Network Working Group E. Lear

Internet-Draft Cisco Systems

Intended status: Standards Track R. Droms
Expires: March 24, 2018

D. Romascanu

September 20, 2017

Manufacturer Usage Description Specification
draft-ietf-opsawg-mud-11

Abstract

This memo specifies a component-based architecture for manufacturer
usage descriptions (MUD). The goal of MUD is to provide a means for
Things to signal to the network what sort of access and network
functionality they require to properly function. The initial focus
is on access control. Later work can delve into other aspects.

This memo specifies two YANG modules, IPv4 and IPv6 DHCP options, an
LLDP TLV, a URL suffix specification, an X.509 certificate extension
and a means to sign and verify the descriptions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 24, 2018.
Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

Lear, et al. Expires March 24, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft

publication of this document.

Manufacturer Usage Descriptions

Please review these documents

September 2017

carefully, as they describe your rights and restrictions with respect

to this document.

described in the Simplified BSD License.

Table of Contents

1. Introduction .
What MUD doesn't do

to-device-policy and from dev1ce pollcy containers

1.1
1.2. A Simple Example
1.3. Determining Intended Use
1.4 Finding A Policy: The MUD URL
1.5. Types of Policies
1.6. Terminology . .
1.7. The Manufacturer Usage Descrlptlon Archltecture
1.8. Order of operations .o
2. The MUD Model and Semantic Meaning
2.1. The IETF-MUD YANG Module
3 Data Node Definitions
3.1.
3.2. last-update
3.3. cache-validity
3.4. masa-server
3.5. 1is-supported
3.6. systeminfo
3.7. extensions
3.8. manufacturer
3.9. same-manufacturer
3.10. model
3.11. local-networks
3.12. controller
3.13. my-controller
3.14. direction-initiated
4. Processing of the MUD file
5. What does a MUD URL look like?
6. The MUD YANG Model . .
7. The Domain Name Extension to the ACL Model
7.1 source-dnsname
7.2 destination-dnsname
7.3. The ietf-acldns Model
8. MUD File Example
9. The MUD URL DHCP Option
9.1. Client Behavior
9.2. Server Behavior
9.3. Relay Requirements

10. The Manufacturer Usage Descrlptlon (MUD) URL X.509 Extension

Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

seBRRNERBEEREREEEEEEEREREEEEEBERERE ® w00 im e s w

Lear, et al. Expires March 24, 2018 [Page 2]

Internet-Draft Manufacturer Usage Descriptions September 20

(=

[N

1. The Manufacturer Usage Description LLDP extension
Creating and Processing of Signed MUD Files
12.1. Creating a MUD file signature
12.2. Verifying a MUD file signature
Extensibility
Deployment Con31derat10ns
Security Considerations
IANA Considerations .
16.1. YANG Module Reglstratlons
16.2. DHCPv4 and DHCPv6 Options
16.3. PKIX Extensions .
16.4. Well Known URI Suffix
16.5. MIME Media-type Registration for MUD flles
16.6. LLDP IANA TLV Subtype Registry . :
16.7. The MUD Well Known Universal Resource Name (URNs)
16.8. Extensions Registry
17. Acknowledgments
18. References
18.1. Normative References
18.2. Informative References .
Appendix A. Changes from Earlier Versions
Appendix B. Default MUD nodes e e e
Appendix C. A Sample Extension: DETNET-indicator
Authors' Addresses

N
5

[[G [E Tt
5 & = _m

Introduction

The Internet has largely been constructed on general purpose
computers; those devices that may be used for a purpose that is
specified by those who buy the device. [RFC1984] presumed that an
end device would be most capable of protecting itself. This made
sense when the typical device was a workstation or a mainframe, and
it continues to make sense for general purpose computing devices
today, including laptops, smart phones, and tablets.

[RFC7452] discusses design patterns for, and poses questions about,
smart objects. Let us then posit a group of objects that are
specifically NOT general purpose computers. These devices have a
purpose to their use. By definition, therefore, all other purposes
are NOT intended. The combination of these two statements can be
restated as a manufacturer usage description (MUD) that can be
applied at various points within a network. Although this memo may
seem to stress access requirements, usage intent also consists of
quality of service needs a device may have.

