
Workgroup: OPSAWG WG

Internet-Draft: draft-ietf-opsawg-mud-tls-05

Published: 26 July 2021

Intended Status: Standards Track

Expires: 27 January 2022

Authors: T. Reddy

McAfee

D. Wing

Citrix

B. Anderson

Cisco

Manufacturer Usage Description (MUD) (D)TLS Profiles for IoT Devices

Abstract

This memo extends the Manufacturer Usage Description (MUD)

specification to incorporate (D)TLS profile parameters. This allows

a network security service to identify unexpected (D)TLS usage,

which can indicate the presence of unauthorized software or malware

on an endpoint.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. Overview of MUD (D)TLS profiles for IoT devices

4. (D)TLS 1.3 Handshake

4.1. Full (D)TLS 1.3 Handshake Inspection

4.2. Encrypted DNS

5. (D)TLS Profile of a IoT device

5.1. Tree Structure of the (D)TLS profile Extension to the ACL

YANG Model

5.2. The (D)TLS profile Extension to the ACL YANG Model

5.3. IANA (D)TLS profile YANG Module

5.4. MUD (D)TLS Profile Extension

6. Processing of the MUD (D)TLS Profile

7. MUD File Example

8. Security Considerations

9. Privacy Considerations

10. IANA Considerations

10.1. (D)TLS Profile YANG Modules

10.2. ACL TLS Version registry

10.3. ACL DTLS version registry

10.4. ACL (D)TLS Parameters registry

10.5. MUD Extensions registry

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

1. Introduction

Encryption is necessary to enhance the privacy of end users using

IoT devices. TLS [RFC8446] and DTLS [I-D.ietf-tls-dtls13] are the

dominant protocols (counting all (D)TLS versions) providing

encryption for IoT device traffic. Unfortunately, in conjunction

with IoT applications' rise of encryption, malware authors are also

using encryption which thwarts network-based analysis such as deep

packet inspection (DPI). Other mechanisms are thus needed to help

detecting malware running on an IoT device.

Malware frequently uses proprietary libraries for its activities,

and those libraries are reused much like any other software

engineering project. [malware] indicates that there are observable

differences in how malware uses encryption compared with how non-

¶

malware uses encryption. There are several interesting findings

specific to (D)TLS which were found common to malware:

Older and weaker cryptographic parameters (e.g.,

TLS_RSA_WITH_RC4_128_SHA).

TLS server name indication (SNI) extension [RFC6066] and server

certificates are composed of subjects with characteristics of a

domain generation algorithm (DGA) (e.g., 'www.33mhwt2j.net').

Higher use of self-signed certificates compared with typical

legitimate software.

Discrepancies in the SNI TLS extension and the DNS names in the

SubjectAltName (SAN) X.509 extension in the server certificate

message.

Discrepancies in the key exchange algorithm and the client public

key length in comparison with legitimate flows. As a reminder,

the Client Key Exchange message has been removed from TLS 1.3.

Lower diversity in TLS client advertised extensions compared to

legitimate clients.

Using privacy enhancing technologies like Tor, Psiphon, Ultrasurf

(see [malware-tls]), and evasion techniques such as ClientHello

randomization.

Using DNS-over-HTTPS (DoH) [RFC8484] to avoid detection by

malware DNS filtering services [malware-doh]. Specifically,

malware may not use the DoH server provided by the local network.

If observable (D)TLS profile parameters are used, the following

functions are possible which have a positive impact on the local

network security:

Permit intended DTLS or TLS use and block malicious DTLS or TLS

use. This is superior to the layers 3 and 4 ACLs of Manufacturer

Usage Description Specification (MUD) [RFC8520] which are not

suitable for broad communication patterns.

Ensure TLS certificates are valid. Several TLS deployments have

been vulnerable to active Man-In-The-Middle (MITM) attacks

because of the lack of certificate validation or vulnerability in

the certificate validation function (see [cryto-vulnerability]).

By observing (D)TLS profile parameters, a network element can

detect when the TLS SNI mismatches the SubjectAltName and when

the server's certificate is invalid. In TLS 1.2, the ClientHello,

ServerHello and Certificate messages are all sent in clear-text.

This check is not possible with TLS 1.3, which encrypts the

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

Certificate message thereby hiding the server identity from any

intermediary. In TLS 1.3, the server certificate validation

functions should be executed within an on-path TLS proxy, if such

a proxy exists.

Support new communication patterns. An IoT device can learn a new

capability, and the new capability can change the way the IoT

device communicates with other devices located in the local

network and Internet. There would be an inaccurate policy if an

IoT device rapidly changes the IP addresses and domain names it

communicates with while the MUD ACLs were slower to update (see

[clear-as-mud]). In such a case, observable (D)TLS profile

parameters can be used to permit intended use and to block

malicious behavior from the IoT device.

The YANG module specified in Section 5 of this document is an

extension of YANG Data Model for Network Access Control Lists (ACLs)

[RFC8519] to enhance MUD [RFC8520] to model observable (D)TLS

profile parameters. Using these (D)TLS profile parameters, an active

MUD-enforcing network security service (e.g., firewall) can identify

MUD non-compliant (D)TLS behavior indicating outdated cryptography

or malware. This detection can prevent malware downloads, block

access to malicious domains, enforce use of strong ciphers, stop

data exfiltration, etc. In addition, organizations may have policies

around acceptable ciphers and certificates for the websites the IoT

devices connect to. Examples include no use of old and less secure

versions of TLS, no use of self-signed certificates, deny-list or

accept-list of Certificate Authorities, valid certificate expiration

time, etc. These policies can be enforced by observing the (D)TLS

profile parameters. Network security services can use the IoT

device's (D)TLS profile parameters to identify legitimate flows by

observing (D)TLS sessions, and can make inferences to permit

legitimate flows and to block malicious or insecure flows. The

proposed technique is also suitable in deployments where decryption

techniques are not ideal due to privacy concerns, non-cooperating

end-points, and expense.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

"(D)TLS" is used for statements that apply to both Transport Layer

Security [RFC8446] and Datagram Transport Layer Security [RFC6347].

Specific terms are used for any statement that applies to either

protocol alone.

¶

*

¶

¶

¶

¶

'DoH/DoT' refers to DNS-over-HTTPS and/or DNS-over-TLS.

