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Abstract

This document describes an architecture that aims at assuring that

service instances are running as expected. As services rely upon

multiple sub-services provided by a variety of elements including

the underlying network devices and functions, getting the assurance

of a healthy service is only possible with a holistic view of all

involved elements. This architecture not only helps to correlate the

service degradation with symptoms of a specific network component

but also to list the services impacted by the failure or degradation

of a specific network component.
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1. Introduction

Network service YANG modules [RFC8199] describe the configuration,

state data, operations, and notifications of abstract

representations of services implemented on one or multiple network

elements.

Service orchestrators use Network service YANG modules that will

infer network-wide configuration and, therefore the invocation of

the appropriate device modules (Section 3 of [RFC8969]). Knowing

that a configuration is applied doesn't imply that the service is up

and running as expected. For instance, the service might be degraded

because of a failure in the network, the experience quality is

distorted, or a service function may be reachable at the IP level

but does not provide its intended function. Thus, the network
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operator must monitor the service operational data at the same time

as the configuration (Section 3.3 of [RFC8969]. To feed that task,

the industry has been standardizing on telemetry to push network

element performance information.

A network administrator needs to monitor their network and services

as a whole, independently of the management protocols. With

different protocols come different data models, and different ways

to model the same type of information. When network administrators

deal with multiple management protocols, the network management

entities have to perform the difficult and time-consuming job of

mapping data models: e.g. the model used for configuration with the

model used for monitoring when separate models or protocols are

used. This problem is compounded by a large, disparate set of data

sources (MIB modules, YANG models [RFC7950], IPFIX information

elements [RFC7011], syslog plain text [RFC5424], TACACS+ [RFC8907],

RADIUS [RFC2865], etc.). In order to avoid this data model mapping,

the industry converged on model-driven telemetry to stream the

service operational data, reusing the YANG models used for

configuration. Model-driven telemetry greatly facilitates the notion

of closed-loop automation whereby events/status from the network

drive remediation changes back into the network.

However, it proves difficult for network operators to correlate the

service degradation with the network root cause. For example, "Why

does my L3VPN fail to connect?" or "Why is this specific service not

highly responsive?". The reverse, i.e., which services are impacted

when a network component fails or degrades, is also important for

operators. For example, "Which services are impacted when this

specific optic dBM begins to degrade?", "Which applications are

impacted by this ECMP imbalance?", or "Is that issue actually

impacting any other customers?". This task usually falls under the

so-called "Service Impact Analysis" functional block.

Intent-based approaches are often declarative, starting from a

statement of "The service works as expected" and trying to enforce

it. Such approaches are mainly suited for greenfield deployments.

In this document, we propose an architecture implementing Service

Assurance for Intent-Based Networking (SAIN). Aligned with Section

3.3 of [RFC7149], and instead of approaching intent from a

declarative way, this architecture focuses on already defined

services and tries to infer the meaning of "The service works as

expected". To do so, the architecture works from an assurance graph,

deduced from the configuration pushed to the device for enabling the

service instance. If the SAIN orchestrator supports it, the service

model can also be used to build the assurance graph. In some cases,

the assurance graph may also be explicitly completed to add an

intent not exposed in the service model itself (e.g. the service
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must rely upon a backup physical path). This assurance graph is

decomposed into components, which are then assured independently.

The root of the assurance graph represents the service to assure,

and its children represent components identified as its direct

dependencies; each component can have dependencies as well. The SAIN

orchestrator updates automatically the assurance graph when services

are modified.

When a service is degraded, the SAIN architecture will highlight

where in the assurance service graph to look, as opposed to going

hop by hop to troubleshoot the issue. More precisely, the SAIN

architecture will associate to each service a list of symptoms

originating from specific components of the network. These

components are good candidates for explaining the source of a

service degradation. Not only can this architecture help to

correlate service degradation with network root cause/symptoms, but

it can deduce from the assurance graph the number and type of

services impacted by a component degradation/failure. This added

value informs the operational team where to focus its attention for

maximum return. Indeed, the operational team should focus his

priority on the degrading/failing components impacting the highest

number customers, especially the ones with the SLA contracts

involving penalties in case of failure.