We use the notion of "manufacturer" loosely in this context, to
simply mean the entity or organization that will state how a device
is intended to be used. 1In the context of a lightbulb, this might

17

|| DWW [WIWW[WI[W[W|W|WWw|w|Ww W w|w |w
LEEEREERBEBEEBLLILEIEEREEKRIIKE

https://datatracker.ietf.org/doc/html/rfc1984

Lear, et al. Expires March 24, 2018 [Page 3]

Internet-Draft Manufacturer Usage Descriptions September 2017

indeed be the lightbulb manufacturer. 1In the context of a smarter
device that has a built in Linux stack, it might be an integrator of
that device. The key points are that the device itself is expected
to serve a limited purpose, and that there may exist an organization
in the supply chain of that device that will take responsibility for
informing the network about that purpose.

The intent MUD is to solve for the following problems:

0 Substantially reduce the threat surface on a device entering a
network to those communications intended by the manufacturer.

o Provide for a means to scale network policies to the ever-
increasing number types of devices in the network.

0 Provide a means to address at least some vulnerabilities in a way
that is faster than it might take to update systems. This will be
particularly true for systems that are no longer supported by
their manufacturer.

0 Keep the cost of implementation of such a system to the bare
minimum.

MUD consists of three architectural building blocks:

0 A classifier that a device emits that can be used to locate a
description;

0 The description itself, including how it is interpreted, and;

o A means for local network management systems to retrieve the
description.

In this specification we describe each of these building blocks and
how they are intended to be used together. However, they may also be
used separately, independent of this specification by local
deployments for their own purposes.

1.1. What MUD doesn't do

MUD is not intended to address network authorization of general
purpose computers, as their manufacturers cannot envision a specific
communication pattern to describe. 1In addition, even those devices
that have a single or small number of uses might have very broad
communication patterns. MUD on its own is not for them either.

No matter how good a MUD-enabled network is, it will never replace
the need for manufacturers to patch vulnerabilities. It may,

Lear, et al. Expires March 24, 2018 [Page 4]

Internet-Draft Manufacturer Usage Descriptions September 2017

however, provide network administrators with some additional
protection when those vulnerabilities exist.

Finally, no matter what the manufacturer specifies in a MUD file,
these are not directives, but suggestions. How they are instantiated
locally will depend on many factors, and is ultimately up to the
local network administrator.

1.2. A Simple Example

A light bulb is intended to light a room. It may be remotely
controlled through the network; and it may make use of a rendezvous
service of some form that an app on smart phone accesses. What we
can say about that light bulb, then, is that all other network access
is unwanted. It will not contact a news service, nor speak to the
refrigerator, and it has no need of a printer or other devices. It
has no social networking friends. Therefore, an access list applied
to it that states that it will only connect to the single rendezvous
service will not impede the light bulb in performing its function,
while at the same time allowing the network to provide both it and
other devices an additional layer of protection.

1.3. Determining Intended Use

The notion of intended use is in itself not new. Network
administrators apply access lists every day to allow for only such
use. This notion of white listing was well described by Chapman and
Zwicky in [FwW95]. Profiling systems that make use of heuristics to
identify types of systems have existed for years as well.

A Thing could just as easily tell the network what sort of protection
it requires without going into what sort of system it is. This
would, in effect, be the converse of [RFC7488]. 1In seeking a general
purpose solution, however, we assume that a device has so few
capabilities that it will implement the least necessary capabilities
to function properly. This is a basic economic constraint. Unless
the network would refuse access to such a device, its developers
would have no reason to provide the network any information. To
date, such an assertion has held true.

1.4. Finding A Policy: The MUD URL

Our work begins with the device emitting a Universal Resource Locator
(URL) [RFC3986]. This URL serves both to classify the device type
and to provide a means to locate a policy file.

In this memo three means are defined to emit the MUD URL. One is a
DHCP option[RFC2131], [RFC3315] that the DHCP client uses to inform

https://datatracker.ietf.org/doc/html/rfc7488
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3315

Lear, et al. Expires March 24, 2018 [Page 5]

Internet-Draft Manufacturer Usage Descriptions September 2017

the DHCP server. The DHCP server may take further actions, such as
retrieve the URL or otherwise pass it along to network management
system or controller. The second method defined is an X.509
constraint. The IEEE has developed [IEEE8021AR] that provides a
certificate-based approach to communicate device characteristics,
which itself relies on [RFC5280]. The MUD URL extension is non-
critical, as required by IEEE 802.1AR. Various means may be used to
communicate that certificate, including Tunnel Extensible
Authentication Protocol (TEAP) [REC7170]. Finally, a Link Layer
Discovery Protocol (LLDP) frame is defined [IEEE8021AB].