3. Overview of MUD (D)TLS profiles for IoT devices

In Enterprise networks, protection and detection are typically done

both on end hosts and in the network. Host security agents have deep

visibility on the devices where they are installed, whereas the

network has broader visibility. Installing host security agents may

not be a viable option on IoT devices, and network-based security is

an efficient means to protect such IoT devices. If the IoT device

supports a MUD (D)TLS profile, the (D)TLS profile parameters of the

IoT device can be used by a middlebox to detect and block malware

communication, while at the same time preserving the privacy of

legitimate uses of encryption. The middlebox need not proxy (D)TLS

but can passively observe the parameters of (D)TLS handshakes from

IoT devices and gain visibility into TLS 1.2 parameters and partial

visibility into TLS 1.3 parameters.

Malicious agents can try to use the (D)TLS profile parameters of

legitimate agents to evade detection, but it becomes a challenge to

mimic the behavior of various IoT device types and IoT device models

from several manufacturers. In other words, malware developers will

have to develop malicious agents per IoT device type, manufacturer

and model, infect the device with the tailored malware agent and

will have keep up with updates to the device's (D)TLS profile

parameters over time. Furthermore, the malware's command and control

server certificates need to be signed by the same certifying

authorities trusted by the IoT devices. Typically, IoT devices have

an infrastructure that supports a rapid deployment of updates, and

malware agents will have a near-impossible task of similarly

deploying updates and continuing to mimic the TLS behavior of the

IoT device it has infected. However, if the IoT device has reached

end-of-life and the IoT manufacturer will not issue a firmware or

software update to the Thing or will not update the MUD file, the

"is-supported" attribute defined in Section 3.6 of [RFC8520] can be

used by the MUD manager to identify the IoT manufacturer no longer

supports the device.

The end-of-life of a device does not necessarily mean that it is

defective; rather, it denotes a need to replace and upgrade the

network to next-generation devices for additional functionality. The

network security service will have to rely on other techniques

discussed in Section 8 to identify malicious connections until the

device is replaced.

Compromised IoT devices are typically used for launching DDoS

attacks (Section 3 of [RFC8576]). For example, DDoS attacks like

Slowloris and Transport Layer Security (TLS) re-negotiation can be

¶

¶

¶

¶

blocked if the victim's server certificate is not be signed by the

same certifying authorities trusted by the IoT device.

4. (D)TLS 1.3 Handshake

In (D)TLS 1.3, full (D)TLS handshake inspection is not possible

since all (D)TLS handshake messages excluding the ClientHello

message are encrypted. (D)TLS 1.3 has introduced new extensions in

the handshake record layers called Encrypted Extensions. Using these

extensions handshake messages will be encrypted and network security

services (such as a firewall) are incapable to decipher the

handshake, and thus cannot view the server certificate. However, the

ClientHello and ServerHello still have some fields visible, such as

the list of supported versions, named groups, cipher suites,

signature algorithms and extensions in ClientHello, and chosen

cipher in the ServerHello. For instance, if the malware uses evasion

techniques like ClientHello randomization, the observable list of

cipher suites and extensions offered by the malware agent in the

ClientHello message will not match the list of cipher suites and

extensions offered by the legitimate client in the ClientHello

message, and the middlebox can block malicious flows without acting

as a (D)TLS 1.3 proxy.

4.1. Full (D)TLS 1.3 Handshake Inspection

To obtain more visibility into negotiated TLS 1.3 parameters, a

middlebox can act as a (D)TLS 1.3 proxy. A middlebox can act as a

(D)TLS proxy for the IoT devices owned and managed by the IT team in

the Enterprise network and the (D)TLS proxy must meet the security

and privacy requirements of the organization. In other words, the

scope of middlebox acting as a (D)TLS proxy is restricted to

Enterprise network owning and managing the IoT devices. The

middlebox would have to follow the behaviour detailed in Section 9.3

of [RFC8446] to act as a compliant (D)TLS 1.3 proxy.

To further increase privacy, Encrypted Client Hello (ECH) extension

[I-D.ietf-tls-esni] prevents passive observation of the TLS Server

Name Indication extension and other potentially sensitive fields,

such as the ALPN [RFC7301]. To effectively provide that privacy

protection, ECH extension needs to be used in conjunction with DNS

encryption (e.g., DoH). A middlebox (e.g., firewall) passively

inspecting ECH extension cannot observe the encrypted SNI nor

observe the encrypted DNS traffic.

4.2. Encrypted DNS

A common usage pattern for certain type of IoT devices (e.g., light

bulb) is for it to "call home" to a service that resides on the

public Internet, where that service is referenced through a domain

¶

¶

¶

¶

name (A or AAAA record). As discussed in Manufacturer Usage

Description Specification [RFC8520], because these devices tend to

require access to very few sites, all other access should be

considered suspect. If an IoT device is pre-configured to use a

public DoH/DoT server, the MUD policy enforcement point is moved to

that public server, which cannot enforce the MUD policy based on

domain names (Section 8 of [RFC8520]). If the DNS query is not

accessible for inspection, it becomes quite difficult for the

infrastructure to suspect anything. Thus the use of a public DoH/DoT

server is incompatible with MUD in general. A local DoH/DoT server

is necessary to allow MUD policy enforcement on the local network

(Section 6.5 of [I-D.ietf-opsawg-mud-iot-dns-considerations]).

5. (D)TLS Profile of a IoT device

This document specifies a YANG module for representing (D)TLS

profile. The (D)TLS profile YANG module provides a method for

network security services to observe the (D)TLS profile parameters

in the (D)TLS handshake to permit intended use and to block

malicious behavior. This module uses the cryptographic types defined

in [I-D.ietf-netconf-crypto-types]. See [RFC7925] for (D)TLS 1.2 and

[I-D.ietf-uta-tls13-iot-profile] for DTLS 1.3 recommendations

related to IoT devices, and [RFC7525] for additional (D)TLS 1.2

recommendations.

A companion YANG module is defined to include a collection of (D)TLS

parameters and (D)TLS versions maintained by IANA: "iana-tls-

profile" (Section 5.3).

The (D)TLS parameters in each (D)TLS profile include the following:

Profile name

(D)TLS versions supported by the IoT device.

List of supported cipher suites. For (D)TLS1.2, [RFC7925]

recommends AEAD ciphers for IoT devices.

