
P2PSIP C. Jennings
Internet-Draft Cisco
Intended status: Standards Track B. Lowekamp, Ed.
Expires: September 8, 2009 unaffiliated
 E. Rescorla
 Network Resonance
 S. Baset
 H. Schulzrinne
 Columbia University
 March 07, 2009

REsource LOcation And Discovery (RELOAD) Base Protocol
draft-ietf-p2psip-base-02

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 8, 2009.

Jennings, et al. Expires September 8, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft RELOAD Base March 2009

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 In this document the term BCP 78 and BCP 79 refer to RFC 3978 and RFC
3979 respectively. They refer only to those RFCs and not any

 documents that update or supersede them.

 This document defines REsource LOcation And Discovery (RELOAD), a
 peer-to-peer (P2P) signaling protocol for use on the Internet. A P2P
 signaling protocol provides its clients with an abstract storage and
 messaging service between a set of cooperating peers that form the
 overlay network. RELOAD is designed to support a P2P Session
 Initiation Protocol (P2PSIP) network, but can be utilized by other
 applications with similar requirements by defining new usages that
 specify the kinds of data that must be stored for a particular
 application. RELOAD defines a security model based on a certificate
 enrollment service that provides unique identities. NAT traversal is
 a fundamental service of the protocol. RELOAD also allows access
 from "client" nodes that do not need to route traffic or store data
 for others.

Legal

 This documents and the information contained therein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/rfc3978
https://datatracker.ietf.org/doc/html/rfc3979
https://datatracker.ietf.org/doc/html/rfc3979

Jennings, et al. Expires September 8, 2009 [Page 2]

Internet-Draft RELOAD Base March 2009

Table of Contents

1. Introduction . 8
1.1. Basic Setting . 9
1.2. Architecture . 10
1.2.1. Usage Layer . 13
1.2.2. Message Transport 14
1.2.3. Storage . 14
1.2.4. Topology Plugin 15
1.2.5. Forwarding and Link Management Layer 15

1.3. Security . 16
1.4. Structure of This Document 17

2. Terminology . 17
3. Overlay Management Overview 19
3.1. Security and Identification 19
3.1.1. Shared-Key Security 20

3.2. Clients . 21
3.2.1. Client Routing 21
3.2.2. Minimum Functionality Requirements for Clients . . . 22

3.3. Routing . 22
3.4. Connectivity Management 25
3.5. Overlay Algorithm Support 26
3.5.1. Support for Pluggable Overlay Algorithms 26
3.5.2. Joining, Leaving, and Maintenance Overview 26

3.6. First-Time Setup . 28
3.6.1. Initial Configuration 28
3.6.2. Enrollment . 28

4. Application Support Overview 28
4.1. Data Storage . 29
4.1.1. Storage Permissions 30
4.1.2. Usages . 31
4.1.3. Replication . 31

4.2. Service Discovery 32
4.3. Application Connectivity 32

5. Overlay Management Protocol 32
5.1. Message Receipt and Forwarding 33
5.1.1. Responsible ID 33
5.1.2. Other ID . 34
5.1.3. Private ID . 35

5.2. Symmetric Recursive Routing 35
5.2.1. Request Origination 35
5.2.2. Response Origination 36

5.3. Message Structure 36
5.3.1. Presentation Language 37
5.3.1.1. Common Definitions 38

5.3.2. Forwarding Header 40
5.3.2.1. Processing Configuration Sequence Numbers 42
5.3.2.2. Destination and Via Lists 43

Jennings, et al. Expires September 8, 2009 [Page 3]

Internet-Draft RELOAD Base March 2009

5.3.2.3. Route Logging 44
5.3.2.4. Forwarding Options 46

5.3.3. Message Contents Format 47
5.3.3.1. Response Codes and Response Errors 48

5.3.4. Security Block 50
5.4. Overlay Topology . 53
5.4.1. Topology Plugin Requirements 53
5.4.2. Methods and types for use by topology plugins . . . 53
5.4.2.1. Join . 53
5.4.2.2. Leave . 54
5.4.2.3. Update . 54
5.4.2.4. Route_Query 55
5.4.2.5. Probe . 56

5.5. Forwarding and Link Management Layer 58
5.5.1. Attach . 58
5.5.1.1. Request Definition 59
5.5.1.2. Response Definition 60
5.5.1.3. Using ICE With RELOAD 60
5.5.1.4. Collecting STUN Servers 60
5.5.1.5. Gathering Candidates 61
5.5.1.6. Encoding the Attach Message 61
5.5.1.7. Verifying ICE Support 62
5.5.1.8. Role Determination 62
5.5.1.9. Connectivity Checks 62
5.5.1.10. Concluding ICE 62
5.5.1.11. Subsequent Offers and Answers 63
5.5.1.12. Media Keepalives 63
5.5.1.13. Sending Media 63
5.5.1.14. Receiving Media 63

5.5.2. AttachLite . 64
5.5.2.1. Request Definition 64
5.5.2.2. Attach-Lite Connectivity Checks 65
5.5.2.3. Implementation Notes for Attach-Lite 65

5.5.3. Ping . 65
5.5.3.1. Request Definition 66
5.5.3.2. Response Definition 66

5.5.4. Config_Update 66
5.5.4.1. Request Definition 66
5.5.4.2. Response Definition 67

5.6. Overlay Link Layer 67
5.6.1. Future Support for HIP 68
5.6.2. Reliability for Unreliable Links 68
5.6.2.1. Framed Message Format 68
5.6.2.2. Retransmission and Flow Control 70

5.6.3. Fragmentation and Reassembly 71
6. Data Storage Protocol . 72
6.1. Data Signature Computation 73
6.2. Data Models . 74

Jennings, et al. Expires September 8, 2009 [Page 4]

Internet-Draft RELOAD Base March 2009

6.2.1. Single Value . 74
6.2.2. Array . 75
6.2.3. Dictionary . 75

6.3. Access Control Policies 76
6.3.1. USER-MATCH . 76
6.3.2. NODE-MATCH . 76
6.3.3. USER-NODE-MATCH 76
6.3.4. NODE-MULTIPLE 77
6.3.5. USER-MATCH-WITH-ANONYMOUS-CREATE 77

6.4. Data Storage Methods 77
6.4.1. Store . 77
6.4.1.1. Request Definition 77
6.4.1.2. Response Definition 81
6.4.1.3. Removing Values 82

6.4.2. Fetch . 83
6.4.2.1. Request Definition 83
6.4.2.2. Response Definition 85

6.4.3. Stat . 86
6.4.3.1. Request Definition 86
6.4.3.2. Response Definition 86

6.4.4. Find . 88
6.4.4.1. Request Definition 88
6.4.4.2. Response Definition 89

6.4.5. Defining New Kinds 90
7. Certificate Store Usage 90
8. TURN Server Usage . 91
9. Chord Algorithm . 92
9.1. Overview . 93
9.2. Reactive vs Periodic Recovery 93
9.3. Routing . 94
9.4. Redundancy . 94
9.5. Joining . 95
9.6. Routing Attaches . 95
9.7. Updates . 96
9.7.1. Sending Updates 97
9.7.2. Receiving Updates 98
9.7.3. Stabilization 99

9.8. Route Query . 100
9.9. Leaving . 101

10. Enrollment and Bootstrap 101
10.1. Overlay Configuration 101
10.1.1. Relax NG Grammars 104

10.2. Discovery Through Enrollment Server 106
10.3. Credentials . 107
10.3.1. Self-Generated Credentials 108

10.4. Joining the Overlay Peer 108
11. Message Flow Example . 109
12. Security Considerations 115

Jennings, et al. Expires September 8, 2009 [Page 5]

Internet-Draft RELOAD Base March 2009

12.1. Overview . 115
12.2. Attacks on P2P Overlays 116
12.3. Certificate-based Security 116
12.4. Shared-Secret Security 117
12.5. Storage Security . 117
12.5.1. Authorization 118
12.5.2. Distributed Quota 118
12.5.3. Correctness . 119
12.5.4. Residual Attacks 119

12.6. Routing Security . 120
12.6.1. Background . 120
12.6.2. Admissions Control 120
12.6.3. Peer Identification and Authentication 121
12.6.4. Protecting the Signaling 121
12.6.5. Residual Attacks 122

13. IANA Considerations . 122
13.1. Port Registrations 122
13.2. Overlay Algorithm Types 123
13.3. Access Control Policies 123
13.4. Data Kind-ID . 123
13.5. Data Model . 124
13.6. Message Codes . 124
13.7. Error Codes . 125
13.8. Route Log Extension Types 126
13.9. Overlay Link Types 126
13.10. Forwarding Options 127
13.11. Probe Information Types 127
13.12. reload: URI Scheme 127
13.12.1. URI Registration 128

14. Acknowledgments . 128
15. References . 129
15.1. Normative References 129
15.2. Informative References 130

Appendix A. Change Log . 133
A.1. Changes since draft-ietf-p2psip-reload-01 133
A.2. Changes since draft-ietf-p2psip-reload-00 133
A.3. Changes since draft-ietf-p2psip-base-00 133
A.4. Changes since draft-ietf-p2psip-base-01 133
A.5. Changes since draft-ietf-p2psip-base-01a 133

Appendix B. Routing Alternatives 134
B.1. Iterative vs Recursive 134
B.2. Symmetric vs Forward response 134
B.3. Direct Response . 135
B.4. Relay Peers . 136
B.5. Symmetric Route Stability 136

Appendix C. Why Clients? . 137
C.1. Why Not Only Peers? 137
C.2. Clients as Application-Level Agents 138

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-reload-01
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-reload-00
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-00
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-01
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-01a

Jennings, et al. Expires September 8, 2009 [Page 6]

Internet-Draft RELOAD Base March 2009

 Authors' Addresses . 138

Jennings, et al. Expires September 8, 2009 [Page 7]

Internet-Draft RELOAD Base March 2009

1. Introduction

 This document defines REsource LOcation And Discovery (RELOAD), a
 peer-to-peer (P2P) signaling protocol for use on the Internet. It
 provides a generic, self-organizing overlay network service, allowing
 nodes to efficiently route messages to other nodes and to efficiently
 store and retrieve data in the overlay. RELOAD provides several
 features that are critical for a successful P2P protocol for the
 Internet:

 Security Framework: A P2P network will often be established among a
 set of peers that do not trust each other. RELOAD leverages a
 central enrollment server to provide credentials for each peer
 which can then be used to authenticate each operation. This
 greatly reduces the possible attack surface.

 Usage Model: RELOAD is designed to support a variety of
 applications, including P2P multimedia communications with the
 Session Initiation Protocol [I-D.ietf-p2psip-sip]. RELOAD allows
 the definition of new application usages, each of which can define
 its own data types, along with the rules for their use. This
 allows RELOAD to be used with new applications through a simple
 documentation process that supplies the details for each
 application.

 NAT Traversal: RELOAD is designed to function in environments where
 many if not most of the nodes are behind NATs or firewalls.
 Operations for NAT traversal are part of the base design,
 including using ICE to establish new RELOAD or application
 protocol connections.

 High Performance Routing: The very nature of overlay algorithms
 introduces a requirement that peers participating in the P2P
 network route requests on behalf of other peers in the network.
 This introduces a load on those other peers, in the form of
 bandwidth and processing power. RELOAD has been defined with a
 simple, lightweight forwarding header, thus minimizing the amount
 of effort required by intermediate peers.

 Pluggable Overlay Algorithms: RELOAD has been designed with an
 abstract interface to the overlay layer to simplify implementing a
 variety of structured (DHT) and unstructured overlay algorithms.
 This specification also defines how RELOAD is used with Chord,
 which is mandatory to implement. Specifying a default "must
 implement" overlay algorithm will allow interoperability, while
 the extensibility allows selection of overlay algorithms optimized
 for a particular application.

Jennings, et al. Expires September 8, 2009 [Page 8]

Internet-Draft RELOAD Base March 2009

 These properties were designed specifically to meet the requirements
 for a P2P protocol to support SIP. This document defines the base
 protocol for the distributed storage and location service, as well as
 critical usages for NAT traversal and security. The SIP Usage itself
 is described separately in [I-D.ietf-p2psip-sip]. RELOAD is not
 limited to usage by SIP and could serve as a tool for supporting
 other P2P applications with similar needs. RELOAD is also based on
 the concepts introduced in [I-D.ietf-p2psip-concepts].

1.1. Basic Setting

 In this section, we provide a brief overview of the operational
 setting for RELOAD. See the concepts document for more details. A
 RELOAD Overlay Instance consists of a set of nodes arranged in a
 partly connected graph. Each node in the overlay is assigned a
 numeric Node-ID which, together with the specific overlay algorithm
 in use, determines its position in the graph and the set of nodes it
 connects to. The figure below shows a trivial example which isn't
 drawn from any particular overlay algorithm, but was chosen for
 convenience of representation.

 +--------+ +--------+ +--------+
 | Node 10|--------------| Node 20|--------------| Node 30|
 +--------+ +--------+ +--------+
 | | |
 | | |
 +--------+ +--------+ +--------+
 | Node 40|--------------| Node 50|--------------| Node 60|
 +--------+ +--------+ +--------+
 | | |
 | | |
 +--------+ +--------+ +--------+
 | Node 70|--------------| Node 80|--------------| Node 90|
 +--------+ +--------+ +--------+
 |
 |
 +--------+
 | Node 85|
 |(Client)|
 +--------+

 Because the graph is not fully connected, when a node wants to send a
 message to another node, it may need to route it through the network.
 For instance, Node 10 can talk directly to nodes 20 and 40, but not
 to Node 70. In order to send a message to Node 70, it would first
 send it to Node 40 with instructions to pass it along to Node 70.
 Different overlay algorithms will have different connectivity graphs,
 but the general idea behind all of them is to allow any node in the

Jennings, et al. Expires September 8, 2009 [Page 9]

Internet-Draft RELOAD Base March 2009

 graph to efficiently reach every other node within a small number of
 hops.

 The RELOAD network is not only a messaging network. It is also a
 storage network. Records are stored under numeric addresses which
 occupy the same space as node identifiers. Nodes are responsible for
 storing the data associated with some set of addresses as determined
 by their Node-ID. For instance, we might say that every node is
 responsible for storing any data value which has an address less than
 or equal to its own Node-ID, but greater than the next lowest
 Node-ID. Thus, Node-20 would be responsible for storing values
 11-20.

 RELOAD also supports clients. These are nodes which have Node-IDs
 but do not participate in routing or storage. For instance, in the
 figure above Node 85 is a client. It can route to the rest of the
 RELOAD network via Node 80, but no other node will route through it
 and Node 90 is still responsible for all addresses between 81-90. We
 refer to non-client nodes as peers.

 Other applications (for instance, SIP) can be defined on top of
 RELOAD and use these two basic RELOAD services to provide their own
 services.

1.2. Architecture

 RELOAD is fundamentally an overlay network. Therefore, it can be
 divided into components that mimic the layering of the Internet
 model[RFC1122].

Jennings, et al. Expires September 8, 2009 [Page 10]

Internet-Draft RELOAD Base March 2009

 Application

 +-------+ +-------+
 | SIP | | XMPP | ...
 | Usage | | Usage |
 +-------+ +-------+
 -------------------------------------- Messaging API
 +------------------+ +---------+
 | Message |<--->| Storage |
 | Transport | +---------+
 +------------------+ ^
 ^ ^ |
 | v v
 | +-------------------+
 | | Topology |
 | | Plugin |
 | +-------------------+
 | ^
 v v
 +------------------+
 | Forwarding & |
 | Link Management |
 +------------------+
 -------------------------------------- Overlay Link API
 +-------+ +------+
 |TLS | |DTLS | ...
 +-------+ +------+

 The major components of RELOAD are:

 Usage Layer: Each application defines a RELOAD usage; a set of data
 kinds and behaviors which describe how to use the services
 provided by RELOAD. These usages all talk to RELOAD through a
 common Message Transport API.

 Message Transport: Handles the end-to-end reliability, manages
 request state for the usages, and forwards Store and Fetch
 operations to the Storage component. Delivers message responses
 to the component initiating the request.

 Storage: The Storage component is responsible for processing
 messages relating to the storage and retrieval of data. It talks
 directly to the Topology Plugin to manage data replication and
 migration, and it talks to the Message Transport to send and
 receive messages.

Jennings, et al. Expires September 8, 2009 [Page 11]

Internet-Draft RELOAD Base March 2009

 Topology Plugin: The Topology Plugin is responsible for implementing
 the specific overlay algorithm being used. It uses the Message
 Transport component to send and receive overlay management
 messages, to the Storage component to manage data replication, and
 directly to the Forwarding Layer to control hop-by-hop message
 forwarding. This component closely parallels conventional routing
 algorithms, but is more tightly coupled to the Forwarding Layer
 because there is no single "routing table" equivalent used by all
 overlay algorithms.

 Forwarding and Link Management Layer: Stores and implements the
 routing table by providing packet forwarding services between
 nodes. It also handles establishing new links between nodes,
 including setting up connections across NATs using ICE.

 Overlay Link Layer: TLS [RFC5246] and DTLS [RFC4347] are the "link
 layer" protocols used by RELOAD for hop-by-hop communication.
 Each such protocol includes the appropriate provisions for per-hop
 framing or hop-by-hop ACKs required by unreliable transports.

 To further clarify the roles of the various layer, this figure
 parallels the architecture with each layer's role from an overlay
 perspective and implementation layer in the internet:

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347

Jennings, et al. Expires September 8, 2009 [Page 12]

Internet-Draft RELOAD Base March 2009

 | Internet Model |
 Real | Equivalent | Reload
 Internet | in Overlay | Architecture
 --------------+-----------------+------------------------------------
 | | +-------+ +-------+
 | Application | | SIP | | XMPP | ...
 | | | Usage | | Usage |
 | | +-------+ +-------+
 | | ----------------------------------
 | |+------------------+ +---------+
 | Transport || Message |<--->| Storage |
 | || Transport | +---------+
 | |+------------------+ ^
 | | ^ ^ |
 | | | v v
 Application | | | +-------------------+
 | (Routing) | | | Topology |
 | | | | Plugin |
 | | | +-------------------+
 | | v ^
 | | v
 | Network | +------------------+
 | | | Forwarding & |
 | | | Link Management |
 | | +------------------+
 | | ----------------------------------
 Transport | Link | +-------+ +------+
 | | |TLS | |DTLS | ...
 | | +-------+ +------+
 --------------+-----------------+------------------------------------
 Network |
 |
 Link |

1.2.1. Usage Layer

 The top layer, called the Usage Layer, has application usages, such
 as the SIP Location Usage, that use the abstract Message Transport
 API provided by RELOAD. The goal of this layer is to implement
 application-specific usages of the generic overlay services provided
 by RELOAD. The usage defines how a specific application maps its
 data into something that can be stored in the overlay, where to store
 the data, how to secure the data, and finally how applications can
 retrieve and use the data.

 The architecture diagram shows both a SIP usage and an XMPP usage. A
 single application may require multiple usages, for example a SIP
 application may also require a voicemail usage. A usage may define

Jennings, et al. Expires September 8, 2009 [Page 13]

Internet-Draft RELOAD Base March 2009

 multiple kinds of data that are stored in the overlay and may also
 rely on kinds originally defined by other usages.

 Because the security and storage policies for each kind are dictated
 by the usage defining the kind, the usages may be coupled with the
 Storage component to provide security policy enforcement and to
 implement appropriate storage strategies according to the needs of
 the usage. The exact implementation of such an interface is outside
 the scope of this draft.