It is possible that there may be other means for a MUD URL to be
learned by a network. For instance, some devices may already be
fielded or have very limited ability to communicate a MUD URL, and
yet can be identified through some means, such as a serial number or
a public key. 1In these cases, manufacturers may be able to map those
identifies to particular MUD URLs (or even the files themselves).
Similarly, there may be alternative resolution mechanisms available
for situations where Internet connectivity is limited or does not
exist. Such mechanisms are not described in this memo, but are
possible. Implementors should allow for this sort of flexibility of
how MUD URLs may be learned.

1.5. Types of Policies

When the MUD URL is resolved, the MUD controller retrieves a file
that describes what sort of communications a device is designed to
have. The manufacturer may specify either specific hosts for cloud
based services or certain classes for access within an operational
network. An example of a class might be "devices of a specified
manufacturer type", where the manufacturer type itself is indicated
simply by the authority component (e.g, the domain name) of the MUD
URL. Another example might be to allow or disallow local access.
Just like other policies, these may be combined. For example:

Allow access to devices of the same manufacturer
Allow access to and from controllers via COAP
Allow access to local DNS/DHCP

Deny all other access

To add a bit more depth that should not be a stretch of anyone's
imagination, one could also make use of port-based access lists.
Thus a printer might have a description that states:

Allow access for port IPP or port LPD
Allow local access for port HTTP
Deny all other access

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7170

Lear, et al. Expires March 24, 2018 [Page 6]

Internet-Draft Manufacturer Usage Descriptions September 2017

In this way anyone can print to the printer, but local access would
be required for the management interface.

The files that are retrieved are intended to be closely aligned to
existing network architectures so that they are easy to deploy. We
make use of YANG [RFC6020] because of the time and effort spent to
develop accurate and adequate models for use by network devices.
JSON is used as a serialization for compactness and readability,
relative to XML. Other formats may be chosen with later versions of
MUD.

While the policy examples given here focus on access control, this is
not intended to be the sole focus. By structuring the model
described in this document with clear extension points, so that other
descriptions could be included. One that often comes to mind is
quality of service.

The YANG modules specified here are extensions of
[I-D.ietf-netmod-acl-model]. The extensions to this model allow for
a manufacturer to express classes of systems that a manufacturer
would find necessary for the proper function of the device. Two
modules are specified. The first module specifies a means for domain
names to be used in ACLs so that devices that have their controllers
in the cloud may be appropriately authorized with domain names, where
the mapping of those names to addresses may rapidly change.

The other module abstracts away IP addresses into certain classes
that are instantiated into actual IP addresses through local
processing. Through these classes, manufacturers can specify how the
device is designed to communicate, so that network elements can be
configured by local systems that have local topological knowledge.
That is, the deployment populates the classes that the manufacturer
specifies. The abstractions below map to zero or more hosts, as
follows:

Manufacturer: A device made by a particular manufacturer, as
identified by the authority component of its MUD-URL

same-manufacturer: Devices that have the same authority component of
their MUD-URL.

Controller: Devices that the local network administrator admits to
the particular class.

my-controller: Devices associated with the MUD-URL of a device that
the administrator admits.

https://datatracker.ietf.org/doc/html/rfc6020

Lear, et al. Expires March 24, 2018 [Page 7]

Internet-Draft Manufacturer Usage Descriptions September 2017

local: The class of IP addresses that are scoped within some
administrative boundary. By default it is suggested that this be
the local subnet.

The "manufacturer" classes can be easily specified by the
manufacturer, whereas controller classes are initially envisioned to
be specified by the administrator.

Because manufacturers do not know who will be using their devices, it
is important for functionality referenced in usage descriptions to be
relatively ubiquitous, and mature. For these reasons only a limited

subset YANG-based configuration of is permitted in a MUD file.

