameters.";

 list static-group {

 key "group-addr";

 description

 "Multicast static source/group associated to the

 IGMP session.";

 leaf group-addr {

 type rt-types:ipv4-multicast-group-address;

 description

 "Multicast group IPv4 address.";

 }

 leaf source-addr {

 type rt-types:ipv4-multicast-source-address;

 description

 "Multicast source IPv4 address.";

 }

 }

 leaf max-groups {

 type uint32;

 description

 "Indicates the maximum number of groups.";

 }

 leaf max-entries {

 type uint32;

 description

 "Indicates the maximum number of IGMP entries.";

 }

 leaf version {

 type identityref {

 base vpn-common:igmp-version;

 }

 default "vpn-common:igmpv2";

 description

 "Indicates the IGMP version.";

 reference

 "RFC 1112: Host Extensions for IP Multicasting

 RFC 2236: Internet Group Management Protocol, Version 2

 RFC 3376: Internet Group Management Protocol, Version 3";

 }

 }

 container mld {

 if-feature "vpn-common:mld and vpn-common:ipv6";

 description

 "Includes MLD-related parameters.";

 list static-group {

 key "group-addr";

 description

 "Multicast static source/group associated with the

 MLD session.";

 leaf group-addr {

 type rt-types:ipv6-multicast-group-address;

 description

 "Multicast group IPv6 address.";

 }

 leaf source-addr {

 type rt-types:ipv6-multicast-source-address;

 description

 "Multicast source IPv6 address.";

 }

 }

 leaf max-groups {

 type uint32;

 description

 "Indicates the maximum number of groups.";

 }

 leaf max-entries {

 type uint32;

 description

 "Indicates the maximum number of MLD entries.";

 }

 leaf version {

 type identityref {

 base vpn-common:mld-version;

 }

 default "vpn-common:mldv2";

 description

 "Indicates the MLD protocol version.";

 reference

 "RFC 2710: Multicast Listener Discovery (MLD) for IPv6

 RFC 3810: Multicast Listener Discovery Version 2 (MLDv2)

 for IPv6";

 }

 }

 container pim {

 if-feature "vpn-common:pim";

 description

 "Only applies when protocol type is PIM.";

 leaf hello-interval {

 type rt-types:timer-value-seconds16;

 default "30";

 description

 "PIM hello-messages interval. If set to

 'infinity' or 'not-set', no periodic

 Hello messages are sent.";

 reference

 "RFC 7761: Protocol Independent Multicast - Sparse

 Mode (PIM-SM): Protocol Specification (Revised),

 Section 4.11";

 }

 leaf dr-priority {

 type uint32;

 default "1";

 description

 "Indicates the preference in the Designated Router (DR)

 election process. A larger value has a higher

 priority over a smaller value.";

 reference

 "RFC 7761: Protocol Independent Multicast - Sparse

 Mode (PIM-SM): Protocol Specification (Revised),

 Section 4.3.2";

 }

 }

 }

 }

 /* Main Blocks */

 /* Main l3vpn-ntw */

 container l3vpn-ntw {

 description

 "Main container for L3VPN services management.";

 container vpn-profiles {

 description

 "Contains a set of valid VPN profiles to reference in the VPN

 service.";

 uses vpn-common:vpn-profile-cfg;

 }

 container vpn-services {

 description

 "Container for the VPN services.";

 list vpn-service {

 key "vpn-id";

 description

 "List of VPN services.";

 uses vpn-common:vpn-description;

 leaf parent-service-id {

 type vpn-common:vpn-id;

 description

 "Pointer to the parent service, if any.

 A parent service can be an L3SM, a slice request, a VPN+

 service, etc.";

 }

 leaf vpn-type {

 type identityref {

 base vpn-common:service-type;

 }

 description

 "Indicates the service type.";

 }

 leaf vpn-service-topology {

 type identityref {

 base vpn-common:vpn-topology;

 }

 default "vpn-common:any-to-any";

 description

 "VPN service topology.";

 }

 uses vpn-common:service-status;

 container vpn-instance-profiles {

 description

 "Container for a list of VPN instance profiles.";

 list vpn-instance-profile {

 key "profile-id";

 description

 "List of VPN instance profiles.";

 leaf profile-id {

 type string;

 description

 "VPN instance profile identifier.";

 }

 leaf role {

 type identityref {

 base vpn-common:role;

 }

 default "vpn-common:any-to-any-role";

 description

 "Role of the VPN node in the VPN.";

 }

 uses vpn-instance-profile;

 }

 }

 container underlay-transport {

 description

 "Container for underlay transport.";

 uses vpn-common:underlay-transport;

 }

 container external-connectivity {

 if-feature "vpn-common:external-connectivity";

 description

 "Container for external connectivity.";

 choice profile {

 description

 "Choice for the external connectivity profile.";

 case profile {

 leaf profile-name {

 type leafref {

 path "/l3vpn-ntw/vpn-profiles"

 + "/valid-provider-identifiers"

 + "/external-connectivity-identifier/id";

 }

 description

 "Name of the service provider's profile to be applied

 at the VPN service level.";

 }

 }

 }

 }

 container vpn-nodes {

 description

 "Container for VPN nodes.";

 list vpn-node {

 key "vpn-node-id";

 description

 "Includes a list of VPN nodes.";

 leaf vpn-node-id {

 type vpn-common:vpn-id;

 description

 "An identifier of the VPN node.";

 }

 leaf description {

 type string;

 description

 "Textual description of the VPN node.";

 }

 leaf ne-id {

 type string;

 description

 "Unique identifier of the network element where the VPN

 node is deployed.";

 }

 leaf local-as {

 if-feature "vpn-common:rtg-bgp";

 type inet:as-number;

 description

 "Provider's AS number in case the customer requests BGP

 routing.";

 }

 leaf router-id {

 type rt-types:router-id;

 description

 "A 32-bit number in the dotted-quad format that is used

 to uniquely identify a node within an autonomous

 system. This identifier is used for both IPv4 and

 IPv6.";

 }

 container active-vpn-instance-profiles {

 description

 "Container for active VPN instance profiles.";

 list vpn-instance-profile {

 key "profile-id";

 description

 "Includes a list of active VPN instance profiles.";

 leaf profile-id {

 type leafref {

 path "/l3vpn-ntw/vpn-services/vpn-service"

 + "/vpn-instance-profiles/vpn-instance-profile"

 + "/profile-id";

 }

 description

 "Node's active VPN instance profile.";

 }

 list router-id {

 key "address-family";

 description

 "Router-id per address family.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates the address family for which the

 Router-ID applies.";

 }

 leaf router-id {

 type inet:ip-address;

 description

 "The router-id information can be an IPv4 or IPv6

 address. This can be used, for example, to

 configure an IPv6 address as a router-id

 when such capability is supported by underlay

 routers. In such case, the configured value

 overrides the generic one defined at the VPN

 node level.";

 }

 }

 uses vpn-instance-profile;

 }

 }

 container msdp {

 if-feature "msdp";

 description

 "Includes MSDP-related parameters.";

 leaf peer {

 type inet:ipv4-address;

 description

 "Indicates the IPv4 address of the MSDP peer.";

 }

 leaf local-address {

 type inet:ipv4-address;

 description

 "Indicates the IPv4 address of the local end.

 This local address must be configured on

 the node.";

 }

 uses vpn-common:service-status;

 }

 uses vpn-common:vpn-components-group;

 uses vpn-common:service-status;

 container vpn-network-accesses {

 description

 "List of network accesses.";

 list vpn-network-access {

 key "id";

 description

 "List of network accesses.";

 leaf id {

 type vpn-common:vpn-id;

 description

 "Identifier for the network access.";

 }

 leaf interface-id {

 type string;

 description

 "Identifier for the physical or logical

 interface.

 The identification of the sub-interface

 is provided at the connection and/or IP

 connection levels.";

 }

 leaf description {

 type string;

 description

 "Textual description of the network access.";

 }

 leaf vpn-network-access-type {

 type identityref {

 base vpn-common:site-network-access-type;

 }

 default "vpn-common:point-to-point";

 description

 "Describes the type of connection, e.g.,

 point-to-point.";

 }

 leaf vpn-instance-profile {

 type leafref {

 path "/l3vpn-ntw/vpn-services/vpn-service/vpn-nodes"

 + "/vpn-node/active-vpn-instance-profiles"

 + "/vpn-instance-profile/profile-id";

 }

 description

 "An identifier of an active VPN instance profile.";

 }

 uses vpn-common:service-status;

 container connection {

 description

 "Defines layer 2 protocols and parameters that are

 required to enable connectivity between the PE

 and the CE.";

 container encapsulation {

 description

 "Container for layer 2 encapsulation.";

 leaf type {

 type identityref {

 base vpn-common:encapsulation-type;

 }

 default "vpn-common:priority-tagged";

 description

 "Encapsulation type. By default, the type of

 the tagged interface is 'priority-tagged'.";

 }

 container dot1q {

 when "derived-from-or-self(../type, "

 + "'vpn-common:dot1q')" {

 description

 "Only applies when the type of the

 tagged interface is 'dot1q'.";

 }

 description

 "Tagged interface.";

 leaf tag-type {

 type identityref {

 base vpn-common:tag-type;

 }

 default "vpn-common:c-vlan";

 description

 "Tag type. By default, the tag type is

 'c-vlan'.";

 }

 leaf cvlan-id {

 type uint16 {

 range "1..4094";

 }

 description

 "VLAN identifier.";

 }

 }

 container priority-tagged {

 when "derived-from-or-self(../type, "

 + "'vpn-common:priority-tagged')" {

 description

 "Only applies when the type of the

 tagged interface is 'priority-tagged'.";

 }

 description

 "Priority tagged.";

 leaf tag-type {

 type identityref {

 base vpn-common:tag-type;

 }

 default "vpn-common:c-vlan";

 description

 "Tag type. By default, the tag type is

 'c-vlan'.";

 }

 }

 container qinq {

 when "derived-from-or-self(../type, "

 + "'vpn-common:qinq')" {

 description

 "Only applies when the type of the tagged

 interface is QinQ.";

 }

 description

 "Includes QinQ parameters.";

 leaf tag-type {

 type identityref {

 base vpn-common:tag-type;

 }

 default "vpn-common:s-c-vlan";

 description

 "Tag type. By default, the tag type is

 'c-s-vlan'.";

 }

 leaf svlan-id {

 type uint16;

 mandatory true;

 description

 "S-VLAN identifier.";

 }

 leaf cvlan-id {

 type uint16;

 mandatory true;

 description

 "C-VLAN identifier.";

 }

 }

 }

 choice l2-service {

 description

 "The layer 2 connectivity service can be

 provided by indicating a pointer to an L2VPN or

 by specifying a layer 2 tunnel service.";

 container l2-tunnel-service {

 description

 "Defines a layer 2 tunnel termination.

 It is only applicable when a tunnel is

 required. The supported values are:

 pseudowire, VPLS, and VXLAN. Other

 values may be defined, if needed.";

 leaf type {

 type identityref {

 base l2-tunnel-type;

 }

 description

 "Selects the tunnel termiantion option for

 each vpn-network-access.";

 }

 container pseudowire {

 when "derived-from-or-self(../type, "

 + "'pseudowire')" {

 description

 "Only applies when the type of the layer 2

 service type is pseudowire .";

 }

 description

 "Includes pseudowire termination parameters.";

 leaf vcid {

 type uint32;

 description

 "Indicates a PW or VC identifier.";

 }

 leaf far-end {

 type union {

 type uint32;

 type inet:ip-address;

 }

 description

 "Neighbor reference.";

 reference

 "RFC 8077: Pseudowire Setup and Maintenance

 Using the Label Distribution

 Protocol (LDP), Section 6.1";

 }

 }

 container vpls {

 when "derived-from-or-self(../type, "

 + "'vpls')" {

 description

 "Only applies when the type of the layer 2

 service type is VPLS.";

 }

 description

 "VPLS termination parameters.";

 leaf vcid {

 type uint32;

 description

 "VC Identifier.";

 }

 leaf-list far-end {

 type union {

 type uint32;

 type inet:ip-address;

 }

 description

 "Neighbor reference.";

 }

 }

 container vxlan {

 when "derived-from-or-self(../type, "

 + "'vxlan')" {

 description

 "Only applies when the type of the layer 2

 service type is VXLAN.";

 }

 description

 "VXLAN termination parameters.";

 leaf vni-id {

 type uint32;

 mandatory true;

 description

 "VXLAN Network Identifier (VNI).";

 }

 leaf peer-mode {

 type identityref {

 base vpn-common:vxlan-peer-mode;

 }

 default "vpn-common:static-mode";

 description

 "Specifies the VXLAN access mode. By

 default, the peer mode is set to

 'static-mode'.";

 }

 leaf-list peer-ip-address {

 type inet:ip-address;

 description

 "List of peer's IP addresses.";

 }

 }

 }

 case l2vpn {

 leaf l2vpn-id {

 type vpn-common:vpn-id;

 description

 "Indicates the L2VPN service associated with

 an Integrated Routing and Bridging (IRB)

 interface.";

 }

 }

 }

 leaf l2-termination-point {

 type string;

 description

 "Specifies a reference to a local layer 2

 termination point such as a layer 2

 sub-interface.";

 }

 leaf local-bridge-reference {

 type string;

 description

 "Specifies a local bridge reference to

 accommodate, for example, implementations

 that require internal bridging.