List of supported extension types

List of trust anchor certificates used by the IoT device. If the

server certificate is signed by one of the trust anchors, the

middlebox continues with the connection as normal. Otherwise, the

middlebox will react as if the server certificate validation has

failed and takes appropriate action (e.g, block the (D)TLS

session). An IoT device can use a private trust anchor to

validate a server's certificate (e.g., the private trust anchor

can be preloaded at manufacturing time on the IoT device and the

IoT device fetches the firmware image from the Firmware server

whose certificate is signed by the private CA). This empowers the

¶

¶

¶

¶

* ¶

* ¶

*

¶

* ¶

*

middlebox to reject TLS sessions to servers that the IoT device

does not trust.

List of SPKI pin set pre-configured on the client to validate

self-signed server certificates or raw public keys. A SPKI pin

set is a cryptographic digest to "pin" public key information in

a manner similar to HTTP Public Key Pinning (HPKP) [RFC7469]. If

SPKI pin set is present in the (D)TLS profile of a IoT device and

the server certificate does not pass the PKIX certification path

validation, the middlebox computes the SPKI Fingerprint for the

public key found in the server's certificate (or in the raw

public key, if the server provides that instead). If a computed

fingerprint exactly matches one of the SPKI pin sets in the

(D)TLS profile, the middlebox continues with the connection as

normal. Otherwise, the middlebox will act on the SPKI validation

failure and takes appropriate action.

Cryptographic hash algorithm used to generate the SPKI pinsets

List of pre-shared key exchange modes

List of named groups (DHE or ECDHE) supported by the client

List of signature algorithms the client can validate in X.509

server certificates

List of signature algorithms the client is willing to accept for

CertificateVerify message (Section 4.2.3 of [RFC8446]). For

example, a TLS client implementation can support different sets

of algorithms for certificates and in TLS to signal the

capabilities in "signature_algorithms_cert" and

"signature_algorithms" extensions.

List of supported application protocols (e.g., h3, h2, http/1.1

etc.)

List of certificate compression algorithms (defined in [I-D.ietf-

tls-certificate-compression])

List of the distinguished names [X501] of acceptable certificate

authorities, represented in DER-encoded format [X690] (defined in

Section 4.2.4 of [RFC8446])

GREASE [RFC8701] sends random values on TLS parameters to ensure

future extensibility of TLS extensions. Similar random values might

be extended to other TLS parameters. Thus, the (D)TLS profile

parameters defined in the YANG module by this document MUST NOT

include the GREASE values for extension types, named groups,

signature algorithms, (D)TLS versions, pre-shared key exchange

¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

modes, cipher suites and for any other TLS parameters defined in

future RFCs.

The (D)TLS profile does not include parameters like compression

methods for data compression, [RFC7525] recommends disabling TLS-

level compression to prevent compression-related attacks. In TLS

1.3, only the "null" compression method is allowed (Section 4.1.2 of

[RFC8446]).

5.1. Tree Structure of the (D)TLS profile Extension to the ACL YANG

Model

This document augments the "ietf-acl" ACL YANG module defined in

[RFC8519] for signaling the IoT device (D)TLS profile. This document

defines the YANG module "ietf-acl-tls", which has the following tree

structure:

¶

¶

¶

module: ietf-acl-tls

 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:

 +--rw client-profile {match-on-tls-dtls}?

 +--rw client-profile

 +--rw tls-dtls-profiles* [profile-name]

 +--rw profile-name string

 +--rw supported-tls-versions* ianatp:tls-version

 +--rw supported-dtls-versions* ianatp:dtls-version

 +--rw cipher-suites* [cipher hash]

 | +--rw cipher ianatp:cipher-algorithm

 | +--rw hash ianatp:hash-algorithm

 +--rw extension-types*

 | ianatp:extension-type

 +--rw acceptlist-ta-certs*

 | ct:trust-anchor-cert-cms

 +--rw spki

 | +--rw spki-pin-sets* ianatp:spki-pin-set

 | +--rw spki-hash-algorithm? iha:hash-algorithm-type

 +--rw psk-key-exchange-modes*

 | ianatp:psk-key-exchange-mode

 | {tls-1-3 or dtls-1-3}?

 +--rw supported-groups*

 | ianatp:supported-group

 +--rw signature-algorithms-cert*

 | ianatp:signature-algorithm

 | {tls-1-3 or dtls-1-3}?

 +--rw signature-algorithms*

 | ianatp:signature-algorithm

 +--rw application-protocols*

 | ianatp:application-protocol

 +--rw cert-compression-algorithms*

 | ianatp:cert-compression-algorithm

 | {tls-1-3 or dtls-1-3}?

 +--rw certificate-authorities*

 ianatp:certificate-authority

 {tls-1-3 or dtls-1-3}?

¶

5.2. The (D)TLS profile Extension to the ACL YANG Model

<CODE BEGINS> file "ietf-acl-tls@2020-10-07.yang"

module ietf-acl-tls {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-tls";

 prefix ietf-acl-tls;

 import iana-tls-profile {

 prefix ianatp;

 reference

 "RFC XXXX: Manufacturer Usage Description (MUD) (D)TLS

 Profiles for IoT Devices";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC CCCC: Common YANG Data Types for Cryptography";

 }

 import iana-hash-algs {

 prefix iha;

 reference

 "RFC IIII: Common YANG Data Types for

 Hash algorithms";

 }

 import ietf-access-control-list {

 prefix acl;

 reference

 "RFC 8519: YANG Data Model for Network Access

 Control Lists (ACLs)";

 }

 organization

 "IETF OPSAWG (Operations and Management Area Working Group)";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: opsawg@ietf.org

 Author: Konda, Tirumaleswar Reddy

 TirumaleswarReddy_Konda@McAfee.com

 ";

 description

 "This YANG module defines a component that augments the

 IETF description of an access list to allow (D)TLS profile

 as matching criteria.