1.6. Terminology
MUD: manufacturer usage description.

MUD file: a file containing YANG-based JSON that describes a Thing
and associated suggested specific network behavior.

MUD file server: a web server that hosts a MUD file.

MUD controller: the system that requests and receives the MUD file
from the MUD server. After it has processed a MUD file it may
direct changes to relevant network elements.

MUD URL: a URL that can be used by the MUD controller to receive the
MUD file.

Thing: the device emitting a MUD URL.

Manufacturer: the entity that configures the Thing to emit the MUD
URL and the one who asserts a recommendation in a MUD file. The
manufacturer might not always be the entity that constructs a
Thing. It could, for instance, be a systems integrator, or even a
component provider.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

1.7. The Manufacturer Usage Description Architecture

With these components laid out we now have the basis for an
archicture. This leads us to ASCII art.

https://datatracker.ietf.org/doc/html/rfc2119

Lear, et al. Expires March 24, 2018 [Page 8]

Internet-Draft Manufacturer Usage Descriptions September 2017

: I
-->get URL-->| MUD

.(https) | File Server
<-MUD file<-<|

MUD
Controller

End system network

| | (dhcp et al) | router
.| Thing |[---->MUD URL-->| or
| | switch

Figure 1: MUD Architecture

In the above diagram, the switch or router collects MUD URLs and
forwards them to the network management system for processing. This
happens in different ways, depending on how the URL is communicated.
For instance, in the case of DHCP, the DHCP server might receive the
URL and then process it. 1In the case of IEEE 802.1X, the switch
would carry the URL via a certificate to the authentication server
via EAP over Radius[RFC3748], which would then process it. One
method to do this is TEAP, described in [REC7170]. The certificate
extension is described below.

The information returned by the web site is valid for the duration of
the Thing's connection, or as specified in the description. Thus if
the Thing is disconnected, any associated configuration in the switch
can be removed. Similarly, from time to time the description may be
refreshed, based on new capabilities or communication patterns or
vulnerabilities.

The web site is typically run by or on behalf of the manufacturer.
Its domain name is that of the authority found in the MUD URL. For
legacy cases where Things cannot emit a URL, if the switch is able to
determine the appropriate URL, it may proxy it, the trivial cases
being a map between some registered Thing or port and a URL.

The role of the MUD controller in this environment is to do the
following:

0 receive MUD URLsS,

o retrieve MUD files,

https://datatracker.ietf.org/doc/html/rfc7170

Lear, et al. Expires March 24, 2018 [Page 9]

Internet-Draft Manufacturer Usage Descriptions September 2017

N

o translate abstractions in the MUD files to specific Thing
configuration,

o maintain and update any required mappings of the abstractions, and
0 update network elements with appropriate configuration.
A MUD controller may be a component of a AAA or network management

system. Communication within those systems and from those systems to
network elements is beyond the scope of this memo.

.8. Order of operations

As mentioned above, MUD contains architectural building blocks, and
so order of operation may vary. However, here is one clear intended
example:

1. Thing emits URL.

2. That URL is forwarded to a MUD controller by the nearest switch
(how this happens depends on the way in which the MUD URL is
emitted).

3. The MUD controller retrieves the MUD file and signature from the
MUD file server, assuming it doesn't already have copies. After
validating the signature, it may test the URL against a web or
domain reputation service, and it may test any hosts within the
file against those reputation services, as it deems fit.

4. The MUD controller may query the administrator for permission to
add the Thing and associated policy. If the Thing is known or
the Thing type is known, it may skip this step.

5. The MUD controller instantiates local configuration based on the
abstractions defined in this document.

6. The MUD controller configures the switch nearest the Thing.
Other systems may be configured as well.

7. When the Thing disconnects, policy is removed.
The MUD Model and Semantic Meaning

A MUD file consists of JSON based on a YANG model. For purposes of
MUD, the nodes that can be modified are access lists as augmented by
this model. The MUD file is limited to the serialization of only the
following YANG schema:

Lear, et al. Expires March 24, 2018 [Page 10]

Internet-Draft Manufacturer Usage Descriptions September 2017

o ietf-access-control-list [I-D.ietf-netmod-acl-model]
o ietf-mud (this document)
o ietf-acldns (this document)

Extensions may be used to add additional schema. This is described
further on.

