
Workgroup: OPSAWG

Internet-Draft:

draft-ietf-opsawg-service-assurance-yang-11

Published: 3 January 2023

Intended Status: Standards Track

Expires: 7 July 2023

Authors: B. Claise

Huawei

J. Quilbeuf

Huawei

P. Lucente

NTT

P. Fasano

TIM S.p.A

T. Arumugam

Cisco Systems, Inc.

YANG Modules for Service Assurance

Abstract

This document specifies YANG modules for representing assurance

graphs. These graphs represent the assurance of a given service by

decomposing it into atomic assurance elements called subservices. A

companion document, Service Assurance for Intent-based Networking

Architecture, presents an architecture for implementing the

assurance of such services.

The YANG data models in this document conforms to the Network

Management Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. YANG Modules Overview

3. Base IETF Service Assurance YANG Module

3.1. Concepts

3.2. Tree View

3.3. YANG Module

3.4. Rejecting Circular Dependencies

4. Guidelines for Defining New Subservice Types

5. Subservice Augmentation: ietf-service-assurance-device YANG

module

5.1. Tree View

5.2. Concepts

5.3. YANG Module

6. Subservice Augmentation: ietf-service-assurance-interface YANG

module

6.1. Tree View

6.2. Concepts

6.3. YANG Module

7. Security Considerations

8. IANA Considerations

8.1. The IETF XML Registry

8.2. The YANG Module Names Registry

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Vendor-specific Subservice Augmentation: example-

service-assurance-device-acme YANG module

A.1. Tree View

A.2. Concepts

A.3. YANG Module

Appendix B. Further Augmentations: IP Connectivity and IS-IS

subservices

B.1. IP Connectivity Module Tree View

B.2. IS-IS Module Tree View

B.3. Global Tree View

B.4. IP Connectivity YANG Module

B.5. IS-IS YANG Module

Appendix C. Example of YANG instance

Appendix D. YANG Library for Service Assurance

¶

Appendix E. Changes between revisions

Acknowledgements

Authors' Addresses

1. Introduction

[I-D.ietf-opsawg-service-assurance-architecture] describes an

architecture and a set of involved components for service assurance,

called Service Assurance for Intent-Based Networking (SAIN). This

document complements the architecture by specifying a data model for

the interfaces between components. More specifically, the document

provides YANG modules for the purpose of service assurance in a

format that is:

machine-readable

vendor independent

augmentable such that SAIN agents from Figure 1 of

[I-D.ietf-opsawg-service-assurance-architecture] can support and

expose new subservices to SAIN orchestrators and collectors.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The terms used in this document are defined in

[I-D.ietf-opsawg-service-assurance-architecture].

The meanings of the symbols in the tree diagrams are defined in

[RFC8340].

2. YANG Modules Overview

The main YANG module, "ietf-service-assurance" (Section 3), defines

objects for assuring network services based on their decomposition

into so-called subservices. The subservices are hierarchically

organized by dependencies. The subservices, along with the

dependencies, constitute an assurance graph. This module should be

supported by an agent, able to interact with the devices in order to

produce a health status and symptoms for each subservice in an

¶

* ¶

* ¶

*

¶

¶

¶

¶

assurance graph. This module is intended for the following use

cases:

Assurance graph configuration:

Subservices: configure a set of subservices to assure, by

specifying their types and parameters.

Dependencies: configure the dependencies between the

subservices, along with their type.

Assurance telemetry: export the assurance graph with health

status and symptoms for each node.

The module is also intended to be exported by the SAIN collector

which aggregates the output of several SAIN agents to provide the

global assurance graph. In that case, only the telemetry export use

case is considered.

The modules presented in this document conform to the Network

Management Datastore Architecture defined in [RFC8342].

The second YANG module, "ietf-service-assurance-device" (Section 5),

augments the "ietf-service-assurance" module by adding support for

the device subservice. Additional subservice types might be added

following a similar approach.

The third YANG module, "ietf-service-assurance-interface"

(Section 6), augments the "ietf-service-assurance" module as well,

by adding support for the interface subservice.

We provide additional examples in the appendix. The module "example-

service-assurance-device-acme" (Appendix A) augments the "ietf-

service-assurance-device" module to customize it for devices of the

fictional ACME Corporation. Additional vendor-specific parameters

might be added following a similar approach. We also provide the

modules "example-service-assurance-ip-connectivity" and "example-

service-assurance-is-is" (Appendix B) to model the example in Figure

2 from Section 3.1 of

[I-D.ietf-opsawg-service-assurance-architecture].

3. Base IETF Service Assurance YANG Module

3.1. Concepts

The "ietf-service-assurance" YANG module assumes a set of

subservices, to be assured independently. A subservice is a feature

¶

* ¶

-

¶

-

¶

*

¶

¶

¶

¶

¶

¶

or a subpart of the network system that a given service instance

depends on. Examples of subservice types include:

device: whether a device is healthy, and if not, what are the

symptoms. Such a subservice might monitor the device resources

such as CPU, RAM or Ternary Content-Addressable Memory (TCAM).

Potential symptoms are "CPU overloaded", "Out of RAM", or "Out of

TCAM".

ip-connectivity: given two IP addresses bound to two devices,

what is the quality of the IP connectivity between them.

Potential symptoms are "No route available" or "Equal Cost

Multiple Paths (ECMP) Imbalance".

An instance of the device subservice is representing a subpart of

the network system, namely a specific device. An instance of the ip-

connectivity subservice representing a feature of the network,

namely the connectivity between two specific IP addresses on two

devices. In both cases, these subservices might depend on other

subservices, for instance, the connectivity might depend on a

subservice representing the routing system and on a subservice

representing ECMP.

The two example subservices presented above need different sets of

parameters to fully characterize one of their instance. An instance

of the device subservice is fully characterized by a single

parameter allowing to identify the device to monitor. For ip-

connectivity subservice, at least the device and IP address for both

ends of the link are needed to fully characterize an instance.

The base model presented in this section specifies a single type of

subservice, which represents service instances. Such nodes play a

particular role in the assurance graph because they represent the

starting point, or root, for the assurance graph of the

corresponding service instance. The parameters required to fully

identify a service instance are the name of the service and the name

of the service instance. To support other types of subservice such

as 'device' or 'ip-connectivity', the "ietf-service-assurance"

module is intended to be augmented.

The dependencies are modelled as a list: each subservice contains a

list of references to its dependencies. That list can be empty if

the subservice instance does not have any dependencies.

By specifying service instances and their dependencies in terms of

subservices, one defines a global assurance graph. That assurance

graph is the result of merging all the individual assurance graphs

for the assured service instances. Each subservice instance is

expected to appear only one in the global assurance graph even if

¶

*

¶

*

¶

¶

¶

¶

¶

several service instances depend on it. For example, an instance of

the device subservice is a dependency of every service instance that

rely on the corresponding device. The assurance graph of a specific

service instance is the subgraph obtained by traversing the global

assurance graph through the dependencies starting from the specific

service instance.

