
Workgroup: OPSAWG Working Group

Internet-Draft:

draft-ietf-opsawg-mud-acceptable-urls-04

Updates: 8520 (if approved)

Published: 6 October 2021

Intended Status: Best Current Practice

Expires: 9 April 2022

Authors: M. Richardson

Sandelman Software Works

W. Pan

Huawei Technologies

E. Lear

Cisco Systems

Authorized update to MUD URLs

Abstract

This document provides a way for an RFC8520 Manufacturer Usage

Description (MUD) definitions to declare what are acceptable

replacement MUD URLs for a device.

RFCEDITOR-please-remove: this document is being worked on at:

https://github.com/mcr/iot-mud-acceptable-urls

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8520
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Updating the MUD files in place

2.1. Adding capabilities

2.2. Removing capabilities

2.3. Significant changes to protocols

2.4. Motivation for updating MUD URLs

3. Updating the MUD URLs

3.1. Leveraging the manufacturer signature

3.2. Concerns about same-signer mechanism

4. Proposed mechanism

4.1. Merger, Acquisitions and Key Changes

4.1.1. Changing file structure

4.1.2. Changing hosting URLs

4.1.3. Changing Signing Authority

5. Polling for changes in MUD files

6. Privacy Considerations

7. Security Considerations

7.1. Updating files vs Updating MUD URLs

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Appendices

Contributors

Authors' Addresses

1. Introduction

[RFC8520] provides a standardized way to describe how a specific

purpose device makes use of Internet resources and associated

suggested network behavior. The behaviors are described in a MUD

file hosted in its manufacturer's server. The device provides a MUD

URL to the network manager, which can locate this MUD file and

determine the required network authorization of the device.

In some cases, e.g., the firmware update, the network behaviors of

the device may change, and the description in the original MUD file

will no longer apply. To solve this problem, there are two common

ways which the manufacturer can use.

One is to change what is in the MUD file, i.e., update the MUD file

in place, whenever the behavior of the firmware changes. Section 2

¶

¶

¶

discusses three scenarios for updating the MUD file and the

corresponding potential issues.

The other is to change which MUD file is processed by changing the

MUD URL. Section 3 describes the common sources of MUD URLs and the

problems and threats faced by each type of source when updating the

MUD URL. This document proposes an enhanced mechanism of how to

securely update the MUD URL in Section 4.

There are also some assumptions and prerequisites in this document.

While MUD files may include signatures, [RFC8520] does not mandate

checking them, and there is not a clear way to connect the entity

which signed the MUD file to the device itself. This document limits

itself to situations in which the MUD file is signed, and that the

MUD controller has been configured to always check the signatures,

rejecting files whose signatures do not match.

[RFC8520] does not specify how MUD controllers establish their trust

in the manufacturers' signing key: there are many possible solutions

from manual configuration of trust anchors, some kind of automatic

configuration during onboarding, but also including to Trust on

First Use (TOFU). How this initial trust is established is not

important for this document, it is sufficient that some satisfactory

initial trust is established.

2. Updating the MUD files in place

Three scenarios for updating the MUD file and the corresponding

potential issues are discussed below.

2.1. Adding capabilities

For situations where new capabilities are added to the firmware, the

MUD file will detail the new access that the new firmware requires.

This may involve new incoming or outgoing connections that should be

authorized. Devices that have been upgraded to the new firmware will

make use of the new features. Devices that have not been upgraded to

the new firmware may have new connections that are authorized, but

which the device does not use (outgoing connections), or which the

device is not prepared to respond to (new incoming connections).

It is possible that older versions of the firmware have

vulnerabilities that were not easily exploitable due to the MUD file

preventing particular kinds of access. For example, an older

firmware could have no credentials required (or default credentials)

access via telnet on port 23 or HTTP on port 80. The MUD file

protected the device such that it could either not be accessed at

all, or access was restricted to connections from a controller only.

¶

¶

¶

¶

¶

¶

¶

¶

Useful and needed upgrades to the firmware could add credentials to

that service, allowing it to be opened up for more general access.

The new MUD file would provide for such access, but when combined

with the weak security of the old firmware, it results in a

compromised device.

While there is an argument that old firmware was insecure and should

be replaced, it is often the case that the upgrade process involves

downtime, or can introduce risks due to needed evaluations not

having been completed yet. As an example: moving vehicles (cars,

airplanes, etc.) should not perform upgrades while in motion! It is

probably undesirable to perform any upgrade to an airplane outside

of its service facility. A vehicle owner may desire only to perform

software upgrades when they are at their residence. Should there be

a problem, they could make alternate arrangements for

transportation. This is constrasted with the situation when the

vehicle is parked at, for instance, a remote cabin. The situation

for upgrades of medical devices has even more considerations

involving regulatory compliance.