 Copyright (c) 2020 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2020-11-02 {

 description

 "Initial revision";

 reference

 "RFC XXXX: Manufacturer Usage Description (MUD) (D)TLS

 Profiles for IoT Devices";

 }

 feature tls-1-2 {

 description

 "TLS Protocol Version 1.2 is supported.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 feature tls-1-3 {

 description

 "TLS Protocol Version 1.3 is supported.";

 reference

 "RFC 8446: The Transport Layer Security (TLS) Protocol

 Version 1.3";

 }

 feature dtls-1-2 {

 description

 "DTLS Protocol Version 1.2 is supported.";

 reference

 "RFC 6346: Datagram Transport Layer Security

 Version 1.2";

 }

 feature dtls-1-3 {

 description

 "DTLS Protocol Version 1.3 is supported.";

 reference

 "draft-ietf-tls-dtls13: Datagram Transport Layer

 Security 1.3";

 }

 feature match-on-tls-dtls {

 description

 "The networking device can support matching on

 (D)TLS parameters.";

 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches" {

 if-feature "match-on-tls-dtls";

 description

 "(D)TLS specific matches.";

 container client-profile {

 description

 "A grouping for (D)TLS profiles.";

 container client-profile {

 description

 "A grouping for DTLS profiles.";

 list tls-dtls-profiles {

 key "profile-name";

 description

 "A list of (D)TLS version profiles supported by

 the client.";

 leaf profile-name {

 type string {

 length "1..64";

 }

 description

 "The name of (D)TLS profile; space and special

 characters are not allowed.";

 }

 leaf-list supported-tls-versions {

 type ianatp:tls-version;

 description

 "TLS versions supported by the client.";

 }

 leaf-list supported-dtls-versions {

 type ianatp:dtls-version;

 description

 "DTLS versions supported by the client.";

 }

 list cipher-suites {

 key "cipher hash";

 leaf cipher {

 type ianatp:cipher-algorithm;

 description

 "AEAD encryption algorithm as defined in RFC5116.";

 }

 leaf hash {

 type ianatp:hash-algorithm;

 description

 "Hash algorithm used with HKDF as defined in RFC5869.";

 }

 description

 "A list of Cipher Suites supported by the client.";

 }

 leaf-list extension-types {

 type ianatp:extension-type;

 description

 "A list of Extension Types supported by the client.";

 }

 leaf-list acceptlist-ta-certs {

 type ct:trust-anchor-cert-cms;

 description

 "A list of trust anchor certificates used by the client.";

 }

 container spki {

 description

 "A grouping for spki.";

 leaf-list spki-pin-sets {

 type ianatp:spki-pin-set;

 description

 "A list of SPKI pin sets pre-configured on the client

 to validate self-signed server certificate or

 raw public key.";

 }

 leaf spki-hash-algorithm {

 type iha:hash-algorithm-type;

 description

 "cryptographic hash algorithm used to generate the

 SPKI pinset.";

 }

 }

 leaf-list psk-key-exchange-modes {

 if-feature "tls-1-3 or dtls-1-3";

 type ianatp:psk-key-exchange-mode;

 description

 "pre-shared key exchange modes.";

 }

 leaf-list supported-groups {

 type ianatp:supported-group;

 description

 "A list of named groups supported by the client.";

 }

 leaf-list signature-algorithms-cert {

 if-feature "tls-1-3 or dtls-1-3";

 type ianatp:signature-algorithm;

 description

 "A list signature algorithms the client can validate

 in X.509 certificates.";

 }

 leaf-list signature-algorithms {

 type ianatp:signature-algorithm;

 description

 "A list signature algorithms the client can validate

 in the CertificateVerify message.";

 }

 leaf-list application-protocols {

 type ianatp:application-protocol;

 description

 "A list application protocols supported by the client.";

 }

 leaf-list cert-compression-algorithms {

 if-feature "tls-1-3 or dtls-1-3";

 type ianatp:cert-compression-algorithm;

 description

 "A list certificate compression algorithms

 supported by the client.";

 }

 leaf-list certificate-authorities {

 if-feature "tls-1-3 or dtls-1-3";

 type ianatp:certificate-authority;

 description

 "A list of the distinguished names of certificate authorities

 acceptable to the client.";

 }

 }

 }

 }

 }

}

<CODE ENDS>

5.3. IANA (D)TLS profile YANG Module

The TLS and DTLS IANA registries are available from https://

www.iana.org/assignments/tls-parameters/tls-parameters.txt and

https://www.iana.org/assignments/tls-extensiontype-values/tls-

extensiontype-values.txt.

The values for all the parameters in the "iana-tls-profile" YANG

module are defined in the TLS and DTLS IANA registries excluding the

tls-version, dtls-version, spki-pin-set, and certificate-authority

parameters. The values of spki-pin-set and certificate-authority

parameters will be specific to the IoT device.

¶

¶

¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt

The TLS and DTLS IANA registries do not maintain (D)TLS version

numbers. In (D)TLS 1.2 and below, "legacy_version" field in the

ClientHello message is used for version negotiation. However in

(D)TLS 1.3, the "supported_versions" extension is used by the client

to indicate which versions of (D)TLS it supports. TLS 1.3

ClientHello messages are identified as having a "legacy_version" of

0x0303 and a "supported_versions" extension present with 0x0304 as

the highest version. DTLS 1.3 ClientHello messages are identified as

having a "legacy_version" of 0xfefd and a "supported_versions"

extension present with 0x0304 as the highest version.

In order to ease updating the "iana-tls-profile" YANG module with

future (D)TLS versions, new (D)TLS version registries are defined in

Section 10.2 and Section 10.3. Whenever a new (D)TLS protocol

version is defined, the registry will be updated using expert

review; the "iana-tls-profile" YANG module will be automatically

updated by IANA.

The "iana-tls-profile" YANG module is defined as follows:

¶

¶

¶

<CODE BEGINS> file "iana-tls-profile@2020-10-07.yang"

module iana-tls-profile {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:iana-tls-profile";

 prefix ianatp;

 organization

 "IANA";

 contact

 " Internet Assigned Numbers Authority

 Postal: ICANN

 12025 Waterfront Drive, Suite 300

 Los Angeles, CA 90094-2536

 United States

 Tel: +1 310 301 5800

 E-Mail: iana@iana.org>";

 description

 "This module contains YANG definition for the (D)TLS profile.

 Copyright (c) 2020 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2020-11-02 {

 description

 "Initial revision";

 reference

 "RFC XXXX: Manufacturer Usage Description (MUD) (D)TLS Profiles

 for IoT Devices";

 }

 typedef extension-type {

 type uint16;

 description

 "Extension type in the TLS ExtensionType Values registry as

 defined in Section 7 of RFC8447.";

 }

 typedef supported-group {

 type uint16;

 description

 "Supported Group in the TLS Supported Groups registry as

 defined in Section 9 of RFC8447.";

 }

 typedef spki-pin-set {

 type binary;

 description

 "Subject Public Key Info pin set as discussed in

 Section 2.4 of RFC7469.";

 }

 typedef signature-algorithm {

 type uint16;

 description

 "Signature algorithm in the TLS SignatureScheme registry as

 defined in Section 11 of RFC8446.";

 }

 typedef psk-key-exchange-mode {

 type uint8;

 description

 "Pre-shared key exchange mode in the TLS PskKeyExchangeMode

 registry as defined in Section 11 of RFC8446.";