To provide the widest possible deployability, publishers of MUD files
SHOULD make use of the abstractions in this memo and avoid the use of
IP addresses. The addressing of one side of an access list is
implicit, based on whether it is applied as to-device-policy or from-
device-policy.

wWith the exceptions of "acl-name", "acl-type", "rule-name", and TCP
and UDP source and destination port information, publishers of MUD
files SHOULD limit the use of ACL model leaf nodes expressed to those
found in this specification. Absent any extensions, MUD files are
assumed to implement only the following ACL model features:

o any-acl, mud-acl, icmp-acl, ipv6-acl, tcp-acl, any-acl, udp-acl,
ipv4d-acl, and ipv6-acl

MUD controllers MAY ignore any particular component of a description
or MAY ignore the description in its entirety, and SHOULD carefully
inspect all MUD descriptions. Publishers of MUD files MUST NOT
include other nodes except as described in Section 3.7. See that
section for more information.

2.1. The IETF-MUD YANG Module
This module is structured into three parts:

0o The first container "mud" holds information that is relevant to
retrieval and validity of the MUD file itself, as well as policy
intended to and from the Thing.

o The second component augments the matching container of the ACL
model to add several nodes that are relevant to the MUD URL, or
otherwise abstracted for use within a local environment.

o The third component augments the tcp-acl container of the ACL
model to add the ability to match on the direction of initiation
of a TCP connection.

Lear, et al. Expires March 24, 2018 [Page 11]

Internet-Draft Manufacturer Usage Descriptions September 2017

3.

A valid MUD file will contain two root objects, a "mud" container and
an "access-lists" container. Extensions may add additional root
objects as required.

A simplified graphical representation of the data models is used in
this document. The meaning of the symbols in these diagrams is
explained in [I-D.ietf-netmod-rfc6087bis].

module: ietf-mud

+--rw mud!
+--rw mud-url inet:uri
+--rw last-update yang:date-and-time
+--rw cache-validity? uint8
+--rw masa-server? inet:uri
+--rw is-supported boolean
+--rw systeminfo? inet:uri
+--rw extensions* string

+--rw from-device-policy
| +--rw access-lists
| +--rw access-1list* [acl-name acl-type]
| +--rw acl-name -> /acl:access-lists/acl/acl-name
| +--rw acl-type identityref
+--rw to-device-policy
+--rw access-lists
+--rw access-1list* [acl-name acl-type]
+--rw acl-name -> /acl:access-lists/acl/acl-name
+--rw acl-type identityref
augment /acl:access-lists/acl:acl/acl:aces/
acl:ace/acl:matches:
+--rw mud-acl

+--rw manufacturer? inet:host
+--rw same-manufacturer? empty
+--rw model? inet:uri
+--rw local-networks? empty
+--rw controller? inet:uri
+--rw my-controller? empty

augment /acl:access-lists/acl:acl/acl:aces/
acl:ace/acl:matches/acl:tcp-acl:
+--rw direction-initiated? direction

Data Node Definitions
Note that in this section, when we use the term "match" we are
referring to the ACL model "matches" node, and thus returns positive

such that an action should be applied.

The following nodes are defined.

Lear, et al. Expires March 24, 2018 [Page 12]

Internet-Draft Manufacturer Usage Descriptions September 2017

3.1. to-device-policy and from-device-policy containers

[I-D.ietf-netmod-acl-model] describes access-lists but does not
attempt to indicate where they are applied as that is handled
elsewhere in a configuration. However, in this case, a MUD file must
be explicit in describing the communication pattern of a Thing, and
that includes indicating what is to be permitted or denied in either
direction of communication. Hence each of these containers indicate
the appropriate direction of a flow in association with a particular
Thing. They contain references to specific access-1lists.

3.2. last-update

This is a date-and-time value of when the MUD file was generated.
This is akin to a version number. Its form is taken from [RFC6991]
which, for those keeping score, in turn was taken from Section 5.6 of
[RFC3339], which was taken from [IS0.8601.1988].

3.3. cache-validity

This uint8 is the period of time in hours that a network management
station MUST wait since its last retrieval before checking for an
update. It is RECOMMENDED that this value be no less than 24 and
MUST NOT be more than 168 for any Thing that is supported. This
period SHOULD be no shorter than any period determined through HTTP
caching directives (e.g., '"cache-control" or "Expires"). N.B.,
expiring of this timer does not require the MUD controller to discard
the MUD file, nor terminate access to a Thing. See Section 15 for
more information.