2.2. Removing capabilities

For situations where existing capabilities prove to be a problem and

are to be turned off or removed in subsequent versions of the

firmware, the MUD file will be updated to disallow connections that

previously were allowed.

In this case, the new MUD file will forbid some connections, which

the old firmware still expects to do. As explained in the previous

section, upgrades may not always occur immediately upon releasing

the new firmware.

In this case, the old device will be performing unwanted

connections, and the MUD controller will be alerting the network

owner that the device is misbehaving rather than not upgraded. This

causes a false-positive situation (see [boycrieswolf]), leading to

real security issues being ignored. This is a serious issue as

documented also in [boywolfinfosec], and [falsemalware].

2.3. Significant changes to protocols

[I-D.ietf-opsawg-mud-tls] suggests MUD definitions to allow

examination of TLS protocol details. Such a profile may be very

specific to the TLS library which is shipped in a device. Changes to

the library (including bug fixes) may cause significant changes to

the profile, requiring changes to the profile described in the MUD

file. Such changes are likely neither forward nor backward

compatible with other versions, and in place updates to MUD files

are therefore not advised.

¶

¶

¶

¶

¶

¶

2.4. Motivation for updating MUD URLs

While many small tweaks to a MUD file can be done in place, the

situation described above, particularly when it comes to removing

capabilities will suggest that changes to the MUD URL are in order.

A strategy for doing this securely is needed, and the rest of this

document provides a mechanism to do this securely.

3. Updating the MUD URLs

MUD URLs can come from a number of sources:

IDevID Extensions

DHCP option

LLDP TLV

[I-D.richardson-mud-qrcode] proposes to scan them from QRcodes.

The IDevID mechanism provides a URL that is asserted

cryptographically by a manufacturer. However, it is difficult for

manufacturers to update the IDevID of a device which is already in a

box.

The DHCP and LLDP mechanisms are not signed, but are asserted by the

device. A firmware update may update what MUD URL is emitted.

Sufficiently well targeted malware would also be able to change the

MUD URL that is emitted.

The QRcode mechanism is usually done via paper/stickers, and is

typically not under the control of the device itself at all.

However, being applied by a human and not easily changed, a MUD URL

obtained in this fashion is likely trustworthy. (It may not, due to

mixups in labeling represent the correct device, but this is a human

coordination issue, and is out of scope for this document.)

The manufacturer can use all the four mechanisms above when

manufacturing the device. But when considering updating the

firmware, it seems like only the DHCP and LLDP mechanisms are

sufficiently easy to send the new MUD URL. Because of that

sensitivity, they may also be easily changed by malware!

There are mitigating mechanisms which may be enough to deal with

this problem when MUD files are signed by the manufacturer.

While [RFC8520] has established a mechanism for signing of MUD

files, the document does not define a way for a MUD controller to

determine who should sign the MUD file for a particular device.

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

[RFC8520] leaves this for a local policy. There are a number of

processes that could be used, but they require coordination of many

players. It is expected that each industrial vertical will work out

supply chain arrangements or other heuristics.

3.1. Leveraging the manufacturer signature

When the first time a signature of the MUD file related to a

particular device-type is verified by the MUD controller, the

identity of the signing authority is recorded. That it, the signing

authorith is pinned. This policy means that subsequent MUD files

must be signed by the same entity in order to be accepted.

The trust and acceptance of the first signer may come from many

sources, for example, it could be manual configured to trust which

signer, or using the IDevID mechanism for the first MUD URL and the

signer of the corresponding MUD file is more trustworthy, or the MUD

controller can use a Trust on First Use (TOFU) mechanism and trusts

the first signer by default.

Based upon this process, an update to the MUD URL would be valid if

the new MUD file was signed by the same entity that signed the

previous entry. This mechanism permits a replacement URL to be any

URL that the same manufacturer can provide.

3.2. Concerns about same-signer mechanism

There is still a potential threat: a manufacturer which has many

products may have a MUD definition for another product that has the

privileges that the malware desires.

The malware could simply change the expressed MUD URL to that of the

other product, and it will be accepted by the MUD controller as

valid.

This works as long as manufacturers use a single key to sign all

products. Some manufacturers could sign each product with a

different key. Going logically down this path, if all these product

keys are collected into a single PKI, signed by a common

certification authority.

In this case, the question then becomes whether the MUD controller

should pin the End-Entity (EE) certificate, or the CA certificate.