1.2.2. Message Transport

 The Message Transport provides a generic message routing service for
 the overlay. The Message Transport layer is responsible for end-to-
 end message transactions, including retransmissions. Each peer is
 identified by its location in the overlay as determined by its
 Node-ID. A component that is a client of the Message Transport can
 perform two basic functions:

 o Send a message to a given peer specified by Node-ID or to the peer
 responsible for a particular Resource-ID.
 o Receive messages that other peers sent to a Node-ID or Resource-ID
 for which this peer is responsible.

 All usages rely on the Message Transport component to send and
 receive messages from peers. For instance, when a usage wants to
 store data, it does so by sending Store requests. Note that the
 Storage component and the Topology Plugin are themselves clients of
 the Message Transport, because they need to send and receive messages
 from other peers.

 The Message Transport API is similar to those described as providing
 "Key based routing" (KBR), although as RELOAD supports different
 overlay algorithms (including non-DHT overlay algorithms) that
 calculate keys in different ways, the actual interface must accept
 Resource Names rather than actual keys.

1.2.3. Storage

 One of the major functions of RELOAD is to allow nodes to store data
 in the overlay and to retrieve data stored by other nodes or by
 themselves. The Storage component is responsible for processing data
 storage and retrieval messages. For instance, the Storage component
 might receive a Store request for a given resource from the Message
 Transport. It would then query the appropriate usage before storing
 the data value(s) in its local data store and sends a response to the
 Message Transport for delivery to the requesting peer. Typically,
 these messages will come for other nodes, but depending on the

Jennings, et al. Expires September 8, 2009 [Page 14]

Internet-Draft RELOAD Base March 2009

 overlay topology, a node might be responsible for storing data for
 itself as well, especially if the overlay is small.

 A peer's Node-ID determines the set of resources that it will be
 responsible for storing. However, the exact mapping between these is
 determined by the overlay algorithm used by the overlay. The Storage
 component will only receive a Store request from the Message
 Transport if this peer is responsible for that Resource-ID. The
 Storage component is notified by the Topology Plugin when the
 Resource-IDs for which it is responsible change, and the Storage
 component is then responsible for migrating resources to other peers,
 as required.

1.2.4. Topology Plugin

 RELOAD is explicitly designed to work with a variety of overlay
 algorithms. In order to facilitate this, the overlay algorithm
 implementation is provided by a Topology Plugin so that each overlay
 can select an appropriate overlay algorithm that relies on the common
 RELOAD core protocols and code.

 The Topology Plugin is responsible for maintaining the overlay
 algorithm Routing Table, which is consulted by the Forwarding and
 Link Management Layer before routing a message. When connections are
 made or broken, the Forwarding and Link Management Layer notifies the
 Topology Plugin, which adjusts the routing table as appropriate. The
 Topology Plugin will also instruct the Forwarding and Link Management
 Layer to form new connections as dictated by the requirements of the
 overlay algorithm Topology. The Topology Plugin issues periodic
 update requests through Message Transport to maintain and update its
 Routing Table.

 As peers enter and leave, resources may be stored on different peers,
 so the Topology Plugin also keeps track of which peers are
 responsible for which resources. As peers join and leave, the
 Topology Plugin instructs the Storage component to issue resource
 migration requests as appropriate, in order to ensure that other
 peers have whatever resources they are now responsible for. The
 Topology Plugin is also responsible for providing redundant data
 storage to protect against loss of information in the event of a peer
 failure and to protect against compromised or subversive peers.

1.2.5. Forwarding and Link Management Layer

 The Forwarding and Link Management Layer is responsible for getting a
 packet to the next peer, as determined by the Topology Plugin. This
 Layer establishes and maintains the network connections as required
 by the Topology Plugin. This layer is also responsible for setting

Jennings, et al. Expires September 8, 2009 [Page 15]

Internet-Draft RELOAD Base March 2009

 up connections to other peers through NATs and firewalls using ICE,
 and it can elect to forward traffic using relays for NAT and firewall
 traversal.

 This layer provides a fairly generic interface that allows the
 topology plugin control the overlay and resource operations and
 messages. Since each overlay algorithm is defined and functions
 differently, we generically refer to the table of other peers that
 the overlay algorithm maintains and uses to route requests
 (neighbors) as a Routing Table. The Topology Plugin actually owns
 the Routing Table, and forwarding decisions are made by querying the
 Topology Plugin for the next hop for a particular Node-ID or
 Resource-ID. If this node is the destination of the message, the
 message is delivered to the Message Transport.

 The Forwarding and Link Management Layer sits on top of the Overlay
 Link Layer protocols that carry the actual traffic. This
 specification defines how to use DTLS and TLS protocols to carry
 RELOAD messages.

1.3. Security

 RELOAD's security model is based on each node having one or more
 public key certificates. In general, these certificates will be
 assigned by a central server which also assigns Node-IDs, although
 self-signed certificates can be used in closed networks. These
 credentials can be leveraged to provide communications security for
 RELOAD messages. RELOAD provides communications security at three
 levels:

 Connection Level: Connections between peers are secured with TLS
 or DTLS.
 Message Level: Each RELOAD message must be signed.
 Object Level: Stored objects must be signed by the storing peer.

 These three levels of security work together to allow peers to verify
 the origin and correctness of data they receive from other peers,
 even in the face of malicious activity by other peers in the overlay.
 RELOAD also provides access control built on top of these
 communications security features. Because the peer responsible for
 storing a piece of data can validate the signature on the data being
 stored, the responsible peer can determine whether a given operation
 is permitted or not.

 RELOAD also provides a shared secret based admission control feature
 using shared secrets and TLS-PSK. In order to form a TLS connection
 to any node in the overlay, a new node needs to know the shared
 overlay key, thus restricting access to authorized users.

Jennings, et al. Expires September 8, 2009 [Page 16]

Internet-Draft RELOAD Base March 2009

1.4. Structure of This Document

 The remainder of this document is structured as follows.

 o Section 2 provides definitions of terms used in this document.
 o Section 3 provides an overview of the mechanisms used to establish
 and maintain the overlay.
 o Section 4 provides an overview of the mechanism RELOAD provides to
 support other applications.
 o Section 5 defines the protocol messages that RELOAD uses to
 establish and maintain the overlay.
 o Section 6 defines the protocol messages that are used to store and
 retrieve data using RELOAD.
 o Section 7 defines the Certificate Store Usage that is fundamental
 to RELOAD security.
 o Section 8 defines the TURN Server Usage needed to locate TURN
 servers for NAT traversal.
 o Section 9 defines a specific Topology Plugin using Chord.
 o Section 10 defines the mechanisms that new RELOAD nodes use to
 join the overlay for the first time.
 o Section 11 provides an extended example.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 We use the terminology and definitions from the Concepts and
 Terminology for Peer to Peer SIP [I-D.ietf-p2psip-concepts] draft
 extensively in this document. Other terms used in this document are
 defined inline when used and are also defined below for reference.
 Terms which are new to this document (and perhaps should be added to
 the concepts document) are marked with a (*).

 DHT: A distributed hash table. A DHT is an abstract hash table
 service realized by storing the contents of the hash table across
 a set of peers.

 Overlay Algorithm: An overlay algorithm defines the rules for
 determining which peers in an overlay store a particular piece of
 data and for determining a topology of interconnections amongst
 peers in order to find a piece of data.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Jennings, et al. Expires September 8, 2009 [Page 17]

Internet-Draft RELOAD Base March 2009

 Overlay Instance: A specific overlay algorithm and the collection of
 peers that are collaborating to provide read and write access to
 it. There can be any number of overlay instances running in an IP
 network at a time, and each operates in isolation of the others.

 Peer: A host that is participating in the overlay. Peers are
 responsible for holding some portion of the data that has been
 stored in the overlay and also route messages on behalf of other
 hosts as required by the Overlay Algorithm.

 Client: A host that is able to store data in and retrieve data from
 the overlay but which is not participating in routing or data
 storage for the overlay.

 Node: We use the term "Node" to refer to a host that may be either a
 Peer or a Client. Because RELOAD uses the same protocol for both
 clients and peers, much of the text applies equally to both.
 Therefore we use "Node" when the text applies to both Clients and
 Peers and the more specific term when the text applies only to
 Clients or only to Peers.

 Node-ID: A 128-bit value that uniquely identifies a node. Node-IDs
 0 and 2^128 - 1 are reserved and are invalid Node-IDs. A value of
 zero is not used in the wire protocol but can be used to indicate
 an invalid node in implementations and APIs. The Node-ID of
 2^128-1 is used on the wire protocol as a wildcard. (*)

 Resource: An object or group of objects associated with a string
 identifier see "Resource Name" below.

 Resource Name: The potentially human readable name by which a
 resource is identified. In unstructured P2P networks, the
 resource name is sometimes used directly as a Resource-ID. In
 structured P2P networks the resource name is typically mapped into
 a Resource-ID by using the string as the input to hash function.
 A SIP resource, for example, is often identified by its AOR which
 is an example of a Resource Name.(*)

 Resource-ID: A value that identifies some resources and which is
 used as a key for storing and retrieving the resource. Often this
 is not human friendly/readable. One way to generate a Resource-ID
 is by applying a mapping function to some other unique name (e.g.,
 user name or service name) for the resource. The Resource-ID is
 used by the distributed database algorithm to determine the peer
 or peers that are responsible for storing the data for the
 overlay. In structured P2P networks, Resource-IDs are generally
 fixed length and are formed by hashing the resource name. In

Jennings, et al. Expires September 8, 2009 [Page 18]

Internet-Draft RELOAD Base March 2009

 unstructured networks, resource names may be used directly as
 Resource-IDs and may have variable length.

 Connection Table: The set of peers to which a node is directly
 connected. This includes nodes with which Attach handshakes have
 been done but which have not sent any Updates.

 Routing Table: The set of peers which a node can use to route
 overlay messages. In general, these peers will all be on the
 connection table but not vice versa, because some peers will have
 Attached but not sent updates. Peers may send messages directly
 to peers which are on the connection table but may only route
 messages to other peers through peers which are on the routing
 table. (*)

 Destination List: A list of IDs through which a message is to be
 routed. A single Node-ID is a trivial form of destination list.
 (*)

 Usage: A usage is an application that wishes to use the overlay for
 some purpose. Each application wishing to use the overlay defines
 a set of data kinds that it wishes to use. The SIP usage defines
 the location data kind. (*)

3. Overlay Management Overview

 The most basic function of RELOAD is as a generic overlay network.
 Nodes need to be able to join the overlay, form connections to other
 nodes, and route messages through the overlay to nodes to which they
 are not directly connected. This section provides an overview of the
 mechanisms that perform these functions.

3.1. Security and Identification

 Every node in the RELOAD overlay is identified by a Node-ID. The
 Node-ID is used for three major purposes:

 o To address the node itself.
 o To determine its position in the overlay topology when the overlay
 is structured.
 o To determine the set of resources for which the node is
 responsible.

 Each node has a certificate [RFC3280] containing a Node-ID, which is
 globally unique.

 The certificate serves multiple purposes:

https://datatracker.ietf.org/doc/html/rfc3280

Jennings, et al. Expires September 8, 2009 [Page 19]

Internet-Draft RELOAD Base March 2009

 o It entitles the user to store data at specific locations in the
 Overlay Instance. Each data kind defines the specific rules for
 determining which certificates can access each Resource-ID/Kind-ID
 pair. For instance, some kinds might allow anyone to write at a
 given location, whereas others might restrict writes to the owner
 of a single certificate.
 o It entitles the user to operate a node that has a Node-ID found in
 the certificate. When the node forms a connection to another
 peer, it can use this certificate so that a node connecting to it
 knows it is connected to the correct node. In addition, the node
 can sign messages, thus providing integrity and authentication for
 messages which are sent from the node.
 o It entitles the user to use the user name found in the
 certificate.

 If a user has more than one device, typically they would get one
 certificate for each device. This allows each device to act as a
 separate peer.

 RELOAD supports two certificate issuance models. The first is based
 on a central enrollment process which allocates a unique name and
 Node-ID to the node a certificate for a public/private key pair for
 the user. All peers in a particular Overlay Instance have the
 enrollment server as a trust anchor and so can verify any other
 peer's certificate.

 In some settings, a group of users want to set up an overlay network
 but are not concerned about attack by other users in the network.
 For instance, users on a LAN might want to set up a short term ad hoc
 network without going to the trouble of setting up an enrollment
 server. RELOAD supports the use of self-generated and self-signed
 certificates. When self-signed certificates are used, the node also
 generates its own Node-ID and username. The Node-ID is computed as a
 digest of the public key, to prevent Node-ID theft, however this
 model is still subject to a number of known attacks (most notably
 Sybil attacks [Sybil]) and can only be safely used in closed networks
 where users are mutually trusting.

 The general principle here is that the security mechanisms (TLS and
 message signatures) are always used, even if the certificates are
 self-signed. This allows for a single set of code paths in the
 systems with the only difference being whether certificate
 verification is required to chain to a single root of trust.

3.1.1. Shared-Key Security

 RELOAD also provides an admission control system based on shared
 keys. In this model, the peers all share a single key which is used

Jennings, et al. Expires September 8, 2009 [Page 20]

Internet-Draft RELOAD Base March 2009

 to authenticate the peer-to-peer connections via TLS-PSK/TLS-SRP.

3.2. Clients

 RELOAD defines a single protocol that is used both as the peer
 protocol and the client protocol for the overlay. This simplifies
 implementation, particularly for devices that may act in either role,
 and allows clients to inject messages directly into the overlay.

 We use the term "peer" to identify a node in the overlay that routes
 messages for nodes other than those to which it is directly
 connected. Peers typically also have storage responsibilities. We
 use the term "client" to refer to nodes that do not have routing or
 storage responsibilities. When text applies to both peers and
 clients, we will simply refer to such a device as a "node."

 RELOAD's client support allows nodes that are not participating in
 the overlay as peers to utilize the same implementation and to
 benefit from the same security mechanisms as the peers. Clients
 possess and use certificates that authorize the user to store data at
 its locations in the overlay. The Node-ID in the certificate is used
 to identify the particular client as a member of the overlay and to
 authenticate its messages.

 For more discussion of the motivation for RELOAD's client support,
 see Appendix C.

3.2.1. Client Routing

 There are two routing options by which a client may be located in an
 overlay.

 o Establish a connection to the peer responsible for the client's
 Node-ID in the overlay. Then requests may be sent from/to the
 client using its Node-ID in the same manner as if it were a peer,
 because the responsible peer in the overlay will handle the final
 step of routing to the client. This will not work in overlays
 where NAT or firewall do not allow all clients to form connections
 with any other peer.
 o Establish a connection with an arbitrary peer in the overlay
 (perhaps based on network proximity or an inability to establish a
 direct connection with the responsible peer). In this case, the
 client will rely on RELOAD's Destination List feature to ensure
 reachability. The client can initiate requests, and any node in
 the overlay that knows the Destination List to its current
 location can reach it, but the client is not directly reachable
 directly using only its Node-ID. The Destination List required to
 reach it must be learnable via other mechanisms, such as being

Jennings, et al. Expires September 8, 2009 [Page 21]

Internet-Draft RELOAD Base March 2009

 stored in the overlay by a usage, if the client is to receive
 incoming requests from other members of the overlay.

3.2.2. Minimum Functionality Requirements for Clients

 A node may act as a client simply because it does not have the
 resources or even an implementation of the topology plugin required
 to acts as a peer in the overlay. In order to exchange RELOAD
 messages with a peer, a client must meet a minimum level of
 functionality. Such a client must:

 o Implement RELOAD's connection-management connections that are used
 to establish the connection with the peer.
 o Implement RELOAD's data retrieval methods (with client
 functionality).
 o Be able to calculate Resource-IDs used by the overlay.
 o Possess security credentials required by the overlay it is
 implementing.

 A client speaks the same protocol as the peers, knows how to
 calculate Resource-IDs, and signs its requests in the same manner as
 peers. While a client does not necessarily require a full
 implementation of the overlay algorithm, calculating the Resource-ID
 requires an implementation of the appropriate algorithm for the
 overlay.

 RELOAD does not support a separate protocol for clients that do not
 meet these functionality requirements. Any such extension would
 either entail compromises on the features of RELOAD or require an
 entirely new protocol to reimplement the core features of RELOAD.
 Furthermore, for SIP and many other applications, a native
 application-level protocol already exists that is sufficient for such
 a client to interact with a member of the RELOAD overlay.

3.3. Routing

 This section will discuss the requirements RELOAD's routing
 capabilities must meet, then describe the routing features in the
 protocol, and provide a brief overview of how they are used.

Appendix B discusses some alternative designs and the tradeoffs that
 would be necessary to support them.

 RELOAD's routing capabilities must meet the following requirements:

Jennings, et al. Expires September 8, 2009 [Page 22]

Internet-Draft RELOAD Base March 2009

 NAT Traversal: RELOAD must support establishing and using
 connections between nodes separated by one or more NATs, including
 locating peers behind NATs for those overlays allowing/requiring
 it.
 Clients: RELOAD must support requests from and to clients that do
 not participate in overlay routing.
 Client promotion: RELOAD must support clients that become peers at a
 later point as determined by the overlay algorithm and deployment.
 Low state: RELOAD's routing algorithms must not require
 significant state to be stored on intermediate peers.
 Return routability in unstable topologies: At some points in
 times, different nodes may have inconsistent information about the
 connectivity of the routing graph. In all cases, the response to
 a request needs to delivered to the node that sent the request and
 not to some other node.

 To meet these requirements, RELOAD's routing relies on two basic
 mechanisms:

 Via Lists: The forwarding header used by all RELOAD messages
 contains both a Via List (built hop-by-hop as the message is
 routed through the overlay) and a Destination List (providing
 source-routing capabilities for requests and return-path routing
 for responses).
 Route_Query: The Route_Query method allows a node to query a peer
 for the next hop it will use to route a message. This method is
 useful for diagnostics and for iterative routing.

 The basic routing mechanism used by RELOAD is Symmetric Recursive.
 We will first describe symmetric routing and then discuss its
 advantages in terms of the requirements discussed above.

 Symmetric recursive routing requires a message follow the path
 through the overlay to the destination without returning to the
 originating node: each peer forwards the message closer to its
 destination. The return path of the response is then the same path
 followed in reverse. For example, a message following a route from A
 to Z through B and X:

Jennings, et al. Expires September 8, 2009 [Page 23]

Internet-Draft RELOAD Base March 2009

 A B X Z

 ---------->
 Dest=Z
 ---------->
 Via=A
 Dest=Z
 ---------->
 Via=A, B
 Dest=Z

 <----------
 Dest=X, B, A
 <----------
 Dest=B, A
 <----------
 Dest=A

 Note that the preceding Figure does not indicate whether A is a
 client or peer, A forwards its request to B and the response is
 returned to A in the same manner regardless of A's role in the
 overlay.

 This figure shows use of full via-lists by intermediate peers B and
 X. However, if B and/or X are willing to store state, then they may
 elect to truncate the lists, save that information internally (keyed
 by the transaction id), and return the response message along the
 path from which it was received when the response is received. This
 option requires greater state on intermediate peers but saves a small
 amount of bandwidth and reduces the need for modifying the message in
 route. Selection of this mode of operation is a choice for the
 individual peer, the techniques are interoperable even on a single
 message. The figure below shows B using full via lists but X
 truncating them and saving the state internally.