3.4. masa-server

This optional node refers to the URL that should be used to resolve
the MASA service, as specified in
[I-D.ietf-anima-bootstrapping-keyinfra].

3.5. is-supported

This boolean is an indication from the manufacturer to the network
administrator as to whether or not the Thing is supported. In this
context a Thing is said to be supported if the manufacturer might
issue an update to the Thing or if the manufacturer might update the
MUD file.

https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6

Lear, et al. Expires March 24, 2018 [Page 13]

Internet-Draft Manufacturer Usage Descriptions September 2017

3.6. systeminfo

This is a URL that points to a description of the Thing to be
connected. The intent is for administrators to be able to read about
what the Thing is the first time the MUD-URL is used.

3.7. extensions

This optional leaf-list names MUD extensions that are used in the MUD
file. Note that NO MUD extensions may be used in a MUD file prior to
the extensions being declared. 1Implementations MUST ignore any node

in this file that they do not understand.

Note that extensions can either extend the MUD file as described in
the previous paragraph, or they might reference other work. A good
example of how this might be done is the masa-server URI that is
defined in the base model. We say nothing about the semantics of
that work here, but rather leave that to the underlying specification
found in [I-D.jetf-anima-bootstrapping-keyinfra].

3.8. manufacturer

This node consists of a hostname that would be matched against the
authority component of another Thing's MUD URL. In its simplest form
"manufacturer" and "same-manufacturer" may be implemented as access-
lists. In more complex forms, additional network capabilities may be
used. For example, if one saw the line "manufacturer"
"flobbidy.example.com", then all Things that registered with a MUD
URL that contained flobbity.example.com in its authority section
would match.

3.9. same-manufacturer

This is an equivalent for when the manufacturer element is used to
indicate the authority that is found in another Thing's MUD URL
matches that of the authority found in this Thing's MUD URL. For
example, if the Thing's MUD URL were https://bl.example.com/.well-
known/mud/v1/ThingVvl, then all devices that had MUD URL with an
authority section of bil.example.com would match.

3.10. model

This string matches the entire MUD URL, thus covering the model that
is unique within the context of the authority. It may contain not
only model information, but versioning information as well, and any
other information that the manufacturer wishes to add. The intended
use is for devices of this precise class to match, to permit or deny
communication between one another.

Lear, et al. Expires March 24, 2018 [Page 14]

Internet-Draft Manufacturer Usage Descriptions September 2017

3.11. local-networks

This null-valued node expands to include local networks. Its default
expansion is that packets must not traverse toward a default route
that is received from the router. However, administrators may expand
the expression as is appropriate in their deployments.

3.12. controller

This URI specifies a value that a controller will register with the
mud controller. The node then is expanded to the set of hosts that
are so registered. This node may also be a URN. 1In this case, the
URN describes a well known service, such as DNS or NTP.

Great care should be used when invoking the controller class. For
one thing, it requires some understanding by the administrator as to
when it is appropriate. Classes that are standardized may make it
possible to easily name devices that support standard functions. For
instance, the MUD controller could have some knowledge of which DNS
servers should be used for any particular group of Things. Non-
standard classes will likely require some sort of administrator
interaction. Pre-registration in such classes by controllers with
the MUD server is encouraged. The mechanism to do that is beyond the
scope of this work.

Controller URIs MAY take the form of a URL (e.g. "http[s]://").
However, MUD controllers MUST NOT resolve and retrieve such files,
and it is RECOMMENDED that there be no such file at this time, as
their form and function may be defined at a point in the future. For
now, URLs should serve simply as class names and be populated by the
local deployment administrator.

3.13. my-controller

This null-valued node signals to the MUD controller to use whatever
mapping it has for this MUD-URL to a particular group of hosts. This
may require prompting the administrator for class members. Future
work should seek to automate membership management.

