
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-opsawg-sbom-access-05

Published: 6 March 2022

Intended Status: Standards Track

Expires: 7 September 2022

Authors: E. Lear

Cisco Systems

S. Rose

NIST

Discovering and Retrieving Software Transparency and Vulnerability

Information

Abstract

To improve cybersecurity posture, automation is necessary to locate

what software is running on a device, whether that software has

known vulnerabilities, and what, if any recommendations suppliers

may have. This memo specifies a model to provide access to this

information. It may optionally be discovered through manufacturer

usage descriptions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. How This Information Is Retrieved

1.2. Formats

1.3. Discussion points

2. The well-known transparency endpoint set

3. The mud-transparency extension model extension

4. The mud-sbom augmentation to the MUD YANG model

5. Examples

5.1. Without ACLS

5.2. SBOM Located on the Device

5.3. Further contact required.

5.4. With ACLS

6. Security Considerations

7. IANA Considerations

7.1. MUD Extension

7.2. YANG Registration

7.3. Well-Known Prefix

8. Acknowledgments

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Changes from Earlier Versions

Authors' Addresses

1. Introduction

A number of activities have been working to improve visibility to

what software is running on a system, and what vulnerabilities that

software may have[EO2021].

Put simply, we seek to answer two classes of questions at scale:

Is this system vulnerable to a particular vulnerability?

Which devices in a particular environment contain vulnerabilities

that require some action?

This memo doesn't specify the format of this information, but rather

only how to locate and retrieve these objects.

Software bills of materials (SBOMs) are descriptions of what

software, including versioning and dependencies, a device contains.

There are different SBOM formats such as Software Package Data

Exchange [SPDX] or CycloneDX[CycloneDX12].

¶

¶

¶

* ¶

*

¶

¶

¶

System vulnerabilities may similarly be described using several data

formats, including the aforementioned CycloneDX, Common

Vulnerability Reporting Framework [CVRF], the Common Security

Advisory Format [CSAF]. This information is typically used to report

to customers the state of a system.

These two classes of information can be used in concert. For

instance, a network management tool may discover that a system makes

use of a particular software component that has a known

vulnerability, and a vulnerability report may be used to indicate

what if any versions of software correct that vulnerability, or

whether the system exercises the vulnerable code at all.

Both classes of information elements are optional under the model

specified in this memo. One can provide only an SBOM, only

vulnerability information, or both an SBOM and vulnerability

information.

Note that SBOM formats may also carry other information, the most

common being any licensing terms. Because this specification is

neutral regarding content, it is left for format developers such as

the Linux Foundation, OASIS, and ISO to decide what attributes they

will support.

This memo does not specify how vulnerability information may be

retrieved directly from the endpoint. That's because vulnerability

information changes occur at different rates to software updates.

However, some SBOM formats may also contain vulnerability

information.

SBOMs and vulnerability information are advertised and retrieved

through the use of a YANG augmentation of the Manufacturer User

Description (MUD) model [RFC8520]. Note that the schema creates a

grouping that can also be used independently of MUD. Moreover, other

MUD features, such as access controls, needn't be present.

The mechanisms specified in this document are meant to satisfy

several use cases:

A network-layer management system retrieving information from an

IoT device as part of its ongoing lifecycle. Such devices may or

may not have query interfaces available.

An application-layer management system retrieving vulnerability

or SBOM information in order to evaluate the posture of an

application server of some form. These application servers may

themselves be containers or hypervisors. Discovery of the

topology of a server is beyond the scope of this memo.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

To satisfy these two key use cases, objects may be found in one of

three ways:

on devices themselves

on a web site (e.g., via URI)

through some form of out-of-band contact with the supplier.

In the first case, devices will have interfaces that permit direct

retrieval. Examples of these interfaces might be an HTTP, COAP or

[OpenC2] endpoint for retrieval. There may also be private

interfaces as well.