 A reference may be a local bridge domain.";

 }

 leaf bearer-reference {

 if-feature "vpn-common:bearer-reference";

 type string;

 description

 "This is an internal reference for the service

 provider to identify the bearer associated

 with this VPN.";

 }

 container lag-interface {

 if-feature "vpn-common:lag-interface";

 description

 "Container of LAG interface attributes

 configuration.";

 leaf lag-interface-id {

 type string;

 description

 "LAG interface identifier.";

 }

 container member-link-list {

 description

 "Container of Member link list.";

 list member-link {

 key "name";

 description

 "Member link.";

 leaf name {

 type string;

 description

 "Member link name.";

 }

 }

 }

 }

 }

 container ip-connection {

 description

 "Defines IP connection parameters.";

 leaf l3-termination-point {

 type string;

 description

 "Specifies a reference to a local layer 3

 termination point such as a bridge domain

 interface.";

 }

 container ipv4 {

 if-feature "vpn-common:ipv4";

 description

 "IPv4-specific parameters.";

 leaf local-address {

 type inet:ipv4-address;

 description

 "The IP address used at the provider's

 interface.";

 }

 leaf prefix-length {

 type uint8 {

 range "0..32";

 }

 description

 "Subnet prefix length expressed in bits.

 It is applied to both local and customer

 addresses.";

 }

 leaf address-allocation-type {

 type identityref {

 base address-allocation-type;

 }

 must "not(derived-from-or-self(current(), "

 + "'slaac') or derived-from-or-self(current(),"

 + " 'provider-dhcp-slaac'))" {

 error-message

 "SLAAC is only applicable to IPv6.";

 }

 description

 "Defines how addresses are allocated to the

 peer site.

 If there is no value for the address

 allocation type, then IPv4 addressing is not

 enabled.";

 }

 choice allocation-type {

 description

 "Choice of the IPv4 address allocation.";

 case provider-dhcp {

 description

 "DHCP allocated addresses related

 parameters. IP addresses are allocated

 by DHCP that is operated by the provider";

 leaf dhcp-service-type {

 type enumeration {

 enum server {

 description

 "Local DHCP server.";

 }

 enum relay {

 description

 "Local DHCP relay. DHCP requests are

 relayed to a provider's server.";

 }

 }

 description

 "Indicates the type of DHCP service to

 be enabled on this access.";

 }

 choice service-type {

 description

 "Choice based on the DHCP service type.";

 case relay {

 description

 "Container for list of provider's DHCP

 servers (i.e., dhcp-service-type is set

 to relay).";

 leaf-list server-ip-address {

 type inet:ipv4-address;

 description

 "IPv4 addresses of the provider's DHCP

 server to use by the local DHCP

 relay.";

 }

 }

 case server {

 description

 "A choice about how addresses are assigned

 when a local DHCP server is enabled.";

 choice address-assign {

 default "number";

 description

 "Choice for how IPv4 addresses are

 assigned.";

 case number {

 leaf number-of-dynamic-address {

 type uint16;

 default "1";

 description

 "Specifies the number of IP

 addresses to be assigned to the

 customer on this access.";

 }

 }

 case explicit {

 container customer-addresses {

 description

 "Container for customer

 addresses to be allocated

 using DHCP.";

 list address-pool {

 key "pool-id";

 description

 "Describes IP addresses to be

 allocated by DHCP.

 When only start-address is

 present, it represents a single

 address.

 When both start-address and

 end-address are specified, it

 implies a range inclusive of both

 addresses.";

 leaf pool-id {

 type string;

 description

 "A pool identifier for the

 address range from start-

 address to end-address.";

 }

 leaf start-address {

 type inet:ipv4-address;

 mandatory true;

 description

 "Indicates the first address

 in the pool.";

 }

 leaf end-address {

 type inet:ipv4-address;

 description

 "Indicates the last address

 in the pool.";

 }

 }

 }

 }

 }

 }

 }

 }

 case dhcp-relay {

 description

 "DHCP relay is provided by the operator.";

 container customer-dhcp-servers {

 description

 "Container for a list of customer's DHCP

 servers.";

 leaf-list server-ip-address {

 type inet:ipv4-address;

 description

 "IPv4 addresses of the customer's DHCP

 server.";

 }

 }

 }

 case static-addresses {

 description

 "Lists the IPv4 addresses that are used.";

 leaf primary-address {

 type leafref {

 path "../address/address-id";

 }

 description

 "Primary address of the connection.";

 }

 list address {

 key "address-id";

 description

 "Lists the IPv4 addresses that are used.";

 leaf address-id {

 type string;

 description

 "An identifier of the static IPv4

 address.";

 }

 leaf customer-address {

 type inet:ipv4-address;

 description

 "IPv4 address at the customer side.";

 }

 }

 }

 }

 }

 container ipv6 {

 if-feature "vpn-common:ipv6";

 description

 "IPv6-specific parameters.";

 leaf local-address {

 type inet:ipv6-address;

 description

 "IPv6 address of the provider side.";

 }

 leaf prefix-length {

 type uint8 {

 range "0..128";

 }

 description

 "Subnet prefix length expressed in bits.

 It is applied to both local and customer

 addresses.";

 }

 leaf address-allocation-type {

 type identityref {

 base address-allocation-type;

 }

 description

 "Defines how addresses are allocated.

 If there is no value for the address

 allocation type, then IPv6 addressing is

 disabled.";

 }

 choice allocation-type {

 description

 "A choice based on the IPv6 allocation type.";

 container provider-dhcp {

 when "derived-from-or-self(../address-allo"

 + "cation-type, 'provider-dhcp') "

 + "or derived-from-or-self(../address-allo"

 + "cation-type, 'provider-dhcp-slaac')" {

 description

 "Only applies when addresses are

 allocated by DHCPv6 provided by the

 operator.";

 }

 description

 "DHCPv6 allocated addresses related

 parameters.";

 leaf dhcp-service-type {

 type enumeration {

 enum server {

 description

 "Local DHCPv6 server.";

 }

 enum relay {

 description

 "DHCPv6 relay.";

 }

 }

 description

 "Indicates the type of the DHCPv6 service to

 be enabled on this access.";

 }

 choice service-type {

 description

 "Choice based on the DHCPv6 service type.";

 case relay {

 leaf-list server-ip-address {

 type inet:ipv6-address;

 description

 "IPv6 addresses of the provider's

 DHCPv6 server.";

 }

 }

 case server {

 choice address-assign {

 default "number";

 description

 "Choice about how IPv6 prefixes are

 assigned by the DHCPv6 server.";

 case number {

 leaf number-of-dynamic-address {

 type uint16;

 default "1";

 description

 "Describes the number of IPv6

 prefixes that are allocated to

 the customer on this access.";

 }

 }

 case explicit {

 container customer-addresses {

 description

 "Container for customer IPv6

 addresses allocated by DHCPv6.";

 list address-pool {

 key "pool-id";

 description

 "Describes IPv6 addresses

 allocated by DHCPv6.

 When only start-address is

 present, it represents a single

 address.

 When both start-address and

 end-address are specified, it

 implies a range inclusive of

 both addresses.";

 leaf pool-id {

 type string;

 description

 "Pool identifier for the address

 range from identified by start-

 address and end-address.";

 }

 leaf start-address {

 type inet:ipv6-address;

 mandatory true;

 description

 "Indicates the first address.";

 }

 leaf end-address {

 type inet:ipv6-address;

 description

 "Indicates the last address.";

 }

 }

 }

 }

 }

 }

 }

 }

 case dhcp-relay {

 description

 "DHCPv6 relay provided by the operator.";

 container customer-dhcp-servers {

 description

 "Container for a list of customer DHCP

 servers.";

 leaf-list server-ip-address {

 type inet:ipv6-address;

 description

 "Contains the IP addresses of the customer

 DHCPv6 server.";

 }

 }

 }

 case static-addresses {

 description

 "IPv6-specific parameters for static

 allocation.";

 leaf primary-address {

 type leafref {

 path "../address/address-id";

 }

 description

 "Principal address of the connection";

 }

 list address {

 key "address-id";

 description

 "Describes IPv6 addresses that are used.";

 leaf address-id {

 type string;

 description

 "An identifier of an IPv6 address.";

 }

 leaf customer-address {

 type inet:ipv6-address;

 description

 "An IPv6 address of the customer side.";

 }

 }

 }

 }

 }

 }

 container routing-protocols {

 description

 "Defines routing protocols.";

 list routing-protocol {

 key "id";

 description

 "List of routing protocols used on

 the CE/PE link. This list can be augmented.";

 leaf id {

 type string;

 description

 "Unique identifier for routing protocol.";

 }

 leaf type {

 type identityref {

 base vpn-common:routing-protocol-type;

 }

 description

 "Type of routing protocol.";

 }

 list routing-profiles {

 key "id";

 description

 "Routing profiles.";

 leaf id {

 type leafref {

 path "/l3vpn-ntw/vpn-profiles"

 + "/valid-provider-identifiers"

 + "/routing-profile-identifier/id";

 }

 description

 "Routing profile to be used.";

 }

 leaf type {

 type identityref {

 base vpn-common:ie-type;

 }

 description

 "Import, export, or both.";

 }

 }

 container static {

 when "derived-from-or-self(../type, "

 + "'vpn-common:static-routing')" {

 description

 "Only applies when protocol is static.";

 }

 description

 "Configuration specific to static routing.";

 container cascaded-lan-prefixes {

 description

 "LAN prefixes from the customer.";

 list ipv4-lan-prefixes {

 if-feature "vpn-common:ipv4";

 key "lan next-hop";

 description

 "List of LAN prefixes for the site.";

 leaf lan {

 type inet:ipv4-prefix;

 description

 "LAN prefixes.";

 }

 leaf lan-tag {

 type string;

 description

 "Internal tag to be used in VPN

 policies.";

 }

 leaf next-hop {

 type union {

 type inet:ip-address;

 type predefined-next-hop;

 }

 description

 "The next-hop that is to be used

 for the static route. This may be

 specified as an IP address or a

 pre-defined next-hop type (e.g.,

 discard or local-link).";

 }

 leaf bfd-enable {

 if-feature "vpn-common:bfd";

 type boolean;

 description

 "Enables BFD.";

 }

 leaf metric {

 type uint32;

 description

 "Indicates the metric associated with

 the static route.";

 }

 leaf preference {

 type uint32;

 description

 "Indicates the preference of the static

 routes.";

 }

 uses vpn-common:service-status;

 }

 list ipv6-lan-prefixes {

 if-feature "vpn-common:ipv6";

 key "lan next-hop";

 description

 "List of LAN prefixes for the site.";

 leaf lan {

 type inet:ipv6-prefix;

 description

 "LAN prefixes.";

 }

 leaf lan-tag {

 type string;

 description

 "Internal tag to be used in VPN

 policies.";

 }

 leaf next-hop {

 type union {

 type inet:ip-address;

 type predefined-next-hop;

 }

 description

 "The next-hop that is to be used for the

 static route. This may be specified as

 an IP address or a pre-defined next-hop

 type (e.g., discard or local-link).";

 }

 leaf bfd-enable {

 if-feature "vpn-common:bfd";

 type boolean;

 description

 "Enables BFD.";

 }

 leaf metric {

 type uint32;

 description

 "Indicates the metric associated with

 the static route.";

 }

 leaf preference {

 type uint32;

 description

 "Indicates the preference associated

 with the static route.";

 }

 uses vpn-common:service-status;

 }

 }

 }

 container bgp {

 when "derived-from-or-self(../type, "

 + "'vpn-common:bgp-routing')" {

 description

 "Only applies when protocol is BGP.";

 }

 description

 "BGP-specific configuration.";

 leaf description {

 type string;

 description

 "Includes a description of the BGP session.