 }

 typedef application-protocol {

 type string;

 description

 "Application-Layer Protocol Negotiation (ALPN) Protocol ID

 registry as defined in Section 6 of RFC7301.";

 }

 typedef cert-compression-algorithm {

 type uint16;

 description

 "Certificate compression algorithm in TLS Certificate

 Compression Algorithm IDs registry as defined in

 Section 7.3 of ietf-tls-certificate-compression";

 }

 typedef certificate-authority {

 type string;

 description

 "Distinguished Name of Certificate authority as discussed

 in Section 4.2.4 of RFC8446.";

 }

 typedef cipher-algorithm {

 type uint8;

 description

 "AEAD encryption algorithm in TLS Cipher Suites registry

 as discussed in Section 11 of RFC8446.";

 }

 typedef hash-algorithm {

 type uint8;

 description

 "Hash algorithm used with HMAC-based Extract-and-Expand Key

 Derivation Function (HKDF) in TLS Cipher Suites registry

 as discussed in Section 11 of RFC8446.";

 }

 typedef tls-version {

 type enumeration {

 enum tls-1.2 {

 value 1;

 description

 "TLS Protocol Version 1.2.

 TLS 1.2 ClientHello contains

 0x0303 in 'legacy_version'.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 enum tls-1.3 {

 value 2;

 description

 "TLS Protocol Version 1.3.

 TLS 1.3 ClientHello contains a

 supported_versions extension with 0x0304

 contained in its body and the ClientHello contains

 0x0303 in 'legacy_version'.";

 reference

 "RFC 8446: The Transport Layer Security (TLS) Protocol

 Version 1.3";

 }

 }

 description

 "Indicates the TLS version.";

 }

 typedef dtls-version {

 type enumeration {

 enum dtls-1.2 {

 value 1;

 description

 "DTLS Protocol Version 1.2.

 DTLS 1.2 ClientHello contains

 0xfefd in 'legacy_version'.";

 reference

 "RFC 6346: Datagram Transport Layer Security 1.2";

 }

 enum dtls-1.3 {

 value 2;

 description

 "DTLS Protocol Version 1.3.

 DTLS 1.3 ClientHello contains a

 supported_versions extension with 0x0304

 contained in its body and the ClientHello contains

 0xfefd in 'legacy_version'.";

 reference

 "RFC DDDD: Datagram Transport Layer Security 1.3";

 }

 }

 description

 "Indicates the DTLS version.";

 }

}

<CODE ENDS>

5.4. MUD (D)TLS Profile Extension

This document augments the "ietf-mud" MUD YANG module to indicate

whether the device supports (D)TLS profile. If the "ietf-mud-tls"

extension is supported by the device, MUD file is assumed to

implement the "match-on-tls-dtls" ACL model feature defined in this

specification. Furthermore, only "accept" or "drop" actions SHOULD

be included with the (D)TLS profile similar to the actions allowed

in Section 2 of [RFC8520].

This document defines the YANG module "ietf-mud-tls", which has the

following tree structure:

¶

¶

¶

module: ietf-mud-tls

 augment /ietf-mud:mud:

 +--rw is-tls-dtls-profile-supported? boolean

¶

The model is defined as follows:¶

<CODE BEGINS> file "iana-tls-mud@2020-10-20.yang"

module ietf-mud-tls {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-mud-tls";

 prefix ietf-mud-tls;

 import ietf-mud {

 prefix ietf-mud;

 }

 organization

 "IETF OPSAWG (Operations and Management Area Working Group)";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: opsawg@ietf.org

 Author: Konda, Tirumaleswar Reddy

 TirumaleswarReddy_Konda@McAfee.com

 ";

 description

 "Extension to a MUD module to indicate (D)TLS

 profile support.

 Copyright (c) 2020 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2020-10-19 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: Manufacturer Usage Description (MUD) (D)TLS

 Profiles for IoT Devices";

 }

 augment "/ietf-mud:mud" {

 description

 "This adds a extension for a manufacturer

 to indicate whether (D)TLS profile is

 is supported by a device.";

 leaf is-tls-dtls-profile-supported {

 type boolean;

 description

 "This value will equal 'true' if a device supports

 (D)TLS profile.";

 }

 }

}

<CODE ENDS>

6. Processing of the MUD (D)TLS Profile

The following text outlines the rules for a network security service

(e.g., firewall) to follow to process the MUD (D)TLS Profile:

If the (D)TLS parameter observed in a (D)TLS session is not

specified in the MUD (D)TLS profile and the parameter is

recognized by the firewall, it can identify unexpected (D)TLS

usage, which can indicate the presence of unauthorized software

or malware on an endpoint. The firewall can take several actions

like block the (D)TLS session or raise an alert to quarantine and

remediate the compromised device. For example, if the cipher

suite TLS_RSA_WITH_AES_128_CBC_SHA in the ClientHello message is

not specified in the MUD (D)TLS profile and the cipher suite is

recognized by the firewall, it can identify unexpected TLS usage.

If the (D)TLS parameter observed in a (D)TLS session is not

specified in the MUD (D)TLS profile and the (D)TLS parameter is

not recognized by the firewall, it can ignore the unrecognized

parameter and the correct behavior is not to block the (D)TLS

session. The behaviour is functionally equivalent to the

compliant TLS middlebox description in Section 9.3 of [RFC8446]

to ignore all unrecognized cipher suites, extensions, and other

parameters. For example, if the cipher suite

TLS_CHACHA20_POLY1305_SHA256 in the ClientHello message is not

specified in the MUD (D)TLS profile and the cipher suite is not

recognized by the firewall, it can ignore the unrecognized cipher

suite.

Deployments update at different rates, so an updated MUD (D)TLS

profile may support newer parameters. If the firewall does not

recognize the newer parameters, an alert should be triggered to

the firewall vendor and the IoT device owner or administrator. A

firewall must be readily updatable, so that when new parameters

¶

¶

*

¶

*

¶

*

in the MUD (D)TLS profile are discovered that are not recognized

by the firewall, it can be updated quickly. Most importantly, if

the firewall is not readily updatable, its protection efficacy to

identify emerging malware will decrease with time. For example,

if the cipher suite TLS_AES_128_CCM_8_SHA256 specified in the MUD

(D)TLS profile is not recognized by the firewall, an alert will

be triggered. Similarly, if the (D)TLS version specified in the

MUD file is not recognized by the firewall, an alert will be

triggered.