An assurance agent configured with such a graph is expected to

produce, for each configured subservice: a health-status indicating

how healthy the subservice is and when the subservice is not

healthy, a list of symptoms explaining why the subservice is not

healthy.

3.2. Tree View

The following tree diagram [RFC8340] provides an overview of the

"ietf-service-assurance" module.

¶

¶

¶

The date of last change "assurance-graph-last-change" is read only.

It must be updated each time the graph structure is changed by

addition or deletion of subservices, dependencies or modification of

module: ietf-service-assurance

 +--ro assurance-graph-last-change yang:date-and-time

 +--rw subservices

 | +--rw subservice* [type id]

 | +--rw type identityref

 | +--rw id string

 | +--ro last-change? yang:date-and-time

 | +--ro label? string

 | +--rw under-maintenance!

 | | +--rw contact string

 | +--rw (parameter)

 | | +--:(service-instance-parameter)

 | | +--rw service-instance-parameter

 | | +--rw service string

 | | +--rw instance-name string

 | +--ro health-score int8

 | +--ro symptoms-history-start? yang:date-and-time

 | +--ro symptoms

 | | +--ro symptom* [start-date-time agent-id symptom-id]

 | | +--ro symptom-id leafref

 | | +--ro agent-id -> /agents/agent/id

 | | +--ro health-score-weight? uint8

 | | +--ro start-date-time yang:date-and-time

 | | +--ro stop-date-time? yang:date-and-time

 | +--rw dependencies

 | +--rw dependency* [type id]

 | +--rw type

 | | -> /subservices/subservice/type

 | +--rw id leafref

 | +--rw dependency-type? identityref

 +--ro agents

 | +--ro agent* [id]

 | +--ro id string

 | +--ro symptoms* [id]

 | +--ro id string

 | +--ro description string

 +--ro assured-services

 +--ro assured-service* [service]

 +--ro service leafref

 +--ro instances* [name]

 +--ro name leafref

 +--ro subservices* [type id]

 +--ro type -> /subservices/subservice/type

 +--ro id leafref

¶

their configurable attributes, including their maintenance status.

Such modifications correspond to a structural change in the graph.

The date of last change is useful for a client to quickly check if

there is a need to update the graph structure. A change in the

health-score or symptoms associated to a service or subservice does

not change the structure of the graph and thus has no effect on the

date of last change.

The "subservice" list contains all the subservice instances

currently known by the server (i.e. SAIN agent or SAIN collector). A

subservice declaration MUST provide:

A subservice type ("type"): reference to an identity that

inherits from "subservice-base", which is the base identity for

any subservice type.

An id ("id"): string uniquely identifying the subservice among

those with the same type,

The type and id uniquely identify a given subservice.

The "last-change" indicates when the dependencies or maintenance

status of this particular subservice were last modified.

The "label" is a human-readable description of the subservice.

The presence of "under-maintenance" container inhibits the emission

of symptoms for that subservice and subservices that depend on them.

In that case, a "contact" MUST be provided to indicate who or which

software is responsible for the maintenance. See Section 3.6 of

[I-D.ietf-opsawg-service-assurance-architecture] for a more detailed

discussion.

The "parameter" choice is intended to be augmented in order to

describe parameters that are specific to the current subservice

type. This base module defines only the subservice type representing

service instances. Service instances MUST be modeled as a particular

type of subservice with two parameters, "service" and "instance-

name". The "service" parameter is the name of the service defined in

the network orchestrator, for instance "point-to-point-l2vpn". The

"instance-name" parameter is the name assigned to the particular

instance to be assured, for instance the name of the customer using

that instance.

The "health-score" contains a value normally between 0 and 100

indicating how healthy the subservice is. As mentioned in the

health-score definition, the special value -1 can be used to specify

that no value could be computed for that health-score, for instance

if some metric needed for that computation could not be collected.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

The "symptoms-history-start" is the cutoff date for reporting

symptoms. Symptoms that were terminated before that date are not

reported anymore in the model.

The status of each subservice contains a list of symptoms. Each

symptom is specified by

an identifier "symptom-id" which identifies the symptom locally

to an agent,

an agent identifier "agent-id" which identifies the agent raising

the symptom,

a "health-score-weight" specifying the impact to the health score

incurred by this symptom,

a "start-date-time" indicating when the symptom became active and

a "stop-date-time" indicating when the symptom stopped being

active, that field is not present if the symptom is still active.

In order for the pair "agent-id" and "symptom-id" to uniquely

identify a symptom, the following is necessary:

The "agent-id" MUST be unique among all agents of the system

The "symptom-id" MUST be unique among all symptoms raised by the

agent

Note that "agent-id" and "symptom-id" are leafrefs pointing to the

objects defined later in the document. While the combination of

"symptom-id" and "agent-id" is sufficient as a unique key list, the

"start-date-time" second key helps to sort and retrieve relevant

symptoms.

The "dependency" list contains the dependencies for the current

subservice. Each of them is specified by a leafref to both "type"

and "id" of the target dependencies. A dependency has a type

indicated in the "dependency-type" field. Two types are specified in

the model:

Impacting: such a dependency indicates an impact on the health of

the dependent,

Informational: such a dependency might explain why the dependent

has issues but does not impact its health.

To illustrate the difference between "impacting" and

"informational", consider the interface subservice, representing a

network interface. If the device to which the network interface

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

* ¶

*

¶

¶

¶

*

¶

*

¶

belongs goes down, the network interface will transition to a "down"

state as well. Therefore, the dependency of the interface subservice

towards the device subservice is "impacting". On the other hand, a

dependency towards the ecmp-load subservice, which checks that the

load between ECMP remains stable throughout time, is only

"informational". Indeed, services might be perfectly healthy even if

the load distribution between ECMP changed. However, such an

instability might be a relevant symptom for diagnosing the root

cause of a problem.

Within the container "agents", the list "agent" contains the list of

symptoms per agent. The key of the list is the "id", which MUST be

unique among agents of a given assurance system. For each agent, the

list "symptoms-description" maps an "id" to its "description". The

"id" MUST be unique among the symptoms raised by the agent.

Within the container "assured-services", the list "assured-service"

contains the subservices indexed by assured service instances. For

each service type, identified by the "service" leaf, all instances

of that service are listed in the "instances" list. For each

instance, identified by the "name" leaf, the "subservices" list

contains all descendant subservices that are part of the assurance

graph for that specific instance. These imbricated lists provide a

query optimization to get the list of subservices in that assurance

graph in a single query, instead of recursively querying the

dependencies of each subservice, starting from the node representing

the service instance.