 This description is meant to be used for

 diagnosis purposes. The semantic of the

 description is local to an

 implementation.";

 }

 leaf local-as {

 type inet:as-number;

 description

 "Indicates a local AS Number (ASN) if a

 distinct ASN than the one configured at

 the VPN node level is needed.";

 }

 leaf peer-as {

 type inet:as-number;

 mandatory true;

 description

 "Indicates the customer's ASN when

 the customer requests BGP routing.";

 }

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "This node contains the address families to be

 activated. Dual-stack means that both IPv4

 and IPv6 will be activated.";

 }

 leaf local-address {

 type union {

 type inet:ip-address;

 type if:interface-ref;

 }

 description

 "Set the local IP address to use for the BGP

 transport session. This may be expressed as

 either an IP address or a reference to an

 interface.";

 }

 leaf-list neighbor {

 type inet:ip-address;

 description

 "IP address(es) of the BGP neighbor. IPv4

 and IPv6 neighbors may be indicated if

 two sessions will be used for IPv4 and

 IPv6.";

 }

 leaf multihop {

 type uint8;

 description

 "Describes the number of IP hops allowed

 between a given BGP neighbor and the PE.";

 }

 leaf as-override {

 type boolean;

 default "false";

 description

 "Defines whether ASN override is enabled,

 i.e., replace the ASN of the customer

 specified in the AS_Path attribute with

 the local ASN.";

 }

 leaf allow-own-as {

 type uint8;

 default "0";

 description

 "Specifies the number of occurrences

 of the provider's ASN that can occur

 within the AS_PATH before it

 is rejected.";

 }

 leaf prepend-global-as {

 type boolean;

 default "false";

 description

 "In some situations, the ASN that is

 provided at the VPN node level may be

 distinct from the one configured at the

 VPN network access level. When such

 ASNs are provided, they are both

 prepended to the BGP route updates

 for this access. To disable that

 behavior, the prepend-global-as

 must be set to 'false'. In such a case,

 the ASN that is provided at

 the VPN node level is not prepended to

 the BGP route updates for this access.";

 }

 leaf send-default-route {

 type boolean;

 default "false";

 description

 "Defines whether default routes can be

 advertised to its peer. If set, the

 default routes are advertised to its

 peer.";

 }

 leaf site-of-origin {

 when "../address-family = 'vpn-common:ipv4' or "

 + "'vpn-common:dual-stack'" {

 description

 "Only applies if IPv4 is activated.";

 }

 type rt-types:route-origin;

 description

 "The Site of Origin attribute is encoded as

 a Route Origin Extended Community. It is

 meant to uniquely identify the set of routes

 learned from a site via a particular CE/PE

 connection and is used to prevent routing

 loops.";

 reference

 "RFC 4364: BGP/MPLS IP Virtual Private

 Networks (VPNs), Section 7";

 }

 leaf ipv6-site-of-origin {

 when "../address-family = 'vpn-common:ipv6' or "

 + "'vpn-common:dual-stack'" {

 description

 "Only applies if IPv6 is activated.";

 }

 type rt-types:ipv6-route-origin;

 description

 "IPv6 Route Origins are IPv6 Address Specific

 BGP Extended that are meant to the Site of

 Origin for VRF information.";

 reference

 "RFC 5701: IPv6 Address Specific BGP Extended

 Community Attribute";

 }

 list redistribute-connected {

 key "address-family";

 description

 "Indicates the per-AF policy to follow

 for connected routes.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates the address family.";

 }

 leaf enable {

 type boolean;

 description

 "Enables to redistribute connected

 routes.";

 }

 }

 container bgp-max-prefix {

 description

 "Controls the behavior when a prefix

 maximum is reached.";

 leaf max-prefix {

 type uint32;

 default "5000";

 description

 "Indicates the maximum number of BGP

 prefixes allowed in the BGP session.

 It allows control of how many prefixes

 can be received from a neighbor.

 If the limit is exceeded, the action

 indicated in violate-action will be

 followed.";

 reference

 "RFC 4271: A Border Gateway Protocol 4

 (BGP-4), Section 8.2.2";

 }

 leaf warning-threshold {

 type decimal64 {

 fraction-digits 5;

 range "0..100";

 }

 units "percent";

 default "75";

 description

 "When this value is reached, a warning

 notification will be triggered.";

 }

 leaf violate-action {

 type enumeration {

 enum warning {

 description

 "Only a warning message is sent to

 the peer when the limit is

 exceeded.";

 }

 enum discard-extra-paths {

 description

 "Discards extra paths when the

 limit is exceeded.";

 }

 enum restart {

 description

 "The BGP session restarts after

 a time interval.";

 }

 }

 description

 "BGP neighbor max-prefix violate

 action.";

 }

 leaf restart-timer {

 type uint32;

 units "seconds";

 description

 "Time interval after which the BGP

 session will be reestablished.";

 }

 }

 container bgp-timers {

 description

 "Includes two BGP timers that can be

 customized when building a VPN service

 with BGP used as CE-PE routing

 protocol.";

 leaf keepalive {

 type uint16 {

 range "0..21845";

 }

 units "seconds";

 default "30";

 description

 "This timer indicates the KEEPALIVE

 messages' frequency between a PE

 and a BGP peer.

 If set to '0', it indicates KEEPALIVE

 messages are disabled.

 It is suggested that the maximum time

 between KEEPALIVE messages would be

 one third of the Hold Time interval.";

 reference

 "RFC 4271: A Border Gateway Protocol 4

 (BGP-4), Section 4.4";

 }

 leaf hold-time {

 type uint16 {

 range "0 | 3..65535";

 }

 units "seconds";

 default "90";

 description

 "It indicates the maximum number of

 seconds that may elapse between the

 receipt of successive KEEPALIVE

 and/or UPDATE messages from the peer.

 The Hold Time must be either zero or

 at least three seconds.";

 reference

 "RFC 4271: A Border Gateway Protocol 4

 (BGP-4), Section 4.2";

 }

 }

 container authentication {

 description

 "Container for BGP authentication

 parameters between a PE and a CE.";

 leaf enable {

 type boolean;

 default "false";

 description

 "Enables or disables authentication.";

 }

 container keying-material {

 when "../enable = 'true'";

 description

 "Container for describing how a BGP routing

 session is to be secured between a PE and

 a CE.";

 choice option {

 description

 "Choice of authentication options.";

 case ao {

 description

 "Uses TCP-Authentication Option

 (TCP-AO).";

 reference

 "RFC 5925: The TCP Authentication

 Option.";

 leaf enable-ao {

 type boolean;

 description

 "Enables TCP-AO.";

 }

 leaf ao-keychain {

 type key-chain:key-chain-ref;

 description

 "Reference to the TCP-AO key chain.";

 reference

 "RFC 8177: YANG Key Chain.";

 }

 }

 case md5 {

 description

 "Uses MD5 to secure the session.";

 reference

 "RFC 4364: BGP/MPLS IP Virtual Private

 Networks (VPNs),

 Section 13.2";

 leaf md5-keychain {

 type key-chain:key-chain-ref;

 description

 "Reference to the MD5 key chain.";

 reference

 "RFC 8177: YANG Key Chain";

 }

 }

 case explicit {

 leaf key-id {

 type uint32;

 description

 "Key Identifier.";

 }

 leaf key {

 type string;

 description

 "BGP authentication key.

 This model only supports the subset

 of keys that are representable as

 ASCII strings.";

 }

 leaf crypto-algorithm {

 type identityref {

 base key-chain:crypto-algorithm;

 }

 description

 "Indicates the cryptographic algorithm

 associated with the key.";

 }

 }

 case ipsec {

 description

 "Specifies a reference to an IKE

 Security Association (SA).";

 leaf sa {

 type string;

 description

 "Indicates the administrator-assigned

 name of the SA.";

 }

 }

 }

 }

 }

 uses vpn-common:service-status;

 }

 container ospf {

 when "derived-from-or-self(../type, "

 + "'vpn-common:ospf-routing')" {

 description

 "Only applies when protocol is OSPF.";

 }

 description

 "OSPF-specific configuration.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates whether IPv4, IPv6, or

 both are to be activated.";

 }

 leaf area-id {

 type yang:dotted-quad;

 mandatory true;

 description

 "Area ID.";

 reference

 "RFC 4577: OSPF as the Provider/Customer

 Edge Protocol for BGP/MPLS IP

 Virtual Private Networks

 (VPNs), Section 4.2.3

 RFC 6565: OSPFv3 as a Provider Edge to

 Customer Edge (PE-CE) Routing

 Protocol, Section 4.2";

 }

 leaf metric {

 type uint16;

 default "1";

 description

 "Metric of the PE-CE link. It is used

 in the routing state calculation and

 path selection.";

 }

 container sham-links {

 if-feature "vpn-common:rtg-ospf-sham-link";

 description

 "List of sham links.";

 reference

 "RFC 4577: OSPF as the Provider/Customer

 Edge Protocol for BGP/MPLS IP

 Virtual Private Networks

 (VPNs), Section 4.2.7

 RFC 6565: OSPFv3 as a Provider Edge to

 Customer Edge (PE-CE) Routing

 Protocol, Section 5";

 list sham-link {

 key "target-site";

 description

 "Creates a sham link with another site.";

 leaf target-site {

 type string;

 description

 "Target site for the sham link connection.

 The site is referred to by its

 identifier.";

 }

 leaf metric {

 type uint16;

 default "1";

 description

 "Metric of the sham link. It is used in

 the routing state calculation and path

 selection. The default value is set

 to 1.";

 reference

 "RFC 4577: OSPF as the Provider/Customer

 Edge Protocol for BGP/MPLS IP

 Virtual Private Networks

 (VPNs), Section 4.2.7.3

 RFC 6565: OSPFv3 as a Provider Edge to

 Customer Edge (PE-CE) Routing

 Protocol, Section 5.2";

 }

 }

 }

 leaf max-lsa {

 type uint32 {

 range "1..4294967294";

 }

 description

 "Maximum number of allowed LSAs OSPF.";

 }

 container authentication {

 description

 "Authentication configuration.";

 leaf enable {

 type boolean;

 default "false";

 description

 "Enables or disables authentication.";

 }

 container keying-material {

 when "../enable = 'true'";

 description

 "Container for describing how an OSPF

 session is to be secured between a CE

 and a PE.";

 choice option {

 description

 "Options for OSPF authentication.";

 case auth-key-chain {

 leaf key-chain {

 type key-chain:key-chain-ref;

 description

 "key-chain name.";

 }

 }

 case auth-key-explicit {

 leaf key-id {

 type uint32;

 description

 "Key identifier.";

 }

 leaf key {

 type string;

 description

 "OSPF authentication key.