In the second case, when a device does not have an appropriate

retrieval interface, but one is directly available from the

manufacturer, a URI to that information MUST be discovered.

In the third case, a supplier may wish to make an SBOM or

vulnerability information available under certain circumstances, and

may need to individually evaluate requests. The result of that

evaluation might be the SBOM or vulnerability itself or a restricted

URL or no access.

To enable application-layer discovery, this memo defines a well-

known URI [RFC8615]. Management or orchestration tools can query

this well-known URI to retrieve a system's SBOM or vulnerability

information. Further queries may be necessary based on the content

and structure of the response.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.1. How This Information Is Retrieved

For devices that can emit a URL or can establish a well-known URI,

the mechanism may be highly automated. For devices that have a URL

in either their documentation or within a QR code on a box, the

mechanism is semi-automated (someone has to scan the QR code or

enter the URL).

Note that vulnerability and SBOM information is likely to change at

different rates. The MUD semantics provide a way for manufacturers

to control how often tooling should check for those changes through

the cache-validity node.

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

1.2. Formats

There are multiple ways to express both SBOMs and vulnerability

information. When these are retrieved either directly from the

device or directly from a web server, tools will need to observe the

content-type header to determine precisely which format is being

transmitted. Because IoT devices in particular have limited

capabilities, use of a specific Accept: header in HTTP or the Accept

Option in CoAP is NOT RECOMMENDED. Instead, backend tooling is

encouraged to support all known formats, and SHOULD silently discard

SBOM information sent with a media type that is not understood.

Some formats may support both vulnerability and software inventory

information. When both vulnerability and software inventory

information is available from the same location, both sbom and vuln

nodes MUST indicate that. Network management systems retrieving this

information MUST take note that the identical resource is being

retrieved rather than retrieving it twice.

1.3. Discussion points

The following is discussion to be removed at time of RFC

publication.

Is the model structured correctly?

Are there other retrieval mechanisms that need to be specified?

Do we need to be more specific in how to authenticate and

retrieve SBOMs?

What are the implications if the MUD URL is an extension in a

certificate (e.g. an IDevID cert)?

2. The well-known transparency endpoint set

Two well known endpoints are defined:

"/.well-known/sbom" retrieves an SBOM.

"/.well-known/openc2" is the HTTPS binding to OpenC2.

As discussed previously, the precise format of a response is based

on the Content-type provided.

3. The mud-transparency extension model extension

We now formally define this extension. This is done in two parts.

First, the extension name "transparency" is listed in the

"extensions" array of the MUD file. N.B., this schema extension is

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

¶

intended to be used wherever it might be appropriate (e.g., not just

MUD).

Second, the "mud" container is augmented with a list of SBOM

sources.

This is done as follows:

¶

¶

¶

module: ietf-mud-transparency

 augment /mud:mud:

 +--rw transparency

 +--rw (sbom-retrieval-method)?

 | +--:(cloud)

 | | +--rw sboms* [version-info]

 | | +--rw version-info string

 | | +--rw sbom-url? inet:uri

 | +--:(local-well-known)

 | | +--rw sbom-local-well-known? enumeration

 | +--:(sbom-contact-info)

 | +--rw sbom-contact-uri inet:uri

 +--rw (vuln-retrieval-method)?

 +--:(cloud)

 | +--rw vuln-url? inet:uri

 +--:(vuln-contact-info)

 +--rw contact-uri inet:uri

¶

4. The mud-sbom augmentation to the MUD YANG model

<CODE BEGINS>file "ietf-mud-transparency@2021-10-22.yang"

module ietf-mud-transparency {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-mud-transparency";

 prefix mudtx;

 import ietf-inet-types {

 prefix inet;

 reference "RFC 6991";

}

 import ietf-mud {

 prefix mud;

 reference "RFC 8520";

 }

 organization

 "IETF OPSAWG (Ops Area) Working Group";

 contact

 "WG Web: http://tools.ietf.org/wg/opsawg/

 WG List: opsawg@ietf.org

 Editor: Eliot Lear lear@cisco.com

 Editor: Scott Rose scott.rose@nist.gov";

 description

 "This YANG module augments the ietf-mud model to provide for

 reporting of SBOMs and vulnerability information.