The relation between the health score ("health-score") and the

health-score-weight of the currently active symptoms is not

explicitly defined in this document. The only requirement is that a

health score that is strictly smaller than 100 (the maximal value)

must be explained by at least one symptom. A way to enforce that

requirement is to first detect symptoms and then compute the health

score based on the health-score-weight of the detected symptoms. As

an example, such a computation could be to sum the health-score-

weight of the active symptoms, subtract that value from 100 and

change the value to 0 if negative. The relation between health-score

and health-score-weight is left to the implementor (of an agent

[I-D.ietf-opsawg-service-assurance-architecture]).

Keeping the history of the graph structure is out of scope for this

YANG module. Only the current version of the assurance graph can be

fetched. In order to keep the history of the graph structure, some

time-series database (TSDB) or similar storage must be used.

3.3. YANG Module

<CODE BEGINS> file "ietf-service-assurance@2022-08-10.yang"

¶

¶

¶

¶

¶

¶

module ietf-service-assurance {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-service-assurance";

 prefix sain;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeu@huawei.com>";

 description

 "This module defines objects for assuring services based on their

 decomposition into so-called subservices, according to the SAIN

 (Service Assurance for Intent-based Networking) architecture.

 The subservices hierarchically organised by dependencies constitute

 an assurance graph. This module should be supported by an assurance

 agent, able to interact with the devices in order to produce a

 health status and symptoms for each subservice in the assurance

 graph.

 This module is intended for the following use cases:

 * Assurance graph configuration:

 - subservices: configure a set of subservices to assure, by

 specifying their types and parameters.

 - dependencies: configure the dependencies between the

 subservices, along with their type.

 * Assurance telemetry: export the health status of the subservices,

 along with the observed symptoms.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the

 RFC itself for full legal notices. ";

 revision 2022-08-10 {

 description

 "Initial version.";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity subservice-base {

 description

 "Base identity for subservice types.";

 }

 identity service-instance-type {

 base subservice-base;

 description

 "Specific type of subservice that represents a service

 instance. Instance of this type will depend on other subservices

 to build the top of the assurance graph.";

 }

 identity dependency-type {

 description

 "Base identity for representing dependency types.";

 }

 identity informational {

 base dependency-type;

 description

 "Indicates that symptoms of the dependency might be of interest

 for the dependent, but the status of the dependency should not

 have any impact on the dependent.";

 }

 identity impacting {

 base dependency-type;

 description

 "Indicates that the status of the dependency directly impacts the

 status of the dependent.";

 }

 grouping subservice-reference {

 description

 "Reference to a specific subservice, identified by its type and

 identifier. This grouping is only for internal use in this

 module.";

 leaf type {

 type leafref {

 path "/subservices/subservice/type";

 }

 description

 "The type of the subservice to refer to (e.g., device).";

 }

 leaf id {

 type leafref {

 path "/subservices/subservice[type=current()/../type]/id";

 }

 description

 "The identifier of the subservice to refer to.";

 }

 }

 grouping subservice-dependency {

 description

 "Represents a dependency to another subservice. This grouping

 is only for internal use in this module";

 uses subservice-reference;

 leaf dependency-type {

 type identityref {

 base dependency-type;

 }

 description

 "Represents the type of dependency (e.g., informational,

 impacting).";

 }

 }

 leaf assurance-graph-last-change {

 type yang:date-and-time;

 config false;

 mandatory true;

 description

 "Time and date at which the assurance graph last changed after any

 structural changes (dependencies and/or maintenance windows

 parameters) are applied to the subservice(s). The time and date

 must be the same or more recent than the most recent value of any

 changed subservices last-change time and date.";

 }

 container subservices {

 description

 "Root container for the subservices.";

 list subservice {

 key "type id";

 description

 "List of configured subservices.";

 leaf type {

 type identityref {

 base subservice-base;

 }

 description

 "Type of the subservice, identifying the type of the part

 or functionality that is being assured by this list entry.

 For instance 'interface', 'device', 'ip-connectivity'.";

 }

 leaf id {

 type string;

 description

 "Identifier of the subservice instance. Must be unique among

 subservices of the same type.";

 }

 leaf last-change {

 type yang:date-and-time;

 config false;

 description

 "Date and time at which the structure for this

 subservice instance last changed, i.e., dependencies and/or

 maintenance windows parameters.";

 }

 leaf label {

 type string;

 config false;

 description

 "Label of the subservice, i.e., text describing what the

 subservice is to be displayed on a human interface.

 It is not intended for random end users but for

 network/system/software engineers that are able to interpret

 it. Therefore, no mechanism for language tagging is needed.";

 }

 container under-maintenance {

 presence "true";

 description

 "The presence of this container indicates that the current

 subservice is under maintenance";

 leaf contact {

 type string;

 mandatory true;

 description

 "A string used to model an administratively assigned name of

 the resource that is performing maintenance.

 It is suggested that this freeform field, which could be a

 URI, contains one or more of the following: IP address,

 management station name, network manager's name, location,

 or phone number. It might even contain the expected

 maintenance time.

 In some cases the agent itself will be the owner of an

 entry. In these cases, this string shall be set to a string

 starting with 'monitor'.";

 }

 }

 choice parameter {

 mandatory true;

 description

 "Specify the required parameters per subservice type. Each

 module augmenting this module with a new subservice type,

 that is a new identity based on subservice-base should

 augment this choice as well, by adding a container

 available only if the current subservice type is

 the newly added identity.";

 container service-instance-parameter {

 when "derived-from-or-self(../type,

 'sain:service-instance-type')";

 description

 "Specify the parameters of a service instance.";

 leaf service {

 type string;

 mandatory true;

 description

 "Name of the service.";

 }

 leaf instance-name {

 type string;

 mandatory true;

 description

 "Name of the instance for that service.";

 }

 }

 // Other modules can augment their own cases into here

 }

 leaf health-score {

 type int8 {

 range "-1 .. 100";

 }

 config false;

 mandatory true;

 description

 "Score value of the subservice health. A value of 100 means

 that subservice is healthy. A value of 0 means that the

 subservice is broken. A value between 0 and 100 means that

 the subservice is degraded. The special value -1 means that

 the health-score could not be computed.";

 }

 leaf symptoms-history-start {

 type yang:date-and-time;

 config false;

 description

 "Date and time at which the symptom’s history starts for this

 subservice instance, either because the subservice instance

 started at that date and time or because the symptoms before

 that were removed due to a garbage collection process.";

 }

 container symptoms {

 config false;

 description

 "Symptoms for the subservice.";

 list symptom {

 key "start-date-time agent-id symptom-id";

 unique "agent-id symptom-id";

 description

 "List of symptoms the subservice. While the start-date-time

 key is not necessary per se, this would get the entries

 sorted by start-date-time for easy consumption.";

 leaf symptom-id {

 type leafref {

 path "/agents/agent[id=current()/../agent-id]"

 + "/symptoms/id";

 }

 description

 "Identifier of the symptom, to be interpreted according

 to the agent identified by the agent-id.";

 }

 leaf agent-id {

 type leafref {

 path "/agents/agent/id";

 }

 description

 "Identifier of the agent raising the current symptom.";

 }

 leaf health-score-weight {

 type uint8 {

 range "0 .. 100";

 }

 description

 "The weight to the health score incurred by this symptom.