Jennings, et al. Expires September 8, 2009 [Page 24]

Internet-Draft RELOAD Base March 2009

 A B X Z

 ---------->
 Dest=Z
 ---------->
 Via=A
 Dest=Z
 ---------->
 Dest=Z

 <----------
 Dest=X
 <----------
 Dest=B, A
 <----------
 Dest=A

 For debugging purposes, a Route Log attribute is available that
 stores information about each peer as the message is forwarded.

 RELOAD also supports a basic Iterative routing mode (where the
 intermediate peers merely return a response indicating the next hop,
 but do not actually forward the message to that next hop themselves).
 Iterative routing is implemented using the Route_Query method, which
 requests this behavior. Note that iterative routing is selected only
 by the initiating node. RELOAD does not support an intermediate peer
 returning a response that it will not recursively route a normal
 request. The willingness to perform that operation is implicit in
 its role as a peer in the overlay.

3.4. Connectivity Management

 In order to provide efficient routing, a peer needs to maintain a set
 of direct connections to other peers in the Overlay Instance. Due to
 the presence of NATs, these connections often cannot be formed
 directly. Instead, we use the Attach request to establish a
 connection. Attach uses ICE [I-D.ietf-mmusic-ice-tcp] to establish
 the connection. It is assumed that the reader is familiar with ICE.

 Say that peer A wishes to form a direct connection to peer B. It
 gathers ICE candidates and packages them up in an Attach request
 which it sends to B through usual overlay routing procedures. B does
 its own candidate gathering and sends back a response with its
 candidates. A and B then do ICE connectivity checks on the candidate
 pairs. The result is a connection between A and B. At this point, A
 and B can add each other to their routing tables and send messages
 directly between themselves without going through other overlay

Jennings, et al. Expires September 8, 2009 [Page 25]

Internet-Draft RELOAD Base March 2009

 peers.

 There is one special case in which Attach cannot be used: when a
 peer is joining the overlay and is not connected to any peers. In
 order to support this case, some small number of "bootstrap nodes"
 need to be publicly accessible so that new peers can directly connect
 to them. Section 10 contains more detail on this.

 In general, a peer needs to maintain connections to all of the peers
 near it in the Overlay Instance and to enough other peers to have
 efficient routing (the details depend on the specific overlay). If a
 peer cannot form a connection to some other peer, this isn't
 necessarily a disaster; overlays can route correctly even without
 fully connected links. However, a peer should try to maintain the
 specified link set and if it detects that it has fewer direct
 connections, should form more as required. This also implies that
 peers need to periodically verify that the connected peers are still
 alive and if not try to reform the connection or form an alternate
 one.

3.5. Overlay Algorithm Support

 The Topology Plugin allows RELOAD to support a variety of overlay
 algorithms. This draft defines a DHT based on Chord [Chord], which
 is mandatory to implement, but the base RELOAD protocol is designed
 to support a variety of overlay algorithms.

3.5.1. Support for Pluggable Overlay Algorithms

 RELOAD defines three methods for overlay maintenance: Join, Update,
 and Leave. However, the contents of those messages, when they are
 sent, and their precise semantics are specified by the actual overlay
 algorithm; RELOAD merely provides a framework of commonly-needed
 methods that provides uniformity of notation (and ease of debugging)
 for a variety of overlay algorithms.

3.5.2. Joining, Leaving, and Maintenance Overview

 When a new peer wishes to join the Overlay Instance, it must have a
 Node-ID that it is allowed to use. It uses the Node-ID in the
 certificate it received from the enrollment server. The details of
 the joining procedure are defined by the overlay algorithm, but the
 general steps for joining an Overlay Instance are:

 o Forming connections to some other peers.
 o Acquiring the data values this peer is responsible for storing.

Jennings, et al. Expires September 8, 2009 [Page 26]

Internet-Draft RELOAD Base March 2009

 o Informing the other peers which were previously responsible for
 that data that this peer has taken over responsibility.

 The first thing the peer needs to do is form a connection to some
 "bootstrap node". Because this is the first connection the peer
 makes, these nodes must have public IP addresses and therefore can be
 connected to directly. Once a peer has connected to one or more
 bootstrap nodes, it can form connections in the usual way by routing
 Attach messages through the overlay to other nodes. Once a peer has
 connected to the overlay for the first time, it can cache the set of
 nodes it has connected to with public IP addresses for use as future
 bootstrap nodes.

 Once the peer has connected to a bootstrap node, it then needs to
 take up its appropriate place in the overlay. This requires two
 major operations:

 o Forming connections to other peers in the overlay to populate its
 Routing Table.
 o Getting a copy of the data it is now responsible for storing and
 assuming responsibility for that data.

 The second operation is performed by contacting the Admitting Peer
 (AP), the node which is currently responsible for that section of the
 overlay.

 The details of this operation depend mostly on the overlay algorithm
 involved, but a typical case would be:

 1. JP (Joining Peer) sends a Join request to AP (Admitting Peer)
 announcing its intention to join.
 2. AP sends a Join response.
 3. AP does a sequence of Stores to JP to give it the data it will
 need.
 4. AP does Updates to JP and to other peers to tell it about its own
 routing table. At this point, both JP and AP consider JP
 responsible for some section of the Overlay Instance.
 5. JP makes its own connections to the appropriate peers in the
 Overlay Instance.

 After this process is completed, JP is a full member of the Overlay
 Instance and can process Store/Fetch requests.

 Note that the first node is a special case. When ordinary nodes
 cannot form connections to the bootstrap nodes, then they are not
 part of the overlay. However, the first node in the overlay can
 obviously not connect to others nodes. In order to support this
 case, potential first nodes (which must also serve as bootstrap nodes

Jennings, et al. Expires September 8, 2009 [Page 27]

Internet-Draft RELOAD Base March 2009

 initially) must somehow be instructed (perhaps by configuration
 settings) that they are the entire overlay, rather than not part of
 it.

3.6. First-Time Setup

 Previous sections addressed how RELOAD works once a node has
 connected. This section provides an overview of how users get
 connected to the overlay for the first time. RELOAD is designed so
 that users can start with the name of the overlay they wish to join
 and perhaps a username and password, and leverage that into having a
 working peer with minimal user intervention. This helps avoid the
 problems that have been experienced with conventional SIP clients
 where users are required to manually configure a large number of
 settings.

3.6.1. Initial Configuration

 In the first phase of the process, the user starts out with the name
 of the overlay and uses this to download an initial set of overlay
 configuration parameters. The user does a DNS SRV lookup on the
 overlay name to get the address of a configuration server. It can
 then connect to this server with HTTPS to download a configuration
 document which contains the basic overlay configuration parameters as
 well as a set of bootstrap nodes which can be used to join the
 overlay.

3.6.2. Enrollment

 If the overlay is using centralized enrollment, then a user needs to
 acquire a certificate before joining the overlay. The certificate
 attests both to the user's name within the overlay and to the Node-
 IDs which they are permitted to operate. In that case, the
 configuration document will contain the address of an enrollment
 server which can be used to obtain such a certificate. The
 enrollment server may (and probably will) require some sort of
 username and password before issuing the certificate. The enrollment
 server's ability to restrict attackers' access to certificates in the
 overlay is one of the cornerstones of RELOAD's security.

4. Application Support Overview

 RELOAD is not intended to be used alone, but rather as a substrate
 for other applications. These applications can use RELOAD for a
 variety of purposes:

Jennings, et al. Expires September 8, 2009 [Page 28]

Internet-Draft RELOAD Base March 2009

 o To store data in the overlay and retrieve data stored by other
 nodes.
 o As a discovery mechanism for services such as TURN.
 o To form direct connections which can be used to transmit
 application-level messages.

 This section provides an overview of these services.

4.1. Data Storage

 RELOAD provides operations to Store and Fetch data. Each location in
 the Overlay Instance is referenced by a Resource-ID. However, each
 location may contain data elements corresponding to multiple kinds
 (e.g., certificate, SIP registration). Similarly, there may be
 multiple elements of a given kind, as shown below:

 +--------------------------------+
 | Resource-ID |
 | |
 | +------------+ +------------+ |
 | | Kind 1 | | Kind 2 | | | | | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | +------------+ |
 | | +--------+ | |
 | | | Value | | |
 | | +--------+ | |
 | +------------+ |
 +--------------------------------+

 Each kind is identified by a Kind-ID, which is a code point assigned
 by IANA. As part of the kind definition, protocol designers may
 define constraints, such as limits on size, on the values which may
 be stored. For many kinds, the set may be restricted to a single
 value; some sets may be allowed to contain multiple identical items
 while others may only have unique items. Note that a kind may be
 employed by multiple usages and new usages are encouraged to use
 previously defined kinds where possible. We define the following
 data models in this document, though other usages can define their
 own structures:

Jennings, et al. Expires September 8, 2009 [Page 29]

Internet-Draft RELOAD Base March 2009

 single value: There can be at most one item in the set and any value
 overwrites the previous item.

 array: Many values can be stored and addressed by a numeric index.

 dictionary: The values stored are indexed by a key. Often this key
 is one of the values from the certificate of the peer sending the
 Store request.

 In order to protect stored data from tampering, by other nodes, each
 stored value is digitally signed by the node which created it. When
 a value is retrieved, the digital signature can be verified to detect
 tampering.

4.1.1. Storage Permissions

 A major issue in peer-to-peer storage networks is minimizing the
 burden of becoming a peer, and in particular minimizing the amount of
 data which any peer is required to store for other nodes. RELOAD
 addresses this issue by only allowing any given node to store data at
 a small number of locations in the overlay, with those locations
 being determined by the node's certificate. When a peer uses a Store
 request to place data at a location authorized by its certificate, it
 signs that data with the private key that corresponds to its
 certificate. Then the peer responsible for storing the data is able
 to verify that the peer issuing the request is authorized to make
 that request. Each data kind defines the exact rules for determining
 what certificate is appropriate.

 The most natural rule is that a certificate authorizes a user to
 store data keyed with their user name X. This rules is used for all
 the kinds defined in this specification. Thus, only a user with a
 certificate for "alice@example.org" could write to that location in
 the overlay. However, other usages can define any rules they choose,
 including publicly writable values.

 The digital signature over the data serves two purposes. First, it
 allows the peer responsible for storing the data to verify that this
 Store is authorized. Second, it provides integrity for the data.
 The signature is saved along with the data value (or values) so that
 any reader can verify the integrity of the data. Of course, the
 responsible peer can "lose" the value but it cannot undetectable
 modify it.

 The size requirements of the data being stored in the overlay are
 variable. For instance, a SIP AoR and voicemail differ widely in the
 storage size. RELOAD leaves it to the Usage and overlay

Jennings, et al. Expires September 8, 2009 [Page 30]

Internet-Draft RELOAD Base March 2009

 configuration to address the size imbalance of various kinds.

4.1.2. Usages

 By itself, the distributed storage layer just provides infrastructure
 on which applications are built. In order to do anything useful, a
 usage must be defined. Each Usage specifies several things:

 o Registers Kind-ID code points for any kinds that the Usage
 defines.
 o Defines the data structure for each of the kinds.
 o Defines access control rules for each kinds.
 o Defines how the Resource Name is formed that is hashed to form the
 Resource-ID where each kind is stored.
 o Describes how values will be merged after a network partition.
 Unless otherwise specified, the default merging rule is to act as
 if all the values that need to be merged were stored and that the
 order they were stored in corresponds to the stored time values
 associated with (and carried in) their values. Because the stored
 time values are those associated with the peer which did the
 writing, clock skew is generally not an issue. If two nodes are
 on different partitions, clocks, this can create merge conflicts.
 However because RELOAD deliberately segregates storage so that
 data from different users and peers is stored in different
 locations, and a single peer will typically only be in a single
 network partition, this case will generally not arise.

 The kinds defined by a usage may also be applied to other usages.
 However, a need for different parameters, such as different size
 limits, would imply the need to create a new kind.

4.1.3. Replication

 Replication in P2P overlays can be used to provide:

 persistence: if the responsible peer crashes and/or if the storing
 peer leaves the overlay
 security: to guard against DoS attacks by the responsible peer or
 routing attacks to that responsible peer
 load balancing: to balance the load of queries for popular
 resources.

 A variety of schemes are used in P2P overlays to achieve some of
 these goals. Common techniques include replicating on neighbors of
 the responsible peer, randomly locating replicas around the overlay,
 or replicating along the path to the responsible peer.

 The core RELOAD specification does not specify a particular

Jennings, et al. Expires September 8, 2009 [Page 31]

Internet-Draft RELOAD Base March 2009

 replication strategy. Instead, the first level of replication
 strategies are determined by the overlay algorithm, which can base
 the replication strategy on the its particular topology. For
 example, Chord places replicas on successor peers, which will take
 over responsibility should the responsible peer fail [Chord].

 If additional replication is needed, for example if data persistence
 is particularly important for a particular usage, then that usage may
 specify additional replication, such as implementing random
 replications by inserting a different well known constant into the
 Resource Name used to store each replicated copy of the resource.
 Such replication strategies can be added independent of the
 underlying algorithm, and their usage can be determined based on the
 needs of the particular usage.

4.2. Service Discovery

 RELOAD does not currently define a generic service discovery
 algorithm as part of the base protocol; although a TURN-specific
 discovery mechanism is provided. A variety of service discovery
 algorithm can be implemented as extensions to the base protocol, such
 as ReDIR [opendht-sigcomm05].

4.3. Application Connectivity

 There is no requirement that a RELOAD usage must use RELOAD's
 primitives for establishing its own communication if it already
 possesses its own means of establishing connections. For example,
 one could design a RELOAD-based resource discovery protocol which
 used HTTP to retrieve the actual data.

 For more common situations, however, the overlay itself is used to
 establish a connection rather than an external authority such as DNS,
 RELOAD provides connectivity to applications using the same Attach
 method as is used for the overlay maintenance. For example, if a
 P2PSIP node wishes to establish a SIP dialog with another P2PSIP
 node, it will use Attach to establish a direct connection with the
 other node. This new connection is separate from the peer protocol
 connection, it is a dedicated UDP or TCP flow used only for the SIP
 dialog. Each usage specifies which types of connections can be
 initiated using Attach.

5. Overlay Management Protocol

 This section defines the basic protocols used to create, maintain,
 and use the RELOAD overlay network. We start by defining the basic
 concept of how message destinations are interpreted when routing

Jennings, et al. Expires September 8, 2009 [Page 32]

Internet-Draft RELOAD Base March 2009

 messages. We then describe the symmetric recursive routing model,
 which is RELOAD's default routing algorithm. We then define the
 message structure and then finally define the messages used to join
 and maintain the overlay.

5.1. Message Receipt and Forwarding

 When a peer receives a message, it first examines the overlay,
 version, and other header fields to determine whether the message is
 one it can process. If any of these are incorrect (e.g., the message
 is for an overlay in which the peer does not participate) it is an
 error. The peer SHOULD generate an appropriate error but local
 policy can override this and cause the messages is silently dropped.

 Once the peer has determined that the message is correctly formatted,
 it examines the first entry on the destination list. There are three
 possible cases here:

 o The first entry on the destination list is an id for which the
 peer is responsible.
 o The first entry on the destination list is a an id for which
 another peer is responsible.
 o The first entry on the destination list is a private id which is
 being used for destination list compression.

 These cases are handled as discussed below.

5.1.1. Responsible ID

 If the first entry on the destination list is a ID for which the node
 is responsible, there are several sub-cases.
 o If the entry is a Resource-ID, then it MUST be the only entry on
 the destination list. If there are other entries, the message
 MUST be silently dropped. Otherwise, the message is destined for
 this node and it passes it up to the upper layers.
 o If the entry is a Node-ID which belongs to this node, then the
 message is destined for this node. If this is the only entry on
 the destination list, the message is destined for this node and is
 passed up to the upper layers. Otherwise the entry is removed
 from the destination list and the message is passed it to the
 Message Transport. If the message is a response and there is
 state for the transaction ID, the state is reinserted into the
 destination list first.
 o If the entry is a Node-ID which is not equal to this node, then
 the node MUST drop the message silently unless the Node-ID
 corresponds to a node which is directly connected to this node
 (i.e., a client). In that case, it MUST forward the message to
 the destination node as described in the next section.

Jennings, et al. Expires September 8, 2009 [Page 33]

Internet-Draft RELOAD Base March 2009

 Note that this implies that in order to address a message to "the
 peer that controls region X", a sender sends to Resource-ID X, not
 Node-ID X.

5.1.2. Other ID

 If neither of the other two cases applies, then the peer MUST forward
 the message towards the first entry on the destination list. This
 means that it MUST select one of the peers to which it is connected
 and which is likely to be responsible for the first entry on the
 destination list. If the first entry on the destination list is in
 the peer's connection table, then it SHOULD forward the message to
 that peer directly. Otherwise, it consult the routing table to
 forward the message.

 Any intermediate peer which forwards a RELOAD message MUST arrange
 that if it receives a response to that message the response can be
 routed back through the set of nodes through which the request
 passed. This may be arranged in one of two ways:

 o The peer MAY add an entry to the via list in the forwarding header
 that will enable it to determine the correct node.
 o The peer MAY keep per-transaction state which will allow it to
 determine the correct node.

 As an example of the first strategy, if node D receives a message
 from node C with via list (A, B), then D would forward to the next
 node (E) with via list (A, B, C). Now, if E wants to respond to the
 message, it reverses the via list to produce the destination list,
 resulting in (D, C, B, A). When D forwards the response to C, the
 destination list will contain (C, B, A).

 As an example of the second strategy, if node D receives a message
 from node C with transaction ID X and via list (A, B), it could store
 (X, C) in its state database and forward the message with the via
 list unchanged. When D receives the response, it consults its state
 database for transaction id X, determines that the request came from
 C, and forwards the response to C.

 Intermediate peer which modify the via list are not required to
 simply add entries. The only requirement is that the peer be able to
 reconstruct the correct destination list on the return route. RELOAD
 provides explicit support for this functionality in the form of
 private IDs, which can replace any number of via list entries. For
 instance, in the above example, Node D might send E a via list
 containing only the private ID (I). E would then use the destination
 list (D, I) to send its return message. When D processes this
 destination list, it would detect that I is a private ID, recover the

Jennings, et al. Expires September 8, 2009 [Page 34]

Internet-Draft RELOAD Base March 2009

 via list (A, B, C), and reverse that to produce the correct
 destination list (C, B, A) before sending it to C. This feature is
 called List Compression. I MAY either be a compressed version of the
 original via list or an index into a state database containing the
 original via list.

 Note that if an intermediate peer exits the overlay, then on the
 return trip the message cannot be forwarded and will be dropped. The
 ordinary timeout and retransmission mechanisms provide stability over
 this type of failure.

5.1.3. Private ID

 If the first entry on the destination list is a private id (e.g., a
 compressed via list), the peer MUST that entry with the original via
 list that it replaced indexes and then re-examine the destination
 list to determine which case now applies.

5.2. Symmetric Recursive Routing

 This Section defines RELOAD's symmetric recursive routing algorithm,
 which is the default algorithm used by nodes to route messages
 through the overlay. All implementations MUST implement this routing
 algorithm. An overlay may be configured to use alternative routing
 algorithms, and alternative routing algorithms may be selected on a
 per-message basis.

5.2.1. Request Origination

 In order to originate a message to a given Node-ID or Resource-ID, a
 node constructs an appropriate destination list. The simplest such
 destination list is a single entry containing the peer or
 Resource-ID. The resulting message will use the normal overlay
 routing mechanisms to forward the message to that destination. The
 node can also construct a more complicated destination list for
 source routing.