7. MUD File Example

The example below contains (D)TLS profile parameters for a IoT

device used to reach servers listening on port 443 using TCP

transport. JSON encoding of YANG modelled data [RFC7951] is used to

illustrate the example.

¶

¶

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "mud-url": "https://example.com/IoTDevice",

 "last-update": "2019-18-06T03:56:40.105+10:00",

 "cache-validity": 100,

 "extensions": [

 "ietf-mud-tls"

],

 "ietf-mud-tls:is-tls-dtls-profile-supported": "true",

 "is-supported": true,

 "systeminfo": "IoT device name",

 "from-device-policy": {

 "access-lists": {

 "access-list": [

 {

 "name": "mud-7500-profile"

 }

]

 }

 },

 "ietf-access-control-list:acls": {

 "acl": [

 {

 "name": "mud-7500-profile",

 "type": "ipv6-acl-type",

 "aces": {

 "ace": [

 {

 "name": "cl0-frdev",

 "matches": {

 "ipv6": {

 "protocol": 6

 },

 "tcp": {

 "ietf-mud:direction-initiated": "from-device",

 "destination-port": {

 "operator": "eq",

 "port": 443

 }

 },

 "ietf-acl-tls:client-profile" : {

 "tls-dtls-profiles" : [

 {

 "supported-tls-versions" : ["tls-1.3"],

 "cipher-suites" : [

 {

 "cipher": 19,

 "hash": 1

 },

 {

 "cipher": 19,

 "hash": 2

 }

],

 "extension-types" : [10,11,13,16,24],

 "supported-groups" : [29]

 }

]

 },

 "actions": {

 "forwarding": "accept"

 }

 }

 }

]

 }

 }

]

 }

 }

}

¶

The following illustrates the example scenarios for processing the

above profile:

If the extension type "encrypt_then_mac" (code point 22)

[RFC7366] in the ClientHello message is recognized by the

firewall, it can identify unexpected TLS usage.

If the extension type "token_binding" (code point 24) [RFC8472]

in the MUD (D)TLS profile is not recognized by the firewall, it

can ignore the unrecognized extension. Because the extension type

"token_binding" is specified in the profile, an alert will be

triggered to the firewall vendor and the IoT device owner or

administrator to notify the firewall is not up to date.

8. Security Considerations

Security considerations in [RFC8520] need to be taken into

consideration. The middlebox must adhere to the invariants discussed

in Section 9.3 of [RFC8446] to act as a compliant proxy.

Although it is challenging for a malware to mimic the TLS behavior

of various IoT device types and IoT device models from several

manufacturers, malicious agents have a very low probability of using

the same (D)TLS profile parameters as legitimate agents on the IoT

device to evade detection. Network security services should also

rely on contextual network data to detect false negatives. In order

to detect such malicious flows, anomaly detection (deep learning

techniques on network data) can be used to detect malicious agents

using the same (D)TLS profile parameters as legitimate agent on the

IoT device. In anomaly detection, the main idea is to maintain

rigorous learning of "normal" behavior and where an "anomaly" (or an

attack) is identified and categorized based on the knowledge about

the normal behavior and a deviation from this normal behavior.

9. Privacy Considerations

Privacy considerations discussed in Section 16 of [RFC8520] to not

reveal the MUD URL to an attacker need to be taken into

consideration. The MUD URL can be stored in Trusted Execution

Environment (TEE) for secure operation, enhanced data security, and

prevent exposure to unauthorized software.

Full handshake inspection (Section 4.1) requires a TLS proxy device

which needs to decrypt traffic between the IoT device and its

server(s). There is a tradeoff between privacy of the data carried

inside TLS (especially e.g., personally identifiable information and

protected health information) and efficacy of endpoint security. It

is strongly RECOMMENDED to avoid a TLS proxy whenever possible. For

example, an enterprise firewall administrator can configure the

middlebox to bypass TLS proxy functionality or payload inspection

¶

*

¶

*

¶

¶

¶

¶

for connections destined to specific well-known services.

Alternatively, a IoT device could be configured to reject all

sessions that involve proxy servers to specific well-known services.

In addition, mechanisms based on object security can be used by IoT

devices to enable end-to-end security and the middlebox will not

have any access to the packet data. For example, Object Security for

Constrained RESTful Environments (OSCORE) [RFC8613] is a proposal

that protects CoAP messages by wrapping them in the COSE format

[RFC8152].

10. IANA Considerations

10.1. (D)TLS Profile YANG Modules

This document requests IANA to register the following URIs in the

"ns" subregistry within the "IETF XML Registry" [RFC3688]:

IANA is requested to create an IANA-maintained YANG Module called

"iana-tls-profile", based on the contents of Section 5.3, which will

allow for new (D)TLS parameters and (D)TLS versions to be added to

"client-profile". The registration procedure will be Expert Review,

as defined by [RFC8126].

This document requests IANA to register the following YANG modules

in the "YANG Module Names" subregistry [RFC6020] within the "YANG

Parameters" registry.

¶

¶

 URI: urn:ietf:params:xml:ns:yang:iana-tls-profile

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-acl-tls

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-mud-tls

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

¶

¶

¶

 name: iana-tls-profile

 namespace: urn:ietf:params:xml:ns:yang:iana-tls-profile

 maintained by IANA: Y

 prefix: ianatp

 reference: RFC XXXX

¶

 name: ietf-acl-tls

 namespace: urn:ietf:params:xml:ns:yang:ietf-acl-tls

 maintained by IANA: N

 prefix: ietf-acl-tls

 reference: RFC XXXX

¶

"enum":

"value":

"description":

"reference":

"derived type":

"built-in type":

"description":

IANA is requested to create an the initial version of the IANA-

maintained YANG Module called "iana-tls-profile", based on the

contents of Section 5.3, which will allow for new (D)TLS parameters

and (D)TLS versions to be added. IANA is requested to add this note:

tls-version and dtls-version values must not be directly added to

the iana-tls-profile YANG module. They must instead be

respectively added to the "ACL TLS Version Codes", and "ACL DTLS

Version Codes" registries.

(D)TLS parameters must not be directly added to the iana-tls-

profile YANG module. They must instead be added to the "ACL

(D)TLS Parameters" registry.

When a 'tls-version' or 'dtls-version' value is respectively added

to the "ACL TLS Version Codes" or "ACL DTLS Version Codes" registry,

a new "enum" statement must be added to the iana-tls-profile YANG

module. The following "enum" statement, and substatements thereof,

should be defined:

Replicates the label from the registry.