 This model only supports the subset

 of keys that are representable as

 ASCII strings.";

 }

 leaf crypto-algorithm {

 type identityref {

 base key-chain:crypto-algorithm;

 }

 description

 "Indicates the cryptographic algorithm

 associated with the key.";

 }

 }

 case ipsec {

 leaf sa {

 type string;

 description

 "Indicates the administrator-assigned

 name of the SA.";

 reference

 "RFC 4552: Authentication

 /Confidentiality for

 OSPFv3";

 }

 }

 }

 }

 }

 uses vpn-common:service-status;

 }

 container isis {

 when "derived-from-or-self(../type, "

 + "'vpn-common:isis-routing')" {

 description

 "Only applies when protocol is IS-IS.";

 }

 description

 "IS-IS specific configuration.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates whether IPv4, IPv6, or both

 are to be activated.";

 }

 leaf area-address {

 type area-address;

 mandatory true;

 description

 "Area address.";

 }

 leaf level {

 type identityref {

 base vpn-common:isis-level;

 }

 description

 "Can be level-1, level-2, or level-1-2.";

 }

 leaf metric {

 type uint16;

 default "1";

 description

 "Metric of the PE-CE link. It is used

 in the routing state calculation and

 path selection.";

 }

 leaf mode {

 type enumeration {

 enum active {

 description

 "Interface sends or receives IS-IS

 protocol control packets.";

 }

 enum passive {

 description

 "Suppresses the sending of IS-IS

 updates through the specified

 interface.";

 }

 }

 default "active";

 description

 "IS-IS interface mode type.";

 }

 container authentication {

 description

 "Authentication configuration.";

 leaf enable {

 type boolean;

 default "false";

 description

 "Enables or disables authentication.";

 }

 container keying-material {

 when "../enable = 'true'";

 description

 "Container for describing how an IS-IS

 session is to be secured between a CE

 and a PE.";

 choice option {

 description

 "Options for IS-IS authentication.";

 case auth-key-chain {

 leaf key-chain {

 type key-chain:key-chain-ref;

 description

 "key-chain name.";

 }

 }

 case auth-key-explicit {

 leaf key-id {

 type uint32;

 description

 "Key Identifier.";

 }

 leaf key {

 type string;

 description

 "IS-IS authentication key.

 This model only supports the subset

 of keys that are representable as

 ASCII strings.";

 }

 leaf crypto-algorithm {

 type identityref {

 base key-chain:crypto-algorithm;

 }

 description

 "Indicates the cryptographic algorithm

 associated with the key.";

 }

 }

 }

 }

 }

 uses vpn-common:service-status;

 }

 container rip {

 when "derived-from-or-self(../type, "

 + "'vpn-common:rip-routing')" {

 description

 "Only applies when the protocol is RIP.

 For IPv4, the model assumes that RIP

 version 2 is used.";

 }

 description

 "Configuration specific to RIP routing.";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates whether IPv4, IPv6, or both

 address families are to be activated.";

 }

 container timers {

 description

 "Indicates the RIP timers.";

 reference

 "RFC 2453: RIP Version 2";

 leaf update-interval {

 type uint16 {

 range "1..32767";

 }

 units "seconds";

 default "30";

 description

 "Indicates the RIP update time.

 That is, the amount of time for which

 RIP updates are sent.";

 }

 leaf invalid-interval {

 type uint16 {

 range "1..32767";

 }

 units "seconds";

 default "180";

 description

 "Is the interval before a route is declared

 invalid after no updates are received.

 This value is at least three times

 the value for the update-interval

 argument.";

 }

 leaf holddown-interval {

 type uint16 {

 range "1..32767";

 }

 units "seconds";

 default "180";

 description

 "Specifies the interval before better routes

 are released.";

 }

 leaf flush-interval {

 type uint16 {

 range "1..32767";

 }

 units "seconds";

 default "240";

 description

 "Indicates the RIP flush timer. That is,

 the amount of time that must elapse before

 a route is removed from the routing

 table.";

 }

 }

 leaf default-metric {

 type uint8 {

 range "0..16";

 }

 default "1";

 description

 "Sets the default metric.";

 }

 container authentication {

 description

 "Authentication configuration.";

 leaf enable {

 type boolean;

 default "false";

 description

 "Enables or disables authentication.";

 }

 container keying-material {

 when "../enable = 'true'";

 description

 "Container for describing how a RIP

 session is to be secured between a CE

 and a PE.";

 choice option {

 description

 "Specifies the authentication scheme.";

 case auth-key-chain {

 leaf key-chain {

 type key-chain:key-chain-ref;

 description

 "key-chain name.";

 }

 }

 case auth-key-explicit {

 leaf key {

 type string;

 description

 "RIP authentication key.

 This model only supports the subset

 of keys that are representable as

 ASCII strings.";

 }

 leaf crypto-algorithm {

 type identityref {

 base key-chain:crypto-algorithm;

 }

 description

 "Indicates the cryptographic algorithm

 associated with the key.";

 }

 }

 }

 }

 }

 uses vpn-common:service-status;

 }

 container vrrp {

 when "derived-from-or-self(../type, "

 + "'vpn-common:vrrp-routing')" {

 description

 "Only applies when protocol is VRRP.";

 }

 description

 "Configuration specific to VRRP.";

 reference

 "RFC 5798: Virtual Router Redundancy Protocol

 (VRRP) Version 3 for IPv4 and IPv6";

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates whether IPv4, IPv6, or both

 address families are to be enabled.";

 }

 leaf vrrp-group {

 type uint8 {

 range "1..255";

 }

 description

 "Includes the VRRP group identifier.";

 }

 leaf backup-peer {

 type inet:ip-address;

 description

 "Indicates the IP address of the peer.";

 }

 leaf-list virtual-ip-address {

 type inet:ip-address;

 description

 "Virtual IP addresses for a single VRRP

 group.";

 reference

 "RFC 5798: Virtual Router Redundancy Protocol

 (VRRP) Version 3 for IPv4 and

 IPv6, Sections 1.2 and 1.3";

 }

 leaf priority {

 type uint8 {

 range "1..254";

 }

 default "100";

 description

 "Sets the local priority of the VRRP

 speaker.";

 }

 leaf ping-reply {

 type boolean;

 default "false";

 description

 "Controls whether the VRRP speaker should

 answer to ping requests.";

 }

 uses vpn-common:service-status;

 }

 }

 }

 container oam {

 description

 "Defines the Operations, Administration,

 and Maintenance (OAM) mechanisms used.

 BFD is set as a fault detection mechanism,

 but other mechanisms can be defined in the

 future.";

 container bfd {

 if-feature "vpn-common:bfd";

 description

 "Container for BFD.";

 leaf session-type {

 type identityref {

 base vpn-common:bfd-session-type;

 }

 default "vpn-common:classic-bfd";

 description

 "Specifies the BFD session type.";

 }

 leaf desired-min-tx-interval {

 type uint32;

 units "microseconds";

 default "1000000";

 description

 "The minimum interval between transmission of

 BFD control packets that the operator

 desires.";

 reference

 "RFC 5880: Bidirectional Forwarding Detection

 (BFD), Section 6.8.7";

 }

 leaf required-min-rx-interval {

 type uint32;

 units "microseconds";

 description

 "The minimum interval between received BFD

 control packets that the PE should support.";

 reference

 "RFC 5880: Bidirectional Forwarding Detection

 (BFD), Section 6.8.7";

 }

 leaf local-multiplier {

 type uint8 {

 range "1..255";

 }

 default "3";

 description

 "Specifies the detection multiplier that is

 transmitted to a BFD peer.

 The detection interval for the receiving

 BFD peer is calculated by multiplying the value

 of the negotiated transmission interval by

 the received detection multiplier value.";

 reference

 "RFC 5880: Bidirectional Forwarding Detection

 (BFD), Section 6.8.7";

 }

 leaf holdtime {

 type uint32;

 units "msec";

 description

 "Expected BFD holdtime.

 The customer may impose some fixed

 values for the holdtime period if the

 provider allows the customer use of

 this function.

 If the provider doesn't allow the

 customer to use this function,

 the fixed-value will not be set.";

 reference

 "RFC 5880: Bidirectional Forwarding Detection

 (BFD), Section 6.8.18";

 }

 leaf profile {

 type leafref {

 path "/l3vpn-ntw/vpn-profiles"

 + "/valid-provider-identifiers"

 + "/bfd-profile-identifier/id";

 }

 description

 "Well-known service provider profile name.

 The provider can propose some profiles

 to the customer, depending on the

 service level the customer wants to

 achieve.";

 }

 container authentication {

 presence "Enables BFD authentication";

 description

 "Parameters for BFD authentication.";

 leaf key-chain {

 type key-chain:key-chain-ref;

 description

 "Name of the key-chain.";

 }

 leaf meticulous {

 type boolean;

 description

 "Enables meticulous mode.";

 reference

 "RFC 5880: Bidirectional Forwarding

 Detection (BFD), Section 6.7";

 }

 }

 uses vpn-common:service-status;

 }

 }

 container security {

 description

 "Site-specific security parameters.";

 container encryption {

 if-feature "vpn-common:encryption";

 description

 "Container for CE-PE security encryption.";

 leaf enabled {

 type boolean;

 default "false";

 description

 "If true, traffic encryption on the

 connection is required. Otherwise, it

 is disabled.";

 }

 leaf layer {

 when "../enabled = 'true'" {

 description

 "It is included only when enryption

 is enabled.";

 }

 type enumeration {

 enum layer2 {

 description

 "Encryption occurs at Layer 2.";

 }

 enum layer3 {

 description

 "Encryption occurs at Layer 3.

 For example, IPsec may be used when

 a customer requests Layer 3

 encryption.";

 }

 }

 description

 "Indicates the layer on which encryption

 is applied.";

 }

 }

 container encryption-profile {

 when "../encryption/enabled = 'true'" {

 description

 "Indicates the layer on which encryption

 is enabled.";

 }

 description

 "Container for encryption profile.";

 choice profile {

 description

 "Choice for the encryption profile.";

 case provider-profile {

 leaf profile-name {

 type leafref {

 path "/l3vpn-ntw/vpn-profiles"

 + "/valid-provider-identifiers"

 + "/encryption-profile-identifier/id";

 }

 description

 "Name of the service provider's profile

 to be applied.";

 }

 }

 case customer-profile {

 leaf customer-key-chain {

 type key-chain:key-chain-ref;

 description

 "Customer-supplied key chain.";

 }

 }

 }

 }

 }

 container service {

 description

 "Service parameters of the attachment.";

 leaf inbound-bandwidth {

 if-feature "vpn-common:inbound-bw";

 type uint64;

 units "bps";

 description

 "From the customer site's perspective, the

 service inbound bandwidth of the connection

 or download bandwidth from the SP to

 the site. Note that the L3SM uses 'input-

 -bandwidth' to refer to the same concept.";

 }

 leaf outbound-bandwidth {

 if-feature "vpn-common:outbound-bw";

 type uint64;

 units "bps";

 description

 "From the customer site's perspective,

 the service outbound bandwidth of the

 connection or upload bandwidth from

 the site to the SP. Note that the L3SM uses

 'output-bandwidth' to refer to the same

 concept.";

 }

 leaf mtu {

 type uint32;

 units "bytes";

 description

 "MTU at service level. If the service is IP,

 it refers to the IP MTU. If Carriers'

 Carriers (CsC) is enabled, the requested MTU

 will refer to the MPLS maximum labeled packet

 size and not to the IP MTU.";

 }

 container qos {

 if-feature "vpn-common:qos";

 description

 "QoS configuration.";

 container qos-classification-policy {

 description

 "Configuration of the traffic classification

 policy.";

 uses vpn-common:qos-classification-policy;

 }

 container qos-action {

 description

 "List of QoS action policies.";

 list rule {

 key "id";

 description

 "List of QoS actions.";

 leaf id {

 type string;

 description

 "An identifier of the QoS action rule.";

 }

 leaf target-class-id {

 type string;

 description

 "Identification of the class of service.

 This identifier is internal to the

 administration.";

 }

 leaf inbound-rate-limit {

 type decimal64 {

 fraction-digits 5;

 range "0..100";

 }

 units "percent";

 description

 "Specifies whether/how to rate-limit the

 inbound traffic matching this QoS policy.

 It is expressed as a percent of the value

 that is indicated in 'input-bandwidth'.";

 }

 leaf outbound-rate-limit {

 type decimal64 {

 fraction-digits 5;

 range "0..100";

 }

 units "percent";

 description

 "Specifies whether/how to rate-limit the

 outbound traffic matching this QoS policy.

 It is expressed as a percent of the value

 that is indicated in 'output-bandwidth'.";

 }

 }

 }

 container qos-profile {

 description

 "QoS profile configuration.";

 list qos-profile {

 key "profile";

 description

 "QoS profile.