 Once the message is constructed, the node sends the message to some
 adjacent peer. If the first entry on the destination list is
 directly connected, then the message MUST be routed down that
 connection. Otherwise, the topology plugin MUST be consulted to
 determine the appropriate next hop.

 Parallel searches for the resource are a common solution to improve
 reliability in the face of churn or of subversive peers. Parallel
 searches for usage-specified replicas are managed by the usage layer.
 However, a single request can also be routed through multiple
 adjacent peers, even when known to be sub-optimal, to improve

Jennings, et al. Expires September 8, 2009 [Page 35]

Internet-Draft RELOAD Base March 2009

 reliability [vulnerabilities-acsac04]. Such parallel searches MAY BE
 specified by the topology plugin.

 Because messages may be lost in transit through the overlay, RELOAD
 incorporates an end-to-end reliability mechanism. When an
 originating node transmits a request it MUST set a 3 second timer.
 If a response has not been received when the timer fires, the request
 is retransmitted with the same transaction identifier. The request
 MAY be retransmitted up to 4 times (for a total of 5 messages).
 After the timer for the fifth transmission fires, the message SHALL
 be considered to have failed. Note that this retransmission
 procedure is not followed by intermediate nodes. They follow the
 hop-by-hop reliability procedure described in Section 5.6.2.

 The above algorithm can result in multiple requests being delivered
 to a node. Receiving nodes MUST generate semantically equivalent
 responses to retransmissions of the same request (this can be
 determined by transaction id) if the request is received within the
 maximum request lifetime (15 seconds). For some requests (e.g.,
 FETCH) this can be accomplished merely by processing the request
 again. For other requests, (e.g., STORE) it may be necessary to
 maintain state for the duration of the request lifetime.

5.2.2. Response Origination

 When a peer sends a response to a request, it MUST construct the
 destination list by reversing the order of the entries on the via
 list. This has the result that the response traverses the same peers
 as the request traversed, except in reverse order (symmetric
 routing).

5.3. Message Structure

 RELOAD is a message-oriented request/response protocol. The messages
 are encoded using binary fields. All integers are represented in
 network byte order. The general philosophy behind the design was to
 use Type, Length, Value fields to allow for extensibility. However,
 for the parts of a structure that were required in all messages, we
 just define these in a fixed position as adding a type and length for
 them is unnecessary and would simply increase bandwidth and
 introduces new potential for interoperability issues.

 Each message has three parts, concatenated as shown below:

Jennings, et al. Expires September 8, 2009 [Page 36]

Internet-Draft RELOAD Base March 2009

 +-------------------------+
 | Forwarding Header |
 +-------------------------+
 | Message Contents |
 +-------------------------+
 | Security Block |
 +-------------------------+

 The contents of these parts are as follows:

 Forwarding Header: Each message has a generic header which is used
 to forward the message between peers and to its final destination.
 This header is the only information that an intermediate peer
 (i.e., one that is not the target of a message) needs to examine.

 Message Contents: The message being delivered between the peers.
 From the perspective of the forwarding layer, the contents is
 opaque, however, it is interpreted by the higher layers.

 Security Block: A security block containing certificates and a
 digital signature over the message. Note that this signature can
 be computed without parsing the message contents. All messages
 MUST be signed by their originator.

 The following sections describe the format of each part of the
 message.

5.3.1. Presentation Language

 The structures defined in this document are defined using a C-like
 syntax based on the presentation language used to define TLS.
 Advantages of this style include:

 o It is easy to write and familiar enough looking that most readers
 can grasp it quickly.
 o The ability to define nested structures allows a separation
 between high-level and low level message structures.
 o It has a straightforward wire encoding that allows quick
 implementation, but the structures can be comprehended without
 knowing the encoding.
 o The ability to mechanically (compile) encoders and decoders.

 This presentation is to some extent a placeholder. We consider it an
 open question what the final protocol definition method and encodings
 use. We expect this to be a question for the WG to decide.

 Several idiosyncrasies of this language are worth noting.

Jennings, et al. Expires September 8, 2009 [Page 37]

Internet-Draft RELOAD Base March 2009

 o All lengths are denoted in bytes, not objects.
 o Variable length values are denoted like arrays with angle
 brackets.
 o "select" is used to indicate variant structures.

 For instance, "uint16 array<0..2^8-2>;" represents up to 254 bytes
 but only up to 127 values of two bytes (16 bits) each..

5.3.1.1. Common Definitions

 The following definitions are used throughout RELOAD and so are
 defined here. They also provide a convenient introduction to how to
 read the presentation language.

 An enum represents an enumerated type. The values associated with
 each possibility are represented in parentheses and the maximum value
 is represented as a nameless value, for purposes of describing the
 width of the containing integral type. For instance, Boolean
 represents a true or false:

 enum { false (0), true(1), (255)} Boolean;

 A boolean value is either a 1 or a 0 and is represented as a single
 byte on the wire.

 The NodeId, shown below, represents a single Node-ID.

 typedef opaque NodeId[16];

 A NodeId is a fixed-length 128-bit structure represented as a series
 of bytes, most significant byte first. Note: the use of "typedef"
 here is an extension to the TLS language, but its meaning should be
 relatively obvious.

 A ResourceId, shown below, represents a single Resource-ID.

 typedef opaque ResourceId<0..2^8-1>;

 Like a NodeId, a Resource-ID is an opaque string of bytes, but unlike
 Node-IDs, Resource-IDs are variable length, up to 255 bytes (2048
 bits) in length. On the wire, each ResourceId is preceded by a
 single length byte (allowing lengths up to 255). Thus, the 3-byte
 value "Foo" would be encoded as: 03 46 4f 4f.

Jennings, et al. Expires September 8, 2009 [Page 38]

Internet-Draft RELOAD Base March 2009

 A more complicated example is IpAddressPort, which represents a
 network address and can be used to carry either an IPv6 or IPv4
 address:

 enum {reserved_addr(0), ipv4_address (1), ipv6_address (2),
 (255)} AddressType;

 struct {
 uint32 addr;
 uint16 port;
 } IPv4AddrPort;

 struct {
 uint128 addr;
 uint16 port;
 } IPv6AddrPort;

 struct {
 AddressType type;
 uint8 length;

 select (type) {
 case ipv4_address:
 IPv4AddrPort v4addr_port;

 case ipv6_address:
 IPv6AddrPort v6addr_port;

 /* This structure can be extended */

 } IpAddressPort;

 The first two fields in the structure are the same no matter what
 kind of address is being represented:

 type: the type of address (v4 or v6).
 length: the length of the rest of the structure.

 By having the type and the length appear at the beginning of the
 structure regardless of the kind of address being represented, an
 implementation which does not understand new address type X can still
 parse the IpAddressPort field and then discard it if it is not
 needed.

 The rest of the IpAddressPort structure is either an IPv4AddrPort or

Jennings, et al. Expires September 8, 2009 [Page 39]

Internet-Draft RELOAD Base March 2009

 an IPv6AddrPort. Both of these simply consist of an address
 represented as an integer and a 16-bit port. As an example, here is
 the wire representation of the IPv4 address "192.0.2.1" with port
 "6100".

 01 ; type = IPv4
 06 ; length = 6
 c0 00 02 01 ; address = 192.0.2.1
 17 d4 ; port = 6100

5.3.2. Forwarding Header

 The forwarding header is defined as a ForwardingHeader structure, as
 shown below.

 struct {
 uint32 relo_token;
 uint32 overlay;
 uint16 configuration_sequence;
 uint8 ttl;
 uint8 reserved;
 uint32 fragment;
 uint8 version;
 uint32 length;
 uint64 transaction_id;
 uint16 flags;

 uint16 via_list_length;
 uint16 destination_list_length;
 uint16 route_log_length;
 uint16 options_length;
 Destination via_list[via_list_length];
 Destination destination_list
 [destination_list_length];
 RouteLogEntry route_log[route_log_length];
 ForwardingOptions options[options_length];
 } ForwardingHeader;

 The contents of the structure are:

 relo_token: The first four bytes identify this message as a RELOAD
 message. The message is easy to demultiplex from STUN messages by
 looking at the first bit. This field MUST contain the value
 0xc2454c4f (the string 'RELO' with the high bit of the first byte
 set.).

Jennings, et al. Expires September 8, 2009 [Page 40]

Internet-Draft RELOAD Base March 2009

 overlay: The 32 bit checksum/hash of the overlay being used. The
 variable length string representing the overlay name is hashed
 with SHA-1 and the low order 32 bits are used. The purpose of
 this field is to allow nodes to participate in multiple overlays
 and to detect accidental misconfiguration. This is not a security
 critical function.

 configuration_sequence: The sequence number of the configuration
 file.

 ttl: An 8 bit field indicating the number of iterations, or hops, a
 message can experience before it is discarded. The TTL value MUST
 be decremented by one at every hop along the route the message
 traverses. If the TTL is 0, the message MUST NOT be propagated
 further and MUST be discarded, and a "Error_TTL_Exceeded" error
 should be generated. The initial value of the TTL SHOULD be 100
 unless defined otherwise by the overlay configuration.

 fragment: This field is used to handle fragmentation. The high
 order two bits are used to indicate the fragmentation status: If
 the high bit (0x80000000) is set, it indicates that the message is
 a fragment. If the next bit (0x40000000) is set, it indicates
 that this is the last fragment.
 The remainder of the field is used to indicate the fragment
 offset. [[Open Issue: This is conceptually clear, but the
 details are still lacking. Need to define the fragment offset and
 total length be encoded in the header. Right now we have 14 bits
 reserved with the intention that they be used for fragmenting,
 though additional bytes in the header might be needed for
 fragmentation.]]

 version: The version of the RELOAD protocol being used. This
 document describes version 0.1, with a value of 0x01.

 length: The count in bytes of the size of the message, including the
 header.

 transaction_id: A unique 64 bit number that identifies this
 transaction and also serves as a salt to randomize the request and
 the response. Responses use the same Transaction ID as the
 request they correspond to. Transaction IDs are also used for
 fragment reassembly.

Jennings, et al. Expires September 8, 2009 [Page 41]

Internet-Draft RELOAD Base March 2009

 flags: The flags word contains control flags. Which are ORed
 together. There is two currently defined flags: ROUTE-LOG (0x1)
 and RESPONSE-ROUTE-LOG (0x2). These flags indicate that the route
 log should be included (see Section 5.3.2.3.).

 via_list_length: The length of the via list in bytes. Note that in
 this field and the following two length fields we depart from the
 usual variable-length convention of having the length immediately
 precede the value in order to make it easier for hardware decoding
 engines to quickly determine the length of the header.

 destination_list_length: The length of the destination list in
 bytes.

 route_log_length: The length of the route log in bytes.

 options_length: The length of the header options in bytes.

 via_list: The via_list contains the sequence of destinations through
 which the message has passed. The via_list starts out empty and
 grows as the message traverses each peer.

 destination_list: The destination_list contains a sequence of
 destinations which the message should pass through. The
 destination list is constructed by the message originator. The
 first element in the destination list is where the message goes
 next. The list shrinks as the message traverses each listed peer.

 route_log: Contains a series of route log entries. See
Section 5.3.2.3.

 options: Contains a series of ForwardingOptions entries. See
Section 5.3.2.4.

5.3.2.1. Processing Configuration Sequence Numbers

 In order to be part of the overlay, a node MUST have a copy of the
 overlay configuration document. In order to allow for configuration
 document changes, each version of the configuration document has a
 sequence number which is monotonically increasing mod 65536. Because
 the sequence number may in principle wrap, greater than or less than
 are interpreted by modulo arithmetic as in TCP.

 When a destination node receives a request, it MUST check that the
 configuration_sequence field is equal to its own configuration
 sequence number. If they do not match, it MUST generate an error,
 either Error_Config_Too_Old or Error_Config_Too_New. In addition, if
 the configuration file in the request is too old, it MUST generate a

Jennings, et al. Expires September 8, 2009 [Page 42]

Internet-Draft RELOAD Base March 2009

 Config_Update message to update the requesting node. This allows new
 configuration documents to propagate quickly throughout the system.
 The one exception to this rule is that if the configuration_sequence
 field is equal to 0xffff, and the message type is Config_Update, then
 the message MUST be accepted regardless of the receiving node's
 configuration sequence number.

5.3.2.2. Destination and Via Lists

 The destination list and via lists are sequences of Destination
 values:

 enum {reserved(0), peer(1), resource(2), compressed(3), (255) }
 DestinationType;

 select (destination_type) {
 case peer:
 NodeId node_id;

 case resource:
 ResourceId resource_id;

 case compressed:
 opaque compressed_id<0..2^8-1>;

 /* This structure may be extended with new types */

 } DestinationData;

 struct {
 DestinationType type;
 uint8 length;
 DestinationData destination_data;
 } Destination;

 This is a TLV structure with the following contents:

 type
 The type of the DestinationData PDU. This may be one of "peer",
 "resource", or "compressed".

Jennings, et al. Expires September 8, 2009 [Page 43]

Internet-Draft RELOAD Base March 2009

 length
 The length of the destination_data.

 destination_value
 The destination value itself, which is an encoded DestinationData
 structure, depending on the value of "type".

 Note: This structure encodes a type, length, value. The length
 field specifies the length of the DestinationData values, which
 allows the addition of new DestinationTypes. This allows an
 implementation which does not understand a given DestinationType
 to skip over it.

 A DestinationData can be one of three types:

 peer
 A Node-ID.

 compressed
 A compressed list of Node-IDs and/or resources. Because this
 value was compressed by one of the peers, it is only meaningful to
 that peer and cannot be decoded by other peers. Thus, it is
 represented as an opaque string.

 resource
 The Resource-ID of the resource which is desired. This type MUST
 only appear in the final location of a destination list and MUST
 NOT appear in a via list. It is meaningless to try to route
 through a resource.

5.3.2.3. Route Logging

 The route logging feature provides diagnostic information about the
 path taken by the message so far and in this manner it is similar in
 function to SIP's [RFC3261] Via header field. If the ROUTE-LOG flag
 is set in the Flags word, at each hop peers MUST append a route log
 entry to the route log element in the header or reject the request.
 The order of the route log entry elements in the message is
 determined by the order of the peers were traversed along the path.
 The first route log entry corresponds to the peer at the first hop
 along the path, and each subsequent entry corresponds to the peer at
 the next hop along the path. If the ROUTE-LOG flag is set, the route
 log entries in the request MUST be copied to the response or the
 request rejected. If, and only if, the ROUTE-LOG-RESPONSE flag is
 set in a request, the ROUTE-LOG flag MUST be set in the response.

 Note that use of the ROUTE-LOG-RESPONSE flag means that the response
 will grow on the return path, which may potentially mean that it gets

https://datatracker.ietf.org/doc/html/rfc3261

Jennings, et al. Expires September 8, 2009 [Page 44]

Internet-Draft RELOAD Base March 2009

 dropped due to becoming too large for some intermediate hop. Thus,
 this option must be used with care.

 The route log is defined as follows:

 enum { (255) } RouteLogExtensionType;

 struct {
 RouteLogExtensionType type;
 uint16 length;

 select (type){
 /* Extension values go here */
 } extension;
 } RouteLogExtension;

 enum {
 reserved(0),
 tcp_tls(1),
 udp_dtls(2),
 (255)
 } OverlayLink;

 struct {
 opaque version<0..2^8-1>; /* A string */
 OverlayLink linkProtocol; /* TCP or UDP */
 NodeId id;
 uint32 uptime;
 IpAddressPort address;
 opaque certificate<0..2^16-1>;
 RouteLogExtension extensions<0..2^16-1>;
 } RouteLogEntry;

 struct {
 RouteLogEntry entries<0..2^16-1>;
 } RouteLog;

 The route log consists of an arbitrary number of RouteLogEntry
 values, each representing one node through which the message has
 passed.

 Each RouteLogEntry consists of the following values:

Jennings, et al. Expires September 8, 2009 [Page 45]

Internet-Draft RELOAD Base March 2009

 version
 A textual representation of the software version

 linkProtocol
 The Overlay Link Layer protocol, currently either "tcp_tls" or
 "udp_dtls".

 id
 The Node-ID of the peer.

 uptime
 The uptime of the peer in seconds.

 address
 The address and port of the peer.

 certificate
 The peer's certificate. Note that this may be omitted by setting
 the length to zero.

 extensions
 Extensions, if any.

 Extensions are defined using a RouteLogExtension structure. New
 extensions are defined by defining a new code point for
 RouteLogExtensionType and adding a new arm to the RouteLogExtension
 structure. The contents of that structure are:

 type
 The type of the extension.

 length
 The length of the rest of the structure.

 extension
 The extension value.

5.3.2.4. Forwarding Options

 The Forwarding header can be extended with forwarding header options,
 which are a series of ForwardingOptions structures:

Jennings, et al. Expires September 8, 2009 [Page 46]

Internet-Draft RELOAD Base March 2009

 enum { (255) } ForwardingOptionsType;

 struct {
 ForwardingOptionsType type;
 uint8 flags;
 uint16 length;
 select (type) {
 /* Option values go here */
 } option;
 } ForwardingOption;

 Each ForwardingOption consists of the following values:

 type
 The type of the option.

 length
 The length of the rest of the structure.

 flags
 Three flags are defined FORWARD_CRITICAL(0x01),
 DESTINATION_CRITICAL(0x02), and RESPONSE_COPY(0x04). These flags
 MUST NOT be set in a response. If the FORWARD_CRITICAL flag is
 set, any node that would forward the message but does not
 understand this options MUST reject the request with an 757 error
 response. If the DESTINATION_CRITICAL flag is set, any node
 generates a response to the message but does not understand the
 forwarding option MUST reject the request with an 757 error
 response. If the RESPONSE_COPY flag is set, any node generating a
 response MUST copy the option from the request to the response and
 clear the RESPONSE_COPY, FORWARD_CRITICAL and DESTINATION_CRITICAL
 flags.

 option
 The option value.

5.3.3. Message Contents Format

 The second major part of a RELOAD message is the contents part, which
 is defined by MessageContents:

 struct {
 MessageCode message_code;
 opaque payload<0..2^24-1>;
 } MessageContents;

Jennings, et al. Expires September 8, 2009 [Page 47]

Internet-Draft RELOAD Base March 2009

 The contents of this structure are as follows:

 message_code
 This indicates the message that is being sent. The code space is
 broken up as follows.

 0 Reserved

 1 .. 0x7fff Requests and responses. These code points are always
 paired, with requests being odd and the corresponding response
 being the request code plus 1. Thus, "probe_request" (the
 Probe request) has value 1 and "probe_answer" (the Probe
 response) has value 2

 0xffff Error

 message_body
 The message body itself, represented as a variable-length string
 of bytes. The bytes themselves are dependent on the code value.
 See the sections describing the various RELOAD methods (Join,
 Update, Attach, Store, Fetch, etc.) for the definitions of the
 payload contents.

5.3.3.1. Response Codes and Response Errors

 A peer processing a request returns its status in the message_code
 field. If the request was a success, then the message code is the
 response code that matches the request (i.e., the next code up). The
 response payload is then as defined in the request/response
 descriptions.

 If the request failed, then the message code is set to 0xffff (error)
 and the payload MUST be an error_response PDU, as shown below.