 Copyright (c) 2020 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX);

 see the RFC itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here. ";

 revision 2021-07-06 {

 description

 "Initial proposed standard.";

 reference

 "RFC XXXX: Discovering and Retrieving Software Transparency

 and Vulnerability Information";

 }

 grouping transparency-extension {

 description

 "Transparency extension grouping";

 container transparency {

 description

 "container of methods to get an SBOM.";

 choice sbom-retrieval-method {

 description

 "How to find SBOM information";

 case cloud {

 list sboms {

 key "version-info";

 description

 "A list of SBOMs tied to different s/w

 or h/w versions.";

 leaf version-info {

 type string;

 description

 "The version to which this SBOM refers.";

 }

 leaf sbom-url {

 type inet:uri;

 description

 "A statically located URI.";

 }

 }

 }

 case local-well-known {

 leaf sbom-local-well-known {

 type enumeration {

 enum http {

 description

 "Use http (insecure) to retrieve

 SBOM information. This method is NOT RECOMMENDED,

 but may be unavoidable for certain classes of

 deployment, where TLS has not or cannot be implemented";

 }

 enum https {

 description

 "Use https (secure) to retrieve SBOM information.";

 }

 enum coap {

 description

 "Use COAP (insecure) to retrieve SBOM. This method

 is NOT RECOMMENDED, although it may be unavoidable

 for certain classes of implementations/deployments.";

 }

 enum coaps {

 description

 "Use COAPS (secure) to retrieve SBOM";

 }

 enum openc2 {

 description

 "Use OpenC2 endpoint.

 This is https://{host}/.well-known/openc2";

 }

 }

 description

 "Which communication protocol to choose.";

 }

 }

 case sbom-contact-info {

 leaf sbom-contact-uri {

 type inet:uri;

 mandatory true;

 description

 "This MUST be either a tel, http, https, or

 mailto uri schema that customers can use to

 contact someone for SBOM information.";

 }

 }

 }

 choice vuln-retrieval-method {

 description

 "How to find vulnerability information";

 case cloud {

 leaf vuln-url {

 type inet:uri;

 description

 "A statically located URL.";

 }

 }

 case vuln-contact-info {

 leaf contact-uri {

 type inet:uri;

 mandatory true;

 description

 "This MUST be either a tel, http, https, or

 mailto uri schema that customers can use to

 contact someone for vulnerability information.";

 }

 }

 }

 }

 }

 augment "/mud:mud" {

 description

 "Add extension for software transparency.";

 uses transparency-extension;

 }

}

<CODE ENDS>

5. Examples

In this example MUD file that uses a cloud service, the modelX

presents a location of the SBOM in a URL. Note, the ACLs in a MUD

file are NOT required, although they are a very good idea for IP-

based devices.

5.1. Without ACLS

This first MUD file demonstrates how to get SBOM and vulnerability

information without ACLs.

¶

¶

¶

The second example demonstrates that just SBOM information is

included.

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "extensions": [

 "ol",

 "transparency"

],

 "ol": {

 "owners": [

 "Copyright (c) Example, Inc. 2022. All Rights Reserved"

],

 "spdx-tag": "0BSD"

 },

 "mudtx:transparency": {

 "sbom-local-well-known": "https",

 "vuln-url": "https://iot.example.com/info/modelX/csaf.json"

 },

 "mud-url": "https://iot.example.com/modelX.json",

 "mud-signature": "https://iot.example.com/modelX.p7s",

 "last-update": "2022-01-05T13:29:12+00:00",

 "cache-validity": 48,

 "is-supported": true,

 "systeminfo": "retrieving vuln and SBOM info via a cloud service",

 "mfg-name": "Example, Inc.",

 "documentation": "https://iot.example.com/doc/modelX",

 "model-name": "modelX"

 }

}

¶

¶

5.2. SBOM Located on the Device

In this example, the SBOM is retrieved from the device, while

vulnerability information is available from the cloud. This is

likely a common case, because vendors may learn of vulnerability

information more frequently than they update software.