Pinning the End-Entity (EE) certificate defends against malware that

changes the product type, but prevents the manufacturer from being

able to cycle the validity of the End-Entity certificate for

cryptographic hygiene reasons.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Pinning the CA certificate allows the EE certificate to change, but

may not defend against product type changes.

It is possible to invent policy mechanisms that would link the EE

certificate to a value that is in the MUD file. This could be a

policy OID, or could involve some content in a subjectAltName.

Future work could go in this direction. This document proposes a

simpler solution.

4. Proposed mechanism

The document proposes to limit what MUD URLs are considered valid

from the device, limiting new MUD URLs to be variations of the

initial (presumed to be secure) URL.

The first MUD file which is defined for a device can come from an

IDevID (which is considered more secure), or via Trust on First Use

with DHCP or LLDP or other mechanisms. This first, initially

trusted, MUD file will be called the "root" MUD file.

A MUD file contains a self-referential MUD-URL attribute that points

to the MUD file itself located on the vendor's website. While the

IDevID, DHCP and LLDP mechanisms only transmit a URL, there are some

newer, not yet standardized proposals that would fetch an entire MUD

file from the device, such as [I-D.jimenez-t2trg-mud-coap].

The MUD-URL MUST always be an Absolute URI: see [RFC3986] section

4.3.

The URL found in the MUD-URL attribute is to be called the canonical

MUD URL for the device.

The MUD-SIGNATURE attribute in the MUD file SHOULD be a relative URI

(see [RFC3986] section 4.2) with the (hierarchical) base URI for

this reference being the MUD-URL attribute.

When pinning the signature, the MUD controller SHOULD pin the lowest

Certification Authority (CA) that was used in the validation of the

CMS structure, along with the chain of Subject Names leading to the

signature. The MUD controller may need additional trust anchors

(including previously pinned ones) in order to verify that CA

certificate.

Subsequent MUD files are considered valid if:

they have the same initial Base-URI as the MUD-URL, but may have

a different final part

they are signed by an equivalent End Entity (same trusted CA and

same Subject Name) as the "root" MUD file.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Section 5.2 of [RFC3986] details many cases for calculating the

Base-URI. The test is simplified to: remove everything to the right

of the last (rightmost) "/" in the URL of "root" MUD file URL, and

the proposed new URL. The resulting two strings MUST be identical.

For a simple example, if the "root" MUD-URL is http://example.com/

hello/there/file.json then any URL that starts with http://

example.com/hello/there/ would be acceptable, such as http://

example.com/hello/there/revision2.json.

Once the new MUD file is accepted, then it becomes the new "root"

MUD file, and any subsequent updates MUST be relative to the MUD-URL

in the new file.

4.1. Merger, Acquisitions and Key Changes

The above process allows for a manufacturer to rework its file

structure. They can change web server host names, so long as they

retain the old structure long enough for all devices to upgrade at

least once.

The process also allows a manufacturer to change the EE certificate

and Certification Authority used for signing.

4.1.1. Changing file structure

A manufacturer has been hosting a MUD file at https://example.com/

household/products/mudfiles/toaster.json and wishes to move it to

https://example.com/mudfiles/toasters/model1945/mud.json

The manufacturer simply changes the MUD-URL contained with the files

at the old location to have a value of https://example.com/mudfiles/

toasters/model1945/mud.json. The manufacturer must continue to serve

the files from the old location for some time, or to return an HTTP

301 (Moved Permanently) redirecting to the new location.

4.1.2. Changing hosting URLs

A manufacturer has been hosting a MUD file at https://example.com/

household/products/mudfiles/toaster.json and wishes to move it to

https://mud.example/example.com/toasters/model1945/mud.json

The manufacturer simply changes the MUD-URL contained with the files

at the old location to have a value of https://example.com/mudfiles/

toasters/model1945/mud.json. The manufacturer has to continue to

host at the old location until such time as it is sure that all MUD

controllers have loaded the new data, and that all devices in the

field have upgraded their URL. A 301 Redirect that changed the

hostname SHOULD NOT be accepted by MUD controllers.

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.1.3. Changing Signing Authority

A manufacturer has been signing MUD files using an EE Certificate

with subjectAltName foo.example, issued by an internal Certification

Authority BAZ.

The manufacturer wishes to begin signing with an EE Certificate with

subjectAltname foo.example, but now signed by a public CA (call it:

Fluffy).

The manufacturer first creates a new MUD file with a new detached

signature file. Within this signature file, the manufacturer places

a certificate chain: Internal-CA BAZ->Fluffy, and then the Fluffy

Certificate, and then the foo.example certificate issued from

Fluffy.