 When the message code is 0xffff, the payload MUST be an
 ErrorResponse.

 public struct {
 uint16 error_code;
 opaque error_info<0..2^16-1>;
 } ErrorResponse;

 The contents of this structure are as follows:

Jennings, et al. Expires September 8, 2009 [Page 48]

Internet-Draft RELOAD Base March 2009

 error_code
 A numeric error code indicating the error that occurred.

 error_info
 An arbitrary byte string. Unless otherwise specified, this will
 be a text string providing further information about what went
 wrong.

 The following error code values are defined. The numeric values for
 these are defined in Section 13.7.

 Error_Unauthorized: The requesting peer needs to sign and provide a
 certificate. [[TODO: The semantics here don't seem quite
 right.]]

 Error_Forbidden: The requesting peer does not have permission to
 make this request.

 Error_Not_Found: The resource or peer cannot be found or does not
 exist.

 Error_Request_Timeout: A response to the request has not been
 received in a suitable amount of time. The requesting peer MAY
 resend the request at a later time.

 Error_Precondition_Failed: A request can't be completed because some
 precondition was incorrect. For instance, the wrong generation
 counter was provided

 Error_Incompatible_with_Overlay: A peer receiving the request is
 using a different overlay, overlay algorithm, or hash algorithm.

 Error_Unsupported_Forwarding_Option: A peer receiving the request
 with a forwarding options flagged as critical but the peer does
 not support this option. See section Section 5.3.2.4.

 Error_TTL_Exceeded: A peer receiving the request where the TTL got
 decremented to zero. See section Section 5.3.2.

 Error_Message_Too_Large: A peer receiving the request that was too
 large. See section Section 5.6.
 Error_Config_Too_Old: A destination peer received a request with a
 configuration sequence that's too old.

Jennings, et al. Expires September 8, 2009 [Page 49]

Internet-Draft RELOAD Base March 2009

 Error_Config_Too_New: A destination node received a request with a
 configuration sequence that's too new. A node which receives this
 error MUST generate a Config_Update message to send a new copy of
 the configuration document to the node which generated the error.

5.3.4. Security Block

 The third part of a RELOAD message is the security block. The
 security block is represented by a SecurityBlock structure:

 enum { x509(0), (255) } certificate_type;

 struct {
 certificate_type type;
 opaque certificate<0..2^16-1>;
 } GenericCertificate;

 struct {
 GenericCertificate certificates<0..2^16-1>;
 Signature signature;
 } SecurityBlock;

 The contents of this structure are:

 certificates
 A bucket of certificates.

 signature
 A signature over the message contents.

 The certificates bucket SHOULD contain all certificates necessary to
 verify every signature in both the message and the internal message
 objects. This is the only location in the message which contains
 certificates, thus allowing for only a single copy of each
 certificate. In systems which have some alternate certificate
 distribution mechanism, some certificates MAY be omitted. However,
 implementors should note that this creates the possibility that
 messages may not be immediately verifiable upon receipt of the
 certificates must first be retrieved.

 Each certificate is represented by a GenericCertificate structure,
 which has the following contents:

Jennings, et al. Expires September 8, 2009 [Page 50]

Internet-Draft RELOAD Base March 2009

 type
 The type of the certificate. Only one type is defined: x509
 representing an X.509 certificate

 certificate
 The encoded version of the certificate. For X.509 certificates,
 it is the DER form.

 The signature is computed over the payload and parts of forwarding
 header. The payload, in case of a Store, may contain an additional
 signature computed over a StoreReq structure. All signatures are
 formatted using the Signature element. This element is also used in
 other contexts where signatures are needed. The input structure to
 the signature computation varies depending on the data element being
 signed.

 enum {reserved(0), cert_hash(1), (255)} SignerIdentityType;

 select (identity_type) {
 case cert_hash;
 HashAlgorithm hash_alg;
 opaque certificate_hash<0..2^8-1>;
 /* This structure may be extended with new types if necessary*/
 } SignerIdentityValue;

 struct {
 SignerIdentityType identity_type;
 uint16 length;
 SignerIdentityValue identity[SignerIdentity.length];
 } SignerIdentity;

 struct {
 SignatureAndHashAlgorithm algorithm;
 SignerIdentity identity;
 opaque signature_value<0..2^16-1>;
 } Signature;

 The signature construct contains the following values:

 algorithm
 The signature algorithm in use. The algorithm definitions are
 found in the IANA TLS SignatureAlgorithm Registry.

Jennings, et al. Expires September 8, 2009 [Page 51]

Internet-Draft RELOAD Base March 2009

 identity
 The identity used to form the signature

 signature_value
 The value of the signature

 The only currently permitted identity format is a hash of the
 signer's certificate. The hash_alg field is used to indicate the
 algorithm used to produce the hash. The certificate_hash contains
 the hash of the certificate object as represented in the certificates
 structure. The SignerIdentity structure is typed purely to allow for
 future (unanticipated) extensibility. [TODO: Should we remove this
 extensibility point?]

 For signatures over messages the input to the signature is computed
 over:

 overlay + transaction_id + MessageContents + SignerIdentity

 Where overlay and transaction_id come from the forwarding header and
 + indicates concatenation.

 [[TODO: Check the inputs to this carefully.]]

 The input to signatures over data values is different, and is
 described in Section 6.1.

 All RELOAD messages MUST be signed. Upon receipt, the receiving node
 MUST verify the signature and the authorizing certificate. This
 check provides a minimal level of assurance that the sending node is
 a valid part of the overlay as well as cryptographic authentication
 of the sending node. In addition, responses MUST be checked as
 follows:

 1. The response to a message sent to a specific Node-Id MUST have
 been sent by that Node-Id.
 2. The response to a message sent to a Resource-Id MUST have been
 sent by a Node-Id which is as close to or closer to the target
 Resource-Id than any node in the requesting node's neighbor
 table.

 The second condition serves as a primitive check for responses from
 wildly wrong nodes but is not a complete check. Note that in periods
 of churn, it is possible for the requesting node to obtain a closer
 neighbor while the request is outstanding. This will cause the
 response to be rejected and the request to be retransmitted.

Jennings, et al. Expires September 8, 2009 [Page 52]

Internet-Draft RELOAD Base March 2009

 In addition, some methods (especially Store) have additional
 authentication requirements, which are described in the sections
 covering those methods.

5.4. Overlay Topology

 As discussed in previous sections, RELOAD does not itself implement
 any overlay topology. Rather, it relies on Topology Plugins, which
 allow a variety of overlay algorithms to be used while maintaining
 the same RELOAD core. This section describes the requirements for
 new topology plugins and the methods that RELOAD provides for overlay
 topology maintenance.

5.4.1. Topology Plugin Requirements

 When specifying a new overlay algorithm, at least the following need
 to be described:

 o Joining procedures, including the contents of the Join message.
 o Stabilization procedures, including the contents of the Update
 message, the frequency of topology probes and keepalives, and the
 mechanism used to detect when peers have disconnected.
 o Exit procedures, including the contents of the Leave message.
 o The length of the Resource-IDs and Node-IDs. For DHTs, the hash
 algorithm to compute the hash of an identifier.
 o The procedures that peers use to route messages.
 o The replication strategy used to ensure data redundancy.

5.4.2. Methods and types for use by topology plugins

 This section describes the methods that topology plugins use to join,
 leave, and maintain the overlay.

5.4.2.1. Join

 A new peer (but which already has credentials) uses the JoinReq
 message to join the overlay. The JoinReq is sent to the responsible
 peer depending on the routing mechanism described in the topology
 plugin. This notifies the responsible peer that the new peer is
 taking over some of the overlay and it needs to synchronize its
 state.

 struct {
 NodeId joining_peer_id;
 opaque overlay_specific_data<0..2^16-1>;
 } JoinReq;

Jennings, et al. Expires September 8, 2009 [Page 53]

Internet-Draft RELOAD Base March 2009

 The minimal JoinReq contains only the Node-ID which the sending peer
 wishes to assume. Overlay algorithms MAY specify other data to
 appear in this request.

 If the request succeeds, the responding peer responds with a JoinAns
 message, as defined below:

 struct {
 opaque overlay_specific_data<0..2^16-1>;
 } JoinAns;

 If the request succeeds, the responding peer MUST follow up by
 executing the right sequence of Stores and Updates to transfer the
 appropriate section of the overlay space to the joining peer. In
 addition, overlay algorithms MAY define data to appear in the
 response payload that provides additional info.

 In general, nodes which cannot form connections SHOULD report an
 error. However, implementations MUST provide some mechanism whereby
 nodes can determine they are potentially the first node and take
 responsibility for the overlay. This specification does not mandate
 any particular mechanism, but a configuration flag or setting seems
 appropriate.

5.4.2.2. Leave

 The LeaveReq message is used to indicate that a node is exiting the
 overlay. A node SHOULD send this message to each peer with which it
 is directly connected prior to exiting the overlay.

 public struct {
 NodeId leaving_peer_id;
 opaque overlay_specific_data<0..2^16-1>;
 } LeaveReq;

 LeaveReq contains only the Node-ID of the leaving peer. Overlay
 algorithms MAY specify other data to appear in this request.

 Upon receiving a Leave request, a peer MUST update its own routing
 table, and send the appropriate Store/Update sequences to re-
 stabilize the overlay.

5.4.2.3. Update

 Update is the primary overlay-specific maintenance message. It is
 used by the sender to notify the recipient of the sender's view of

Jennings, et al. Expires September 8, 2009 [Page 54]

Internet-Draft RELOAD Base March 2009

 the current state of the overlay (its routing state) and it is up to
 the recipient to take whatever actions are appropriate to deal with
 the state change.

 The contents of the UpdateReq message are completely overlay-
 specific. The UpdateAns response is expected to be either success or
 an error.

5.4.2.4. Route_Query

 The Route_Query request allows the sender to ask a peer where they
 would route a message directed to a given destination. In other
 words, a RouteQuery for a destination X requests the Node-ID where
 the receiving peer would next route to get to X. A RouteQuery can
 also request that the receiving peer initiate an Update request to
 transfer his routing table.

 One important use of the RouteQuery request is to support iterative
 routing. The sender selects one of the peers in its routing table
 and sends it a RouteQuery message with the destination_object set to
 the Node-ID or Resource-ID it wishes to route to. The receiving peer
 responds with information about the peers to which the request would
 be routed. The sending peer MAY then Attaches to that peer(s), and
 repeats the RouteQuery. Eventually, the sender gets a response from
 a peer that is closest to the identifier in the destination_object as
 determined by the topology plugin. At that point, the sender can
 send messages directly to that peer.

5.4.2.4.1. Request Definition

 A RouteQueryReq message indicates the peer or resource that the
 requesting peer is interested in. It also contains a "send_update"
 option allowing the requesting peer to request a full copy of the
 other peer's routing table.

 struct {
 Boolean send_update;
 Destination destination;
 opaque overlay_specific_data<0..2^16-1>;
 } RouteQueryReq;

 The contents of the RouteQueryReq message are as follows:

Jennings, et al. Expires September 8, 2009 [Page 55]

Internet-Draft RELOAD Base March 2009

 send_update
 A single byte. This may be set to "true" to indicate that the
 requester wishes the responder to initiate an Update request
 immediately. Otherwise, this value MUST be set to "false".

 destination
 The destination which the requester is interested in. This may be
 any valid destination object, including a Node-ID, compressed ids,
 or Resource-ID.

 overlay_specific_data
 Other data as appropriate for the overlay.

5.4.2.4.2. Response Definition

 A response to a successful RouteQueryReq request is a RouteQueryAns
 message. This is completely overlay specific.

5.4.2.5. Probe

 Probe provides a number of primitive "exploration" services: (1) it
 allows node to determine which resources another node is responsible
 for (2) it allows some discovery services in multicast settings. A
 probe can be addressed to a specific Node-ID, or the peer controlling
 a given location (by using a resource ID). In either case, the
 target Node-IDs respond with a simple response containing some status
 information.

5.4.2.5.1. Request Definition

 The ProbeReq message contains a list (potentially empty) of the
 pieces of status information that the requester would like the
 responder to provide.

 enum { responsible_set(1), num_resources(2), (255)}
 ProbeInformationType;

 struct {
 ProbeInformationType requested_info<0..2^8-1>;
 } ProbeReq

 The two currently defined values for ProbeInformation are:

Jennings, et al. Expires September 8, 2009 [Page 56]

Internet-Draft RELOAD Base March 2009

 responsible_set
 indicates that the peer should Respond with the fraction of the
 overlay for which the responding peer is responsible.

 num_resources
 indicates that the peer should Respond with the number of
 resources currently being stored by the peer.

5.4.2.5.2. Response Definition

 A successful ProbeAns response contains the information elements
 requested by the peer.

 struct {
 ProbeInformationType type;

 select (type) {
 case responsible_set:
 uint32 responsible_ppb;

 case num_resources:
 uint32 num_resources;

 /* This type may be extended */

 };
 } ProbeInformation;

 struct {
 ProbeInformation probe_info<0..2^16-1>;
 } ProbeAns;

 A ProbeAns message contains the following elements:

 probe_info
 A sequence of ProbeInformation structures, as shown below.

 Each of the current possible Probe information types is a 32-bit
 unsigned integer. For type "responsible_ppb", it is the fraction of
 the overlay for which the peer is responsible in parts per billion.
 For type "num_resources", it is the number of resources the peer is
 storing.

 The responding peer SHOULD include any values that the requesting

Jennings, et al. Expires September 8, 2009 [Page 57]

Internet-Draft RELOAD Base March 2009

 peer requested and that it recognizes. They SHOULD be returned in
 the requested order. Any other values MUST NOT be returned.

5.5. Forwarding and Link Management Layer

 Each node maintains connections to a set of other nodes defined by
 the topology plugin. This section defines the methods RELOAD uses to
 form and maintain connections between nodes in the overlay. Three
 methods are defined:

 Attach: used to form connections between nodes. When node A wants
 to connect to node B, it sends an Attach message to node B through
 the overlay. The Attach contains A's ICE parameters. B responds
 with its ICE parameters and the two nodes perform ICE to form
 connection.
 AttachLite: like attach, it is used to form connections between
 nodes but instead of using full ICE, it only uses a subset known
 as ICE-Lite.
 Ping: is a simple request/response which is used to verify
 connectivity of the target peer.

5.5.1. Attach

 A node sends an Attach request when it wishes to establish a direct
 TCP or UDP connection to another node for the purposes of sending
 RELOAD messages or application layer protocol messages, such as SIP.

 As described in Section 5.1, an Attach may be routed to either a
 Node-ID or to a Resource-ID. An Attach routed to a specific Node-ID
 will fail if that node is not reached. An Attach routed to a
 Resource-ID will establish a connection with the peer currently
 responsible for that Resource-ID, which may be useful in establishing
 a direct connection to the responsible peer for use with frequent or
 large resource updates.

 An Attach in and of itself does not result in updating the routing
 table of either node. That function is performed by Updates. If
 node A has Attached to node B, but not received any Updates from B,
 it MAY route messages which are directly addressed to B through that
 channel but MUST NOT route messages through B to other peers via that
 channel. The process of Attaching is separate from the process of
 becoming a peer (using Update) to prevent half-open states where a
 node has started to form connections but is not really ready to act
 as a peer.

Jennings, et al. Expires September 8, 2009 [Page 58]

Internet-Draft RELOAD Base March 2009

5.5.1.1. Request Definition

 An AttachReq message contains the requesting peer's ICE connection
 parameters formatted into a binary structure.

 typedef opaque IceCandidate<0..2^16-1>;

 struct {
 opaque ufrag<0..2^8-1>;
 opaque password<0..2^8-1>;
 uint16 application;
 opaque role<0..2^8-1>;
 IceCandidate candidates<0..2^16-1>;
 } AttachReqAns;

 The values contained in AttachReq and AttachAns are:

 ufrag
 The username fragment (from ICE)

 password
 The ICE password.

 application
 A 16-bit port number. This port number represents the IANA
 registered port of the protocol that is going to be sent on this
 connection. For SIP, this is 5060 or 5061, and for RELOAD is TBD.
 By using the IANA registered port, we avoid the need for an
 additional registry and allow RELOAD to be used to set up
 connections for any existing or future application protocol.

 role
 An active/passive/actpass attribute from RFC 4145 [RFC4145].

 candidates
 One or more ICE candidate values in the string representation used
 in ordinary ICE. [[OPEN ISSUE: This is convenient for stacks,
 but unaesthetic.]] Each candidate has an IP address, IP address
 family, port, transport protocol, priority, foundation, component
 ID, STUN type and related address. The candidate_list is a list
 of string candidate values from ICE.

 These values should be generated using the procedures described in
Section 5.5.1.3.

https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4145

Jennings, et al. Expires September 8, 2009 [Page 59]

Internet-Draft RELOAD Base March 2009

5.5.1.2. Response Definition

 If a peer receives an Attach request, it SHOULD follow the process
 the request and generate its own response with a AttachReqAns. It
 should then begin ICE checks. When a peer receives an Attach
 response, it SHOULD parse the response and begin its own ICE checks.

5.5.1.3. Using ICE With RELOAD

 This section describes the profile of ICE that is used with RELOAD.
 RELOAD implementations MUST implement full ICE. Because RELOAD
 always tries to use TCP and then UDP as a fallback, there will be
 multiple candidates of the same IP version, which requires full ICE.

 In ICE as defined by [I-D.ietf-mmusic-ice], SDP is used to carry the
 ICE parameters. In RELOAD, this function is performed by a binary
 encoding in the Attach method. This encoding is more restricted than
 the SDP encoding because the RELOAD environment is simpler:

 o Only a single media stream is supported.
 o In this case, the "stream" refers not to RTP or other types of
 media, but rather to a connection for RELOAD itself or for SIP
 signaling.
 o RELOAD only allows for a single offer/answer exchange. Unlike the
 usage of ICE within SIP, there is never a need to send a
 subsequent offer to update the default candidates to match the
 ones selected by ICE.

 An agent follows the ICE specification as described in
 [I-D.ietf-mmusic-ice] and [I-D.ietf-mmusic-ice-tcp] with the changes
 and additional procedures described in the subsections below.

5.5.1.4. Collecting STUN Servers

 ICE relies on the node having one or more STUN servers to use. In
 conventional ICE, it is assumed that nodes are configured with one or
 more STUN servers through some out-of-band mechanism. This is still
 possible in RELOAD but RELOAD also learns STUN servers as it connects
 to other peers. Because all RELOAD peers implement ICE and use STUN
 keepalives, every peer is a STUN server [RFC5389]. Accordingly, any
 peer a node knows will be willing to be a STUN server -- though of
 course it may be behind a NAT.

 A peer on a well-provisioned wide-area overlay will be configured
 with one or more bootstrap peers. These peers make an initial list
 of STUN servers. However, as the peer forms connections with
 additional peers, it builds more peers it can use as STUN servers.

https://datatracker.ietf.org/doc/html/rfc5389

Jennings, et al. Expires September 8, 2009 [Page 60]

Internet-Draft RELOAD Base March 2009

 Because complicated NAT topologies are possible, a peer may need more
 than one STUN server. Specifically, a peer that is behind a single
 NAT will typically observe only two IP addresses in its STUN checks:
 its local address and its server reflexive address from a STUN server
 outside its NAT. However, if there are more NATs involved, it may
 discover that it learns additional server reflexive addresses (which
 vary based on where in the topology the STUN server is). To maximize
 the chance of achieving a direct connection, a peer SHOULD group
 other peers by the peer-reflexive addresses it discovers through
 them. It SHOULD then select one peer from each group to use as a
 STUN server for future connections.