 Can be standard profile or customized

 profile.";

 leaf profile {

 type leafref {

 path "/l3vpn-ntw/vpn-profiles"

 + "/valid-provider-identifiers"

 + "/qos-profile-identifier/id";

 }

 description

 "QoS profile to be used.";

 }

 leaf direction {

 type identityref {

 base vpn-common:qos-profile-direction;

 }

 default "vpn-common:both";

 description

 "The direction to which the QoS profile

 is applied.";

 }

 }

 }

 }

 container carriers-carrier {

 if-feature "vpn-common:carriers-carrier";

 description

 "This container is used when the customer

 provides MPLS-based services. This is

 only used in the case of CsC (i.e., a

 customer builds an MPLS service using an

 IP VPN to carry its traffic).";

 leaf signaling-type {

 type enumeration {

 enum ldp {

 description

 "Use LDP as the signaling protocol

 between the PE and the CE. In this

 case, an IGP routing protocol must

 also be configured.";

 }

 enum bgp {

 description

 "Use BGP as the signaling protocol

 between the PE and the CE.

 In this case, BGP must also be configured

 as the routing protocol.";

 reference

 "RFC 8277: Using BGP to Bind MPLS Labels

 to Address Prefixes";

 }

 }

 default "bgp";

 description

 "MPLS signaling type.";

 }

 }

 container ntp {

 description

 "Time synchronization may be needed in some

 VPNs such as infrastructure and Management

 VPNs. This container includes parameters to

 enable NTP service.";

 reference

 "RFC 5905: Network Time Protocol Version 4:

 Protocol and Algorithms

 Specification";

 leaf broadcast {

 type enumeration {

 enum client {

 description

 "The VPN node will listen to NTP broadcast

 messages on this VPN network access.";

 }

 enum server {

 description

 "The VPN node will behave as a broadcast

 server.";

 }

 }

 description

 "Indicates NTP broadcast mode to use for the

 VPN network access.";

 }

 container auth-profile {

 description

 "Pointer to a local profile.";

 leaf profile-id {

 type string;

 description

 "A pointer to a local authentication

 profile on the VPN node is provided.";

 }

 }

 uses vpn-common:service-status;

 }

 container multicast {

 if-feature "vpn-common:multicast";

 description

 "Multicast parameters for the network

 access.";

 leaf access-type {

 type enumeration {

 enum receiver-only {

 description

 "The peer site only has receivers.";

 }

 enum source-only {

 description

 "The peer site only has sources.";

 }

 enum source-receiver {

 description

 "The peer site has both sources and

 receivers.";

 }

 }

 default "source-receiver";

 description

 "Type of multicast site.";

 }

 leaf address-family {

 type identityref {

 base vpn-common:address-family;

 }

 description

 "Indicates the address family.";

 }

 leaf protocol-type {

 type enumeration {

 enum host {

 description

 "Hosts are directly connected to the

 provider network.

 Host protocols such as IGMP or MLD are

 required.";

 }

 enum router {

 description

 "Hosts are behind a customer router.

 PIM will be implemented.";

 }

 enum both {

 description

 "Some hosts are behind a customer router,

 and some others are directly connected

 to the provider network. Both host and

 routing protocols must be used.

 Typically, IGMP and PIM will be

 implemented.";

 }

 }

 default "both";

 description

 "Multicast protocol type to be used with

 the customer site.";

 }

 leaf remote-source {

 type boolean;

 default "false";

 description

 "A remote multicast source is a source that is

 not on the same subnet as the

 vpn-network-access. When set to 'true', the

 multicast traffic from a remote source is

 accepted.";

 }

 container igmp {

 when "../protocol-type = 'host' and "

 + "../address-family = 'vpn-common:ipv4' or "

 + "'vpn-common:dual-stack'";

 if-feature "vpn-common:igmp";

 description

 "Includes IGMP-related parameters.";

 list static-group {

 key "group-addr";

 description

 "Multicast static source/group associated to

 IGMP session";

 leaf group-addr {

 type rt-types:ipv4-multicast-group-address;

 description

 "Multicast group IPv4 address.";

 }

 leaf source-addr {

 type rt-types:ipv4-multicast-source-address;

 description

 "Multicast source IPv4 address.";

 }

 }

 leaf max-groups {

 type uint32;

 description

 "Indicates the maximum number of groups.";

 }

 leaf max-entries {

 type uint32;

 description

 "Indicates the maximum number of IGMP

 entries.";

 }

 leaf max-group-sources {

 type uint32;

 description

 "The maximum number of group sources.";

 }

 leaf version {

 type identityref {

 base vpn-common:igmp-version;

 }

 default "vpn-common:igmpv2";

 description

 "Version of the IGMP.";

 }

 uses vpn-common:service-status;

 }

 container mld {

 when "../protocol-type = 'host' and "

 + "../address-family = 'vpn-common:ipv6' or "

 + "'vpn-common:dual-stack'";

 if-feature "vpn-common:mld";

 description

 "Includes MLD-related parameters.";

 list static-group {

 key "group-addr";

 description

 "Multicast static source/group associated to

 the MLD session";

 leaf group-addr {

 type rt-types:ipv6-multicast-group-address;

 description

 "Multicast group IPv6 address.";

 }

 leaf source-addr {

 type rt-types:ipv6-multicast-source-address;

 description

 "Multicast source IPv6 address.";

 }

 }

 leaf max-groups {

 type uint32;

 description

 "Indicates the maximum number of groups.";

 }

 leaf max-entries {

 type uint32;

 description

 "Indicates the maximum number of MLD

 entries.";

 }

 leaf max-group-sources {

 type uint32;

 description

 "The maximum number of group sources.";

 }

 leaf version {

 type identityref {

 base vpn-common:mld-version;

 }

 default "vpn-common:mldv2";

 description

 "Version of the MLD protocol.";

 }

 uses vpn-common:service-status;

 }

 container pim {

 when "../protocol-type = 'router'";

 if-feature "vpn-common:pim";

 description

 "Only applies when protocol type is PIM.";

 leaf hello-interval {

 type rt-types:timer-value-seconds16;

 default "30";

 description

 "PIM hello-messages interval. If set to

 'infinity' or 'not-set', no periodic

 Hello messages are sent.";

 reference

 "RFC 7761: Protocol Independent Multicast -

 Sparse Mode (PIM-SM): Protocol

 Specification (Revised),

 Section 4.11";

 }

 leaf dr-priority {

 type uint32;

 default "1";

 description

 "Indicates the preference in the DR election

 process. A larger value has a higher

 priority over a smaller value.";

 reference

 "RFC 7761: Protocol Independent Multicast -

 Sparse Mode (PIM-SM): Protocol

 Specification (Revised),

 Section 4.3.2";

 }

 uses vpn-common:service-status;

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

<CODE ENDS>

9. Security Considerations

The YANG module specified in this document defines schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF or

RESTCONF users to a preconfigured subset of all available NETCONF or

RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that

are writable/creatable/deletable (i.e., config true, which is the

default). These data nodes may be considered sensitive or vulnerable

in some network environments. Write operations (e.g., edit-config)

and delete operations to these data nodes without proper protection

or authentication can have a negative effect on network operations.

These are the subtrees and data nodes and their sensitivity/

vulnerability in the "ietf-l3vpn-ntw" module:

'vpn-profiles': This container includes a set of sensitive data

that influence how the L3VPN service is delivered. For example,

an attacker who has access to these data nodes may be able to

manipulate routing policies, QoS policies, or encryption

properties. These data nodes are defined with "nacm:default-deny-

write" tagging [I-D.ietf-opsawg-vpn-common].

'vpn-services': An attacker who is able to access network nodes

can undertake various attacks, such as deleting a running L3VPN

service, interrupting all the traffic of a client. In addition,

an attacker may modify the attributes of a running service (e.g.,

QoS, bandwidth, routing protocols, keying material), leading to

malfunctioning of the service and therefore to SLA violations. In

addition, an attacker could attempt to create an L3VPN service or

¶

¶

¶

¶

*

¶

*

add a new network access. In addition to using NACM to prevent

authorized access, such activity can be detected by adequately

monitoring and tracking network configuration changes.

Some readable data nodes in this YANG module may be considered

sensitive or vulnerable in some network environments. It is thus

important to control read access (e.g., via get, get-config, or

notification) to these data nodes. These are the subtrees and data

nodes and their sensitivity/vulnerability:

'customer-name' and 'ip-connection': An attacker can retrieve

privacy-related information which can be used to track a

customer. Disclosing such information may be considered as a

violation of the customer-provider trust relationship.

'keying-material': An attacker can retrieve the cryptographic

keys protecting the underlying VPN service (CE-PE routing, in

particular). These keys could be used to inject spoofed routing

advertisements.

Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'bfd') rely

upon [RFC8177] for authentication purposes. Therefore, this module

inherits the security considerations discussed in Section 5 of

[RFC8177]. Also, these data nodes support supplying explicit keys as

strings in ASCII format. The use of keys in hexadecimal string

format would afford greater key entropy with the same number of key-

string octets. However, such format is not included in this version

of the L3NM because it is not supported by the underlying device

modules (e.g., [RFC8695]).

As discussed in Section 7.6.3, the module supports MD5 to basically

accommodate the installed BGP base. MD5 suffers from the security

weaknesses discussed in Section 2 of [RFC6151] or Section 2.1 of

[RFC6952].

[RFC8633] describes best current practices to be considered in VPNs

making use of NTP. Moreover, a mechanism to provide cryptographic

security for NTP is specified in [RFC8915].

10. IANA Considerations

This document requests IANA to register the following URI in the

"ns" subregistry within the "IETF XML Registry" [RFC3688]:

¶

¶

*

¶

*

¶

¶

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

¶

[I-D.ietf-opsawg-vpn-common]

[ISO10589]

[RFC1112]

[RFC1195]

[RFC2080]

[RFC2119]

[RFC2236]

[RFC2453]

This document requests IANA to register the following YANG module in

the "YANG Module Names" subregistry [RFC6020] within the "YANG

Parameters" registry.

11. References

11.1. Normative References

Barguil, S., Dios, O. G. D., Boucadair,

M., and Q. Wu, "A Layer 2/3 VPN Common YANG Model", Work

in Progress, Internet-Draft, draft-ietf-opsawg-vpn-

common-11, 23 September 2021, <https://www.ietf.org/

archive/id/draft-ietf-opsawg-vpn-common-11.txt>.

ISO, "Intermediate System to Intermediate System intra-

domain routeing information exchange protocol for use in

conjunction with the protocol for providing the

connectionless-mode network service (ISO 8473)", 2002,

<International Standard 10589:2002, Second Edition>.

Deering, S., "Host extensions for IP multicasting", STD

5, RFC 1112, DOI 10.17487/RFC1112, August 1989, <https://

www.rfc-editor.org/info/rfc1112>.

Callon, R., "Use of OSI IS-IS for routing in TCP/IP and

dual environments", RFC 1195, DOI 10.17487/RFC1195,

December 1990, <https://www.rfc-editor.org/info/rfc1195>.

Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080,

DOI 10.17487/RFC2080, January 1997, <https://www.rfc-

editor.org/info/rfc2080>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fenner, W., "Internet Group Management Protocol, Version

2", RFC 2236, DOI 10.17487/RFC2236, November 1997,

<https://www.rfc-editor.org/info/rfc2236>.

Malkin, G., "RIP Version 2", STD 56, RFC 2453, DOI

10.17487/RFC2453, November 1998, <https://www.rfc-

editor.org/info/rfc2453>.

¶

 name: ietf-l3vpn-ntw

 namespace: urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw

 maintained by IANA: N

 prefix: l3nm

 reference: RFC XXXX

¶

https://www.ietf.org/archive/id/draft-ietf-opsawg-vpn-common-11.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-vpn-common-11.txt
https://datatracker.ietf.org/International%20Standard%2010589:2002,%20Second%20Edition
https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc1195
https://www.rfc-editor.org/info/rfc2080
https://www.rfc-editor.org/info/rfc2080
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2236
https://www.rfc-editor.org/info/rfc2453
https://www.rfc-editor.org/info/rfc2453

[RFC2710]

[RFC3376]

[RFC3688]

[RFC3810]

[RFC4271]

[RFC4364]

[RFC4552]

[RFC4577]

[RFC5308]

[RFC5701]

[RFC5709]

Deering, S., Fenner, W., and B. Haberman, "Multicast

Listener Discovery (MLD) for IPv6", RFC 2710, DOI

10.17487/RFC2710, October 1999, <https://www.rfc-

editor.org/info/rfc2710>.

Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.

Thyagarajan, "Internet Group Management Protocol, Version

3", RFC 3376, DOI 10.17487/RFC3376, October 2002,

<https://www.rfc-editor.org/info/rfc3376>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Vida, R., Ed. and L. Costa, Ed., "Multicast Listener

Discovery Version 2 (MLDv2) for IPv6", RFC 3810, DOI

10.17487/RFC3810, June 2004, <https://www.rfc-editor.org/

info/rfc3810>.

Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A

Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI

10.17487/RFC4271, January 2006, <https://www.rfc-

editor.org/info/rfc4271>.

Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private

Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364,

February 2006, <https://www.rfc-editor.org/info/rfc4364>.

Gupta, M. and N. Melam, "Authentication/Confidentiality

for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,

<https://www.rfc-editor.org/info/rfc4552>.

Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as

the Provider/Customer Edge Protocol for BGP/MPLS IP

Virtual Private Networks (VPNs)", RFC 4577, DOI 10.17487/

RFC4577, June 2006, <https://www.rfc-editor.org/info/

rfc4577>.

Hopps, C., "Routing IPv6 with IS-IS", RFC 5308, DOI

10.17487/RFC5308, October 2008, <https://www.rfc-

editor.org/info/rfc5308>.

Rekhter, Y., "IPv6 Address Specific BGP Extended

Community Attribute", RFC 5701, DOI 10.17487/RFC5701,

November 2009, <https://www.rfc-editor.org/info/rfc5701>.

Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,

Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic

https://www.rfc-editor.org/info/rfc2710
https://www.rfc-editor.org/info/rfc2710
https://www.rfc-editor.org/info/rfc3376
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3810
https://www.rfc-editor.org/info/rfc3810
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4364
https://www.rfc-editor.org/info/rfc4552
https://www.rfc-editor.org/info/rfc4577
https://www.rfc-editor.org/info/rfc4577
https://www.rfc-editor.org/info/rfc5308
https://www.rfc-editor.org/info/rfc5308
https://www.rfc-editor.org/info/rfc5701

[RFC5798]

[RFC5880]

[RFC5905]

[RFC5925]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6513]

[RFC6514]

[RFC6565]

Authentication", RFC 5709, DOI 10.17487/RFC5709, October

2009, <https://www.rfc-editor.org/info/rfc5709>.

Nadas, S., Ed., "Virtual Router Redundancy Protocol

(VRRP) Version 3 for IPv4 and IPv6", RFC 5798, DOI

10.17487/RFC5798, March 2010, <https://www.rfc-

editor.org/info/rfc5798>.

Katz, D. and D. Ward, "Bidirectional Forwarding Detection

(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,

<https://www.rfc-editor.org/info/rfc5880>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Touch, J., Mankin, A., and R. Bonica, "The TCP

Authentication Option", RFC 5925, DOI 10.17487/RFC5925,

June 2010, <https://www.rfc-editor.org/info/rfc5925>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/

BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February

2012, <https://www.rfc-editor.org/info/rfc6513>.

Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP

Encodings and Procedures for Multicast in MPLS/BGP IP

VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,

<https://www.rfc-editor.org/info/rfc6514>.

Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E.,

and M. Lundberg, "OSPFv3 as a Provider Edge to Customer

Edge (PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/

RFC6565, June 2012, <https://www.rfc-editor.org/info/

rfc6565>.

https://www.rfc-editor.org/info/rfc5709
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6513
https://www.rfc-editor.org/info/rfc6514
https://www.rfc-editor.org/info/rfc6565
https://www.rfc-editor.org/info/rfc6565

[RFC6991]

[RFC7166]

[RFC7474]

[RFC7761]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8177]

[RFC8294]

[RFC8341]

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Bhatia, M., Manral, V., and A. Lindem, "Supporting

Authentication Trailer for OSPFv3", RFC 7166, DOI

10.17487/RFC7166, March 2014, <https://www.rfc-

editor.org/info/rfc7166>.

Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,

"Security Extension for OSPFv2 When Using Manual Key

Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,

<https://www.rfc-editor.org/info/rfc7474>.

Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,

Parekh, R., Zhang, Z., and L. Zheng, "Protocol

Independent Multicast - Sparse Mode (PIM-SM): Protocol

Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/

RFC7761, March 2016, <https://www.rfc-editor.org/info/

rfc7761>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.

Zhang, "YANG Data Model for Key Chains", RFC 8177, DOI

10.17487/RFC8177, June 2017, <https://www.rfc-editor.org/

info/rfc8177>.

Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,

"Common YANG Data Types for the Routing Area", RFC 8294,

DOI 10.17487/RFC8294, December 2017, <https://www.rfc-

editor.org/info/rfc8294>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7166
https://www.rfc-editor.org/info/rfc7166
https://www.rfc-editor.org/info/rfc7474
https://www.rfc-editor.org/info/rfc7761
https://www.rfc-editor.org/info/rfc7761
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294

[RFC8343]

[RFC8446]

[RFC8466]

[RFC8519]

[I-D.evenwu-opsawg-yang-composed-vpn]

[I-D.ietf-bess-evpn-prefix-advertisement]

[I-D.ietf-idr-bgp-model]

[I-D.ietf-pim-yang]

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Bjorklund, M., "A YANG Data Model for Interface

Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,

<https://www.rfc-editor.org/info/rfc8343>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A

YANG Data Model for Layer 2 Virtual Private Network

(L2VPN) Service Delivery", RFC 8466, DOI 10.17487/

RFC8466, October 2018, <https://www.rfc-editor.org/info/

rfc8466>.

Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,

"YANG Data Model for Network Access Control Lists

(ACLs)", RFC 8519, DOI 10.17487/RFC8519, March 2019,

<https://www.rfc-editor.org/info/rfc8519>.

11.2. Informative References

Even, R., Wu, B., Wu, Q., and

YingCheng, "YANG Data Model for Composed VPN Service

Delivery", Work in Progress, Internet-Draft, draft-

evenwu-opsawg-yang-composed-vpn-03, 8 March 2019,

<https://www.ietf.org/archive/id/draft-evenwu-opsawg-

yang-composed-vpn-03.txt>.

Rabadan, J., Henderickx, W., Drake, J. E., Lin, W., and

A. Sajassi, "IP Prefix Advertisement in EVPN", Work in

Progress, Internet-Draft, draft-ietf-bess-evpn-prefix-

advertisement-11, 18 May 2018, <https://www.ietf.org/

archive/id/draft-ietf-bess-evpn-prefix-

advertisement-11.txt>.

Jethanandani, M., Patel, K., Hares, S.,

and J. Haas, "BGP YANG Model for Service Provider

Networks", Work in Progress, Internet-Draft, draft-ietf-

idr-bgp-model-11, 11 July 2021, <https://www.ietf.org/

archive/id/draft-ietf-idr-bgp-model-11.txt>.

Liu, X., McAllister, P., Peter, A., Sivakumar,

M., Liu, Y., and F. Hu, "A YANG Data Model for Protocol

Independent Multicast (PIM)", Work in Progress, Internet-

Draft, draft-ietf-pim-yang-17, 19 May 2018, <https://

www.ietf.org/archive/id/draft-ietf-pim-yang-17.txt>.

https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8466
https://www.rfc-editor.org/info/rfc8466
https://www.rfc-editor.org/info/rfc8519
https://www.ietf.org/archive/id/draft-evenwu-opsawg-yang-composed-vpn-03.txt
https://www.ietf.org/archive/id/draft-evenwu-opsawg-yang-composed-vpn-03.txt
https://www.ietf.org/archive/id/draft-ietf-bess-evpn-prefix-advertisement-11.txt
https://www.ietf.org/archive/id/draft-ietf-bess-evpn-prefix-advertisement-11.txt
https://www.ietf.org/archive/id/draft-ietf-bess-evpn-prefix-advertisement-11.txt
https://www.ietf.org/archive/id/draft-ietf-idr-bgp-model-11.txt
https://www.ietf.org/archive/id/draft-ietf-idr-bgp-model-11.txt
https://www.ietf.org/archive/id/draft-ietf-pim-yang-17.txt
https://www.ietf.org/archive/id/draft-ietf-pim-yang-17.txt

[I-D.ietf-rtgwg-qos-model]

[I-D.ietf-teas-enhanced-vpn]

[I-D.ietf-teas-ietf-network-slices]

[I-D.ogondio-opsawg-uni-topology]

[IEEE802.1AX]

[PYANG]

[RFC3618]

[RFC3644]

[RFC4026]

Choudhary, A., Jethanandani, M., Strahle,

N., Aries, E., and I. Chen, "A YANG Data Model for

Quality of Service (QoS)", Work in Progress, Internet-

Draft, draft-ietf-rtgwg-qos-model-04, 12 July 2021,

<https://www.ietf.org/archive/id/draft-ietf-rtgwg-qos-

model-04.txt>.

Dong, J., Bryant, S., Li, Z., Miyasaka,

T., and Y. Lee, "A Framework for Enhanced Virtual Private

Network (VPN+) Services", Work in Progress, Internet-

Draft, draft-ietf-teas-enhanced-vpn-08, 12 July 2021,

<https://www.ietf.org/archive/id/draft-ietf-teas-

enhanced-vpn-08.txt>.

Farrel, A., Gray, E., Drake, J., Rokui, R., Homma, S.,

Makhijani, K., Contreras, L. M., and J. Tantsura,

"Framework for IETF Network Slices", Work in Progress,

Internet-Draft, draft-ietf-teas-ietf-network-slices-04,

23 August 2021, <https://www.ietf.org/archive/id/draft-

ietf-teas-ietf-network-slices-04.txt>.

Dios, O. G. D., Barguil, S., Wu,

Q., and M. Boucadair, "A YANG Model for User-Network

Interface (UNI) Topologies", Work in Progress, Internet-

Draft, draft-ogondio-opsawg-uni-topology-01, 2 April

2020, <https://www.ietf.org/archive/id/draft-ogondio-

opsawg-uni-topology-01.txt>.

"Link Aggregation", IEEE Std 802.1AX-2020, 2020.

"pyang", November 2020, <https://github.com/mbj4668/

pyang>.

Fenner, B., Ed. and D. Meyer, Ed., "Multicast Source

Discovery Protocol (MSDP)", RFC 3618, DOI 10.17487/

RFC3618, October 2003, <https://www.rfc-editor.org/info/

rfc3618>.

Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.

Moore, "Policy Quality of Service (QoS) Information

Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,

<https://www.rfc-editor.org/info/rfc3644>.

Andersson, L. and T. Madsen, "Provider Provisioned

Virtual Private Network (VPN) Terminology", RFC 4026, DOI

10.17487/RFC4026, March 2005, <https://www.rfc-

editor.org/info/rfc4026>.

https://www.ietf.org/archive/id/draft-ietf-rtgwg-qos-model-04.txt
https://www.ietf.org/archive/id/draft-ietf-rtgwg-qos-model-04.txt
https://www.ietf.org/archive/id/draft-ietf-teas-enhanced-vpn-08.txt
https://www.ietf.org/archive/id/draft-ietf-teas-enhanced-vpn-08.txt
https://www.ietf.org/archive/id/draft-ietf-teas-ietf-network-slices-04.txt
https://www.ietf.org/archive/id/draft-ietf-teas-ietf-network-slices-04.txt
https://www.ietf.org/archive/id/draft-ogondio-opsawg-uni-topology-01.txt
https://www.ietf.org/archive/id/draft-ogondio-opsawg-uni-topology-01.txt
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://www.rfc-editor.org/info/rfc3618
https://www.rfc-editor.org/info/rfc3618
https://www.rfc-editor.org/info/rfc3644
https://www.rfc-editor.org/info/rfc4026
https://www.rfc-editor.org/info/rfc4026

[RFC4110]

[RFC4176]

[RFC4862]

[RFC6037]

[RFC6151]

[RFC6952]

[RFC7149]

[RFC7297]

[RFC7426]

Callon, R. and M. Suzuki, "A Framework for Layer 3

Provider-Provisioned Virtual Private Networks (PPVPNs)",

RFC 4110, DOI 10.17487/RFC4110, July 2005, <https://

www.rfc-editor.org/info/rfc4110>.

