
P2PSIP M. Petit-Huguenin
Internet-Draft Impedance Mismatch
Intended status: Standards Track February 16, 2013
Expires: August 20, 2013

Configuration of Access Control Policy in REsource LOcation And
Discovery (RELOAD) Base Protocol

draft-ietf-p2psip-access-control-00

Abstract

 This document describes an extension to the REsource LOcation And
 Discovery (RELOAD) base protocol to distribute the code of new Access
 Control Policies without having to upgrade the RELOAD implementations
 in an overlay.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 20, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Petit-Huguenin Expires August 20, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Access Control Configuration February 2013

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Processing . 4
4. Security Considerations 6
5. IANA Considerations . 7
6. References . 7
6.1. Normative References 7
6.2. Informative References 8

Appendix A. Examples . 8
A.1. Standard Access Control Policies 8
A.1.1. USER-MATCH . 8
A.1.2. NODE-MATCH . 9
A.1.3. USER-NODE-MATCH 9
A.1.4. NODE-MULTIPLE . 9

A.2. Service Discovery Access Control Policy NODE-ID-MATCH . . 10
A.3. VIPR Access Control Policy 11
A.4. ShaRe Access Control Policy USER-CHAIN-ACL 12

Appendix B. Release notes 12
 B.1. Modifications between ietf-p2psip-reload-access-control
 and petithuguenin-p2psip-access-control-05 12

B.2. Running Code Considerations 13
B.3. TODO List . 13

 Author's Address . 13

1. Introduction

 The RELOAD base protocol specifies an Access Control Policy as
 "defin[ing] whether a request from a given node to operate on a given
 value should succeed or fail." The paragraph continues saying that
 "[i]t is anticipated that only a small number of generic access
 control policies are required", but there is indications that this
 assumption will not hold. On all the RELOAD Usages defined in other
 documents than the RELOAD base protocol, roughly 50% defines a new
 Access Control Policy.

Petit-Huguenin Expires August 20, 2013 [Page 2]

Internet-Draft Access Control Configuration February 2013

 The problem with a new Access Control Policy is that, because it is
 executed when a Store request is processed, it needs to be
 implemented by all the peers and so requires an upgrade of the
 software. This is something that is probably not possible in large
 overlays or on overlays using different implementations. For this
 reason, this document proposes an extension to the RELOAD
 configuration document that permits to transport the code of a new
 Access Control Policy to each peer.

 This extension defines a new element <code> that can be optionally
 added to a <configuration> element in the configuration document.
 The <code> element contains ECMAScript [ECMA-262] code that will be
 called for each StoredData object that use this access control
 policy. The code receives four parameters, corresponding to the
 Resource-ID, Signature, Kind and StoredDataValue of the value to
 store. The code returns true or false to signal to the
 implementation if the request should succeed or fail.

 For example the USER-MATCH Access Control Policy defined in the base
 protocol could be identically defined by inserting the following code
 in an <code> element:

 return resource.equalsHash(signer.user_name.bytes());

 The <kind> parameters are also passed to the code, so the NODE-
 MULTIPLE Access Control Policy could be implemented like this:

 for (var i = 0; i < kind.max_node_multiple; i++) {
 if (resource.equalsHash(signer.node_id, i.width(4))) {
 return true;
 }
 }
 return false;

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] with the
 caveat that "SHOULD", "SHOULD NOT", "RECOMMENDED", and "NOT
 RECOMMENDED" are appropriate when valid exceptions to a general
 requirement are known to exist or appear to exist, and it is
 infeasible or impractical to enumerate all of them. However, they
 should not be interpreted as permitting implementors to fail to
 implement the general requirement when such failure would result in
 interoperability failure.

https://datatracker.ietf.org/doc/html/rfc2119

Petit-Huguenin Expires August 20, 2013 [Page 3]

Internet-Draft Access Control Configuration February 2013

3. Processing

 A peer receiving a configuration document containing one or more
 <code> elements, either by retrieving it from the configuration
 server or in a ConfigUpdateReq message, MUST reject this
 configuration if is not is not signed or if the signature
 verification fails.

 The Compact Relax NG Grammar for this element is:

 namespace acp = "urn:ietf:params:xml:ns:p2p:access-control"

 parameter &= element acp:code {
 attribute name { xsd:string },
 xsd:base64Binary
 }?

 All peers in an overlay MUST implement this specification. One way
 to do this is to add a <mandatory-extension> element containing the
 "urn:ietf:params:xml:ns:p2p:access-control" namespace in the
 configuration document.

 The mandatory "name" attribute identifies the access control policy
 and can be used in the "name" attribute of a <kind> element as if it
 was defined by IANA.