 Only peers to which the peer currently has connections may be used.
 If the connection to that host is lost, it MUST be removed from the
 list of stun servers and a new server from the same group SHOULD be
 selected.

5.5.1.5. Gathering Candidates

 When a node wishes to establish a connection for the purposes of
 RELOAD signaling or SIP signaling (or any other application protocol
 for that matter), it follows the process of gathering candidates as
 described in Section 4 of ICE [I-D.ietf-mmusic-ice]. RELOAD utilizes
 a single component, as does SIP. Consequently, gathering for these
 "streams" requires a single component.

 An agent MUST implement ICE-tcp [I-D.ietf-mmusic-ice], and MUST
 gather at least one UDP and one TCP host candidate for RELOAD and for
 SIP.

 The ICE specification assumes that an ICE agent is configured with,
 or somehow knows of, TURN and STUN servers. RELOAD provides a way
 for an agent to learn these by querying the overlay, as described in

Section 5.5.1.4 and Section 8.

 The agent SHOULD prioritize its TCP-based candidates over its UDP-
 based candidates in the prioritization described in Section 4.1.2 of
 ICE [I-D.ietf-mmusic-ice].

 The default candidate selection described in Section 4.1.3 of ICE is
 ignored; defaults are not signaled or utilized by RELOAD.

5.5.1.6. Encoding the Attach Message

Section 4.3 of ICE describes procedures for encoding the SDP for
 conveying RELOAD or SIP ICE candidates. Instead of actually encoding
 an SDP, the candidate information (IP address and port and transport
 protocol, priority, foundation, component ID, type and related

Jennings, et al. Expires September 8, 2009 [Page 61]

Internet-Draft RELOAD Base March 2009

 address) is carried within the attributes of the Attach request or
 its response. Similarly, the username fragment and password are
 carried in the Attach message or its response. Section 5.5.1
 describes the detailed attribute encoding for Attach. The Attach
 request and its response do not contain any default candidates or the
 ice-lite attribute, as these features of ICE are not used by RELOAD.
 The Attach request and its response also contain a application
 attribute, with a value of SIP or RELOAD, which indicates what
 protocol is to be run over the connection. The RELOAD Attach request
 MUST only be utilized to set up connections for application protocols
 that can be multiplexed with STUN.

 Since the Attach request contains the candidate information and short
 term credentials, it is considered as an offer for a single media
 stream that happens to be encoded in a format different than SDP, but
 is otherwise considered a valid offer for the purposes of following
 the ICE specification. Similarly, the Attach response is considered
 a valid answer for the purposes of following the ICE specification.

5.5.1.7. Verifying ICE Support

 An agent MUST skip the verification procedures in Section 5.1 and 6.1
 of ICE. Since RELOAD requires full ICE from all agents, this check
 is not required.

5.5.1.8. Role Determination

 The roles of controlling and controlled as described in Section 5.2
 of ICE are still utilized with RELOAD. However, the offerer (the
 entity sending the Attach request) will always be controlling, and
 the answerer (the entity sending the Attach response) will always be
 controlled. The connectivity checks MUST still contain the ICE-
 CONTROLLED and ICE-CONTROLLING attributes, however, even though the
 role reversal capability for which they are defined will never be
 needed with RELOAD. This is to allow for a common codebase between
 ICE for RELOAD and ICE for SDP.

5.5.1.9. Connectivity Checks

 The processes of forming check lists in Section 5.7 of ICE,
 scheduling checks in Section 5.8, and checking connectivity checks in

Section 7 are used with RELOAD without change.

5.5.1.10. Concluding ICE

 The controlling agent MUST utilize regular nomination. This is to
 ensure consistent state on the final selected pairs without the need
 for an updated offer, as RELOAD does not generate additional offer/

Jennings, et al. Expires September 8, 2009 [Page 62]

Internet-Draft RELOAD Base March 2009

 answer exchanges.

 The procedures in Section 8 of ICE are followed to conclude ICE, with
 the following exceptions:

 o The controlling agent MUST NOT attempt to send an updated offer
 once the state of its single media stream reaches Completed.
 o Once the state of ICE reaches Completed, the agent can immediately
 free all unused candidates. This is because RELOAD does not have
 the concept of forking, and thus the three second delay in Section

8.3 of ICE does not apply.

5.5.1.11. Subsequent Offers and Answers

 An agent MUST NOT send a subsequent offer or answer. Thus, the
 procedures in Section 9 of ICE MUST be ignored.

5.5.1.12. Media Keepalives

 STUN MUST be utilized for the keepalives described in Section 10 of
 ICE. [[TODO - this does not define what happens for TCP]]

5.5.1.13. Sending Media

 The procedures of Section 11 apply to RELOAD as well. However, in
 this case, the "media" takes the form of application layer protocols
 (RELOAD or SIP for example) over TLS or DTLS. Consequently, once ICE
 processing completes, the agent will begin TLS or DTLS procedures to
 establish a secure connection. The node which sent the Attach
 request MUST be the TLS server. The other node MUST be the TLS
 client. The nodes MUST verify that the certificate presented in the
 handshake matches the identity of the other peer as found in the
 Attach message. Once the TLS or DTLS signaling is complete, the
 application protocol is free to use the connection.

 The concept of a previous selected pair for a component does not
 apply to RELOAD, since ICE restarts are not possible with RELOAD.

5.5.1.14. Receiving Media

 An agent MUST be prepared to receive packets for the application
 protocol (TLS or DTLS carrying RELOAD, SIP or anything else) at any
 time. The jitter and RTP considerations in Section 11 of ICE do not
 apply to RELOAD or SIP.

Jennings, et al. Expires September 8, 2009 [Page 63]

Internet-Draft RELOAD Base March 2009

5.5.2. AttachLite

 An alternative to using the full ICE supported by the Attach request
 is to use ICE-Lite with the AttachLite request. This will not work
 in all of the scenarios where ICE would work, but in some cases,
 particularly those with no NATs or firewalls, it will work.
 Configuration for the overlay indicates if this can be used or not.

 OPEN ISSUE: We originally envisioned adding support for ICE-Lite
 directly to the regular Attach method. However, we found that both
 the parameters and processing were completely different, resulting in
 almost no overlap between the two methods. Therefore we chose to
 separate this out for overlays where the complexities of ICE are not
 needed. Note that it is still possible for a node with a public
 unfiltered address intending to interoperate to implement Attach
 without the candidate gathering phases of ICE and achieve essentially
 the same result. If simpler behavior or a better encoding of ICE-
 Lite in Attach is developed, such an approach would be preferable.

5.5.2.1. Request Definition

 An AttachLiteReq message contains the requesting peer's ICE-Lite
 connection parameters formatted into a binary structure. When using
 the AttachLite request, both sides act as ICE-Lite hosts.

 struct {
 IpAddressPort addr_port;
 Transport transport;
 uint32 priority;
 } IceLiteCandidate;

 struct {
 uint16 application;
 IceLiteCandidate candidates<0..2^16-1>;
 } AttachLiteReqs;

 The values contained in AttachLiteReq are:

 application
 A 16-bit port number used in the same was as in the Attach
 request. This port number represents the IANA registered port of
 the protocol that is going to be sent on this connection.

Jennings, et al. Expires September 8, 2009 [Page 64]

Internet-Draft RELOAD Base March 2009

 candidates
 One or more ICE candidate values. Each one contains an IP address
 and family, transport protocol, and port to connect to as well as
 a priority.

 These values should be generated using the procedures described in
Section 5.5.1.3.

5.5.2.2. Attach-Lite Connectivity Checks

 STUN is not used for connectivity checks when doing ICE-Lite, instead
 the DTLS or TLS handshake forms the connectivity check. The host
 that received the AttachLiteReq MUST initiate TLS or DTLS connections
 to candidates provided in the request. When a connection forms, the
 node MUST check the certificate is for the node that send
 AttachLiteReq and if is not, MUST close the connection.

 Since TLS provides the connectivity check, there is no need for the
RFC 4571 [RFC4571] style framing shim for STUN when using TLS and

 this is not used for this protocol.

5.5.2.3. Implementation Notes for Attach-Lite

 This is a non normative section to help implementors.

 At times ICE can seem a bit daunting to gets one head around. For a
 simple IPv4 only peer, a simple implementation of Attach-Lite could
 be done be doing the following:
 o When sending an AttachLiteReq, form one with a candidate with a
 priority value of (2^24)*(126)+(2^8)*(65535)+(2^0)*(256-1) that
 specifies the UDP port being listened to and another one with the
 TCP port.
 o When receiving an AttachLiteReq, try to form a connection to each
 candidate in the request. Check the certificate receive in the
 TLS handshake has the correct Node-ID as the node that send the
 AttchLiteReq. If multiple connection succeed, close all but the
 one with highest priority.
 o Do normal TLS and DTLS with no need for any special framing or
 STUN processing.

5.5.3. Ping

 Ping is used to test connectivity along a path. A ping can be
 addressed to a specific Node-ID, the peer controlling a given
 location (by using a resource ID), or to the broadcast Node-ID (all
 1s).

https://datatracker.ietf.org/doc/html/rfc4571
https://datatracker.ietf.org/doc/html/rfc4571

Jennings, et al. Expires September 8, 2009 [Page 65]

Internet-Draft RELOAD Base March 2009

5.5.3.1. Request Definition

 struct {
 } PingReq

5.5.3.2. Response Definition

 A successful PingAns response contains the information elements
 requested by the peer.

 struct {
 uint64 response_id;
 uint64 time;
 } PingAns;

 A PingAns message contains the following elements:

 response_id
 A randomly generated 64-bit response ID. This is used to
 distinguish Ping responses in cases where the Ping request is
 multicast.
 time
 The time when the ping responses was created in absolute time,
 represented in milliseconds since midnight Jan 1, 1970 which is
 the UNIX epoch.

5.5.4. Config_Update

 The Config_Update method is used to propagate updated configuration
 files across the overlay. Whenever a node detects that another node
 has an old configuration file, it MUST generate a Config_Update
 request.

5.5.4.1. Request Definition

 struct {
 opaque config_data<2^24-1>;
 } Config_UpdateReq;

 The Config_UpdateReq message contains the following elements:

Jennings, et al. Expires September 8, 2009 [Page 66]

Internet-Draft RELOAD Base March 2009

 config_data
 The contents of the configuration document.

5.5.4.2. Response Definition

 struct {
 } Config_UpdateReq

 The Config_UpdateReq should only be processed if all the following
 are true:
 o The configuration sequence number in the document is greater than
 the current configuration sequence number.
 o The configuration document is correctly digitally signed (see

Section 10 for details on signatures.
 Otherwise appropriate errors MUST be generated.

 If the document is acceptable, then the node MUST reconfigure itself
 to match the new document. This may include adding permissions for
 new kinds, deleting old kinds, or even, in extreme circumstances,
 exiting and reentering the overlay, if, for instance, the DHT
 algorithm has changed.

 The response for Config_Update is empty.

5.6. Overlay Link Layer

 RELOAD can use multiple Overlay Link protocols to send its messages.
 Because ICE is used to establish connections (see Section 5.5.1.3),
 RELOAD nodes are able to detect which Overlay Link protocols are
 offered by other nodes and establish connections between each other.
 Any link protocol needs to be able to establish a secure,
 authenticated connection, and provide data origin authentication and
 message integrity for individual data elements. RELOAD currently
 supports two Overlay Link protocols:

 o TLS [RFC5246] over TCP
 o DTLS [RFC4347] over UDP

 Note that although UDP does not properly have "connections", both TLS
 and DTLS have a handshake which establishes a stateful association, a
 similar stateful construct, and we simply refer to these as
 "connections" for the purposes of this document.

 If a peer receives a message that is larger than value of max-
 message-size defined in the overlay configuration, the peer SHOULD
 send an Error_Message_Too_Large error then close the TLS or DTLS

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347

Jennings, et al. Expires September 8, 2009 [Page 67]

Internet-Draft RELOAD Base March 2009

 session from which the message was received. Note that this error
 can be sent and the session closed before receiving the complete
 message. If the forwarding header is larger than the max-message-
 size, the receiver SHOULD close the TLS or DTLS session without
 sending an error.

5.6.1. Future Support for HIP

 The P2PSIP Working Group has expressed interest in supporting a HIP-
 based link protocol. Such support would require specifying such
 details as:

 o How to issue certificates which provided identities meaningful to
 the HIP base exchange. We anticipate that this would require a
 mapping between ORCHIDs and NodeIds.
 o How to carry the HIP I1 and I2 messages. We anticipate that this
 would require defining a HIP Tunnel usage.
 o How to carry RELOAD messages over HIP.

 We leave this work as a topic for another draft.

5.6.2. Reliability for Unreliable Links

 When RELOAD is carried over DTLS or another unreliable link protocol,
 it needs to be used with a reliability and congestion control
 mechanism, which is provided on a hop-by-hop basis, matching the
 semantics if TCP were used. The basic principle is that each
 message, regardless of if it carries a request or responses, will get
 an ACK and be reliably retransmitted. The receiver's job is very
 simple, limited to just sending ACKs. All the complexity is at the
 sender side. This allows the sending implementation to trade off
 performance versus implementation complexity without affecting the
 wire protocol.

 In order to support unreliable links, each message is wrapped in a
 very simple framing layer (FramedMessage) which is only used for each
 hop. This layer contains a sequence number which can then be used
 for ACKs.

5.6.2.1. Framed Message Format

 [[TODO: There had been discussion of always using this, but it's
 tied up in the rest of the reliability questions.]]

 The definition of FramedMessage is:

Jennings, et al. Expires September 8, 2009 [Page 68]

Internet-Draft RELOAD Base March 2009

 enum {data (128), ack (129), (255)} FramedMessageType;

 struct {
 FramedMessageType type;

 select (type) {
 case data:
 uint32 sequence;
 opaque message<0..2^24-1>;

 case ack:
 uint32 ack_sequence;
 uint32 received;
 };
 } FramedMessage;

 The type field of the PDU is set to indicate whether the message is
 data or an acknowledgement. Note that these values have been set to
 force the first bit to be high, thus allowing easy demultiplexing
 with STUN. All FramedMessageType values must be > 128.

 If the message is of type "data", then the remainder of the PDU is as
 follows:

 sequence
 the sequence number

 message
 the message that is being transmitted.

 Each connection has it own sequence number space. Initially the
 value is zero and it increments by exactly one for each message sent
 over that connection.

 When the receiver receive a message, it SHOULD immediately send an
 ACK message. The receiver MUST keep track of the 32 most recent
 sequence numbers received on this association in order to generate
 the appropriate ack.

 If the PDU is of type "ack", the contents are as follows:

 ack_sequence

Jennings, et al. Expires September 8, 2009 [Page 69]

Internet-Draft RELOAD Base March 2009

 The sequence number of the message being acknowledged.

 received
 A bitmask indicating is each of the previous 32 sequence numbers
 before this packet had been received as one of the most recently
 received 32 packets on this connection. When a packet is received
 with a sequence number N, the receiver looks at the sequence
 number of the previously 32 packets received on this connection,.
 Call the previously received packet number M. And for each of the
 previous 32 packets, if the sequence number M is less than N but
 greater than N-32, the N-M bit of the received bitmask is set to
 one otherwise it is zero.
 Note that a bit being set indicates a particular packet was
 received but if the bit is set to zero it only means it is unknown
 if it was received or not. It might have been received but not in
 the 32 most recently received window.

 The received field bits in the ACK provide a very high degree of
 redundancy for the sender to figure out which packets the receiver
 received and can then estimate packet loss rates. If the sender also
 keeps track of the time at which recent sequence numbers were sent,
 the RTT can be estimated.

5.6.2.2. Retransmission and Flow Control

 Because the receiver's role is limited to providing packet
 acknowledgements, a wide variety of congestion control algorithms can
 be implemented on the sender side while using the same basic wire
 protocol. Senders MUST implement a retransmission and congestion
 control scheme no more aggressive then TFRC[RFC5348]. One way to do
 that is for senders to implement TFRC-SP [RFC4828] and use the
 received bitmask to allow the sender to compute packet loss event
 rates.

5.6.2.2.1. Trivial Retransmission

 An algorithm which will not perform as well as TFRC-SP but is easy to
 implement is described in this section and can be used if
 implementations don't use a more advanced techniques such as TFRC-SP.

 A peer SHOULD retransmit a message if it has not received an ACK for
 that messages starting with an interval of RTO ("Retransmission
 TimeOut"), doubling after each retransmission. In each
 retransmission, the sequence number is incremented. The RTO is an
 estimate of the round-trip time (RTT), and is computed as described
 in RFC 2988 [RFC2988], with two exceptions. First, the initial value
 for RTO SHOULD be configurable (rather than the 3 s recommended in

RFC 2988) and SHOULD be equal to or greater than 500 ms. The

https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

Jennings, et al. Expires September 8, 2009 [Page 70]

Internet-Draft RELOAD Base March 2009

 exception cases for this "SHOULD" are when other mechanisms are used
 to derive congestion thresholds, or when this is used in non-
 Internet environments with known network capacities. In fixed-line
 access links, a value of 500 ms is RECOMMENDED. Second, the value of
 RTO SHOULD NOT be rounded up to the nearest second. Rather, a 1 ms
 accuracy SHOULD be maintained. As with TCP, the usage of Karn's
 algorithm is RECOMMENDED [TODO REF KARN87] which means that RTT
 estimates SHOULD NOT be computed from transactions that result in the
 retransmission of a request. The value for RTO is calculated
 separately for each DTLS session.

 Retransmissions continue until a response is received, or until a
 total of 5 requests have been sent or there has been a hard ICMP
 error [RFC1122]. The receiver knows a responses was received by
 receiving and ACK with a sequence number that indicates it is a
 response to one of the transmissions of this messages. For example,
 assuming an RTO of 500 ms, requests would be sent at times 0 ms, 500
 ms, 1500 ms, 3500 ms, and 7500 ms. If all retransmissions for a
 message fail, the DTLS connection SHOULD be closed.

 Once an ACK has been received for a message, the next messages can be
 sent but the peer SHOULD ensure that there is at least 10 ms between
 sending any two messages.

5.6.3. Fragmentation and Reassembly

 In order to allow transmission over datagram protocols such as DTLS,
 RELOAD messages may be fragmented. If a message is too large for a
 peer to transmit to the next peer it MUST fragment the message. Note
 that this implies that intermediate peers may re-fragment messages if
 the incoming and outgoing paths have different maximum datagram
 sizes. Intermediate peers SHOULD NOT reassemble fragments.

 When a message is fragmented, each fragment has a full copy of the
 forwarding header but the rest of the messages is split across the
 fragments. The fragment offset value is stored in the lower 24 bits
 of the fragment field of the forwarding header. The offset is the
 number of bytes of the start of data from the end of the forwarding
 header so the first fragment has an offset of 0. The first and last
 bit indicators MUST be appropriately set. If the message is not
 fragmented, then both the first and last fragment are set to 1 and
 the offset is 0 resulting in a fragment value of 0xC0000000.

 TODO - discuss how to size fragments to leave room for expansion of
 forwarding header. Open Issue: Remove route log?