El Mghazli, Y., Ed., Nadeau, T., Boucadair, M., Chan, K.,

and A. Gonguet, "Framework for Layer 3 Virtual Private

Networks (L3VPN) Operations and Management", RFC 4176,

DOI 10.17487/RFC4176, October 2005, <https://www.rfc-

editor.org/info/rfc4176>.

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless

Address Autoconfiguration", RFC 4862, DOI 10.17487/

RFC4862, September 2007, <https://www.rfc-editor.org/

info/rfc4862>.

Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco

Systems' Solution for Multicast in BGP/MPLS IP VPNs", RFC

6037, DOI 10.17487/RFC6037, October 2010, <https://

www.rfc-editor.org/info/rfc6037>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/info/rfc6151>.

Jethanandani, M., Patel, K., and L. Zheng, "Analysis of

BGP, LDP, PCEP, and MSDP Issues According to the Keying

and Authentication for Routing Protocols (KARP) Design

Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,

<https://www.rfc-editor.org/info/rfc6952>.

Boucadair, M. and C. Jacquenet, "Software-Defined

Networking: A Perspective from within a Service Provider

Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,

<https://www.rfc-editor.org/info/rfc7149>.

Boucadair, M., Jacquenet, C., and N. Wang, "IP

Connectivity Provisioning Profile (CPP)", RFC 7297, DOI

10.17487/RFC7297, July 2014, <https://www.rfc-editor.org/

info/rfc7297>.

Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,

Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-

Defined Networking (SDN): Layers and Architecture

https://www.rfc-editor.org/info/rfc4110
https://www.rfc-editor.org/info/rfc4110
https://www.rfc-editor.org/info/rfc4176
https://www.rfc-editor.org/info/rfc4176
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc6037
https://www.rfc-editor.org/info/rfc6037
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6952
https://www.rfc-editor.org/info/rfc7149
https://www.rfc-editor.org/info/rfc7297
https://www.rfc-editor.org/info/rfc7297

[RFC7880]

[RFC7942]

[RFC8077]

[RFC8277]

[RFC8299]

[RFC8309]

[RFC8340]

[RFC8342]

[RFC8345]

[RFC8349]

Terminology", RFC 7426, DOI 10.17487/RFC7426, January

2015, <https://www.rfc-editor.org/info/rfc7426>.

Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S.

Pallagatti, "Seamless Bidirectional Forwarding Detection

(S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July 2016,

<https://www.rfc-editor.org/info/rfc7880>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and

Maintenance Using the Label Distribution Protocol (LDP)",

STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,

<https://www.rfc-editor.org/info/rfc8077>.

Rosen, E., "Using BGP to Bind MPLS Labels to Address

Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017,

<https://www.rfc-editor.org/info/rfc8277>.

Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,

"YANG Data Model for L3VPN Service Delivery", RFC 8299,

DOI 10.17487/RFC8299, January 2018, <https://www.rfc-

editor.org/info/rfc8299>.

Wu, Q., Liu, W., and A. Farrel, "Service Models

Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,

<https://www.rfc-editor.org/info/rfc8309>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Clemm, A., Medved, J., Varga, R., Bahadur, N.,

Ananthakrishnan, H., and X. Liu, "A YANG Data Model for

Network Topologies", RFC 8345, DOI 10.17487/RFC8345,

March 2018, <https://www.rfc-editor.org/info/rfc8345>.

Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for

Routing Management (NMDA Version)", RFC 8349, DOI

10.17487/RFC8349, March 2018, <https://www.rfc-

editor.org/info/rfc8349>.

https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc7880
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8077
https://www.rfc-editor.org/info/rfc8277
https://www.rfc-editor.org/info/rfc8299
https://www.rfc-editor.org/info/rfc8299
https://www.rfc-editor.org/info/rfc8309
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8345
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349

[RFC8453]

[RFC8512]

[RFC8633]

[RFC8695]

[RFC8915]

[RFC8969]

Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for

Abstraction and Control of TE Networks (ACTN)", RFC 8453,

DOI 10.17487/RFC8453, August 2018, <https://www.rfc-

editor.org/info/rfc8453>.

Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,

Vinapamula, S., and Q. Wu, "A YANG Module for Network

Address Translation (NAT) and Network Prefix Translation

(NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,

<https://www.rfc-editor.org/info/rfc8512>.

Reilly, D., Stenn, H., and D. Sibold, "Network Time

Protocol Best Current Practices", BCP 223, RFC 8633, DOI

10.17487/RFC8633, July 2019, <https://www.rfc-editor.org/

info/rfc8633>.

Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model

for the Routing Information Protocol (RIP)", RFC 8695,

DOI 10.17487/RFC8695, February 2020, <https://www.rfc-

editor.org/info/rfc8695>.

Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.

Sundblad, "Network Time Security for the Network Time

Protocol", RFC 8915, DOI 10.17487/RFC8915, September

2020, <https://www.rfc-editor.org/info/rfc8915>.

Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and

L. Geng, "A Framework for Automating Service and Network

Management with YANG", RFC 8969, DOI 10.17487/RFC8969,

January 2021, <https://www.rfc-editor.org/info/rfc8969>.

Appendix A. L3VPN Examples

A.1. 4G VPN Provisioning Example

L3VPNs are widely used to deploy 3G/4G, fixed, and enterprise

services mainly because several traffic discrimination policies can

be applied within the network to deliver to the mobile customers a

service that meets the SLA requirements.

As it is shown in the Figure 31, typically, an eNodeB (CE) is

directly connected to the access routers of the mobile backhaul and

their logical interfaces (one or many according to the service type)

are configured in a VPN that transports the packets to the mobile

core platforms. In this example, a 'vpn-node' is created with two

'vpn-network-accesses'.

¶

¶

https://www.rfc-editor.org/info/rfc8453
https://www.rfc-editor.org/info/rfc8453
https://www.rfc-editor.org/info/rfc8512
https://www.rfc-editor.org/info/rfc8633
https://www.rfc-editor.org/info/rfc8633
https://www.rfc-editor.org/info/rfc8695
https://www.rfc-editor.org/info/rfc8695
https://www.rfc-editor.org/info/rfc8915
https://www.rfc-editor.org/info/rfc8969

Figure 31: Mobile Backhaul Example

To create an L3VPN service using the L3NM, the following steps can

be followed.

First: Create the 4G VPN service (Figure 32).

 +-------------+ +------------------+

 | | | PE |

 | | | 198.51.100.1 |

 | eNodeB |>--------/------->|........... |

 | | vlan 1 | | |

 | |>--------/------->|...... | |

 | | vlan 2 | | | |

 | | Direct | +-------------+ |

 +-------------+ Routing | | vpn-node-id | |

 | | 44 | |

 | +-------------+ |

 | |

 +------------------+

¶

¶

Figure 32: Create VPN Service

Second: Create a VPN node as depicted in Figure 33. In this type of

service, the VPN node is equivalent to the VRF configured in the

physical device ('ne-id'=198.51.100.1).

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/vpn-services

Host: example.com

Content-Type: application/yang-data+json

{

 "ietf-l3vpn-ntw:vpn-services": {

 "vpn-service": [

 {

 "vpn-id": "4G",

 "customer-name": "mycustomer",

 "vpn-service-topology": "custom",

 "description": "VPN to deploy 4G services",

 "vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "simple-profile",

 "local-as": 65550,

 "rd": "0:65550:1",

 "address-family": [

 {

 "address-family": "vpn-common:dual-stack",

 "vpn-targets": {

 "vpn-target": [

 {

 "id": "1",

 "route-targets": [

 "0:65550:1"

],

 "route-target-type": "both"

 }

]

 }

 }

]

 }

]

 }

 }

]

 }

}

¶

Figure 33: Create VPN Node

Finally, two VPN network accesses are created using the same

physical port ('interface-id'=1/1/1). Each 'vpn-network-access' has

a particular VLAN (1,2) to differentiate the traffic between: Sync

and data (Figure 34).

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\

 vpn-services/vpn-service=4G

Host: example.com

Content-Type: application/yang-data+json

{

 "ietf-l3vpn-ntw:vpn-nodes": {

 "vpn-node": [

 {

 "vpn-node-id": "44",

 "ne-id": "198.51.100.1",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "simple-profile"

 }

]

 }

 }

]

 }

}

¶

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\

 vpn-services/vpn-service=4G/vpn-nodes/vpn-node=44

content-type: application/yang-data+json

{

 "ietf-l3vpn-ntw:vpn-network-accesses": {

 "vpn-network-access": [

 {

 "id": "1/1/1.1",

 "interface-id": "1/1/1",

 "description": "Interface SYNC to eNODE-B",

 "vpn-network-access-type": "vpn-common:point-to-point",

 "vpn-instance-profile": "simple-profile",

 "status": {

 "admin-status": {

 "status": "vpn-common:admin-state-up"

 }

 },

 "connection": {

 "encapsulation": {

 "type": "dot1q",

 "dot1q": {

 "cvlan-id": 1

 }

 }

 },

 "ip-connection": {

 "ipv4": {

 "local-address": "192.0.2.1",

 "prefix-length": 30,

 "address-allocation-type": "static-address",

 "static-addresses": {

 "primary-address": "1",

 "address": [

 {

 "address-id": "1",

 "customer-address": "192.0.2.2"

 }

]

 }

 },

 "ipv6": {

 "local-address": "2001:db8::1",

 "prefix-length": 64,

 "address-allocation-type": "static-address",

 "primary-address": "1",

 "address": [

 {

 "address-id": "1",

 "customer-address": "2001:db8::2"

 }

]

 }

 },

 "routing-protocols": {

 "routing-protocol": [

 {

 "id": "1",

 "type": "vpn-common:direct"

 }

]

 }

 },

 {

 "id": "1/1/1.2",

 "interface-id": "1/1/1",

 "description": "Interface DATA to eNODE-B",

 "vpn-network-access-type": "vpn-common:point-to-point",

 "vpn-instance-profile": "simple-profile",

 "status": {

 "admin-status": {

 "status": "vpn-common:admin-state-up"

 }

 },

 "connection": {

 "encapsulation": {

 "type": "dot1q",

 "dot1q": {

 "cvlan-id": 2

 }

 }

 },

 "ip-connection": {

 "ipv4": {

 "local-address": "192.0.2.1",

 "prefix-length": 30,

 "address-allocation-type": "static-address",

 "static-addresses": {

 "primary-address": "1",

 "address": [

 {

 "address-id": "1",

 "customer-address": "192.0.2.2"

 }

]

 }

 },

 "ipv6": {

 "local-address": "2001:db8::1",

 "prefix-length": 64,

 "address-allocation-type": "static-address",

 "primary-address": "1",

 "address": [

 {

 "address-id": "1",

 "customer-address": "2001:db8::2"

 }

]

 }

 },

 "routing-protocols": {

 "routing-protocol": [

 {

 "id": "1",

 "type": "vpn-common:direct"

 }

]

 }

 }

]

 }

}

Figure 34: Create VPN Network Access

A.2. Loopback Interface

An example of loopback interface is depicted in Figure 35.

Figure 35: VPN Network Access with a Loopback Interface (Message Body)

A.3. Overriding VPN Instance Profile Parameters

Figure 36 shows a simplified example to illustrate how some

information that is provided at the VPN service level (particularly

as part of the 'vpn-instance-profiles') can be overridden by the one

configured at the VPN node level. In this example, PE3 and PE4

inherit the 'vpn-instance-profiles' parameters that are specified at

the VPN service level, but PE1 and PE2 are provided with "maximum-

routes" values at the VPN node level that override the ones that are

specified at the VPN service level.