This architecture provides the building blocks to assure both

physical and virtual entities and is flexible with respect to

services and subservices, of (distributed) graphs, and of components

(Section 3.7).

The architecture presented in this document is completed by a set of

YANG modules defined in a companion document [I-D.ietf-opsawg-

service-assurance-yang]. These YANG modules properly define the

interfaces between the various components of the architecture in

order to foster interoperability.

2. Terminology

SAIN agent: A functional component that communicates with a device,

a set of devices, or another agent to build an expression graph from

a received assurance graph and perform the corresponding computation

of the health status and symptoms.

Assurance case: "An assurance case is a structured argument,

supported by evidence, intended to justify that a system is

acceptably assured relative to a concern (such as safety or

security) in the intended operating environment" [Piovesan2017].

Service instance: A specific instance of a service.
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Subservice: Part or functionality of the network system that can be

independently assured as a single entity in assurance graph.

Assurance graph: A Directed Acyclic Graph (DAG) representing the

assurance case for one or several service instances. The nodes (also

known as vertices in the context of DAG) are the service instances

themselves and the subservices, the edges indicate a dependency

relations.

SAIN collector: A functional component that fetches or receives the

computer-consumable output of the SAIN agent(s) and process it

locally (including displaying it in a user friendly form).

DAG: Directed Acyclic Graph.

ECMP: Equal Cost Multiple Paths

Expression graph: A generic term for a DAG representing a

computation in SAIN. More specific terms are:

Subservice expressions: Is an expression graph representing all

the computations to execute for a subservice.

Service expressions: Is an expression graph representing all the

computations to execute for a service instance, i.e., including

the computations for all dependent subservices.

Global computation graph: Is an expression graph representing all

the computations to execute for all services instances (i.e., all

computations performed).

Dependency: The directed relationship between subservice instances

in the assurance graph.

Metric: An information retrieved from the network running the

assured service.

Metric engine: A functional components that maps metrics to a list

of candidate metric implementations depending on the network

element.

Metric implementation: Actual way of retrieving a metric from a

network element.

Network service YANG module: describes the characteristics of a

service as agreed upon with consumers of that service [RFC8199].

Service orchestrator: Quoting RFC8199, "Network Service YANG Modules

describe the characteristics of a service, as agreed upon with

consumers of that service. That is, a service module does not expose
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the detailed configuration parameters of all participating network

elements and features but describes an abstract model that allows

instances of the service to be decomposed into instance data

according to the Network Element YANG Modules of the participating

network elements. The service-to-element decomposition is a separate

process; the details depend on how the network operator chooses to

realize the service. For the purpose of this document, the term

"orchestrator" is used to describe a system implementing such a

process."

SAIN orchestrator: A functional component that is in charge of

fetching the configuration specific to each service instance and

converting it into an assurance graph.

Health status: Score and symptoms indicating whether a service

instance or a subservice is "healthy". A non-maximal score must

always be explained by one or more symptoms.

Health score: Integer ranging from 0 to 100 indicating the health of

a subservice. A score of 0 means that the subservice is broken, a

score of 100 means that the subservice in question is operating as

expected.

Strongly connected component: subset of a directed graph such that

there is a (directed) path from any node of the subset to any other

node. A DAG does not contain any strongly connected component.

Symptom: Reason explaining why a service instance or a subservice is

not completely healthy.

3. A Functional Architecture

The goal of SAIN is to assure that service instances are operating

as expected (i.e. the observed service is matching the expected

service) and if not, to pinpoint what is wrong. More precisely, SAIN

computes a score for each service instance and outputs symptoms

explaining that score. Symptoms explain the score. The only valid

situation where no symptoms are returned is when the score is

maximal, indicating that no issues where detected for that service.

The score augmented with the symptoms is called the health status.

The SAIN architecture is a generic architecture, applicable to

multiple environments (e.g. wireline, wireless), but also different

domains (e.g. 5G, NFV domain with a virtual infrastructure manager

(VIM)), etc. And as already noted, for physical or virtual devices,

as well as virtual functions. Thanks to the distributed graph design

principle, graphs from different environments/orchestrator can be

combined together.
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As an example of a service, let us consider a point-to-point L2VPN. 