Contains the IANA-assigned value corresponding to the

'tls-version' or 'dtls-version'.

Replicates the description from the registry.

Replicates the reference from the registry and adds

the title of the document.

When a (D)TLS parameter is added to "ACL (D)TLS Parameters"

registry, a new "type" statement must be added to the iana-tls-

profile YANG module. The following "type" statement, and

substatements thereof, should be defined:

Replicates the parameter name from the registry.

Contains the built-in YANG type.

Replicates the description from the registry.

When the iana-tls-profile YANG module is updated, a new "revision"

statement must be added in front of the existing revision

statements.

 name: ietf-mud-tls

 namespace: urn:ietf:params:xml:ns:yang:ietf-mud-tls

 maintained by IANA: N

 prefix: ietf-mud-tls

 reference: RFC XXXX

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

IANA is requested to add this note to "ACL TLS Version Codes", "ACL

DTLS Version Codes", and "ACL (D)TLS Parameters" registries:

When this registry is modified, the YANG module iana-tls-profile

must be updated as defined in [RFCXXXX].

The registration procedure for "ietf-acl-tls" YANG module will be

Specification Required, as defined by [RFC8126].

10.2. ACL TLS Version registry

IANA is requested to create a new registry titled "ACL TLS Version

Codes". Codes in this registry are used as valid values of 'tls-

version' parameter. Further assignments are to be made through

Expert Review [RFC8126].

10.3. ACL DTLS version registry

IANA is requested to create a new registry titled "ACL DTLS Version

Codes". Codes in this registry are used as valid values of 'dtls-

version' parameter. Further assignments are to be made through

Expert Review [RFC8126].

10.4. ACL (D)TLS Parameters registry

IANA is requested to create a new registry titled "ACL (D)TLS

parameters".

¶

¶

¶

¶

 +-------+---------+-----------------+-----------+

 | Value | Label | Description | Reference |

 | | | | |

 | | | | |

 +-------+---------+-----------------+-----------+

 | 1 | tls-1.2 | TLS Version 1.2 | [RFC5246] |

 +-------+---------+-----------------+-----------+

 | 2 | tls-1.3 | TLS Version 1.3 | [RFC8446] |

 +-------+---------+-----------------+-----------+

¶

¶

 +-------+---------+----------------+-----------------------+

 | Value | Label | Description | Reference |

 | | | | |

 | | | | |

 +-------+---------+----------------+-----------------------+

 | 1 |dtls-1.2 |DTLS Version 1.2| [RFC6346] |

 +-------+---------+----------------+-----------------------+

 | 2 |dtls-1.3 |DTLS Version 1.3|[draft-ietf-tls-dtls13]|

 +-------+---------+----------------+-----------------------+

¶

¶

The values for all the (D)TLS parameters in the registry are defined

in the TLS and DTLS IANA registries (https://www.iana.org/

assignments/tls-parameters/tls-parameters.txt and https://

www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-

values.txt) excluding the tls-version, dtls-version, spki-pin-set

and certificate-authority parameters. Further assignments are to be

made through Expert Review [RFC8126]. The registry is initially

populated with the following parameters:

10.5. MUD Extensions registry

IANA is requested to create a new MUD Extension Name "ietf-mud-tls"

in the MUD Extensions IANA registry https://www.iana.org/

assignments/mud/mud.xhtml.

¶

 +----------------------------+-------------+--------+---+

 | Parameter Name | YANG | JSON | |

 | | Type | Type | Description |

 | | | | |

 +----------------------------+-------------+--------+---+

 | extension-type | uint16 | Number | Extension type |

 +----------------------------+-------------+--------+---+

 | supported-group | uint16 | Number | Supported group |

 +----------------------------+-------------+--------+---+

 | spki-pin-set | binary | String | Subject public key info pin set |

 +----------------------------+-------------+--------+---+

 | signature-algorithm | uint16 | Number | Signature algorithm |

 +----------------------------+-------------+--------+---+

 | psk-key-exchange-mode | uint8 | Number | pre-shared key exchange mode |

 +----------------------------+-------------+--------+---+

 | application-protocol | string | String | Application protocol |

 +----------------------------+-------------+--------+---+

 | cert-compression-algorithm | uint16 | Number | Certificate compression algorithm |

 +----------------------------+-------------+--------+---+

 | certificate-authority | string | String | Distinguished name of Certificate Authority |

 +----------------------------+-------------+--------+---+

 | cipher-algorithm | uint8 | Number | AEAD encryption algorithm |

 +----------------------------+-------------+--------+---+

 | hash-algorithm | uint8 | Number | Hash algorithm |

 +----------------------------+-------------+--------+---+

 | tls-version | enumeration | String | TLS version |

 +----------------------------+-------------+--------+---+

 | dtls-version | enumeration | String | DTLS version |

 +----------------------------+-------------+--------+---+

¶

¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.txt
https://www.iana.org/assignments/mud/mud.xhtml
https://www.iana.org/assignments/mud/mud.xhtml

[I-D.ietf-netconf-crypto-types]

[I-D.ietf-tls-certificate-compression]

[I-D.ietf-tls-dtls13]

[RFC2119]

11. Acknowledgments

Thanks to Flemming Andreasen, Shashank Jain, Michael Richardson,

Piyush Joshi, Eliot Lear, Harsha Joshi, Qin Wu, Mohamed Boucadair,

Ben Schwartz, Eric Rescorla, Panwei William, Nick Lamb and Nick

Harper for the discussion and comments.

12. References

12.1. Normative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-20, 18 May 2021, <https://

www.ietf.org/archive/id/draft-ietf-netconf-crypto-

types-20.txt>.

Ghedini, A. and V. Vasiliev,

"TLS Certificate Compression", Work in Progress,

Internet-Draft, draft-ietf-tls-certificate-

compression-10, 6 January 2020, <https://www.ietf.org/

archive/id/draft-ietf-tls-certificate-

compression-10.txt>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-43.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt
https://www.ietf.org/archive/id/draft-ietf-tls-certificate-compression-10.txt
https://www.ietf.org/archive/id/draft-ietf-tls-certificate-compression-10.txt
https://www.ietf.org/archive/id/draft-ietf-tls-certificate-compression-10.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt

[RFC3688]

[RFC6347]

[RFC8174]

[RFC8446]

[RFC8519]

[RFC8701]

[X690]

[clear-as-mud]

[cryto-vulnerability]

[I-D.ietf-opsawg-mud-iot-dns-considerations]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,

"YANG Data Model for Network Access Control Lists

(ACLs)", RFC 8519, DOI 10.17487/RFC8519, March 2019,

<https://www.rfc-editor.org/info/rfc8519>.