 The higher the value, the more of an impact this symptom

 has. If a subservice health score is not 100, there must

 be at least one symptom with a health score weight

 larger than 0.";

 }

 leaf start-date-time {

 type yang:date-and-time;

 description

 "Date and time at which the symptom was detected.";

 }

 leaf stop-date-time {

 type yang:date-and-time;

 description

 "Date and time at which the symptom stopped being

 detected. must be after the start-date-time. If the

 symptom is ongoing, this field should not be populated.";

 }

 }

 }

 container dependencies {

 description

 "Indicates the set of dependencies of the current subservice,

 along with their types.";

 list dependency {

 key "type id";

 description

 "List of dependencies of the subservice.";

 uses subservice-dependency;

 }

 }

 }

 }

 container agents {

 config false;

 description

 "Container for the list of agents’s symptoms";

 list agent {

 key "id";

 description

 "Contains symptoms of each agent involved in computing the

 health status of the current graph. This list acts as a

 glossary for understanding the symptom ids returned by each

 agent.";

 leaf id {

 type string;

 description

 "Id of the agent for which we are defining the symptoms. This

 identifier must be unique among all agents.";

 }

 list symptoms {

 key "id";

 description

 "List of symptoms raised by the current agent, identified

 by their symptom-id.";

 leaf id {

 type string;

 description

 "Id of the symptom for the current agent. The agent must

 guarantee the unicity of this identifier.";

 }

 leaf description {

 type string;

 mandatory true;

 description

 "Description of the symptom, i.e., text describing what the

 symptom is, to be computer-consumable and be displayed on a

 human interface.

 It is not intended for random end users but for

 network/system/software engineers that are able to

 interpret it. Therefore, no mechanism for language tagging

 is needed.";

 }

 }

 }

 }

 container assured-services {

 config false;

 description

 "Container for the index of assured services";

 list assured-service {

 key "service";

 description

 "Service instances that are currently part of the assurance

 graph. The list must contain an entry for every service

 that is currently present in the assurance graph. This list

 presents an alternate access to the graph stored in

 /subservices that optimizes querying the assurance graph of a

 specific service instance.";

 leaf service {

 type leafref {

 path "/subservices/subservice/service-instance-parameter/"

 + "service";

 }

 description

 "Name of the service.";

 }

 list instances {

 key "name";

 description

 "Instances of the service. The list must contain

 an entry for every instance of the parent service.";

 leaf name {

 type leafref {

 path

 "/subservices/subservice/service-instance-parameter/"

 + "instance-name";

 }

 description

 "Name of the service instance. The leafref must point to a

 service-instance-parameter whose service leaf matches the

 parent service.";

 }

 list subservices {

 key "type id";

 description

 "Subservices that appear in the assurance graph of the

 current service instance.

 The list must contain the subservice corresponding to the

 service instance, that is the subservice that matches the

 service and instance-name keys.

 For every subservice in the list, all subservices listed as

 dependencies must also appear in the list.";

 uses subservice-reference;

 }

 }

 }

 }

}

¶

<CODE ENDS>

3.4. Rejecting Circular Dependencies

The statuses of services and subservices depend on the statuses of

their dependencies, and thus circular dependencies between them

prevents the computation of statuses. The SAIN architecture document

[I-D.ietf-opsawg-service-assurance-architecture] discusses in

Section 3.1.1 how such dependencies appear and how they could be

removed. The responsibility of avoiding such dependencies falls to

the SAIN orchestrator. However, we specify in this section the

expected behavior when a server supporting the ietf-service-

assurance module receives a data instance containing circular

dependencies.

Enforcing the absence of circular dependencies as a YANG constraint

falls back to implementing a graph traversal algorithm with XPath

and checking that the current node is not reachable from its

dependencies. Even with such a constraint, there is no guarantee

that merging two graphs without dependency loops will result in a

graph without dependency loops. Indeed, the Section 3.1.1 of

[I-D.ietf-opsawg-service-assurance-architecture] presents an example

where merging two graphs without dependency loops results in a graph

with a dependency loop.

Therefore, a server implementing the ietf-service-assurance module

MUST check that there is no dependency loop whenever the graph is

modified. A modification creating a dependency loop MUST be

rejected.

4. Guidelines for Defining New Subservice Types

The base YANG module defined in Section 3.3 only defines a single

type of subservices that represent service instances. As explained

above, this model is meant to be augmented so that a variety of

subservices can be used in the assurance graph. In this section, we

propose some guidelines for specifying such extensions at IETF.

The mechanism to add a new subservice type is to define a new module

for that subservice. The module name should start with "ietf-

service-assurance-". The namespace of the module should start with

"urn:ietf:params:xml:ns:yang:ietf-service-assurance-". The prefix of

the module should start with "sain-". For instance, the subservice

type representing the assurance of a device should have:

the name "ietf-service-assurance-device",

the namespace "urn:ietf:params:xml:ns:yang:ietf-service-

assurance-device",

¶

¶

¶

¶

¶

¶

* ¶

*

¶

and the prefix "sain-device".

The new module should define:

A new identity to represent the new type.

The parameters fully specifying an instance of the new subservice

type.

The new identity should be based on the "subservice-base" identity.

The name of the identity should end with "-type", for instance

"device-type".

The parameters should be defined in a container named "parameters"

augmenting of the choice "/subservices/subservice/parameter" from

the main module. The augmentation should be restricted to cases

where the type of the subservice matches the identity representing

the new service type.

We define two subservice types in the next sections: the "device"

subservice type is defined in Section 5 and the "interface"

subservice type is defined is Section 6. These subservices can be

taken as examples of the rules defined in this section.

Vendors can specify their own subservices types by defining the

corresponding modules in their own namespace. An example of such a

vendor-specific module is specified in Appendix Appendix A. Vendors

can also augment existing IETF-specified subservices to add their

own vendor-specific information.

5. Subservice Augmentation: ietf-service-assurance-device YANG module

5.1. Tree View

The following tree diagram [RFC8340] provides an overview of the

"ietf-service-assurance-device" module.

A complete tree view of the base module with all augmenting modules

presented in this draft is available in Appendix B.3.

* ¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

module: ietf-service-assurance-device

 augment /sain:subservices/sain:subservice/sain:parameter:

 +--rw parameters

 +--rw device string

¶

¶

5.2. Concepts

As the number of subservices will grow over time, the YANG module is

designed to be extensible. A new subservice type requires the

precise specifications of its type and expected parameters. Let us

illustrate the example of the new device subservice type. As the

name implies, it monitors and reports the device health, along with

some symptoms in case of degradation.

For our device subservice definition, the new identity "device-type"

is specified, as an inheritance from the base identity for

subservices. This indicates to the assurance agent that we are now

assuring the health of a device.