 Upon receipt of a fragmented message by the intended peer, the peer
 holds the fragments in a holding buffer until the entire message has

https://datatracker.ietf.org/doc/html/rfc1122

Jennings, et al. Expires September 8, 2009 [Page 71]

Internet-Draft RELOAD Base March 2009

 been received. The message is then reassembled into a single message
 and processed. In order to mitigate denial of service attacks,
 receivers SHOULD time out incomplete fragments after 15 seconds.
 Note the 15 seconds was derived from looking at the end to end
 retransmission time and saving fragments long enough for the full end
 to end retransmissions to take place. Ideally the receiver would
 have enough buffer space to deal with storing 15 seconds worth of
 fragments at whatever rate it receives messages on it89s interfaces,
 however, if the receiver runs out of buffer space to reassemble the
 messages it SHOULD close the DTLS session.

6. Data Storage Protocol

 RELOAD provides a set of generic mechanisms for storing and
 retrieving data in the Overlay Instance. These mechanisms can be
 used for new applications simply by defining new code points and a
 small set of rules. No new protocol mechanisms are required.

 The basic unit of stored data is a single StoredData structure:

 struct {
 uint32 length;
 uint64 storage_time;
 uint32 lifetime;
 StoredDataValue value;
 Signature signature;
 } StoredData;

 The contents of this structure are as follows:

 length
 The length of the rest of the structure in octets.

 storage_time
 The time when the data was stored in absolute time, represented in
 milliseconds since the Unix epoch of midnight Jan 1, 1970. Any
 attempt to store a data value with a storage time before that of a
 value already stored at this location MUST generate a
 Error_Data_Too_Old error. This prevents rollback attacks. Note
 that this does not require synchronized clocks: the receiving
 peer uses the storage time in the previous store, not its own
 clock.

Jennings, et al. Expires September 8, 2009 [Page 72]

Internet-Draft RELOAD Base March 2009

 lifetime
 The validity period for the data, in seconds, starting from the
 time of store.

 value
 The data value itself, as described in Section 6.2.

 signature
 A signature over the data value. Section 6.1 describes the
 signature computation. The element is formatted as described in

Section 5.3.4

 Each Resource-ID specifies a single location in the Overlay Instance.
 However, each location may contain multiple StoredData values
 distinguished by Kind-ID. The definition of a kind describes both
 the data values which may be stored and the data model of the data.
 Some data models allow multiple values to be stored under the same
 Kind-ID. Section Section 6.2 describes the available data models.
 Thus, for instance, a given Resource-ID might contain a single-value
 element stored under Kind-ID X and an array containing multiple
 values stored under Kind-ID Y.

6.1. Data Signature Computation

 Each StoredData element is individually signed. However, the
 signature also must be self-contained and cover the Kind-ID and
 Resource-ID even though they are not present in the StoredData
 structure. The input to the signature algorithm is:

 resource_id + kind + StoredData

 Where these values are:

 resource
 The resource ID where this data is stored.

 kind
 The Kind-ID for this data.

 StoredData
 The contents of the stored data value, as described in the
 previous sections, with the lifetime set to 0.

 [OPEN ISSUE: Should we include the identity in the string that forms
 the input to the signature algorithm?.]

 Once the signature has been computed, the signature is represented

Jennings, et al. Expires September 8, 2009 [Page 73]

Internet-Draft RELOAD Base March 2009

 using a signature element, as described in Section 5.3.4.

6.2. Data Models

 The protocol currently defines the following data models:

 o single value
 o array
 o dictionary

 These are represented with the StoredDataValue structure:

 enum { reserved(0), single_value(1), array(2),
 dictionary(3), (255)} DataModel;

 struct {
 Boolean exists;
 opaque value<0..2^32-1>;
 } DataValue;

 struct {
 DataModel model;

 select (model) {
 case single_value:
 DataValue single_value_entry;

 case array:
 ArrayEntry array_entry;

 case dictionary:
 DictionaryEntry dictionary_entry;

 /* This structure may be extended */
 } ;
 } StoredDataValue;

 We now discuss the properties of each data model in turn:

6.2.1. Single Value

 A single-value element is a simple, opaque sequence of bytes. There
 may be only one single-value element for each Resource-ID, Kind-ID
 pair.

Jennings, et al. Expires September 8, 2009 [Page 74]

Internet-Draft RELOAD Base March 2009

 A single value element is represented as a DataValue, which contains
 the following two elements:

 exists
 This value indicates whether the value exists at all. If it is
 set to False, it means that no value is present. If it is True,
 that means that a value is present. This gives the protocol a
 mechanism for indicating nonexistence as opposed to emptiness.

 value
 The stored data.

6.2.2. Array

 An array is a set of opaque values addressed by an integer index.
 Arrays are zero based. Note that arrays can be sparse. For
 instance, a Store of "X" at index 2 in an empty array produces an
 array with the values [NA, NA, "X"]. Future attempts to fetch
 elements at index 0 or 1 will return values with "exists" set to
 False.

 A array element is represented as an ArrayEntry:

 struct {
 uint32 index;
 DataValue value;
 } ArrayEntry;

 The contents of this structure are:

 index
 The index of the data element in the array.

 value
 The stored data.

6.2.3. Dictionary

 A dictionary is a set of opaque values indexed by an opaque key with
 one value for each key. A single dictionary entry is represented as
 follows

 A dictionary element is represented as a DictionaryEntry:

Jennings, et al. Expires September 8, 2009 [Page 75]

Internet-Draft RELOAD Base March 2009

 typedef opaque DictionaryKey<0..2^16-1>;

 struct {
 DictionaryKey key;
 DataValue value;
 } DictionaryEntry;

 The contents of this structure are:

 key
 The dictionary key for this value.

 value
 The stored data.

6.3. Access Control Policies

 Every kind which is storable in an overlay MUST be associated with an
 access control policy. This policy defines whether a request from a
 given node to operate on a given value should succeed or fail. It is
 anticipated that only a small number of generic access control
 policies are required. To that end, this section describes a small
 set of such policies and Section 13.3 establishes a registry for new
 policies if required. Each policy has a short string identifier
 which is used to reference it in the configuration document.

6.3.1. USER-MATCH

 In the USER-MATCH policy, a given value MUST be written (or
 overwritten) if and only if the request is signed with a key
 associated with a certificate whose user name hashes (using the hash
 function for the overlay) to the Resource-ID for the resource.
 Recall that the certificate may, depending on the overlay
 configuration, be self-signed.

6.3.2. NODE-MATCH

 In the NODE-MATCH policy, a given value MUST be written (or
 overwritten) if and only if the request is signed with a key
 associated with a certificate whose Node-ID hashes (using the hash
 function for the overlay) to the Resource-ID for the resource.

6.3.3. USER-NODE-MATCH

 The USER-NODE-MATCH policy may only be used with dictionary types.
 In the USER-NODE-MATCH policy, a given value MUST be written (or

Jennings, et al. Expires September 8, 2009 [Page 76]

Internet-Draft RELOAD Base March 2009

 overwritten) if and only if the request is signed with a key
 associated with a certificate whose user name hashes (using the hash
 function for the overlay) to the Resource-ID for the resource. In
 addition, the dictionary key MUST be equal to the Node-ID in the
 certificate.

6.3.4. NODE-MULTIPLE

 In the NODE-MULTIPLE policy, a given value MUST be written (or
 overwritten) if and only if the request is signed with a key
 associated with a certificate containing a Node-ID such that
 H(Node-ID || i) is equal to the Resource-ID for some small integer
 value if i. When this policy is in use, the maximum value of i MUST
 be specified, typically in the configuration document.

6.3.5. USER-MATCH-WITH-ANONYMOUS-CREATE

 The USER-MATCH-WITH-ANONYMOUS-CREATE policy is like the USER-MATCH
 policy except that any user MAY create a new value in a given
 location. However, only a user matching the USER-MATCH criteria may
 overwrite an existing value. This allows the creation of an
 anonymous "drop box" which may be useful for applications like voice
 mail.

6.4. Data Storage Methods

 RELOAD provides several methods for storing and retrieving data:

 o Store values in the overlay
 o Fetch values from the overlay
 o Find the values stored at an individual peer

 These methods are each described in the following sections.

6.4.1. Store

 The Store method is used to store data in the overlay. The format of
 the Store request depends on the data model which is determined by
 the kind.

6.4.1.1. Request Definition

 A StoreReq message is a sequence of StoreKindData values, each of
 which represents a sequence of stored values for a given kind. The
 same Kind-ID MUST NOT be used twice in a given store request. Each
 value is then processed in turn. These operations MUST be atomic.
 If any operation fails, the state MUST be rolled back to before the
 request was received.

Jennings, et al. Expires September 8, 2009 [Page 77]

Internet-Draft RELOAD Base March 2009

 The store request is defined by the StoreReq structure:

 struct {
 KindId kind;
 DataModel data_model;
 uint64 generation_counter;
 StoredData values<0..2^32-1>;
 } StoreKindData;

 struct {
 ResourceId resource;
 uint8 replica_number;
 StoreKindData kind_data<0..2^32-1>;
 } StoreReq;

 A single Store request stores data of a number of kinds to a single
 resource location. The contents of the structure are:

 resource
 The resource to store at.

 replica_number
 The number of this replica. When a storing peer saves replicas to
 other peers each peer is assigned a replica number starting from 1
 and sent in the Store message. This field is set to 0 when a node
 is storing its own data. This allows peers to distinguish replica
 writes from original writes.

 kind_data
 A series of elements, one for each kind of data to be stored.

 If the replica number is zero, then the peer MUST check that it is
 responsible for the resource and if not reject the request. If the
 replica number is nonzero, then the peer MUST check that it expects
 to be a replica for the resource and that the request sender is
 consistent with being the responsible node (i.e., that the receiving
 peer does not know of a better node) and if not reject the request.

 Each StoreKindData element represents the data to be stored for a
 single Kind-ID. The contents of the element are:

 kind
 The Kind-ID. Implementations SHOULD reject requests corresponding
 to unknown kinds unless specifically configured otherwise.

Jennings, et al. Expires September 8, 2009 [Page 78]

Internet-Draft RELOAD Base March 2009

 data_model
 The data model of the data. The kind defines what this has to be
 so this is redundant in the case where the software interpreting
 the messages understands the kind.

 generation
 The expected current state of the generation counter
 (approximately the number of times this object has been written,
 see below for details).

 values
 The value or values to be stored. This may contain one or more
 stored_data values depending on the data model associated with
 each kind.

 The peer MUST perform the following checks:

 o The kind_id is known and supported.
 o The data_model matches the kind_id.
 o The signatures over each individual data element (if any) are
 valid.
 o Each element is signed by a credential which is authorized to
 write this kind at this Resource-ID
 o For original (non-replica) stores, the peer MUST check that if the
 generation-counter is non-zero, it equals the current value of the
 generation-counter for this kind. This feature allows the
 generation counter to be used in a way similar to the HTTP Etag
 feature.
 o The storage time values are greater than that of any value which
 would be replaced by this Store.

 If all these checks succeed, the peer MUST attempt to store the data
 values. For non-replica stores, if the store succeeds and the data
 is changed, then the peer must increase the generation counter by at
 least one. If there are multiple stored values in a single
 StoreKindData, it is permissible for the peer to increase the
 generation counter by only 1 for the entire Kind-ID, or by 1 or more
 than one for each value. Accordingly, all stored data values must
 have a generation counter of 1 or greater. 0 is used in the Store
 request to indicate that the generation counter should be ignored for
 processing this request, however the responsible peer should increase
 the stored generation counter, and should return the correct
 generation counter in the response.

 For replica Stores, the peer MUST set the generation counter to match
 the generation_counter in the message, and MUST NOT check the
 generation counter against the current value. Replica Stores MUST

Jennings, et al. Expires September 8, 2009 [Page 79]

Internet-Draft RELOAD Base March 2009

 NOT use a generation counter of 0.

 When a peer stores data previously stored by another node (e.g., for
 replicas or topology shifts) it MUST adjust the lifetime value
 downward to reflect the amount of time the value was stored at the
 peer.

 The properties of stores for each data model are as follows:

 Single-value:
 A store of a new single-value element creates the element if it
 does not exist and overwrites any existing value with the new
 value.

 Array:
 A store of an array entry replaces (or inserts) the given value at
 the location specified by the index. Because arrays are sparse, a
 store past the end of the array extends it with nonexistent values
 (exists=False) as required. A store at index 0xffffffff places
 the new value at the end of the array regardless of the length of
 the array. The resulting StoredData has the correct index value
 when it is subsequently fetched.

 Dictionary:
 A store of a dictionary entry replaces (or inserts) the given
 value at the location specified by the dictionary key.

 The following figure shows the relationship between these structures
 for an example store which stores the following values at resource
 "1234"

 o The value "abc" in the single value slot for kind X
 o The value "foo" at index 0 in the array for kind Y
 o The value "bar" at index 1 in the array for kind Y

Jennings, et al. Expires September 8, 2009 [Page 80]

Internet-Draft RELOAD Base March 2009

 Store
 resource=1234
 / \
 / \
 StoreKindData StoreKindData
 kind=X kind=Y
 model=Single-Value model=Array
 | /\
 | / \
 StoredData / \
 | / \
 | StoredData StoredData
 StoredDataValue | |
 value="abc" | |
 | |
 StoredDataValue StoredDataValue
 index=0 index=1
 value="foo" value="bar"

6.4.1.2. Response Definition

 In response to a successful Store request the peer MUST return a
 StoreAns message containing a series of StoreKindResponse elements
 containing the current value of the generation counter for each
 Kind-ID, as well as a list of the peers where the data was/will-be
 replicated.

 struct {
 KindId kind;
 uint64 generation_counter;
 NodeId replicas<0..2^16-1>;
 } StoreKindResponse;

 struct {
 StoreKindResponse kind_responses<0..2^16-1>;
 } StoreAns;

 The contents of each StoreKindResponse are:

 kind

Jennings, et al. Expires September 8, 2009 [Page 81]

Internet-Draft RELOAD Base March 2009

 The Kind-ID being represented.

 generation
 The current value of the generation counter for that Kind-ID.

 replicas
 The list of other peers at which the data was/will-be replicated.
 In overlays and applications where the responsible peer is
 intended to store redundant copies, this allows the storing peer
 to independently verify that the replicas were in fact stored by
 doing its own Fetch.

 The response itself is just StoreKindResponse values packed end-to-
 end.

 If any of the generation counters in the request precede the
 corresponding stored generation counter, then the peer MUST fail the
 entire request and respond with a Error_Data_Too_Old error. The
 error_info in the ErrorResponse MUST be a StoreAns response
 containing the correct generation counter for each kind and empty
 replicas lists.

 If the data being stored is too large for the allowed limit by the
 given usage, then the peer MUST fail the request and generate an
 Error_Data_Too_Large error.

6.4.1.3. Removing Values

 This version of RELOAD (unlike previous versions) does not have an
 explicit Remove operation. Rather, values are Removed by storing
 "nonexistent" values in their place. Each DataValue contains a
 boolean value called "exists" which indicates whether a value is
 present at that location. In order to effectively remove a value,
 the owner stores a new DataValue with:

 exists = false
 value = {} (0 length)

 Storing nodes MUST treat these nonexistent values the same way they
 treat any other stored value, including overwriting the existing
 value, replicating them, and aging them out as necessary when
 lifetime expires. When a stored nonexistent value's lifetime
 expires, it is simply removed from the storing node like any other
 stored value expiration. Note that in the case of arrays and
 dictionaries, this may create an implicit, unsigned "nonexistent"
 value to represent a gap in the data structure. However, this value
 isn't persistent nor is it replicated, it's simply synthesized by the
 storing node.

Jennings, et al. Expires September 8, 2009 [Page 82]

Internet-Draft RELOAD Base March 2009

6.4.2. Fetch

 The Fetch request retrieves one or more data elements stored at a
 given Resource-ID. A single Fetch request can retrieve multiple
 different kinds.

6.4.2.1. Request Definition

 struct {
 int32 first;
 int32 last;
 } ArrayRange;

 struct {
 KindId kind;
 DataModel model;
 uint64 generation;
 uint16 length;

 select (model) {
 case single_value: ; /* Empty */

 case array:
 ArrayRange indices<0..2^16-1>;

 case dictionary:
 DictionaryKey keys<0..2^16-1>;

 /* This structure may be extended */

 } model_specifier;
 } StoredDataSpecifier;

 struct {
 ResourceId resource;
 StoredDataSpecifier specifiers<0..2^16-1>;
 } FetchReq;

 The contents of the Fetch requests are as follows:

 resource
 The resource ID to fetch from.

Jennings, et al. Expires September 8, 2009 [Page 83]

Internet-Draft RELOAD Base March 2009

 specifiers
 A sequence of StoredDataSpecifier values, each specifying some of
 the data values to retrieve.

 Each StoredDataSpecifier specifies a single kind of data to retrieve
 and (if appropriate) the subset of values that are to be retrieved.
 The contents of the StoredDataSpecifier structure are as follows:

 kind
 The Kind-ID of the data being fetched. Implementations SHOULD
 reject requests corresponding to unknown kinds unless specifically
 configured otherwise.

 model
 The data model of the data. This must be checked against the
 Kind-ID.

 generation
 The last generation counter that the requesting peer saw. This
 may be used to avoid unnecessary fetches or it may be set to zero.

 length
 The length of the rest of the structure, thus allowing
 extensibility.

 model_specifier
 A reference to the data value being requested within the data
 model specified for the kind. For instance, if the data model is
 "array", it might specify some subset of the values.

 The model_specifier is as follows:

 o If the data is of data model single value, the specifier is empty.
 o If the data is of data model array, the specifier contains of a
 list of ArrayRange elements, each of which contains two integers.
 The first integer is the beginning of the range and the second is
 the end of the range. 0 is used to indicate the first element and
 0xffffffff is used to indicate the final element. The beginning
 of the range MUST be earlier in the array then the end. The
 ranges MUST be non-overlapping.
 o If the data is of data model dictionary then the specifier
 contains a list of the dictionary keys being requested. If no
 keys are specified, than this is a wildcard fetch and all key-
 value pairs are returned.

 The generation-counter is used to indicate the requester's expected

Jennings, et al. Expires September 8, 2009 [Page 84]

Internet-Draft RELOAD Base March 2009

 state of the storing peer. If the generation-counter in the request
 matches the stored counter, then the storing peer returns a response
 with no StoredData values.

 Note that because the certificate for a user is typically stored at
 the same location as any data stored for that user, a requesting peer
 which does not already have the user's certificate should request the
 certificate in the Fetch as an optimization.

6.4.2.2. Response Definition

 The response to a successful Fetch request is a FetchAns message
 containing the data requested by the requester.

 struct {
 KindId kind;
 uint64 generation;
 StoredData values<0..2^32-1>;
 } FetchKindResponse;

 struct {
 FetchKindResponse kind_responses<0..2^32-1>;
 } FetchAns;

 The FetchAns structure contains a series of FetchKindResponse
 structures. There MUST be one FetchKindResponse element for each
 Kind-ID in the request.

 The contents of the FetchKindResponse structure are as follows:

 kind
 the kind that this structure is for.

 generation
 the generation counter for this kind.

 values
 the relevant values. If the generation counter in the request
 matches the generation-counter in the stored data, then no
 StoredData values are returned. Otherwise, all relevant data
 values MUST be returned. A nonexistent value is represented with
 "exists" set to False.