[RFC8466] specifies the parameters for such a service. Examples of

symptoms might be symptoms reported by specific subservices

"Interface has high error rate" or "Interface flapping", or "Device

almost out of memory" as well as symptoms more specific to the

service such as "Site disconnected from VPN".

To compute the health status of such a service, the service

definition is decomposed into an assurance graph formed by

subservices linked through dependencies. Each subservice is then

turned into an expression graph that details how to fetch metrics

from the devices and compute the health status of the subservice.

The subservice expressions are combined according to the

dependencies between the subservices in order to obtain the

expression graph which computes the health status of the service.

The overall SAIN architecture is presented in Figure 1. Based on the

service configuration provided by the service orchestrator, the SAIN

orchestrator decomposes the assurance graph. It then sends to the

SAIN agents the assurance graph along some other configuration

options. The SAIN agents are responsible for building the expression

graph and computing the health statuses in a distributed manner. The

collector is in charge of collecting and displaying the current

inferred health status of the service instances and subservices.

Finally, the automation loop is closed by having the SAIN collector

providing feedback to the network/service orchestrator.

In order to make agents, orchestrators and collectors from different

vendors interoperable, their interface is defined as a YANG model in

a companion document [I-D.ietf-opsawg-service-assurance-yang]. In 

Figure 1, the communications that are normalized by this YANG model

are tagged with a "Y". The use of this YANG model is further

explained in Section 3.5.
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Figure 1: SAIN Architecture

In order to produce the score assigned to a service instance, the

various involved components perform the following tasks:

Analyze the configuration pushed to the network device(s) for

configuring the service instance and decide: which information is

needed from the device(s), such a piece of information being

called a metric, which operations to apply to the metrics for

computing the health status.

       +-----------------+

       | Service         |

       | Orchestrator    |<--------------------+

       |                 |                     |

       +-----------------+                     |

          |            ^                       |

          |            | Network               |

          |            | Service               | Feedback

          |            | Instance              | Loop

          |            | Configuration         |

          |            |                       |

          |            V                       |

          |        +-----------------+       +-------------------+

          |        | SAIN            |       | SAIN              |

          |        | Orchestrator    |       | Collector         |

          |        +-----------------+       +-------------------+

          |            |                        ^

          |           Y| Configuration          | Health Status

          |            | (assurance graph)     Y| (Score + Symptoms)

          |            V                        | Streamed

          |     +-------------------+           | via Telemetry

          |     |+-------------------+          |

          |     ||+-------------------+         |

          |     +|| SAIN              |---------+

          |      +| agent             |

          |       +-------------------+

          |               ^ ^ ^

          |               | | |

          |               | | |  Metric Collection

          V               V V V

      +-------------------------------------------------------------+

      |           Network System                                    |

      |                                                             |

      +-------------------------------------------------------------+
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Stream (via telemetry [RFC8641]) operational and config metric

values when possible, else continuously poll.

Continuously compute the health status of the service instances,

based on the metric values.

3.1. Inferring a Service Instance Configuration into an Assurance

Graph

In order to structure the assurance of a service instance, the SAIN

orchestrator decomposes the service instance into so-called

subservice instances. Each subservice instance focuses on a specific

feature or subpart of the service.

The decomposition into subservices is an important function of the

architecture, for the following reasons:

The result of this decomposition provides a relational picture of

a service instance, that can be represented as a graph (called

assurance graph) to the operator.

Subservices provide a scope for particular expertise and thereby

enable contribution from external experts. For instance, the

subservice dealing with the optics health should be reviewed and

extended by an expert in optical interfaces.

Subservices that are common to several service instances are

reused for reducing the amount of computation needed.

The assurance graph of a service instance is a DAG representing the

structure of the assurance case for the service instance. The nodes

of this graph are service instances or subservice instances. Each

edge of this graph indicates a dependency between the two nodes at

its extremities: the service or subservice at the source of the edge

depends on the service or subservice at the destination of the edge.