The typical parameter for the configuration of the device subservice

is the name of the device that we want to assure. By augmenting the

parameter choice from ietf-service-assurance YANG module for the

case of the "device-type" subservice type, this new parameter is

specified.

5.3. YANG Module

<CODE BEGINS> file "ietf-service-assurance-device@2022-08-10.yang"

¶

¶

¶

¶

module ietf-service-assurance-device {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-service-assurance-device";

 prefix sain-device;

 import ietf-service-assurance {

 prefix sain;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This module augments the ietf-service-assurance module with support

 of the device subservice.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the

 RFC itself for full legal notices. ";

 revision 2022-08-10 {

 description

 "Initial revision.";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity device-type {

 base sain:subservice-base;

 description

 "Identity of device subservice.";

 }

 augment "/sain:subservices/sain:subservice/sain:parameter" {

 when "derived-from-or-self(sain:type, 'device-type')";

 description

 "Augments the parameter choice from ietf-service-assurance

 module with a case specific to the device subservice.";

 container parameters {

 description

 "Parameters for the device subservice type";

 leaf device {

 type string;

 mandatory true;

 description

 "Identifier of the device to monitor. The

 identifier (e.g. device id, hostname, management IP)

 depends on the context.";

 }

 }

 }

}

¶

<CODE ENDS>

6. Subservice Augmentation: ietf-service-assurance-interface YANG

module

6.1. Tree View

The following tree diagram [RFC8340] provides an overview of the

ietf-service-assurance-interface data model.

A complete tree view of the base module with all augmenting modules

presented in this draft is available in Appendix B.3.

6.2. Concepts

For the interface subservice definition, the new interface-type is

specified, as an inheritance from the base identity for subservices.

This indicates to the assurance agent that we are now assuring the

health of an interface.

The parameters for the configuration of the interface subservice are

the name of the device and, on that specific device, a specific

interface. These parameters are aligned with the ietf-interfaces

model described in [RFC8343] where the name of the interface is the

only key needed to identify an interface on a given device. By

augmenting the parameter choice from ietf-service-assurance YANG

module for the case of the interface-type subservice type, those two

new parameters are specified.

6.3. YANG Module

<CODE BEGINS> file "ietf-service-assurance-

interface@2022-08-10.yang"

¶

¶

module: ietf-service-assurance-interface

 augment /sain:subservices/sain:subservice/sain:parameter:

 +--rw parameters

 +--rw device string

 +--rw interface string

¶

¶

¶

¶

¶

module ietf-service-assurance-interface {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-service-assurance-interface";

 prefix sain-interface;

 import ietf-service-assurance {

 prefix sain;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This module extends the ietf-service-assurance module to add

 support for the interface subservice.

 Checks whether an interface is healthy.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the

 RFC itself for full legal notices. ";

 revision 2022-08-10 {

 description

 "Initial revision.";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity interface-type {

 base sain:subservice-base;

 description

 "Checks whether an interface is healthy.";

 }

 augment "/sain:subservices/sain:subservice/sain:parameter" {

 when "derived-from-or-self(sain:type, 'interface-type')";

 description

 "Augments the parameter choice from ietf-service-assurance

 module with a case specific to the interface subservice.";

 container parameters {

 description

 "Parameters for the interface subservice type.";

 leaf device {

 type string;

 mandatory true;

 description

 "Device supporting the interface.";

 }

 leaf interface {

 type string;

 mandatory true;

 description

 "Name of the interface.";

 }

 }

 }

}

¶

<CODE ENDS>

7. Security Considerations

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF or

RESTCONF users to a preconfigured subset of all available NETCONF or

RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that

are writable/ creatable/deletable (i.e., config true, which is the

default). These data nodes may be considered sensitive or vulnerable

in some network environments. Write operations (e.g., edit-config)

to these data nodes without proper protection can have a negative

effect on network operations. These are the subtrees and data nodes

and their sensitivity/vulnerability:

/subservices/subservice : By modifying this subtree, one can

modify the structure of the assurance graph which could alter the

status of the services reported by the assurance framework. On

one hand, modifications can cause the assurance system to report

a service as broken when it is actually healthy (false positive),

resulting in engineers or automation software losing time, and

potentially cause real issues by doing unnecessary modifications

on the network. On the other hand, modifications could prevent

the assurance system to report actual issues (false negative),

resulting in failures that could have been avoided. Depending on

the service, the impact of these avoidable failures could be SLA

violations fees or disruption of emergency calls.

Some readable data nodes in this YANG module may be considered

sensitive or vulnerable in some network environments. It is thus

important to control read access (e.g., via get, get-config, or

notification) to these data nodes. These are the subtrees and data

nodes and their sensitivity/vulnerability:

/subservices/subservice

/agents/agent

/assured-services/assured-service

¶

¶

¶

¶

*

¶

¶

* ¶

* ¶

* ¶

Each of these subtrees contains information about services,

subservices or possible symptoms raised by the agents. The

information contained in this subtree might give information about

the underlying network as well as services deployed for the

customers. For instance, a customer might be given access to monitor

their services status (e.g. via model-driven telemetry). In that

example, the customer access should be restricted to nodes

representing their services, so as not to divulge information about

the underlying network structure or others customers services.

8. IANA Considerations

8.1. The IETF XML Registry

This document registers 3 URIs in the IETF XML registry [RFC3688].

Following the format in [RFC3688], the following registrations are

requested:

8.2. The YANG Module Names Registry

This document registers three YANG modules in the YANG Module Names

registry [RFC7950]. Following the format in [RFC7950], the following

registrations are requested:

¶

¶

URI: urn:ietf:params:xml:ns:yang:ietf-service-assurance

Registrant Contact: The OPSAWG WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-service-assurance-device

Registrant Contact: The OPSAWG WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-service-assurance-interface

Registrant Contact: The OPSAWG WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

¶

¶

name: ietf-service-assurance

namespace: urn:ietf:params:xml:ns:yang:ietf-service-assurance

prefix: sain

reference: RFC XXXX

name: ietf-service-assurance-device

namespace: urn:ietf:params:xml:ns:yang:ietf-service-assurance-device

prefix: sain-device

reference: RFC XXXX

name: ietf-service-assurance-interface

namespace: urn:ietf:params:xml:ns:yang:ietf-service-assurance-interface

prefix: sain-interface

reference: RFC XXXX

¶

[I-D.ietf-opsawg-service-assurance-architecture]

[RFC2119]

[RFC3688]

[RFC6241]

[RFC6242]

[RFC6991]

[RFC7950]

[RFC8040]

[RFC8174]

All these modules are not maintained by IANA.

9. References

9.1. Normative References

Claise, B., Quilbeuf, J., Lopez, D. R., Voyer, D., and T.

Arumugam, "Service Assurance for Intent-based Networking

Architecture", Work in Progress, Internet-Draft, draft-

ietf-opsawg-service-assurance-architecture-13, 3 January

2023, <https://datatracker.ietf.org/api/v1/doc/document/

draft-ietf-opsawg-service-assurance-architecture/>.