 If the <code> element is present in the namespace allocated to this
 specification, and the Access Control Policy is not natively
 implemented, then the code inside the element MUST be called for each
 DataValue found in a received StoreReq for a Kind that is defined
 with this access control policy. The content of the <code> element
 MUST be decoded using the base64 [RFC4648] encoding, uncompressed
 using gzip [RFC1952] then converted to characters using UTF-8.
 <code> elements that are not encoded using UTF-8, compressed with
 gzip or finally converted to the base64 format MUST be ignored.

 For each call to the code, the following ECMAScript objects,
 properties and functions MUST be available:

 configuration.instance_name: The name of the overlay, as a String
 object.

 configuration.topology_plugin: The overlay algorithm, as a String
 object.

 configuration.node_id_length: The length of a NodeId in bytes, as a
 Number object.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc1952

Petit-Huguenin Expires August 20, 2013 [Page 4]

Internet-Draft Access Control Configuration February 2013

 configuration.kinds: An array of kinds (with the same definition
 than the kind object), indexed by id and eventually by name.

 configuration.evaluate(String, String, String): A function that
 evaluates the first parameter as an XPath expression against the
 configuration element, and returns the result as a String object.
 The second parameter contains a namespace prefix and the third
 parameter contains a namespace.

 kind.id: The id of the Kind associated with the entry, as a Number
 object.

 kind.name: If the Kind associated with the entry is registered by
 IANA, contains the name as a String object. If not, this property
 is undefined.

 kind.data_model: The name of the Data Model associated with the
 entry, as a String object.

 kind.access_control: The name of the Access Control Policy
 associated with the entry, as a String object.

 kind.max_count: The value of the max-count element in the
 configuration file, as a Number object.

 kind.max_size: The value of the max-size element in the
 configuration file as a Number object.

 kind.max_node_multiple: If the Access Control is MULTIPLE-NODE,
 contains the value of the max-node-multiple element in the
 configuration file, as a Number object. If not, this property is
 undefined.

 kind.evaluate(String, String, String): A function that evaluates the
 first parameter as an XPath expression against the kind element,
 and returns the result as a String object. The second parameter
 must contain a namespace prefix and the third parameter must
 contain a namespace.

 resource: An opaque object representing the Resource-ID, as an array
 of bytes.

 resource.entries: An array of arrays of entry objects, with the
 first array level indexed by Kind-Id and kind names, and the
 second level indexed by index, key or nothing, depending on the
 data model of the kind. This permits to retrieve all the values
 of all Kinds stored at the same Resource-ID than the entry
 currently processed.

Petit-Huguenin Expires August 20, 2013 [Page 5]

Internet-Draft Access Control Configuration February 2013

 resource.equalsHash(Object...): A function that returns true if
 hashing the concatenation of the arguments according to the
 mapping function of the overlay algorithm is equal to the
 Resource-ID. Each argument is an array of bytes.

 entry.index: If the Data Model is ARRAY, contains the index of the
 entry, as a Number object. If not, this property is undefined.

 entry.key: If the Data Model is DICTIONARY, contains the key of the
 entry, as an array of bytes. If not, this property is undefined.

 entry.storage_time: The date and time used to store the entry, as a
 Date object.

 entry.lifetime: The validity for the entry in seconds, as a Number
 object.

 entry.exists: Indicates if the entry value exists, as Boolean
 object.

 entry.value: This property contains an opaque object that represents
 the whole data, as an array of bytes.

 entry.signer.user_name: The rfc822Name stored in the certificate
 that was used to sign the request, as a String object.

 entry.signer.node_id: The Node-ID stored in the certificate that was
 used to sign the request, as an array of bytes.

 The properties SHOULD NOT be modifiable or deletable and if they are,
 modifying or deleting them MUST NOT modify or delete the equivalent
 internal values (in other words, the code cannot be used to modify
 the elements that will be stored).

 The value returned by the code is evaluated to true or false,
 according to the ECMAScript rules. If the return value of one of the
 call to the code is evaluated to false, then the StoreReq fails, the
 state MUST be rolled back and an Error_Forbidden MUST be returned.

4. Security Considerations

 Because the configuration document containing the ECMAScript code is
 under the responsibility of the same entity that will sign it, using
 a scripting language does not introduce any additional risk if the
 RELOAD implementers follow the rules in this document (no side effect
 when modifying the parameters, only base classes of ECMAScript
 implemented, etc...). It is even possible to deal with less than
 perfect implementations as long as they do not accept a configuration

Petit-Huguenin Expires August 20, 2013 [Page 6]

Internet-Draft Access Control Configuration February 2013

 file that is not signed correctly. One way for the signer to enforce
 this would be to deliberately send in a ConfigUpdate an incorrectly
 signed version of the configuration file and blacklist all the nodes
 that accepted it in a newly issued configuration file.