This supports changing certification authorities, but it does not

support changing the Subject Name of the signing entity.

5. Polling for changes in MUD files

The MUD file update mechanisms described in Section 2 requires that

the MUD controller poll for updates. The MUD controller will receive

no signal about a change from the device because the URL will not

have changed.

The manufacturer SHOULD serve mud files from a source for which ETag

Section 2.3 of [RFC7232] may be generated. Static files on disk

satisfy this requirement. MUD files generated from a database

process might not. The use of ETag allows a MUD controller to more

efficiently poll for changes in the file.

A manufacturer should also serve MUD files with an HTTP Max-Age

header as per Section 5.2.2.8 of [RFC7234].

The MUD controller should take the Max-Age as an indication of when

to next poll for updates to the MUD file. Values of less than 1

hour, or more than 1 month should be considered out of range, and

clamped into the range (1 hour, 1 month).

MUD controllers SHOULD add some random jitter to the timing of their

requests. MUD controllers MAY use a single HTTP(S)/1.1 connection to

retrieve all resources at the same destination.

6. Privacy Considerations

The MUD URL contains sensitive model and even firmware revision

numbers. Thus the MUD URL identifies the make, model and revision of

a device.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7232#section-2.3
https://rfc-editor.org/rfc/rfc7234#section-5.2.2.8

[RFC8520] already identifies this privacy concern, and suggests use

of TLS so that the HTTP requests that retrieve the MUD file do not

divulge that level of detail.

The requirement for the MUD controller to poll for changes results

in multiple interactions between the MUD controller and the

manufacturer. Even if HTTPS used, an observer of the traffic to that

manufacturer will be revealing, and [RFC8520] goes on to suggest use

of a proxy as well.

7. Security Considerations

Prior to the standardization of the process in this document, if a

device was infiltrated by malware, and said malware wished to make

accesses beyond what the current MUD file allowed, the the malware

would have to:

arrange for an equivalent MUD file to be visible somewhere on

the Internet

depend upon the MUD controller either not checking signatures,

or

somehow get the manufacturer to sign the alternate MUD

announce this new URL via DHCP or LLDP, updating the MUD

controller with the new permissions.

One way to accomplish (3) is to leverage the existence of MUD files

created by the manufacturer for different classes of devices. Such

files would already be signed by the same manufacturer, eliminating

the need to spoof a signature.

With the standardization of the process in this document, then the

attacker can no longer point to arbitrary MUD files in step 4, but

can only make use of MUD files that the manufacturer has already

provided for this device.

Manufacturers are advised to maintain an orderly layout of MUD files

in their web servers, with each unique product having its own

directory/pathname.

The process described updates only MUD controllers and the processes

that manufacturers use to manage the location of their MUD files.

A manufacturer which has not managed their MUD files in the the way

described here can deploy new directories of per-product MUD files,

and then can update the existing MUD files in place to point to the

new URLs using the MUD-URL attribute.

¶

¶

¶

1.

¶

2.

¶

3. ¶

4.

¶

¶

¶

¶

¶

¶

[RFC3986]

[RFC8520]

[boycrieswolf]

[boywolfinfosec]

There is therefore no significant flag day: MUD controllers may

implement the new policy without significant concern about backwards

compatibility.

7.1. Updating files vs Updating MUD URLs

Device developers need to consider whether to make a change by

updating a MUD file, or updating the MUD URL.

MUD URLs can only be updated by shipping a new firmware. It is

reasonable to update the MUD URL whenever a new firmware release

causes new connectivity to be required. The updated mechanism

defined in this document makes this a secure operation, and there is

no practical limitation on the number of files that a web server can

hold.

In place updates to a MUD file should be restricted to cases where

it turns out that the description was inaccurate: a missing

connection, an inadvertent one authorized, or just incorrect

information.

Developers should be aware that many enterprise web sites use

outsourced content distribution networks, and MUD controllers are

likely to cache files for some time. Changes to MUD files will take

some time to propagate through the various caches. An updated MUD

URL will however, not experience any cache issues, but can not be

deployed with a firmware update.

8. References

8.1. Normative References

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Lear, E., Droms, R., and D. Romascanu, "Manufacturer

Usage Description Specification", RFC 8520, DOI 10.17487/

RFC8520, March 2019, <https://www.rfc-editor.org/info/

rfc8520>.

8.2. Informative References

"The Boy Who Cried Wolf", 18 January 2020, <https://

fablesofaesop.com/the-boy-who-cried-wolf.html>.