Bradner, S. and RFC Publisher, "Key words for use in RFCs

to Indicate Requirement Levels", BCP 14, RFC 2119, DOI

10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

Mealling, M. and RFC Publisher, "The IETF XML Registry",

BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004,

<https://www.rfc-editor.org/info/rfc3688>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., Bierman, A., Ed., and RFC Publisher, "Network

Configuration Protocol (NETCONF)", RFC 6241, DOI

10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/

info/rfc6241>.

Wasserman, M. and RFC Publisher, "Using the NETCONF

Protocol over Secure Shell (SSH)", RFC 6242, DOI

10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/

info/rfc6242>.

Schoenwaelder, J., Ed. and RFC Publisher, "Common YANG

Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013,

<https://www.rfc-editor.org/info/rfc6991>.

Bjorklund, M., Ed. and RFC Publisher, "The YANG 1.1 Data

Modeling Language", RFC 7950, DOI 10.17487/RFC7950,

August 2016, <https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., Watsen, K., and RFC

Publisher, "RESTCONF Protocol", RFC 8040, DOI 10.17487/

RFC8040, January 2017, <https://www.rfc-editor.org/info/

rfc8040>.

Leiba, B. and RFC Publisher, "Ambiguity of Uppercase vs

Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI

¶

https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-opsawg-service-assurance-architecture/
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-opsawg-service-assurance-architecture/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8040

[RFC8341]

[RFC8342]

[RFC8446]

[RFC8340]

[RFC8343]

[RFC8525]

10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/

info/rfc8174>.

Bierman, A., Bjorklund, M., and RFC Publisher, "Network

Configuration Access Control Model", STD 91, RFC 8341,

DOI 10.17487/RFC8341, March 2018, <https://www.rfc-

editor.org/info/rfc8341>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

Wilton, R., and RFC Publisher, "Network Management

Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/

RFC8342, March 2018, <https://www.rfc-editor.org/info/

rfc8342>.

Rescorla, E. and RFC Publisher, "The Transport Layer

Security (TLS) Protocol Version 1.3", RFC 8446, DOI

10.17487/RFC8446, August 2018, <https://www.rfc-

editor.org/info/rfc8446>.

9.2. Informative References

Bjorklund, M., Berger, L., Ed., and RFC Publisher, "YANG

Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340,

March 2018, <https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M. and RFC Publisher, "A YANG Data Model for

Interface Management", RFC 8343, DOI 10.17487/RFC8343,

March 2018, <https://www.rfc-editor.org/info/rfc8343>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., Wilton, R., and RFC Publisher, "YANG Library", RFC

8525, DOI 10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

Appendix A. Vendor-specific Subservice Augmentation: example-service-

assurance-device-acme YANG module

A.1. Tree View

The following tree diagram [RFC8340] provides an overview of the

"example-service-assurance-device-acme" module.¶

module: example-service-assurance-device-acme

 augment /sain:subservices/sain:subservice/sain:parameter:

 +--rw parameters

 +--rw device string

 +--rw acme-specific-parameter string

¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525

A complete tree view of the base module with all augmenting modules

presented in this draft is available in Appendix B.3.

A.2. Concepts

Under some circumstances, vendor-specific subservice types might be

required. As an example of this vendor-specific implementation, this

section shows how to augment the "ietf-service-assurance-device"

module to add custom support for the device subservice, specific to

the ACME Corporation. The specific version adds a new parameter,

named "acme-specific-parameter". It's an implementation choice to

either derive a new specific identity from the "subservice-base"

identity defined in ietf-service-assurance or to augment the

parameters from ietf-service-assurance-device, here we choose to

create a new identity.

¶

¶

A.3. YANG Module

module example-service-assurance-device-acme {

 yang-version 1.1;

 namespace "urn:example:example-service-assurance-device-acme";

 prefix example-device-acme;

 import ietf-service-assurance {

 prefix sain;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 import ietf-service-assurance-device {

 prefix sain-device;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This example module extends the ietf-service-assurance-device

 module to add specific support for devices of ACME Corporation. ";

 revision 2022-08-10 {

 description

 "Initial revision";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity device-acme-type {

 base sain-device:device-type;

 description

 "Network Device is healthy.";

 }

 augment "/sain:subservices/sain:subservice/sain:parameter" {

 when "derived-from-or-self(sain:type, 'device-acme-type')";

 description

 "Augments the parameter choice from ietf-service-assurance

 module with a case specific to the device-acme subservice.";

 container parameters {

 description

 "Parameters for the device-acme subservice type";

 leaf device {

 type string;

 mandatory true;

 description

 "The device to monitor.";

 }

 leaf acme-specific-parameter {

 type string;

 mandatory true;

 description

 "The ACME Corporation specific parameter.";

 }

 }

 }

}

¶

Appendix B. Further Augmentations: IP Connectivity and IS-IS

subservices

In this section, we provide two additional YANG modules to

completely cover the example in Figure 2 from Section 3.1 of

[I-D.ietf-opsawg-service-assurance-architecture]. The two missing

subservice types are IP Connectivity and the Intermediate System to

Intermediate System (IS-IS) routing protocol. These modules are

presented as examples, some future work is needed to propose a more

complete version.

B.1. IP Connectivity Module Tree View

That subservice represents the unicast connectivity between two IP

addresses located on two different devices. Such a subservice could

report symptoms such as "No route found". The following tree diagram

[RFC8340] provides an overview of the "example-service-assurance-ip-

connectivity" module.

To specify the connectivity that we are interested in, we specify

two IP addresses and two devices. The subservice assures that the

connectivity between IP address 1 on device 1 and IP address 2 on

device 2 is healthy.

B.2. IS-IS Module Tree View

The following tree diagram [RFC8340] provides an overview of the

"example-service-assurance-is-is" module.

The parameter of this subservice is the name of the IS-IS instance

to assure.

¶

¶

module: example-service-assurance-ip-connectivity

 augment /sain:subservices/sain:subservice/sain:parameter:

 +--rw parameters

 +--rw device1 string

 +--rw address1 inet:ip-address

 +--rw device2 string

 +--rw address2 inet:ip-address

¶

¶

¶

module: example-service-assurance-is-is

 augment /sain:subservices/sain:subservice/sain:parameter:

 +--rw parameters

 +--rw instance-name string

¶

¶

B.3. Global Tree View

The following tree diagram [RFC8340] provides an overview of the

"ietf-service-assurance", "ietf-service-assurance-device", "example-

service-assurance-device-acme", "example-service-assurance-ip-

connectivity" and "example-service-assurance-is-is" modules.¶

module: ietf-service-assurance

 +--ro assurance-graph-last-change yang:date-and-time

 +--rw subservices

 | +--rw subservice* [type id]

 | +--rw type identityref

 | +--rw id string

 | +--ro last-change?

 | | yang:date-and-time

 | +--ro label? string

 | +--rw under-maintenance!