 By permitting multiple overlay implementations to interoperate inside
 one overlay, RELOAD helps build overlays that are not only resistant
 to hardware or communication failures, but also to programmer errors.
 Distributing the access control policy code inside the configuration
 document reintroduces this single point of failure. To mitigate this
 problem, new access control policies should be implemented natively
 as soon as possible, but if all implementations uses the ECMAscript
 code as a blueprint for the native code, an hidden bug can be
 unwillingly duplicated. This is why developers should implement new
 access control policies from the normative text instead of looking at
 the code itself. To help developers do the right thing the code in
 the configuration document is obfuscated by compressing and encoding
 it as a base64 character string.

5. IANA Considerations

 This section requests IANA to register the following URN in the "XML
 Namespaces" class of the "IETF XML Registry" in accordance with
 [RFC3688].

 URI: urn:ietf:params:xml:ns:p2p:access-control

 Registrant Contact: The IESG

 XML: This specification.

6. References

6.1. Normative References

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
RFC 1952, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [I-D.ietf-p2psip-base]

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc4648

Petit-Huguenin Expires August 20, 2013 [Page 7]

Internet-Draft Access Control Configuration February 2013

 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-24 (work in
 progress), January 2013.

 [ECMA-262]
 Ecma, , "ECMAScript Language Specification 3rd Edition",
 December 2009.

6.2. Informative References

 [I-D.ietf-p2psip-service-discovery]
 Maenpaa, J. and G. Camarillo, "Service Discovery Usage for
 REsource LOcation And Discovery (RELOAD)", draft-ietf-

p2psip-service-discovery-06 (work in progress), April
 2013.

 [I-D.petithuguenin-vipr-reload-usage]
 Petit-Huguenin, M., Rosenberg, J., and C. Jennings, "A
 Usage of Resource Location and Discovery (RELOAD) for
 Public Switched Telephone Network (PSTN) Verification",

draft-petithuguenin-vipr-reload-usage-04 (work in
 progress), March 2012.

 [I-D.ietf-p2psip-share]
 Knauf, A., Schmidt, T., Hege, G., and M. Waehlisch, "A
 Usage for Shared Resources in RELOAD (ShaRe)", draft-ietf-

p2psip-share-00 (work in progress), April 2013.

Appendix A. Examples

A.1. Standard Access Control Policies

 This section shows the ECMAScript code that could be used to
 implement the standard Access Control Policies defined in
 [I-D.ietf-p2psip-base].

A.1.1. USER-MATCH

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-24
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-service-discovery-06
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-service-discovery-06
https://datatracker.ietf.org/doc/html/draft-petithuguenin-vipr-reload-usage-04
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-share-00
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-share-00

Petit-Huguenin Expires August 20, 2013 [Page 8]

Internet-Draft Access Control Configuration February 2013

 String.prototype['bytes'] = function () {
 var bytes = [];
 for (var i = 0; i < this.length; i++) {
 bytes[i] = this.charCodeAt(i);
 }
 return bytes;
 };

 return resource.equalsHash(entry.signer.user_name.bytes());

A.1.2. NODE-MATCH

 return resource.equalsHash(entry.signer.node_id);

A.1.3. USER-NODE-MATCH

 String.prototype['bytes'] = function () {
 var bytes = [];
 for (var i = 0; i < this.length; i++) {
 bytes[i] = this.charCodeAt(i);
 }
 return bytes;
 };

 var equals = function (a, b) {
 if (a.length !== b.length) return false;
 for (var i = 0; i < a.length; i++) {
 if (a[i] !== b[i]) return false;
 }
 return true;
 };

 return resource.equalsHash(entry.signer.user_name.bytes())
 && equals(entry.key, entry.signer.node_id);

A.1.4. NODE-MULTIPLE

 Number.prototype['width'] = function (w) {
 var bytes = [];
 for (var i = 0; i < w; i++) {
 bytes[i] = (this >>> ((w - i - 1) * 8)) & 255;
 }
 return bytes;
 };

Petit-Huguenin Expires August 20, 2013 [Page 9]

Internet-Draft Access Control Configuration February 2013

 for (var i = 0; i < kind.max_node_multiple; i++) {
 if (resource.equalsHash(entry.signer.node_id, i.width(4))) {
 return true;
 }
 }
 return false;

A.2. Service Discovery Access Control Policy NODE-ID-MATCH

 [I-D.ietf-p2psip-service-discovery] defines a new Access Control
 Policy (NODE-ID-MATCH) that need to access the content of the entry
 to be written. If implemented as specified by this document, the
 ECMAScript code would look something like this:

 /* Insert here the code from
http://jsfromhell.com/classes/bignumber

 */

 var toBigNumber = function (node_id) {
 var bignum = new BigNumber(0);
 for (var i = 0; i < node_id.length; i++) {
 bignum = bignum.multiply(256).add(node_id[i]);
 }
 return bignum;
 };

 var checkIntervals = function (node_id, level, node, factor) {
 var size = new BigNumber(2).pow(128);
 var node = toBigNumber(node_id);
 for (var f = 0; f < factor; f++) {
 var temp = size.multiply(new BigNumber(f)
 .pow(new BigNumber(level).negate()));
 var min = temp.multiply(node.add(new BigNumber(f)
 .divide(factor)));
 var max = temp.multiply(node.add(new BigNumber(f + 1)
 .divide(factor)));
 if (node.compare(min) === -1 || node.compare(max) == 1
 || node.compare(max) == 0) return false;
 }
 return true;
 };

 var equals = function (a, b) {
 if (a.length !== b.length) return false;
 for (var i = 0; i < a.length; i++) {
 if (a[i] !== b[i]) return false;
 }

http://jsfromhell.com/classes/bignumber

Petit-Huguenin Expires August 20, 2013 [Page 10]

Internet-Draft Access Control Configuration February 2013

 return true;
 };

 var level = function (value) {
 var length = value[16] * 256 + value[17];
 return value[18 + length] * 256 + value[18 + length + 1];
 };

 var node = function (value) {
 var length = value[16] * 256 + value[17];
 return value[18 + length + 2] * 256
 + value[18 + length + 3];
 };

 var namespace = function (value) {
 var length = value[16] * 256 + value[17];
 return String.fromCharCode.apply(null,
 value.slice(18, length + 18));
 };

 var branching_factor =
 kind.evaluate('/branching-factor',
 'redir', 'urn:ietf:params:xml:ns:p2p:redir');
 return equals(entry.key, entry.signer.node_id)
 && (!entry.exists || checkIntervals(entry.key,
 level(entry.value), node(entry.value),
 branching_factor))
 && (!entry.exists
 || resource.equalsHash(namespace(entry.value),
 level(entry.value), node(entry.value)));

 Note that the code for the BigNumber object was removed from this
 example, as the licensing terms are unclear. The code is available
 at [1].

A.3. VIPR Access Control Policy

 [I-D.petithuguenin-vipr-reload-usage] defines a new Access Control
 Policy. If implemented as specified by this document, the ECMAScript
 code would look something like this:

 var equals = function (a, b) {
 if (a.length !== b.length) return false;
 for (var i = 0; i < a.length; i++) {
 if (a[i] !== b[i]) return false;
 }
 return true;

Petit-Huguenin Expires August 20, 2013 [Page 11]

Internet-Draft Access Control Configuration February 2013

 };
 var length = configuration.node_id_length;
 return equals(entry.key.slice(0, length),
 entry.value.slice(4, length + 4))
 && equals(entry.key.slice(0, length), entry.signer.node_id);

A.4. ShaRe Access Control Policy USER-CHAIN-ACL

 [I-D.ietf-p2psip-share] defines a new Access Control Policy, USER-
 CHAIN-ACL. If implemented as specified by this document, the
 ECMAScript code would look something like this:

 var pattern = kind.evaluate('/share:pattern',
 'share', 'urn:ietf:params:xml:ns:p2p:config-share');
 var username = entry.signer.user_name.match(/^([^@]+)@(.+)$/);
 var new_pattern = new RegExp(
 pattern.replace('$USER', username[1])
 .replace('$DOMAIN', username[2]));
 var length = entry.value[0] * 256 + entry.value[1];
 var resource_name = String.fromCharCode.apply(null,
 entry.value.slice(2, length + 2));
 return new_pattern.test(resource_name);\n"));

 [[Note: the code is incomplete]]

Appendix B. Release notes

 This section must be removed before publication as an RFC.

B.1. Modifications between ietf-p2psip-reload-access-control and
 petithuguenin-p2psip-access-control-05

 o Removed inconsistency in the terminology section.

 o Updated the IANA section and added reference to RFC 3688.

 o Removed "This is probably not legal..." in the security section.

 o Renamed "access-control-code" to simply "code" as it has to be
 prefixed by the namespace anyway, so there is no risk of conflict.

https://datatracker.ietf.org/doc/html/rfc3688

Petit-Huguenin Expires August 20, 2013 [Page 12]

Internet-Draft Access Control Configuration February 2013

B.2. Running Code Considerations

 o Reference Implementation and Access Control Policy script tester
 (<http://debian.implementers.org/testing/source/reload.tar.gz>).
 Marc Petit-Huguenin. Implements version -03.

B.3. TODO List

 o Finish the code for ShaRe.

 o Update the reference implementation.

Author's Address

 Marc Petit-Huguenin
 Impedance Mismatch

 Email: petithug@acm.org

Petit-Huguenin Expires August 20, 2013 [Page 13]

http://debian.implementers.org/testing/source/reload.tar.gz