Figure 2 depicts a simplistic example of the assurance graph for a

tunnel service. The node at the top is the service instance, the

nodes below are its dependencies. In the example, the tunnel service

instance depends on the "peer1" and "peer2" tunnel interfaces, which

in turn depend on the respective physical interfaces, which finally

depend on the respective "peer1" and "peer2" devices. The tunnel

service instance also depends on the IP connectivity that depends on

the IS-IS routing protocol.
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Figure 2: Assurance Graph Example

Depicting the assurance graph helps the operator to understand (and

assert) the decomposition. The assurance graph shall be maintained

during normal operation with addition, modification and removal of

service instances. A change in the network configuration or topology

shall automatically be reflected in the assurance graph. As a first

example, a change of routing protocol from IS-IS to OSPF would

change the assurance graph accordingly. As a second example,

assuming that ECMP is in place for the source router for that

specific tunnel; in that case, multiple interfaces must now be

monitored, on top of the monitoring the ECMP health itself.

3.1.1. Circular Dependencies

The edges of the assurance graph represent dependencies. An

assurance graph is a DAG if and only if there are no circular

dependencies among the subservices, and every assurance graph should

                         +------------------+

                         | Tunnel           |

                         | Service Instance |

                         +------------------+

                                   |

              +--------------------+-------------------+

              |                    |                   |

              v                    v                   v

         +-------------+    +--------------+    +-------------+

         | Peer1       |    | IP           |    | Peer2       |

         | Tunnel      |    | Connectivity |    | Tunnel      |

         | Interface   |    |              |    | Interface   |

         +-------------+    +--------------+    +-------------+

                |                  |                  |

                |    +-------------+--------------+   |

                |    |             |              |   |

                v    v             v              v   v

         +-------------+    +-------------+     +-------------+

         | Peer1       |    | IS-IS       |     | Peer2       |

         | Physical    |    | Routing     |     | Physical    |

         | Interface   |    | Protocol    |     | Interface   |

         +-------------+    +-------------+     +-------------+

                |                                     |

                v                                     v

         +-------------+                        +-------------+

         |             |                        |             |

         | Peer1       |                        | Peer2       |

         | Device      |                        | Device      |

         +-------------+                        +-------------+

¶



avoid circular dependencies. However, in some cases, circular

dependencies might appear in the assurance graph.

First, the assurance graph of a whole system is obtained by

combining the assurance graph of every service running on that

system. Here combining means that two subservices having the same

type and the same parameters are in fact the same subservice and

thus a single node in the graph. For instance, the subservice of

type "device" with the only parameter (the device id) set to "PE1"

will appear only once in the whole assurance graph even if several

services rely on that device. Now, if two engineers design assurance

graphs for two different services, and engineer A decides that an

interface depends on the link it is connected to, but engineer B

decides that the link depends on the interface it is connected to,

then when combining the two assurance graphs, we will have a

circular dependency interface -> link -> interface.

Another case possibly resulting in circular dependencies is when

subservices are not properly identified. Assume that we want to

assure a kubernetes cluster. If we represent the cluster by a

subservice and the network service by another subservice, we will

likely model that the network service depends on the cluster,

because the network service is orchestrated by kubernetes, and that

the cluster depends on the network service because it implements the

communications. A finer decomposition might distinguish between the

resources for executing containers (a part of our cluster

subservice) and the communication between the containers (which

could be modelled in the same way as communication between routers).

In any case, it is likely that circular dependencies will show up in

the assurance graph. A first step would be to detect circular

dependencies as soon as possible in the SAIN architecture. Such a

detection could be carried out by the SAIN orchestrator. Whenever a

circular dependency is detected, the newly added service would not

be monitored until more careful modelling or alignment between the

different teams (engineer A and B) remove the circular dependency.

As more elaborate solution we could consider a graph transformation:

Decompose the graph into strongly connected components.

For each strongly connected component:

Remove all edges between nodes of the strongly connected

component

Add a new "top" node for the strongly connected component

For each edge pointing to a node in the strongly connected

component, change the destination to the "top" node
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Add a dependency from the top node to every node in the

strongly connected component.