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "extensions": [

 "ol",

 "transparency"

],

 "ol": {

 "owners": [

 "Copyright (c) Example, Inc. 2022. All Rights Reserved"

],

 "spdx-tag": "0BSD"

 },

 "mudtx:transparency": {

 "sbom-local-well-known": "https"

 },

 "mud-url": "https://iot.example.com/modelX.json",

 "mud-signature": "https://iot.example.com/modelX.p7s",

 "last-update": "2022-01-05T13:29:47+00:00",

 "cache-validity": 48,

 "is-supported": true,

 "systeminfo": "retrieving vuln and SBOM info via a cloud service",

 "mfg-name": "Example, Inc.",

 "documentation": "https://iot.example.com/doc/modelX",

 "model-name": "modelX"

 }

}

¶

¶

5.3. Further contact required.

In this example, the network manager must take further steps to

retrieve SBOM information. Vulnerability information is still

available.

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "extensions": [

 "transparency"

],

 "mudtx:transparency": {

 "sbom-local-well-known": "https",

 "vuln-url": "https://iot-device.example.com/info/modelX/csaf.json"

 },

 "mud-url": "https://iot-device.example.com/modelX.json",

 "mud-signature": "https://iot-device.example.com/modelX.p7s",

 "last-update": "2022-01-05T13:25:14+00:00",

 "cache-validity": 48,

 "is-supported": true,

 "systeminfo": "retrieving vuln and SBOM info via a cloud service",

 "mfg-name": "Example, Inc.",

 "documentation": "https://iot-device.example.com/doc/modelX",

 "model-name": "modelX"

 }

}

¶

¶

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "extensions": [

 "transparency"

],

 "ietf-mud-transparency:transparency": {

 "contact-info": "https://iot-device.example.com/contact-info.html",

 "vuln-url": "https://iot-device.example.com/info/modelX/csaf.json"

 },

 "mud-url": "https://iot-device.example.com/modelX.json",

 "mud-signature": "https://iot-device.example.com/modelX.p7s",

 "last-update": "2021-07-09T06:16:42+00:00",

 "cache-validity": 48,

 "is-supported": true,

 "systeminfo": "retrieving vuln and SBOM info via a cloud service",

 "mfg-name": "Example, Inc.",

 "documentation": "https://iot-device.example.com/doc/modelX",

 "model-name": "modelX"

 }

}

¶

5.4. With ACLS

Finally, here is a complete example where the device provides SBOM

and vulnerability information, as well as access-control

information.¶

{

 "ietf-mud:mud": {

 "mud-version": 1,

 "extensions": [

 "ol",

 "transparency"

],

 "ol": {

 "owners": [

 "Copyright (c) Example, Inc. 2022. All Rights Reserved"

],

 "spdx-tag": "0BSD"

 },

 "mudtx:transparency": {

 "sbom-local-well-known": "https",

 "vuln-url": "https://iot.example.com/info/modelX/csaf.json"

 },

 "mud-url": "https://iot.example.com/modelX.json",

 "mud-signature": "https://iot.example.com/modelX.p7s",

 "last-update": "2022-01-05T13:30:31+00:00",

 "cache-validity": 48,

 "is-supported": true,

 "systeminfo": "retrieving vuln and SBOM info via a cloud service",

 "mfg-name": "Example, Inc.",

 "documentation": "https://iot.example.com/doc/modelX",

 "model-name": "modelX",

 "from-device-policy": {

 "access-lists": {

 "access-list": [

 {

 "name": "mud-65443-v4fr"

 }

]