 | | +--rw contact string

 | +--rw (parameter)

 | | +--:(service-instance-parameter)

 | | | +--rw service-instance-parameter

 | | | +--rw service string

 | | | +--rw instance-name string

 | | +--:(example-ip-connectivity:parameters)

 | | | +--rw example-ip-connectivity:parameters

 | | | +--rw example-ip-connectivity:device1 string

 | | | +--rw example-ip-connectivity:address1

 | | | | inet:ip-address

 | | | +--rw example-ip-connectivity:device2 string

 | | | +--rw example-ip-connectivity:address2

 | | | inet:ip-address

 | | +--:(example-is-is:parameters)

 | | | +--rw example-is-is:parameters

 | | | +--rw example-is-is:instance-name string

 | | +--:(sain-device:parameters)

 | | | +--rw sain-device:parameters

 | | | +--rw sain-device:device string

 | | +--:(example-device-acme:parameters)

 | | | +--rw example-device-acme:parameters

 | | | +--rw example-device-acme:device

 | | | | string

 | | | +--rw example-device-acme:acme-specific-parameter

 | | | string

 | | +--:(sain-interface:parameters)

 | | +--rw sain-interface:parameters

 | | +--rw sain-interface:device string

 | | +--rw sain-interface:interface string

 | +--ro health-score int8

 | +--ro symptoms-history-start?

 | | yang:date-and-time

 | +--ro symptoms

 | | +--ro symptom* [start-date-time agent-id symptom-id]

 | | +--ro symptom-id leafref

 | | +--ro agent-id -> /agents/agent/id

 | | +--ro health-score-weight? uint8

 | | +--ro start-date-time yang:date-and-time

 | | +--ro stop-date-time? yang:date-and-time

 | +--rw dependencies

 | +--rw dependency* [type id]

 | +--rw type

 | | -> /subservices/subservice/type

 | +--rw id leafref

 | +--rw dependency-type? identityref

 +--ro agents

 | +--ro agent* [id]

 | +--ro id string

 | +--ro symptoms* [id]

 | +--ro id string

 | +--ro description string

 +--ro assured-services

 +--ro assured-service* [service]

 +--ro service leafref

 +--ro instances* [name]

 +--ro name leafref

 +--ro subservices* [type id]

 +--ro type -> /subservices/subservice/type

 +--ro id leafref

¶

B.4. IP Connectivity YANG Module

module example-service-assurance-ip-connectivity {

 yang-version 1.1;

 namespace "urn:example:example-service-assurance-ip-connectivity";

 prefix example-ip-connectivity;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-service-assurance {

 prefix sain;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This example module augments the ietf-service-assurance module to

 add support for the subservice ip-connectivity.

 Checks whether the ip connectivity between two ip addresses

 belonging to two network devices is healthy.";

 revision 2022-08-10 {

 description

 "Initial version";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity ip-connectivity-type {

 base sain:subservice-base;

 description

 "Checks connectivity between two IP addresses.";

 }

 augment "/sain:subservices/sain:subservice/sain:parameter" {

 when "derived-from-or-self(sain:type, 'ip-connectivity-type')";

 description

 "Augments the parameter choice from ietf-service-assurance

 module with a case specific to the ip-connectivity

 subservice.";

 container parameters {

 description

 "Parameters for the ip-connectivity subservice type";

 leaf device1 {

 type string;

 mandatory true;

 description

 "Device at the first end of the connection.";

 }

 leaf address1 {

 type inet:ip-address;

 mandatory true;

 description

 "Address at the first end of the connection.";

 }

 leaf device2 {

 type string;

 mandatory true;

 description

 "Device at the second end of the connection.";

 }

 leaf address2 {

 type inet:ip-address;

 mandatory true;

 description

 "Address at the second end of the connection.";

 }

 }

 }

}

¶

B.5. IS-IS YANG Module

module example-service-assurance-is-is {

 yang-version 1.1;

 namespace "urn:example:example-service-assurance-is-is";

 prefix example-is-is;

 import ietf-service-assurance {

 prefix sain;

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This example module augments the ietf-service-assurance module to

 add support for the subservice is-is.

 Checks whether an IS-IS instance is healthy.";

 revision 2022-08-10 {

 description

 "Initial version";

 reference

 "RFC xxxx: YANG Modules for Service Assurance";

 }

 identity is-is-type {

 base sain:subservice-base;

 description

 "Health of IS-IS routing protocol.";

 }

 augment "/sain:subservices/sain:subservice/sain:parameter" {

 when "derived-from-or-self(sain:type, 'is-is-type')";

 description

 "Augments the parameter choice from ietf-service-assurance

 module with a case specific to the is-is subservice.";

 container parameters {

 description

 "Parameters for the is-is subservice type.";

 leaf instance-name {

 type string;

 mandatory true;

 description

 "The instance to monitor.";

 }

 }

 }

}

¶

Appendix C. Example of YANG instance

This section contains an example of YANG instance that conform to

the YANG modules. The validity of this data instance has been

checked using yangson. Yangson requires a YANG library [RFC8525] to

define the complete model against which the data instance must be

validated. We provide in Appendix D the JSON library file, named

"ietf-service-assurance-library.json", that we used for validation.

We provide below the contents of the file

"example_configuration_instance.json" which contains the

configuration data that models the Figure 2 from Section 3.1 of

[I-D.ietf-opsawg-service-assurance-architecture]. The instance can

be validated with yangson by using the invocation "yangson -v

example_configuration_instance.json ietf-service-assurance-

library.json", assuming all the files (YANG and JSON) defined in

this draft reside in the current folder.

¶

¶

https://yangson.labs.nic.cz/

{

 "ietf-service-assurance:subservices": {

 "subservice": [

 {

 "type": "service-instance-type",

 "id": "simple-tunnel/example",

 "service-instance-parameter": {

 "service": "simple-tunnel",

 "instance-name": "example"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer1/tunnel0",

 "dependency-type": "impacting"

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer2/tunnel9",

 "dependency-type": "impacting"

 },

 {

 "type":

 "example-service-assurance-ip-connectivity:ip-connectivity-type",

 "id": "connectivity/peer1/2001:db8::1/peer2/2001:db8::2",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type":

 "example-service-assurance-ip-connectivity:ip-connectivity-type",

 "id": "connectivity/peer1/2001:db8::1/peer2/2001:db8::2",

 "example-service-assurance-ip-connectivity:parameters": {

 "device1": "Peer1",

 "address1": "2001:db8::1",

 "device2": "Peer2",

 "address2": "2001:db8::2"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer1/physical0",

 "dependency-type": "impacting"

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer2/physical5",

 "dependency-type": "impacting"

 },

 {

 "type": "example-service-assurance-is-is:is-is-type",

 "id": "is-is/instance1",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type": "example-service-assurance-is-is:is-is-type",

 "id": "is-is/instance1",

 "example-service-assurance-is-is:parameters": {

 "instance-name": "instance1"