Such an algorithm would include all symptoms detected by any

subservice in one of the strongly component and make it available to

any subservice that depends on it. Figure 3 shows an example of such

a transformation. On the left-hand side, the nodes c, d, e and f

form a strongly connected component. The status of a should depend

on the status of c, d, e, f, g, and h, but this is hard to compute

because of the circular dependency. On the right hand-side, a

depends on all these nodes as well, but there the circular

dependency has been removed.

Figure 3: Graph transformation

We consider a concrete example to illustrate this transformation.

Let's assume that Engineer A is building an assurance graph dealing

with IS-IS and Engineer B is building an assurance graph dealing

with OSPF. The graph from Engineer A could contain the following:

-

¶

¶

      +---+    +---+          |                +---+    +---+

      | a |    | b |          |                | a |    | b |

      +---+    +---+          |                +---+    +---+

        |        |            |                  |        |

        v        v            |                  v        v

      +---+    +---+          |                +------------+

      | c |--->| d |          |                |    top     |

      +---+    +---+          |                +------------+

        ^        |            |               /   |      |   \

        |        |            |              /    |      |    \

        |        v            |             v     v      v     v

      +---+    +---+          |          +---+  +---+  +---+  +---+

      | f |<---| e |          |          | f |  | c |  | d |  | e |

      +---+    +---+          |          +---+  +---+  +---+  +---+

        |        |            |            |                    |

        v        v            |            v                    v

      +---+    +---+          |          +---+                +---+

      | g |    | h |          |          | g |                | h |

      +---+    +---+          |          +---+                +---+

         Before                                     After

      Transformation                           Transformation

¶



Figure 4: Fragment of assurance graph from Engineer A

The graph from Engineer B could contain the following:

Figure 5: Fragment of assurance graph from Engineer B

Each Interface subservice and the Physical Link subservice are

common to both fragments above. Each of these subservice appears

only once in the graph merging the two fragments. Dependencies from

both fragments are included in the merged graph, resulting in a

circular dependency:

                +------------+

                | IS-IS Link |

                +------------+

                      |

                      v

                +------------+

                | Phys. Link |

                +------------+

                  |       |

                  v       v

       +-------------+  +-------------+

       | Interface 1 |  | Interface 2 |

       +-------------+  +-------------+

¶

                +------------+

                | OSPF Link  |

                +------------+

                  |   |   |

                  v   |   v

     +-------------+  |  +-------------+

     | Interface 1 |  |  | Interface 2 |

     +-------------+  |  +-------------+

                   |  |   |

                   v  v   v

                +------------+

                | Phys. Link |

                +------------+

¶



Figure 6: Merging graphs from A and B

The solution presented above would result in graph looking as

follows, where a new "empty" node is included. Using that

transformation, all dependencies are indirectly satisfied for the

nodes outside the circular dependency, in the sense that both IS-IS

and OSPF links have indirect dependencies to the two interfaces and

the link. However, the dependencies between the link and the

interfaces are lost as they were causing the circular dependency.

      +------------+      +------------+

      | IS-IS Link |      | OSPF Link  |---+

      +------------+      +------------+   |

            |               |     |        |

            |     +-------- +     |        |

            v     v               |        |

      +------------+              |        |

      | Phys. Link |<-------+     |        |

      +------------+        |     |        |

        |  ^     |          |     |        |

        |  |     +-------+  |     |        |

        v  |             v  |     v        |

      +-------------+  +-------------+     |

      | Interface 1 |  | Interface 2 |     |

      +-------------+  +-------------+     |

            ^                              |

            |                              |

            +------------------------------+

¶

            +------------+      +------------+

            | IS-IS Link |      | OSPF Link  |

            +------------+      +------------+

                       |          |

                       v          v

                      +------------+

                      |  empty     |

                      +------------+

                            |

                +-----------+-------------+

                |           |             |

                v           v             v

      +-------------+ +------------+ +-------------+

      | Interface 1 | | Phys. Link | | Interface 2 |

      +-------------+ +------------+ +-------------+



Figure 7: Removing circular dependencies after merging graphs from A

and B

3.2. Intent and Assurance Graph

The SAIN orchestrator analyzes the configuration of a service

instance to:

Try to capture the intent of the service instance, i.e., what is

the service instance trying to achieve. At least, this requires

the SAIN orchestrator to know the YANG modules that are being

configured on the devices to enable the service. Note that if the

service model or the network model is known to the SAIN

orchestrator, the latter can exploit it. In that case, the intent

could be directly extracted and include more details, such as the

notion of sites for a VPN, which is out of scope of the device

configuration.

Decompose the service instance into subservices representing the

network features on which the service instance relies.

The SAIN orchestrator must be able to analyze configuration pushed

to various devices for configuring a service instance and produce

the assurance graph for that service instance.

To schematize what a SAIN orchestrator does, assume that the

configuration for a service instance touches two devices and

configure on each device a virtual tunnel interface. Then:

Capturing the intent would start by detecting that the service

instance is actually a tunnel between the two devices, and

stating that this tunnel must be functional. This solution is

minimally invasive as it does not require to modify nor know the

service model. If the service model or network model is known by

the SAIN orchestrator, it can be used to further capture the

intent and include more information such as SLO. For instance,

the latency and bandwidth requirements for the tunnel, if present

in the service model

Decomposing the service instance into subservices would result in

the assurance graph depicted in Figure 2, for instance.

To be applied, SAIN requires a mechanism mapping a service instance

to the configuration actually required on the devices for that

service instance to run. While the Figure 1 makes a distinction

between the SAIN orchestrator and a different component providing

the service instance configuration, in practice those two components

are mostly likely combined. The internals of the orchestrator are

currently out of scope of this document.
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3.3. Subservices

A subservice corresponds to subpart or a feature of the network

system that is needed for a service instance to function properly.

In the context of SAIN, a subservice also defines its assurance,

that is the method for assuring that a subservice behaves correctly.

Subservices, just as with services, have high-level parameters that

specify the type and specific instance to be assured. For example,

assuring a device requires a specific deviceId as parameter. For

example, assuring an interface requires a specific combination of

deviceId and interfaceId.

A subservice is also characterized by a list of metrics to fetch and

a list of operations to apply to these metrics in order to infer a

health status.

3.4. Building the Expression Graph from the Assurance Graph

From the assurance graph is derived a so-called global computation

graph. First, each subservice instance is transformed into a set of

subservice expressions that take metrics and constants as input

(i.e., sources of the DAG) and produce the status of the subservice,

based on some heuristics. For instance, the health of an interface

is 0 (minimal score) with the symptom "interface admin-down" if the

interface is disabled in the configuration. Then for each service

instance, the service expressions are constructed by combining the

subservice expressions of its dependencies. The way service

expressions are combined depends on the dependency types (impacting

or informational). Finally, the global computation graph is built by

combining the service expressions. In other words, the global

computation graph encodes all the operations needed to produce

health statuses from the collected metrics.

The two types of dependencies for combining subservices are:

Informational Dependency: Type of dependency whose health score

does not impact the health score of its parent subservice or

service instance(s) in the assurance graph. However, the symptoms

should be taken into account in the parent service instance or

subservice instance(s), for informational reasons.

Impacting Dependency: Type of dependency whose score impacts the

score of its parent subservice or service instance(s) in the

assurance graph. The symptoms are taken into account in the

parent service instance or subservice instance(s), as the

impacting reasons.

The set of dependency type presented here is not exhaustive. More

specific dependency types can be defined by extending the YANG
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model. Adding these new dependency types requires defining the

corresponding operation for combining statuses of subservices.

Subservices shall be not be dependent on the protocol used to

retrieve the metrics. To justify this, let's consider the interface

operational status. Depending on the device capabilities, this

status can be collected by an industry-accepted YANG module (IETF,

Openconfig), by a vendor-specific YANG module, or even by a MIB

module. If the subservice was dependent on the mechanism to collect

the operational status, then we would need multiple subservice

definitions in order to support all different mechanisms. This also

implies that, while waiting for all the metrics to be available via

standard YANG modules, SAIN agents might have to retrieve metric

values via non-standard YANG models, via MIB modules, Command Line

Interface (CLI), etc., effectively implementing a normalization

layer between data models and information models.