 }

 },

 "to-device-policy": {

 "access-lists": {

 "access-list": [

 {

 "name": "mud-65443-v4to"

 }

]

 }

 }

 },

 "ietf-access-control-list:acls": {

 "acl": [

 {

 "name": "mud-65443-v4to",

 "type": "ipv4-acl-type",

 "aces": {

 "ace": [

 {

 "name": "cl0-todev",

 "matches": {

 "ipv4": {

 "ietf-acldns:src-dnsname": "iotserver.example.com"

 }

 },

 "actions": {

 "forwarding": "accept"

 }

 }

]

 }

 },

 {

 "name": "mud-65443-v4fr",

 "type": "ipv4-acl-type",

 "aces": {

 "ace": [

 {

 "name": "cl0-frdev",

 "matches": {

 "ipv4": {

 "ietf-acldns:dst-dnsname": "iotserver.example.com"

 }

 },

 "actions": {

 "forwarding": "accept"

 }

 }

]

 }

 }

]

 }

}

¶

At this point, the management system can attempt to retrieve the

SBOM, and determine which format is in use through the content-type

header on the response to a GET request, independently repeat the

process for vulnerability information, and apply ACLs, as

appropriate.

6. Security Considerations

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

N.B., for MUD, the mandatory method of retrieval is TLS.

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF or

RESTCONF users to a preconfigured subset of all available NETCONF or

RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that

are writable/creatable/deletable (i.e., config true, which is the

default). These data nodes may be considered sensitive or vulnerable

in some network environments. Write operations (e.g., edit-config)

to these data nodes without proper protection can have a negative

effect on network operations. These are the subtrees and data nodes

and their sensitivity/vulnerability:

The ietf-mud-transparency module has no operational impact on the

element itself, and is used to discover state information that may

be available on or off the element. In as much as the module itself

is made writeable, this only indicates a change in how to retrieve

what read-only elements. However, that does not mean there are no

risks. These are discussed below, and are applicable to all nodes

within the transparency container.

If an attacker modifies the elements, they may misdirect automation

to retrieve a different set of URLs than was intended by the

designer. This in turn leads to two specific sets of risks:

the information retrieved would be false.

the URLs themselves point to malware.

To address either risk, any change in a URL, and in particular to

the authority section, should be treated with some suspicion. One

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

mitigation would be to test any cloud-based URL against a reputation

service.

Some of the readable data nodes in this YANG module may be

considered sensitive or vulnerable in some network environments. It

is thus important to control read access (e.g., via get, get-config,

or notification) to these data nodes. These are the subtrees and

data nodes and their sensitivity/vulnerability:

SBOMs provide an inventory of software. If software is available to

an attacker, the attacker may well already be able to derive this

very same software inventory. Manufacturers MAY restrict access to

SBOM information using appropriate authorization semantics within

HTTP. In particular, if a system attempts to retrieve an SBOM via

HTTP and the client is not authorized, the server MUST produce an

appropriate error, with instructions on how to register a particular

client. One example may be to issue a certificate to the client for

this purpose after a registration process has taken place. Another

example would involve the use of OAUTH in combination with a

federations of SBOM servers.

Another risk is a skew in the SBOM listing and the actual software

inventory of a device/container. For example, a manufacturer may

update the SBOM on its server, but an individual device has not been

upgraded yet. This may result in an incorrect policy being applied

to a device. A unique mapping of a device's software version and its

SBOM can minimize this risk.

To further mitigate attacks against a device, manufacturers SHOULD

recommend access controls.

Vulnerability information is generally made available to such

databases as NIST's National Vulnerability Database. It is possible

that vendor may wish to release information early to some customers.

We do not discuss here whether that is a good idea, but if it is

employed, then appropriate access controls and authorization SHOULD

be applied to the vulnerability resource.