 }

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer1/tunnel0",

 "ietf-service-assurance-interface:parameters": {

 "device": "Peer1",

 "interface": "tunnel0"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer1/physical0",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer1/physical0",

 "ietf-service-assurance-interface:parameters": {

 "device": "Peer1",

 "interface": "physical0"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-device:device-type",

 "id": "interface/peer1",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type": "ietf-service-assurance-device:device-type",

 "id": "interface/peer1",

 "ietf-service-assurance-device:parameters": {

 "device": "Peer1"

 }

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer2/tunnel9",

 "ietf-service-assurance-interface:parameters": {

 "device": "Peer2",

 "interface": "tunnel9"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer2/physical5",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type": "ietf-service-assurance-interface:interface-type",

 "id": "interface/peer2/physical5",

 "ietf-service-assurance-interface:parameters": {

 "device": "Peer2",

 "interface": "physical5"

 },

 "dependencies": {

 "dependency": [

 {

 "type": "ietf-service-assurance-device:device-type",

 "id": "interface/peer2",

 "dependency-type": "impacting"

 }

]

 }

 },

 {

 "type": "ietf-service-assurance-device:device-type",

 "id": "interface/peer2",

 "ietf-service-assurance-device:parameters": {

 "device": "Peer2"

 }

 }

]

 }

}

¶

Appendix D. YANG Library for Service Assurance

This section provides the JSON encoding of the YANG library

[RFC8525] listing all modules defined in this draft and their

dependencies. This library can be used to validate data instances

using yangson, as explained in the previous section.¶

{

 "ietf-yang-library:modules-state": {

 "module-set-id": "ietf-service-assurance@2022-08-10",

 "module": [

 {

 "name": "ietf-service-assurance",

 "namespace":

 "urn:ietf:params:xml:ns:yang:ietf-service-assurance",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "ietf-service-assurance-device",

 "namespace":

 "urn:ietf:params:xml:ns:yang:ietf-service-assurance-device",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "ietf-service-assurance-interface",

 "namespace":

 "urn:ietf:params:xml:ns:yang:ietf-service-assurance-interface",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "example-service-assurance-device-acme",

 "namespace":

 "urn:example:example-service-assurance-device-acme",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "example-service-assurance-is-is",

 "namespace": "urn:example:example-service-assurance-is-is",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "example-service-assurance-ip-connectivity",

 "namespace":

 "urn:example:example-service-assurance-ip-connectivity",

 "revision": "2022-08-10",

 "conformance-type": "implement"

 },

 {

 "name": "ietf-yang-types",

 "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-types",

 "revision": "2021-04-14",

 "conformance-type": "import"

 },

 {

 "name": "ietf-inet-types",

 "namespace": "urn:ietf:params:xml:ns:yang:ietf-inet-types",

 "revision": "2021-02-22",

 "conformance-type": "import"

 }

]

 }

}

¶

Appendix E. Changes between revisions

[[RFC editor: please remove this section before publication.]]

v09 - v10

Address comments from Last Call

v07 - v08

Address comments from Rob Wilton's AD review

v06 - v07

Addressed early YANG doctor comments from version -06: changed -

idty for -type or -base in identity names and removed "under-

maintenance" leaf

Add new list of services with the corresponding subservices

Remove assurance-graph-version and state the limitations of

having only the current graph available in the module.

Added new list of agents to store symptom and guarantee unicity

of symptom ids

Added security consideration for readable nodes

Added section on rejecting circular dependencies

v05 - v06

Remove revision history in modules

Present elements in order of the tree for the main module

Rewriting and rewording for clarity

Made parameters mandatory for the subservices

v04 - v05

Remove Guidelines section

Move informative parts (examples) to appendix

Minor text edits and reformulations

v03 - v04

Fix YANG errors

¶

¶

* ¶

¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

Change is-is and ip-connectivity subservices from ietf to

example.

Mention that models are NMDA compliant

Fix typos, reformulate for clarity

v02 - v03

Change counter32 to counter64 to avoid resetting too frequently

Explain why relation between health-score and symptom's health-

score-weight is not defined and how it could be defined

v01 - v02

Explicitly represent the fact that the health-score could not be

computed (value -1)

v00 - v01

Added needed subservice to model example from architecture draft

Added guideline section for naming models

Added data instance examples and validation procedure

Added the "parameters" container in the interface YANG module to

correct a bug.

Acknowledgements

The authors would like to thank Jan Lindblad for his help during the

design of these YANG modules. The authors would like to thank

Stephane Litkowski, Charles Eckel, Mohamed Boucadair, Tom Petch,

Dhruv Dhody and Rob Wilton for their reviews.

Authors' Addresses

Benoit Claise

Huawei

Email: benoit.claise@huawei.com

Jean Quilbeuf

Huawei

Email: jean.quilbeuf@huawei.com

Paolo Lucente

NTT

*

¶

* ¶

* ¶

¶

* ¶

*

¶

¶

*

¶

¶

* ¶

* ¶

* ¶

*

¶

¶

mailto:benoit.claise@huawei.com
mailto:jean.quilbeuf@huawei.com

Siriusdreef 70-72

2132 Hoofddorp

Netherlands

Email: paolo@ntt.net

Paolo Fasano

TIM S.p.A

via G. Reiss Romoli, 274

10148 Torino

Italy

Email: paolo2.fasano@telecomitalia.it

Thangam Arumugam

Cisco Systems, Inc.

Milpitas (California),

United States

Email: tarumuga@cisco.com

mailto:paolo@ntt.net
mailto:paolo2.fasano@telecomitalia.it
mailto:tarumuga@cisco.com

	YANG Modules for Service Assurance
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. YANG Modules Overview
	3. Base IETF Service Assurance YANG Module
	3.1. Concepts
	3.2. Tree View
	3.3. YANG Module
	3.4. Rejecting Circular Dependencies

	4. Guidelines for Defining New Subservice Types
	5. Subservice Augmentation: ietf-service-assurance-device YANG module
	5.1. Tree View
	5.2. Concepts
	5.3. YANG Module

	6. Subservice Augmentation: ietf-service-assurance-interface YANG module
	6.1. Tree View
	6.2. Concepts
	6.3. YANG Module

	7. Security Considerations
	8. IANA Considerations
	8.1. The IETF XML Registry
	8.2. The YANG Module Names Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Vendor-specific Subservice Augmentation: example-service-assurance-device-acme YANG module
	A.1. Tree View
	A.2. Concepts
	A.3. YANG Module

	Appendix B. Further Augmentations: IP Connectivity and IS-IS subservices
	B.1. IP Connectivity Module Tree View
	B.2. IS-IS Module Tree View
	B.3. Global Tree View
	B.4. IP Connectivity YANG Module
	B.5. IS-IS YANG Module

	Appendix C. Example of YANG instance
	Appendix D. YANG Library for Service Assurance
	Appendix E. Changes between revisions
	Acknowledgements
	Authors' Addresses