¶

{

 "ietf-l3vpn-ntw:vpn-network-accesses": {

 "vpn-network-access": [

 {

 "id": "vpn-access-loopback",

 "interface-id": "Loopback1",

 "description": "An example of loopback interface.",

 "vpn-network-access-type": "vpn-common:loopback",

 "status": {

 "admin-status": {

 "status": "vpn-common:admin-state-up"

 }

 },

 "ip-connection": {

 "ipv6": {

 "local-address": "2001:db8::4",

 "prefix-length": 128

 }

 }

 }

]

 }

}

¶

{

 "ietf-l3vpn-ntw:vpn-services": {

 "vpn-service": [

 {

 "vpn-id": "override-example",

 "vpn-service-topology": "vpn-common:hub-spoke",

 "vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "HUB",

 "role": "vpn-common:hub-role",

 "local-as": 64510,

 "rd-suffix": 1001,

 "address-family": [

 {

 "address-family": "vpn-common:dual-stack",

 "maximum-routes": [

 {

 "protocol": "vpn-common:any",

 "maximum-routes": 100

 }

]

 }

]

 },

 {

 "profile-id": "SPOKE",

 "role": "vpn-common:spoke-role",

 "local-as": 64510,

 "address-family": [

 {

 "address-family": "vpn-common:dual-stack",

 "maximum-routes": [

 {

 "protocol": "vpn-common:any",

 "maximum-routes": 1000

 }

]

 }

]

 }

]

 },

 "vpn-nodes": {

 "vpn-node": [

 {

 "vpn-node-id": "PE1",

 "ne-id": "pe1",

 "router-id": "198.51.100.1",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "HUB",

 "rd": "1:198.51.100.1:1001",

 "address-family": [

 {

 "address-family": "vpn-common:dual-stack",

 "maximum-routes": [

 {

 "protocol": "vpn-common:any",

 "maximum-routes": 10

 }

]

 }

]

 }

]

 }

 },

 {

 "vpn-node-id": "PE2",

 "ne-id": "pe2",

 "router-id": "198.51.100.2",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "SPOKE",

 "address-family": [

 {

 "address-family": "vpn-common:dual-stack",

 "maximum-routes": [

 {

 "protocol": "vpn-common:any",

 "maximum-routes": 100

 }

]

 }

]

 }

]

 }

 },

 {

 "vpn-node-id": "PE3",

 "ne-id": "pe3",

 "router-id": "198.51.100.3",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "SPOKE"

 }

]

 }

 },

 {

 "vpn-node-id": "PE4",

 "ne-id": "pe4",

 "router-id": "198.51.100.4",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "SPOKE"

 }

]

 }

 }

]

 }

 }

]

 }

}

Figure 36: VPN Instance Profile Example (Message Body)

A.4. Multicast VPN Provisioning Example

IPTV is mainly distributed through multicast over the LANs. In the

following example, PIM-SM is enabled and functional between the PE

and the CE. The PE receives multicast traffic from a CE that is

directly connected to the multicast source. The signaling between PE

and CE is achieved using BGP. Also, RP is statically configured for

a multicast group.

Figure 37: Multicast L3VPN Service Example

An example is provided below to illustrate how to configure a

multicast L3VPN service using the L3NM.

First, the multicast service is created together with a generic VPN

instance profile (see the excerpt of the request message body shown

in Figure 38)

¶

 +-----------+ +------+ +------+ +-----------+

 | Multicast |---| CE |--/--| PE |----| Backbone |

 | source | +------+ +------+ | IP/MPLS |

 +-----------+ +-----------+

¶

¶

Figure 38: Create Multicast VPN Service (Excerpt of the Message Request

Body)

{

 "ietf-l3vpn-ntw:vpn-services": {

 "vpn-service": [

 {

 "vpn-id": "Multicast-IPTV",

 "vpn-description": "Multicast IPTV VPN service",

 "customer-name": "a-name",

 "vpn-service-topology": "vpn-common:hub-spoke",

 "vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "multicast",

 "role": "ietf-vpn-common:hub-role",

 "local-as": 65536,

 "multicast": {

 "rp": {

 "rp-group-mappings": {

 "rp-group-mapping": [

 {

 "id": "1",

 "rp-address": "203.0.113.17",

 "groups": {

 "group": [

 {

 "id": "1",

 "group-address": "239.130.0.0/15"

 }

]

 }

 }

]

 },

 "rp-discovery": {

 "rp-discovery-type": "vpn-common:static-rp"

 }

 }

 }

 }

]

 }

 }

]

 }

}

Then, the VPN nodes are created (see the excerpt of the request

message body shown in Figure 39). In this example, the VPN node will

represent VRF configured in the physical device.

Figure 39: Create Multicast VPN Node (Excerpt of the Message Request

Body)

Finally, create the VPN network access with multicast enabled (see

the excerpt of the request message body shown in Figure 40).

¶

{

 "ietf-l3vpn-ntw:vpn-node": [

 {

 "vpn-node-id": "500003105",

 "description": "VRF-IPTV-MULTICAST",

 "ne-id": "198.51.100.10",

 "router-id": "198.51.100.10",

 "active-vpn-instance-profiles": {

 "vpn-instance-profile": [

 {

 "profile-id": "multicast",

 "rd": "65536:31050202"

 }

]

 }

 }

]

}

¶

{

 "ietf-l3vpn-ntw:vpn-network-access": {

 "id": "1/1/1",

 "description": "Connected-to-source",

 "vpn-network-access-type": "vpn-common:point-to-point",

 "vpn-instance-profile": "multicast",

 "status": {

 "admin-status": {

 "status": "vpn-common:admin-state-up"

 },

 "ip-connection": {

 "ipv4": {

 "local-address": "203.0.113.1",

 "prefix-length": 30,

 "address-allocation-type": "static-address",

 "static-addresses": {

 "primary-address": "1",

 "address": [

 {

 "address-id": "1",

 "customer-address": "203.0.113.2"

 }

]

 }

 }

 },

 "routing-protocols": {

 "routing-protocol": [

 {

 "id": "1",

 "type": "vpn-common:bgp-routing",

 "bgp": {

 "description": "Connected to CE",

 "peer-as": "65537",

 "address-family": "vpn-common:ipv4",

 "neighbor": "203.0.113.2"

 }

 }

]

 },

 "service": {

 "inbound-bandwidth": "100000000",

 "outbound-bandwidth": "100000000",

 "mtu": 1500,

 "multicast": {

 "access-type": "source-only",

 "address-family": "vpn-common:ipv4",

 "protocol-type": "router",

 "pim": {

 "hello-interval": 30,

 "status": {

 "admin-status": {

 "status": "vpn-common:admin-state-up"

 }

 }

 }

 }

 }

 }

 }

}

Figure 40: Create VPN Network Access (Excerpt of the Message Request

Body)

Appendix B. Implementation Status

This section records the status of known implementations of the YANG

module defined by this specification at the time of posting of this

document and is based on a proposal described in [RFC7942]. The

description of implementations in this section is intended to assist

the IETF in its decision processes in progressing drafts to RFCs.

Please note that the listing of any individual implementation here

does not imply endorsement by the IETF. Furthermore, no effort has

been spent to verify the information presented here that was

supplied by IETF contributors. This is not intended as, and must not

be construed to be, a catalog of available implementations or their

features. Readers are advised to note that other implementations may

exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

Note to the RFC Editor: As per [RFC7942] guidelines, please remove

this Implementation Status apendix prior publication.

B.1. Nokia Implementation

Details can be found at: https://github.com/IETF-OPSAWG-WG/l3nm/

blob/master/Implementattion/Nokia.txt

B.2. Huawei Implementation

Details can be found at: https://github.com/IETF-OPSAWG-WG/l3nm/

blob/master/Implementattion/Huawei.txt

B.3. Infinera Implementation

Details can be found at: https://github.com/IETF-OPSAWG-WG/l3nm/

blob/master/Implementattion/Infinera.txt

B.4. Ribbon-ECI Implementation

Details can be found at: https://github.com/IETF-OPSAWG-WG/l3nm/

blob/master/Implementattion/Ribbon-ECI.txt

¶

¶

¶

¶

¶

¶

¶

B.5. Juniper Implementation

https://github.com/IETF-OPSAWG-WG/lxnm/blob/master/Implementattion/

Juniper

Acknowledgements

During the discussions of this work, helpful comments, suggestions,

and reviews were received from (listed alphabetically): Raul Arco,

Miguel Cros Cecilia, Joe Clarke, Dhruv Dhody, Adrian Farrel, Roque

Gagliano, Christian Jacquenet, Kireeti Kompella, Julian Lucek, Greg

Mirsky, and Tom Petch. Many thanks to them. Thanks to Philip Eardly

for the review of an early version of the document.

Daniel King, Daniel Voyer, Luay Jalil, and Stephane Litkowski

contributed to early version of the individual submission. Many

thanks to Robert Wilton for the AD review. Thanks to Andrew Malis

for the routing directorate review, Rifaat Shekh-Yusef for the

security directorate review, Qin Wu for the opsdir review, and Pete

Resnick for the genart directorate review. Thanks to Michael Scharf

for the discussion on TCP-AO. Thanks to Martin Duke, Lars Eagert,

Zaheduzzaman Sarker, Roman Danyliw, Erik Kline, and Benjamin Kaduk

for the IESG review.

This work was supported in part by the European Commission funded

H2020-ICT-2016-2 METRO-HAUL project (G.A. 761727) and Horizon 2020

Secured autonomic traffic management for a Tera of SDN flows

(Teraflow) project (G.A. 101015857).

¶

¶

¶

¶

Contributors

Authors' Addresses

Samier Barguil

Telefonica

Madrid

Spain

Email: samier.barguilgiraldo.ext@telefonica.com

Oscar Gonzalez de Dios (editor)

Telefonica

Madrid

Spain

Email: oscar.gonzalezdedios@telefonica.com

Mohamed Boucadair (editor)

Orange

Rennes 35000

France

Email: mohamed.boucadair@orange.com

Luis Angel Munoz

Victor Lopez

Telefonica

Email: victor.lopezalvarez@telefonica.com

Qin Wu

Huawei

Email: bill.wu@huawei.com>

Manuel Julian

Vodafone

Email: manuel-julian.lopez@vodafone.com

Lucia Oliva Ballega

Telefonica

Email: lucia.olivaballega.ext@telefonica.com

Erez Segev

ECI Telecom

Email: erez.segev@ecitele.com>

Paul Sherratt

Gamma Telecom

Email: paul.sherratt@gamma.co.uk

¶

mailto:samier.barguilgiraldo.ext@telefonica.com
mailto:oscar.gonzalezdedios@telefonica.com
mailto:mohamed.boucadair@orange.com

Vodafone

Spain

Email: luis-angel.munoz@vodafone.com

Alejandro Aguado

Nokia

Madrid

Spain

Email: alejandro.aguado_martin@nokia.com

mailto:luis-angel.munoz@vodafone.com
mailto:alejandro.aguado_martin@nokia.com

	A Layer 3 VPN Network YANG Model
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Acronyms
	4. L3NM Reference Architecture
	5. Relation with other YANG Models
	6. Sample Uses of the L3NM Data Model
	6.1. Enterprise Layer 3 VPN Services
	6.2. Multi-Domain Resource Management
	6.3. Management of Multicast Services

	7. Description of the L3NM YANG Module
	7.1. Overall Structure of the Module
	7.2. VPN Profiles
	7.3. VPN Services
	7.4. VPN Instance Profiles
	7.5. VPN Nodes
	7.6. VPN Network Accesses
	7.6.1. Connection
	7.6.2. IP Connection
	7.6.3. CE-PE Routing Protocols
	7.6.3.1. Static Routing
	7.6.3.2. BGP
	7.6.3.3. OSPF
	7.6.3.4. IS-IS
	7.6.3.5. RIP
	7.6.3.6. VRRP

	7.6.4. OAM
	7.6.5. Security
	7.6.6. Services
	7.6.6.1. Overview
	7.6.6.2. QoS

	7.7. Multicast

	8. L3NM YANG Module
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. L3VPN Examples
	A.1. 4G VPN Provisioning Example
	A.2. Loopback Interface
	A.3. Overriding VPN Instance Profile Parameters
	A.4. Multicast VPN Provisioning Example

	Appendix B. Implementation Status
	B.1. Nokia Implementation
	B.2. Huawei Implementation
	B.3. Infinera Implementation
	B.4. Ribbon-ECI Implementation
	B.5. Juniper Implementation

	Acknowledgements
	Contributors
	Authors' Addresses