7. IANA Considerations

7.1. MUD Extension

The IANA is requested to add "transparency" to the MUD extensions

registry as follows:

¶

¶

¶

¶

¶

¶

¶

 Extension Name: transparency

 Standard reference: This document

¶

[RFC2119]

[RFC6241]

[RFC6242]

7.2. YANG Registration

The following YANG module should be registered in the "YANG Module

Names" registry:

7.3. Well-Known Prefix

The following well known URIs are requested in accordance with

[RFC8615]:

8. Acknowledgments

Thanks to Russ Housley, Dick Brooks, Tom Petch, Nicolas Comstedt,

who provided revew comments.

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

¶

 Name: ietf-mud

 URN: urn:ietf:params:xml:ns:yang:ietf-mud-transparency

 Prefix: mudtx

 Registrant contact: The IESG

 Reference: This memo

¶

¶

 URI suffix: "sbom"

 Change controller: "IETF"

 Specification document: This memo

 Related information: See ISO/IEC 19970-2 and SPDX.org

 URI suffix: "openc2"

 Change controller: "IETF"

 Specification document: This memo

 Related information: OpenC2 Project

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242

[RFC6991]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8446]

[RFC8520]

[RFC8615]

[CSAF]

[CVRF]

[CycloneDX12]

[EO2021]

[OpenC2]

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Lear, E., Droms, R., and D. Romascanu, "Manufacturer

Usage Description Specification", RFC 8520, DOI 10.17487/

RFC8520, March 2019, <https://www.rfc-editor.org/info/

rfc8520>.

Nottingham, M., "Well-Known Uniform Resource Identifiers

(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

<https://www.rfc-editor.org/info/rfc8615>.

9.2. Informative References

OASIS, "Common Security Advisory Format", July 2021,

<https://github.com/oasis-tcs/csaf>.

Santos, O., Ed., "Common Vulnerability Reporting

Framework (CVRF) Version 1.2", September 2017, <https://

docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-

v1.2.pdf>.

cylonedx.org, "CycloneDX XML Reference v1.2", May

2020.

Biden, J., "Executive Order 14028, Improving the Nations

Cybersecurity", May 2021.

Lemire, D., Ed., "Specification for Transfer of OpenC2

Messages via HTTPS Version 1.0", July 2019, <https://

https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8615
https://github.com/oasis-tcs/csaf
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.pdf
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.pdf
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.pdf
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html

[SPDX]

docs.oasis-open.org/openc2/open-impl-https/v1.0/open-

impl-https-v1.0.html>.

The Linux Foundation, "SPDX Specification 2.1", 2016.

Appendix A. Changes from Earlier Versions

Draft -04: * Address review comments

Draft -02:

include vulnerability information

Draft -01:

some modest changes

Draft -00:

Initial revision

Authors' Addresses

Eliot Lear

Cisco Systems

Richtistrasse 7

CH-8304 Wallisellen

Switzerland

Phone: +41 44 878 9200

Email: lear@cisco.com

Scott Rose

NIST

100 Bureau Dr

Gaithersburg MD, 20899

United States of America

Phone: +1 301-975-8439

Email: scott.rose@nist.gov

¶

¶

* ¶

¶

* ¶

¶

* ¶

https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
tel:+41%2044%20878%209200
mailto:lear@cisco.com
tel:+1%20301-975-8439
mailto:scott.rose@nist.gov

	Discovering and Retrieving Software Transparency and Vulnerability Information
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. How This Information Is Retrieved
	1.2. Formats
	1.3. Discussion points

	2. The well-known transparency endpoint set
	3. The mud-transparency extension model extension
	4. The mud-sbom augmentation to the MUD YANG model
	5. Examples
	5.1. Without ACLS
	5.2. SBOM Located on the Device
	5.3. Further contact required.
	5.4. With ACLS

	6. Security Considerations
	7. IANA Considerations
	7.1. MUD Extension
	7.2. YANG Registration
	7.3. Well-Known Prefix

	8. Acknowledgments
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Changes from Earlier Versions
	Authors' Addresses