3.14. direction-initiated

When applied this matches packets when the flow was initiated in the
corresponding direction. [REC6092] specifies IPv6 guidance best
practices. While that document is scoped specifically to IPv6, its
contents are applicable for IPv4 as well. When this flag is set, and
the system has no reason to believe a flow has been initiated it MUST
drop the packet. This node may be implemented in its simplest form

https://datatracker.ietf.org/doc/html/rfc6092

Lear, et al. Expires March 24, 2018 [Page 15]

Internet-Draft Manufacturer Usage Descriptions September 2017

[

o

by looking at naked SYN bits, but may also be implemented through
more stateful mechanisms.

Processing of the MUD file

To keep things relatively simple in addition to whatever definitions
exist, we also apply two additional default behaviors:

0 Anything not explicitly permitted is denied.

0 Local DNS and NTP are, by default, permitted to and from the
Thing.

An explicit description of the defaults can be found in Appendix B.
What does a MUD URL look like?

To begin with, MUD takes full advantage of both the https: scheme and
the use of .well-known. HTTPS is important in this case because a
man in the middle attack could otherwise harm the operation of a
class of Things. .well-known is used because we wish to add
additional structure to the URL, and want to leave open for future
versions both the means by which the URL is processed and the format
of the MUD file retrieved (there have already been some discussions
along these lines). The URL appears as follows:

mud-url = "https://" authority "/.well-known/mud/" mud-rev
"/" modelinfo ("?" extras)
; authority is from RFC3986

mud-rev = "v1"

modelinfo = segment ; from RFC3986

extras = query ; from RFC3986

mud-rev signifies the version of the manufacturer usage description
file. This memo specifies "v1" of that file. Later versions may
permit additional schemas or modify the format. 1In order to provide
for the broadest compatibility for the various transmission
mechanisms, the length of the URL for vl MUST NOT exceed 255 octets.

Taken together with the mud-url, "modelinfo" represents a Thing model
as the manufacturer wishes to represent it. It could be a brand name
or something more specific. It also may provide a means to indicate
what version the product is. Specifically if it has been updated in
the field, this is the place where evidence of that update would
appear. The field should be changed when the intended communication
patterns of a Thing change. While from a controller standpoint, only
comparison and matching operations are safe, it is envisioned that

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Lear, et al. Expires March 24, 2018 [Page 16]

Internet-Draft Manufacturer Usage Descriptions September 2017

o

updates will require some administrative review. Processing of this
URL occurs as specified in [RFC2818] and [RFC3986].

"extras" is intended for use by the MUD controller to provide
additional information such as posture about the Thing to the MUD
file server. This field MUST NOT be configured on the Thing itself
by a manufacturer - that is what "modelinfo" is for. It is left as
future work to define the full semantics of this field.

The MUD YANG Model

<CODE BEGINS>file "ietf-mud@2017-09-15.yang"
module ietf-mud {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-mud";
prefix ietf-mud;

import ietf-access-control-list {
prefix acl;

}

import ietf-yang-types {
prefix yang;

}

import ietf-inet-types {
prefix inet;

}

organization

"IETF OPSAWG (Ops Area) Working Group";
contact

"WG Web: http://tools.ietf.org/wg/opsawg/

WG List: opsawg@ietf.org

Author: Eliot Lear

lear@cisco.com

Author: Ralph Droms

rdroms@gmail.com

Author: Dan Romascanu

dromasca@gmail.com

mnm.
’

description
"This YANG module defines a component that augments the
IETF description of an access list. This specific module
focuses on additional filters that include local, model,
and same-manufacturer.

This module is intended to be serialized via JSON and stored
as a file, as described in RFC XXXX [RFC Editor to fill in with

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3986
http://tools.ietf.org/wg/opsawg/WG
http://tools.ietf.org/wg/opsawg/WG

Lear, et al. Expires March 24, 2018 [Page 17]

Internet-Draft Manufacturer Usage Descriptions September 2017

this document #].