Benjamin, D., "Applying Generate Random Extensions And

Sustain Extensibility (GREASE) to TLS Extensibility", RFC

8701, DOI 10.17487/RFC8701, January 2020, <https://

www.rfc-editor.org/info/rfc8701>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2002, 2002.

12.2. Informative References

"Clear as MUD: Generating, Validating and Applying

IoT Behaviorial Profiles", October 2019, <https://

arxiv.org/pdf/1804.04358.pdf>.

Perez, B., "Exploiting the Windows CryptoAPI

Vulnerability", January 2020, <https://media.defense.gov/

2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-

LIB-20190114.PDF>.

Richardson, M. and W.

Pan, "Operational Considerations for use of DNS in IoT

devices", Work in Progress, Internet-Draft, draft-ietf-

opsawg-mud-iot-dns-considerations-02, 11 July 2021,

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8519
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8701
https://arxiv.org/pdf/1804.04358.pdf
https://arxiv.org/pdf/1804.04358.pdf
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF

[I-D.ietf-tls-esni]

[I-D.ietf-uta-tls13-iot-profile]

[malware]

[malware-doh]

[malware-tls]

[RFC6020]

[RFC6066]

[RFC7301]

[RFC7366]

<https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-

iot-dns-considerations-02.txt>.

Rescorla, E., Oku, K., Sullivan, N., and C. A.

Wood, "TLS Encrypted Client Hello", Work in Progress,

Internet-Draft, draft-ietf-tls-esni-12, 7 July 2021,

<https://www.ietf.org/archive/id/draft-ietf-tls-

esni-12.txt>.

Tschofenig, H. and T. Fossati,

"TLS/DTLS 1.3 Profiles for the Internet of Things", Work

in Progress, Internet-Draft, draft-ietf-uta-tls13-iot-

profile-01, 22 February 2021, <https://www.ietf.org/

archive/id/draft-ietf-uta-tls13-iot-profile-01.txt>.

Anderson, B., Paul, S., and D. McGrew, "Deciphering

Malware’s use of TLS (without Decryption)", July 2016,

<https://arxiv.org/abs/1607.01639>.

Cimpanu, C., "First-ever malware strain spotted

abusing new DoH (DNS over HTTPS) protocol", July 2019,

<https://www.zdnet.com/article/first-ever-malware-strain-

spotted-abusing-new-doh-dns-over-https-protocol/>.

Anderson, B. and D. McGrew, "TLS Beyond the Browser:

Combining End Host and Network Data to Understand

Application Behavior", October 2019, <https://dl.acm.org/

citation.cfm?id=3355601>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Gutmann, P., "Encrypt-then-MAC for Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", RFC 7366, DOI 10.17487/RFC7366, September 2014,

<https://www.rfc-editor.org/info/rfc7366>.

https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-iot-dns-considerations-02.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-mud-iot-dns-considerations-02.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-12.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-12.txt
https://www.ietf.org/archive/id/draft-ietf-uta-tls13-iot-profile-01.txt
https://www.ietf.org/archive/id/draft-ietf-uta-tls13-iot-profile-01.txt
https://arxiv.org/abs/1607.01639
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://dl.acm.org/citation.cfm?id=3355601
https://dl.acm.org/citation.cfm?id=3355601
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7366

[RFC7469]

[RFC7525]

[RFC7925]

[RFC7951]

[RFC8126]

[RFC8152]

[RFC8472]

[RFC8484]

[RFC8520]

[RFC8576]

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning

Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,

April 2015, <https://www.rfc-editor.org/info/rfc7469>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Lhotka, L., "JSON Encoding of Data Modeled with YANG",

RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://

www.rfc-editor.org/info/rfc7951>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport

Layer Security (TLS) Extension for Token Binding Protocol

Negotiation", RFC 8472, DOI 10.17487/RFC8472, October

2018, <https://www.rfc-editor.org/info/rfc8472>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/info/rfc8484>.

Lear, E., Droms, R., and D. Romascanu, "Manufacturer

Usage Description Specification", RFC 8520, DOI 10.17487/

RFC8520, March 2019, <https://www.rfc-editor.org/info/

rfc8520>.

Garcia-Morchon, O., Kumar, S., and M. Sethi, "Internet of

Things (IoT) Security: State of the Art and Challenges",

https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8472
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520

[RFC8613]

[X501]

RFC 8576, DOI 10.17487/RFC8576, April 2019, <https://

www.rfc-editor.org/info/rfc8576>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

"Information Technology - Open Systems Interconnection -

The Directory: Models", ITU-T X.501, 1993.

Authors' Addresses

Tirumaleswar Reddy

McAfee, Inc.

Embassy Golf Link Business Park

Bangalore 560071

Karnataka

India

Email: kondtir@gmail.com

Dan Wing

Citrix Systems, Inc.

4988 Great America Pkwy

Santa Clara, CA 95054

United States of America

Email: danwing@gmail.com

Blake Anderson

Cisco Systems, Inc.

170 West Tasman Dr

San Jose, CA 95134

United States of America

Email: blake.anderson@cisco.com

https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc8613
mailto:kondtir@gmail.com
mailto:danwing@gmail.com
mailto:blake.anderson@cisco.com

	Manufacturer Usage Description (MUD) (D)TLS Profiles for IoT Devices
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview of MUD (D)TLS profiles for IoT devices
	4. (D)TLS 1.3 Handshake
	4.1. Full (D)TLS 1.3 Handshake Inspection
	4.2. Encrypted DNS

	5. (D)TLS Profile of a IoT device
	5.1. Tree Structure of the (D)TLS profile Extension to the ACL YANG Model
	5.2. The (D)TLS profile Extension to the ACL YANG Model
	5.3. IANA (D)TLS profile YANG Module
	5.4. MUD (D)TLS Profile Extension

	6. Processing of the MUD (D)TLS Profile
	7. MUD File Example
	8. Security Considerations
	9. Privacy Considerations
	10. IANA Considerations
	10.1. (D)TLS Profile YANG Modules
	10.2. ACL TLS Version registry
	10.3. ACL DTLS version registry
	10.4. ACL (D)TLS Parameters registry
	10.5. MUD Extensions registry

	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Authors' Addresses