In order to keep subservices independent from metric collection

method, or, expressed differently, to support multiple combinations

of platforms, OSes, and even vendors, the architecture introduces

the concept of "metric engine". The metric engine maps each device-

independent metric used in the subservices to a list of device-

specific metric implementations that precisely define how to fetch

values for that metric. The mapping is parameterized by the

characteristics (model, OS version, etc.) of the device from which

the metrics are fetched.

3.5. Open Interfaces with YANG Modules

The interfaces between the architecture components are open thanks

to the YANG modules specified in [I-D.ietf-opsawg-service-assurance-

yang]; they specify objects for assuring network services based on

their decomposition into so-called subservices, according to the

SAIN architecture.

These modules are intended for the following use cases:

Assurance graph configuration:

Subservices: configure a set of subservices to assure, by

specifying their types and parameters.

Dependencies: configure the dependencies between the

subservices, along with their types.

Assurance telemetry: export the health status of the subservices,

along with the observed symptoms.

Some examples of YANG instances can be found in Appendix A of [I-

D.ietf-opsawg-service-assurance-yang].
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3.6. Handling Maintenance Windows

Whenever network components are under maintenance, the operator want

to inhibit the emission of symptoms from those components. A typical

use case is device maintenance, during which the device is not

supposed to be operational. As such, symptoms related to the device

health should be ignored, as well as symptoms related to the device-

specific subservices, such as the interfaces, as their state changes

is probably the consequence of the maintenance.

To configure network components as "under maintenance" in the SAIN

architecture, the ietf-service-assurance model proposed in [I-

D.ietf-opsawg-service-assurance-yang] specifies an "under-

maintenance" flag per service or subservice instance. When this flag

is set and only when this flag is set, the companion field

"maintenance-contact" must be set to a string that identifies the

person or process who requested the maintenance. When a service or

subservice is flagged as under maintenance, it may report a generic

"Under Maintenance" symptom, for propagation towards subservices

that depend on this specific subservice: any other symptom from this

service, or by one of its impacting dependencies must not be

reported.

We illustrate this mechanism on three independent examples based on

the assurance graph depicted in Figure 2:

Device maintenance, for instance upgrading the device OS. The

operator sets the "under-maintenance" flag for the subservice

"Peer1" device. This inhibits the emission of symptoms from

"Peer1 Physical Interface", "Peer1 Tunnel Interface" and "Tunnel

Service Instance". All other subservices are unaffected.

Interface maintenance, for instance replacing a broken optic. The

operator sets the "under-maintenance" flag for the subservice

"Peer1 Physical Interface". This inhibits the emission of

symptoms from "Peer 1 Tunnel Interface" and "Tunnel Service

Instance". All other subservices are unaffected.

Routing protocol maintenance, for instance modifying parameters

or redistribution. The operator sets the "under-maintenance" flag

for the subservice "IS-IS Routing Protocol". This inhibits the

emission of symptoms from "IP connectivity" and "Tunnel Service

Instance". All other subservices are unaffected.

3.7. Flexible Functional Architecture

The SAIN architecture is flexible in terms of components. While the

SAIN architecture in Figure 1 makes a distinction between two

components, the SAIN configuration orchestrator and the SAIN

orchestrator, in practice those two components are mostly likely
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combined. Similarly, the SAIN agents are displayed in Figure 1 as

being separate components. Practically, the SAIN agents could be

either independent components or directly integrated in monitored

entities. A practical example is an agent in a router.