Copyright (c) 2016,2017 IETF Trust and the persons
identified as the document authors. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

revision 2017-09-15 {
description
"Initial proposed standard.";
reference
"RFC XXXX: Manufacturer Usage Description
Specification";

}

typedef direction {
type enumeration {
enum "to-device" {

description
"packets or flows destined to the target
Thing";
}
enum "from-device" {
description
"packets or flows destined from
the target Thing";
}
3
description

"Which way are we talking about?";

}

container mud {
presence "Enabled for this particular MUD-URL";
description
"MUD related information, as specified
by RFC-XXXX [RFC Editor to fill in].";
uses mud-grouping;

}

grouping mud-grouping {
description

http://trustee.ietf.org/license-info

Lear, et al. Expires March 24, 2018 [Page 18]

Internet-Draft Manufacturer Usage Descriptions September 2017

"Information about when support end(ed), and
when to refresh";
leaf mud-url {
type inet:uri;
mandatory true;
description
"This is the MUD-URL associated with the entry found
in a MUD file.";
}
leaf last-update {
type yang:date-and-time;
mandatory true;
description
"This is intended to be when the current MUD file
was generated. MUD Controllers SHOULD NOT check
for updates between this time plus cache validity";
}
leaf cache-validity {
type uint8 {
range "1..168";
}
units "hours";
default "48";
description
"The information retrieved from the MUD server 1is
valid for these many hours, after which it should
be refreshed. N.B. MUD controller implementations
need not discard MUD files beyond this period.";
3
leaf masa-server {
type inet:uri;
description
"The URI of the MASA server that network
elements should forward requests to for this Thing.";
}
leaf is-supported {
type boolean;
mandatory true;
description
"This boolean indicates whether or not the Thing is
currently supported by the manufacturer.";
}
leaf systeminfo {
type inet:uri;
description
"A URL to a description of this Thing. This
should be a brief localized description. The
reference text should be no more than octets.

Lear, et al. Expires March 24, 2018 [Page 19]

Internet-Draft Manufacturer Usage Descriptions September 2017

systeminfo may be displayed to the user to
determine whether to allow the Thing on the
network.";
}
leaf-1list extensions {
type string {
length "1..40";
}
description
"A list of extension names that are used in this MUD
file. Each name is registered with the IANA and
described in an RFC.";
}
container from-device-policy {
description
"The policies that should be enforced on traffic
coming from the device. These policies are not
necessarily intended to be enforced at a single
point, but may be rendered by the controller to any
relevant enorcement points in the network or
elsewhere.";
uses access-lists;
}
container to-device-policy {
description
"The policies that should be enforced on traffic
going to the device. These policies are not
necessarily intended to be enforced at a single
point, but may be rendered by the controller to any
relevant enorcement points in the network or
elsewhere.";
uses access-lists;

}
}
grouping access-lists {
description
"A grouping for access lists in the context of device
policy.";
container access-lists {
description

"The access lists that should be applied to traffic
to or from the device.";
list access-1list {
key "acl-name acl-type";
description
"Each entry on this 1list refers to an ACL that
should be present in the overall access list

Lear, et al. Expires March 24, 2018 [Page 20]

Internet-Draft Manufacturer Usage Descriptions September 2017

data model. Each ACL is identified by name and
type.";
leaf acl-name {
type leafref {
path "/acl:access-lists/acl:acl/acl:acl-name";
}
description
"The name of the ACL for this entry.";
}
leaf acl-type {
type identityref {
base acl:acl-base;
}
description
"The type of the ACL for this entry. The name is
scoped ONLY to the MUD file, and may not be unique
in any other circumstance.";

3
b
b

augment "/acl:access-lists/acl:acl/acl:aces/acl:ace/acl:matches" {
description
"adding abstractions to avoid need of IP addresses";
container mud-acl {
description
"MUD-specific matches.";
leaf manufacturer {
type inet:host;
description
"A domain that is intended to match the authority
section of the MUD-URL. This node is used to specify
one or more manufacturers a device should
be authorized to access.";
}
leaf same-manufacturer {
type empty;
description
"This node matches the authority section of the MUD-URL
of a Thing. It is intended to grant access to all
devices with the same authority section.";
}
leaf model {
type inet:uri;
description
"Devices of the specified model type will match if
they have an identical MUD-URL.";

Lear, et al. Expires March 24, 2018 [Page 21]

Internet-Draft Manufacturer Usage Descriptions September 2017

}
leaf local-networks {
type empty;
description
"IP addresses will match this node if they are
considered local addresses. A local address may be
a list of locally defined prefixes and masks
that indicate a particular administrative scope.";
}
leaf controller {
type inet:uri;
description
"This node names a class that has associated with it
zero or more IP addresses to match against. These
may be scoped to a manufacturer