"Security Alerts - A Case of the Boy Who Cried

Wolf?", 18 January 2020, <https://www.infosecurity-

magazine.com/opinions/security-alerts-boy-cried-wolf/>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520
https://fablesofaesop.com/the-boy-who-cried-wolf.html
https://fablesofaesop.com/the-boy-who-cried-wolf.html
https://www.infosecurity-magazine.com/opinions/security-alerts-boy-cried-wolf/
https://www.infosecurity-magazine.com/opinions/security-alerts-boy-cried-wolf/

[falsemalware]

[I-D.ietf-opsawg-mud-tls]

[I-D.jimenez-t2trg-mud-coap]

[I-D.richardson-mud-qrcode]

[RFC7232]

[RFC7234]

"False malware alerts cost organizations $1.27M

annually, report says", 18 January 2020, <https://

www.scmagazine.com/home/security-news/false-malware-

alerts-cost-organizations-1-27m-annually-report-says/ and

http://go.cyphort.com/Ponemon-Report-Page.html>.

Reddy, T., Wing, D., and B. Anderson,

"Manufacturer Usage Description (MUD) (D)TLS Profiles for

IoT Devices", Work in Progress, Internet-Draft, draft-

ietf-opsawg-mud-tls-05, 27 July 2021, <https://

www.ietf.org/archive/id/draft-ietf-opsawg-mud-

tls-05.txt>.

Jimenez, J., "Using MUD on CoAP environments", Work in

Progress, Internet-Draft, draft-jimenez-t2trg-mud-

coap-00, 9 March 2020, <https://www.ietf.org/archive/id/

draft-jimenez-t2trg-mud-coap-00.txt>.

Richardson, M., Latour, J., and H. H.

Gharakheili, "On loading MUD URLs from QR codes", Work in

Progress, Internet-Draft, draft-richardson-mud-qrcode-01,

15 May 2021, <https://www.ietf.org/archive/id/draft-

richardson-mud-qrcode-01.txt>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/info/rfc7232>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/info/rfc7234>.

Appendix A. Appendices

Contributors

Jie Yang

Email: jay.yang@huawei.com

Tianqing Tang

Email: tangtianqing@huawei.com

https://www.scmagazine.com/home/security-news/false-malware-alerts-cost-organizations-1-27m-annually-report-says/%20and%20http://go.cyphort.com/Ponemon-Report-Page.html
https://www.scmagazine.com/home/security-news/false-malware-alerts-cost-organizations-1-27m-annually-report-says/%20and%20http://go.cyphort.com/Ponemon-Report-Page.html
https://www.scmagazine.com/home/security-news/false-malware-alerts-cost-organizations-1-27m-annually-report-says/%20and%20http://go.cyphort.com/Ponemon-Report-Page.html
https://www.scmagazine.com/home/security-news/false-malware-alerts-cost-organizations-1-27m-annually-report-says/%20and%20http://go.cyphort.com/Ponemon-Report-Page.html
https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-tls-05.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-tls-05.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-tls-05.txt
https://www.ietf.org/archive/id/draft-jimenez-t2trg-mud-coap-00.txt
https://www.ietf.org/archive/id/draft-jimenez-t2trg-mud-coap-00.txt
https://www.ietf.org/archive/id/draft-richardson-mud-qrcode-01.txt
https://www.ietf.org/archive/id/draft-richardson-mud-qrcode-01.txt
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
mailto:jay.yang@huawei.com
mailto:tangtianqing@huawei.com

Authors' Addresses

Michael Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

Wei Pan

Huawei Technologies

Email: william.panwei@huawei.com

Eliot Lear

Cisco Systems

Email: lear@cisco.com

mailto:mcr+ietf@sandelman.ca
mailto:william.panwei@huawei.com
mailto:lear@cisco.com

	Authorized update to MUD URLs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Updating the MUD files in place
	2.1. Adding capabilities
	2.2. Removing capabilities
	2.3. Significant changes to protocols
	2.4. Motivation for updating MUD URLs

	3. Updating the MUD URLs
	3.1. Leveraging the manufacturer signature
	3.2. Concerns about same-signer mechanism

	4. Proposed mechanism
	4.1. Merger, Acquisitions and Key Changes
	4.1.1. Changing file structure
	4.1.2. Changing hosting URLs
	4.1.3. Changing Signing Authority

	5. Polling for changes in MUD files
	6. Privacy Considerations
	7. Security Considerations
	7.1. Updating files vs Updating MUD URLs

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Appendices
	Contributors
	Authors' Addresses