The SAIN architecture is also flexible in terms of services and

subservices. Most examples in this document deal with the notion of

Network Service YANG modules, with well-known service such as L2VPN

or tunnels. However, the concept of services is general enough to

cross into different domains. One of them is the domain of service

management on network elements, with also requires its own

assurance. Examples includes a DHCP server on a Linux server, a data

plane, an IPFIX export, etc. The notion of "service" is generic in

this architecture. Indeed, a configured service can itself be a

subservice for someone else. Exactly like a DHCP server/ data plane/

IPFIX export can be considered as subservices for a device, exactly

like a routing instance can be considered as a subservice for a

L3VPN, exactly like a tunnel can considered as a subservice for an

application in the cloud. Exactly like a service function can be

considered as a subservice for a service function chain [RFC7665].

The assurance graph is created to be flexible and open, regardless

of the subservice types, locations, or domains.

The SAIN architecture is also flexible in terms of distributed

graphs. As shown in Figure 1, the architecture comprises several

agents. Each agent is responsible for handling a subgraph of the

assurance graph. The collector is responsible for fetching the

subgraphs from the different agents and gluing them together. As an

example, in the graph from Figure 2, the subservices relative to

Peer 1 might be handled by a different agent than the subservices

relative to Peer 2 and the Connectivity and IS-IS subservices might

be handled by yet another agent. The agents will export their

partial graph and the collector will stitch them together as

dependencies of the service instance.

And finally, the SAIN architecture is flexible in terms of what it

monitors. Most, if not all examples, in this document refer to

physical components but this is not a constrain. Indeed, the

assurance of virtual components would follow the same principles and

an assurance graph composed of virtualized components (or a mix of

virtualized and physical ones) is well possible within this

architecture.

3.8. Timing

The SAIN architecture requires time synchronization, with Network

Time Protocol (NTP) [RFC5905] as a candidate, between all elements:

monitored entities, SAIN agents, Service orchestrator, the SAIN

collector, as well as the SAIN orchestrator. This guarantees the
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correlations of all symptoms in the system, correlated with the

right assurance graph version.

The SAIN agent might have to remove some symptoms for specific

subservice symptoms, because there are outdated and not relevant any

longer, or simply because the SAIN agent needs to free up some

space. Regardless of the reason, it's important for a SAIN collector

(re-)connecting to a SAIN agent to understand the effect of this

garbage collection. Therefore, the SAIN agent contains a YANG object

specifying the date and time at which the symptoms history starts

for the subservice instances.

3.9. New Assurance Graph Generation

The assurance graph will change along the time, because services and

subservices come and go (changing the dependencies between

subservices), or simply because a subservice is now under

maintenance. Therefore an assurance graph version must be

maintained, along with the date and time of its last generation. The

date and time of a particular subservice instance (again

dependencies or under maintenance) might be kept. From a client

point of view, an assurance graph change is triggered by the value

of the assurance-graph-version and assurance-graph-last-change YANG

leaves. At that point in time, the client (collector) follows the

following process:

Keep the previous assurance-graph-last-change value (let's call

it time T)

Run through all subservice instance and process the subservice

instances for which the last-change is newer that the time T

Keep the new assurance-graph-last-change as the new referenced

date and time

4. Security Considerations

The SAIN architecture helps operators to reduce the mean time to

detect and mean time to repair. As such, it should not cause any

security threats. However, the SAIN agents must be secured: a

compromised SAIN agent may be sending wrong root causes or symptoms

to the management systems.

Except for the configuration of telemetry, the agents do not need

"write access" to the devices they monitor. This configuration is

applied with a YANG module, whose protection is covered by Secure

Shell (SSH) [RFC6242] for NETCONF or TLS [RFC8446] for RESTCONF.

The data collected by SAIN could potentially be compromising to the

network or provide more insight into how the network is designed.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶



[I-D.ietf-opsawg-service-assurance-yang]

[Piovesan2017]

[RFC2865]

[RFC5424]

[RFC5905]

Considering the data that SAIN requires (including CLI access in

some cases), one should weigh data access concerns with the impact

that reduced visibility will have on being able to rapidly identify

root causes.

If a closed loop system relies on this architecture then the well

known issue of those system also applies, i.e., a lying device or

compromised agent could trigger partial reconfiguration of the

service or network. The SAIN architecture neither augments or

reduces this risk.

5. IANA Considerations

This document includes no request to IANA.
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