 There is one subtle point about signature computation on arrays. If
 the storing node uses the append feature (where the
 index=0xffffffff), then the index in the StoredData that is returned
 will not match that used by the storing node, which would break the

Jennings, et al. Expires September 8, 2009 [Page 85]

Internet-Draft RELOAD Base March 2009

 signature. In order to avoid this issue, the index value in array is
 set to zero before the signature is computed. This implies that
 malicious storing nodes can reorder array entries without being
 detected. [[OPEN ISSUE: We've considered a number of alternate
 designs here that would preserve security against this attack if the
 storing node did not use the append feature. However, they are more
 complicated for one or both sides. If this attack is considered
 serious, we can introduce one of them.]]

6.4.3. Stat

 The Stat request is used to get metadata (length, generation counter,
 digest, etc.) for a stored element without retrieving the element
 itself. The name is from the UNIX stat(2) system call which performs
 a similar function for files in a filesystem. It also allows the
 requesting node to get a list of matching elements without requesting
 the entire element.

6.4.3.1. Request Definition

 The Stat request is identical to the Fetch request. It simply
 specifies the elements to get metadata about.

 struct {
 ResourceId resource;
 StoredDataSpecifier specifiers<0..2^16-1>;
 } StatReq;

6.4.3.2. Response Definition

 The Stat response contains the same sort of entries that a Fetch
 response would contain, however instead of containing the element
 data it contains metadata.

 struct {
 Boolean exists;
 uint32 value_length;
 HashAlgorithm hash_algorithm;
 opaque hash_value<0..255>;
 } MetaData;

 struct {
 uint32 index;
 MetaData value;

Jennings, et al. Expires September 8, 2009 [Page 86]

Internet-Draft RELOAD Base March 2009

 } ArrayEntryMeta;

 struct {
 DictionaryKey key;
 MetaData value;
 } DictionaryEntryMeta;

 struct {
 DataModel model;

 select (model) {
 case single_value:
 MetaData single_value_entry;

 case array:
 ArrayEntryMeta array_entry;

 case dictionary:
 DictionaryEntryMeta dictionary_entry;

 /* This structure may be extended */
 } ;
 } MetaDataValue;

 struct {
 uint32 length;
 uint64 storage_time;
 uint32 lifetime;
 MetaDataValue metadata;
 } StoredMetaData;

 struct {
 KindId kind;
 uint64 generation;
 StoredMetaData values<0..2^32-1>;
 } StatKindResponse;

 struct {
 StatKindResponse kind_responses<0..2^32-1>;
 } StatAns;

 The structures used in StatAns parallel those used in FetchAns: a
 response consists of multiple StatKindResponse values, one for each
 kind that was in the request. The contents of the StatKindResponse
 are the same as those in the FetchKindResponse, except that the
 values list contains StoredMetaData entries instead of StoredData
 entries.

Jennings, et al. Expires September 8, 2009 [Page 87]

Internet-Draft RELOAD Base March 2009

 The contents of the StoredMetaData structure are the same as the
 corresponding fields in StoredData except that there is no signature
 field and the value is a MetaDataValue rather than a StoredDataValue.

 A MetaDataValue is a variant structure, like a StoredDataValue,
 except for the types of each arm, which replace DataValue with
 MetaData.

 The only really new structure is MetaData, which has the following
 contents:

 exists
 Same as in DataValue

 value_length
 The length of the stored value.

 hash_algorithm
 The hash algorithm used to perform the digest of the value.

 hash_value
 A digest of the value using hash_algorithm.

6.4.4. Find

 The Find request can be used to explore the Overlay Instance. A Find
 request for a Resource-ID R and a Kind-ID T retrieves the Resource-ID
 (if any) of the resource of kind T known to the target peer which is
 closes to R. This method can be used to walk the Overlay Instance by
 interactively fetching R_n+1=nearest(1 + R_n).

6.4.4.1. Request Definition

 The FindReq message contains a series of Resource-IDs and Kind-IDs
 identifying the resource the peer is interested in.

 struct {
 ResourceID resource;
 KindId kinds<0..2^8-1>;
 } FindReq;

 The request contains a list of Kind-IDs which the Find is for, as
 indicated below:

Jennings, et al. Expires September 8, 2009 [Page 88]

Internet-Draft RELOAD Base March 2009

 resource
 The desired Resource-ID

 kinds
 The desired Kind-IDs. Each value MUST only appear once.

6.4.4.2. Response Definition

 A response to a successful Find request is a FindAns message
 containing the closest Resource-ID for each kind specified in the
 request.

 struct {
 KindId kind;
 ResourceID closest;
 } FindKindData;

 struct {
 FindKindData results<0..2^16-1>;
 } FindAns;

 If the processing peer is not responsible for the specified
 Resource-ID, it SHOULD return a 404 error.

 For each Kind-ID in the request the response MUST contain a
 FindKindData indicating the closest Resource-ID for that Kind-ID
 unless the kind is not allowed to be used with Find in which case a
 FindKindData for that Kind-ID MUST NOT be included in the response.
 If a Kind-ID is not known, then the corresponding Resource-ID MUST be
 0. Note that different Kind-IDs may have different closest Resource-
 IDs.

 The response is simply a series of FindKindData elements, one per
 kind, concatenated end-to-end. The contents of each element are:

 kind
 The Kind-ID.

 closest
 The closest resource ID to the specified resource ID. This is 0
 if no resource ID is known.

 Note that the response does not contain the contents of the data
 stored at these Resource-IDs. If the requester wants this, it must
 retrieve it using Fetch.

Jennings, et al. Expires September 8, 2009 [Page 89]

Internet-Draft RELOAD Base March 2009

6.4.5. Defining New Kinds

 There are two ways to define a new kind. The first is by writing a
 document and registering the kind-id with IANA. This is the
 preferred method for kinds which may be widely used and reused. The
 second method is to simply define the kind and its parameters in the
 configuration document using the section of kind-id space set aside
 for private use. This method MAY be used to define ad hoc kinds in
 new overlays.

 However a kind is defined, the definition must include:

 o The meaning of the data to be stored (in some textual form).
 o The Kind-ID.
 o The data model (single value, array, dictionary, etc.)
 o The access control model.

 In addition, when kinds are registered with IANA, each kind is
 assigned a short string name which is used to refer to it in
 configuration documents.

 While each kind MUST define what data model is used for its data,
 that does not mean that it must define new data models. Where
 practical, kinds SHOULD use the built-in data models. However, they
 MAY define any new required data models. The intention is that the
 basic data model set be sufficient for most applications/usages.

7. Certificate Store Usage

 The Certificate Store usage allows a peer to store its certificate in
 the overlay, thus avoiding the need to send a certificate in each
 message - a reference may be sent instead.

 A user/peer MUST store its certificate at Resource-IDs derived from
 two Resource Names:

 o The user name in the certificate.
 o The Node-ID in the certificate.

 Note that in the second case the certificate is not stored at the
 peer's Node-ID but rather at a hash of the peer's Node-ID. The
 intention here (as is common throughout RELOAD) is to avoid making a
 peer responsible for its own data.

 A peer MUST ensure that the user's certificates are stored in the
 Overlay Instance. New certificates are stored at the end of the
 list. This structure allows users to store and old and new

Jennings, et al. Expires September 8, 2009 [Page 90]

Internet-Draft RELOAD Base March 2009

 certificate the both have the same Node-ID which allows for migration
 of certificates when they are renewed.

 This usage defines the following kind:

 Name: CERTIFICATE

 Data Model: The data model for CERTIFICATE data is array.

 Access Control: NODE-MATCH.

8. TURN Server Usage

 The TURN server usage allows a RELOAD peer to advertise that it is
 prepared to be a TURN server as defined in [I-D.ietf-behave-turn].
 When a node starts up, it joins the overlay network and forms several
 connection in the process. If the ICE stage in any of these
 connection return a reflexive address that is not the same as the
 peers perceived address, then the peers is behind a NAT and not an
 candidate for a TURN server. Additionally, if the peers IP address
 is in the private address space range, then it is not a candidate for
 a TURN server. Otherwise, the peer SHOULD assume it is a potential
 TURN server and follow the procedures below.

 If the node is a candidate for a TURN server it will insert some
 pointers in the overlay so that other peers can find it. The overlay
 configuration file specifies a turnDensity parameter that indicates
 how many times each TURN server should record itself in the overlay.
 Typically this should be set to the reciprocal of the estimate of
 what percentage of peers will act as TURN servers. For each value,
 called d, between 1 and turnDensity, the peer forms a Resource Name
 by concatenating its Peer-ID and the value d. This Resource Name is
 hashed to form a Resource-ID. The address of the peer is stored at
 that Resource-ID using type TURN-SERVICE and the TurnServer object:

 struct {
 uint8 iteration;
 IpAddressAndPort server_address;
 } TurnServer;

 The contents of this structure are as follows:

Jennings, et al. Expires September 8, 2009 [Page 91]

Internet-Draft RELOAD Base March 2009

 iteration
 the d value

 server_address
 the address at which the TURN server can be contacted.

 Note: Correct functioning of this algorithm depends critically on
 having turnDensity be an accurate estimate of the true density of
 TURN servers. If turnDensity is too high, then the process of
 finding TURN servers becomes extremely expensive as multiple
 candidate Resource-IDs must be probed.

 Peers peers that provide this service need to support the TURN
 extensions to STUN for media relay of both UDP and TCP traffic as
 defined in [I-D.ietf-behave-turn] and [RFC5382].

 [[OPEN ISSUE: This structure only works for TURN servers that have
 public addresses. It may be possible to use TURN servers that are
 behind well-behaved NATs by first ICE connecting to them. If we
 decide we want to enable that, this structure will need to change to
 either be a Peer-ID or include that as an option.]]

 This usage defines the following kind to indicate that the a peer is
 willing to act as a TURN server:

 Name TURN-SERVICE
 Data Model The TURN-SERVICE kind stores a single value for each
 Resource-ID.
 Access Control NODE-MULTIPLE, with maximum iteration counter 20.

 Peers can find other servers by selecting a random Resource-ID and
 then doing a Find request for the appropriate server type with that
 Resource-ID. The Find request gets routed to a random peer based on
 the Resource-ID. If that peer knows of any servers, they will be
 returned. The returned response may be empty if the peer does not
 know of any servers, in which case the process gets repeated with
 some other random Resource-ID. As long as the ratio of servers
 relative to peers is not too low, this approach will result in
 finding a server relatively quickly.

9. Chord Algorithm

 This algorithm is assigned the name chord-128-2-16+ to indicate it is
 based on Chord, uses SHA-1 then truncates that to 128 bit for the
 hash function, stores 2 redundant copies of all data, and has finger
 tables with at least 16 entries.

https://datatracker.ietf.org/doc/html/rfc5382

Jennings, et al. Expires September 8, 2009 [Page 92]

Internet-Draft RELOAD Base March 2009

9.1. Overview

 The algorithm described here is a modified version of the Chord
 algorithm. Each peer keeps track of a finger table of 16 entries and
 a neighbor table of 6 entries. The neighbor table contains the 3
 peers before this peer and the 3 peers after it in the DHT ring. The
 first entry in the finger table contains the peer half-way around the
 ring from this peer; the second entry contains the peer that is 1/4
 of the way around; the third entry contains the peer that is 1/8th of
 the way around, and so on. Fundamentally, the chord data structure
 can be thought of a doubly-linked list formed by knowing the
 successors and predecessor peers in the neighbor table, sorted by the
 Node-ID. As long as the successor peers are correct, the DHT will
 return the correct result. The pointers to the prior peers are kept
 to enable inserting of new peers into the list structure. Keeping
 multiple predecessor and successor pointers makes it possible to
 maintain the integrity of the data structure even when consecutive
 peers simultaneously fail. The finger table forms a skip list, so
 that entries in the linked list can be found in O(log(N)) time
 instead of the typical O(N) time that a linked list would provide.

 A peer, n, is responsible for a particular Resource-ID k if k is less
 than or equal to n and k is greater than p, where p is the peer id of
 the previous peer in the neighbor table. Care must be taken when
 computing to note that all math is modulo 2^128.

9.2. Reactive vs Periodic Recovery

 Open Issue: The algorithm currently presented in this section uses
 reactive recovery when a neighbor is lost, that information is
 immediately propagated. Research in DHT performance by Rhea et al.
 indicates that this is not optimal in large-scale networks with churn
 [handling-churn-usenix04]. Addressing this issue, however, needs to
 take into account the requirements placed on this algorithm. Because
 it is the mandatory DHT for RELOAD, the algorithm described here is
 designed to meet two primary challenges:
 o Scale from small (ten or fewer) overlays on a LAN to global
 overlays with millions of nodes
 o Simple to implement

 One of the challenges these requirements entail is achieving
 reasonable performance as the overlay scales without undue
 complexity. We have two possibly conflicting concerns:
 o A small-scale overlay may not be stable without reactive recovery,
 because a single peer represents a large portion of the overlay.
 o A large-scale overlay with significant churn may perform poorly,
 both in terms of traffic volume and success rates, when using
 reactive recovery.

Jennings, et al. Expires September 8, 2009 [Page 93]

Internet-Draft RELOAD Base March 2009

 As a result, multiple solutions have been proposed:
 o Identify one set of behaviors that achieves adequate functionality
 as the overlay scales.
 o Add a parameter dictating the type of recovery used by peers in
 the overlay, configuring the peers appropriately as they join the
 overlay.
 o Make the algorithm adaptive, according to the size of the overlay
 or the churn rates observed.

 At IETF 72, the WG elected to defer a decision on the final choice
 until data could be collected on the effectiveness of the strategies.
 This section, therefore, retains the reactive recovery model until
 evidence supporting a decision is available.

9.3. Routing

 If a peer is not responsible for a Resource-ID k, but is directly
 connected to a node with Node-ID k, then it routes the message to
 that node. Otherwise, it routes the request to the peer in the
 routing table that has the largest Node-ID that is in the interval
 between the peer and k. The routing table is the union of the
 neighbor table and the finger table.

9.4. Redundancy

 When a peer receives a Store request for Resource-ID k, and it is
 responsible for Resource-ID k, it stores the data and returns a
 success response. [[Open Issue: should it delay sending this
 success until it has successfully stored the redundant copies?]]. It
 then sends a Store request to its successor in the neighbor table and
 to that peers successor. Note that these Store requests are
 addressed to those specific peers, even though the Resource-ID they
 are being asked to store is outside the range that they are
 responsible for. The peers receiving these check they came from an
 appropriate predecessor in their neighbor table and that they are in
 a range that this predecessor is responsible for, and then they store
 the data. They do not themselves perform further Stores because they
 can determine that they are not responsible for the Resource-ID.

 Note that a malicious node can return a success response but not
 store the data locally or in the replica set. Requesting peers that
 wish to ensure that the replication actually occurred SHOULD [[Open
 Issue: SHOULD or MAY?]] contact each peer listed in the replicas
 field of the Store response and retrieve a copy of the data.

Jennings, et al. Expires September 8, 2009 [Page 94]

Internet-Draft RELOAD Base March 2009

9.5. Joining

 The join process for a joining party (JP) with Node-ID n is as
 follows.

 1. JP connects to its chosen bootstrap node.
 2. JP uses a series of Probes to populate its routing table.
 3. JP sends Attach requests to initiate connections to each of the
 peers in the connection table as well as to the desired finger
 table entries. Note that this does not populate their routing
 tables, but only their connection tables, so JP will not get
 messages that it is expected to route to other nodes.
 4. JP enters all the peers it contacted into its routing table.
 5. JP sends a Join to its immediate successor, the admitting peer
 (AP) for Node-ID n. The AP sends the response to the Join.
 6. AP does a series of Store requests to JP to store the data that
 JP will be responsible for.
 7. AP sends JP an Update explicitly labeling JP as its predecessor.
 At this point, JP is part of the ring and responsible for a
 section of the overlay. AP can now forget any data which is
 assigned to JP and not AP.
 8. AP sends an Update to all of its neighbors with the new values of
 its neighbor set (including JP).
 9. JP sends Updates to all the peers in its routing table.

 In order to populate its routing table, JP sends a Probe via the
 bootstrap node directed at Resource-ID n+1 (directly after its own
 Resource-ID). This allows it to discover its own successor. Call
 that node p0. It then sends a probe to p0+1 to discover its
 successor (p1). This process can be repeated to discover as many
 successors as desired. The values for the two peers before p will be
 found at a later stage when n receives an Update.

 In order to set up its neighbor table entry for peer i, JP simply
 sends an Attach to peer (n+2^(numBitsInNodeId-i). This will be
 routed to a peer in approximately the right location around the ring.

9.6. Routing Attaches

 When a peer needs to Attach to a new peer in its neighbor table, it
 MUST source-route the Attach request through the peer from which it
 learned the new peer's Node-ID. Source-routing these requests allows
 the overlay to recover from instability.

 All other Attach requests, such as those for new finger table
 entries, are routed conventionally through the overlay.

 If a peer is unable to successfully Attach with a peer that should be

Jennings, et al. Expires September 8, 2009 [Page 95]

Internet-Draft RELOAD Base March 2009

 in its neighborhood, it MUST locate either a TURN server or another
 peer in the overlay, but not in its neighborhood, through which it
 can exchange messages with its neighbor peer

9.7. Updates

 A chord Update is defined as

 enum { reserved (0),
 peer_ready(1), neighbors(2), full(3), (255) }
 ChordUpdateType;

 struct {
 ChordUpdateType type;

 select(type){
 case peer_ready: /* Empty */
 ;

 case neighbors:
 NodeId predecessors<0..2^16-1>;
 NodeId successors<0..2^16-1>;

 case full:
 NodeId predecessors<0..2^16-1>;
 NodeId successors<0..2^16-1>;
 NodeId fingers<0..2^16-1>;
 };
 } ChordUpdate;

 The "type" field contains the type of the update, which depends on
 the reason the update was sent.

 peer_ready: this peer is ready to receive messages. This message
 is used to indicate that a node which has Attached is a peer and
 can be routed through. It is also used as a connectivity check to
 non-neighbor peers.
 neighbors: this version is sent to members of the Chord neighbor
 table.
 full: this version is sent to peers which request an Update with a
 RouteQueryReq.

 If the message is of type "neighbors", then the contents of the
 message will be:

Jennings, et al. Expires September 8, 2009 [Page 96]

Internet-Draft RELOAD Base March 2009

 predecessors
 The predecessor set of the Updating peer.

 successors
 The successor set of the Updating peer.

 If the message is of type "full", then the contents of the message
 will be:

 predecessors
 The predecessor set of the Updating peer.

 successors
 The successor set of the Updating peer.

 fingers
 The finger table if the Updating peer, in numerically ascending
 order.

 A peer MUST maintain an association (via Attach) to every member of
 its neighbor set. A peer MUST attempt to maintain at least three
 predecessors and three successors. However, it MUST send its entire
 set in any Update message sent to neighbors.

9.7.1. Sending Updates

 Every time a connection to a peer in the neighbor table is lost (as
 determined by connectivity probes or failure of some request), the
 peer should remove the entry from its neighbor table and replace it
 with the best match it has from the other peers in its routing table.
 It then sends an Update to all its remaining neighbors. The update
 will contain all the Node-IDs of the current entries of the table
 (after the failed one has been removed). Note that when replacing a
 successor the peer SHOULD delay the creation of new replicas for 30
 seconds after removing the failed entry from its neighbor table in
 order to allow a triggered update to inform it of a better match for
 its neighbor table.

 If connectivity is lost to all three of the peers that follow this
 peer in the ring, then this peer should behave as if it is joining
 the network and use Probes to find a peer and send it a Join. If
 connectivity is lost to all the peers in the finger table, this peer
 should assume that it has been disconnected from the rest of the
 network, and it should periodically try to join the DHT.

Jennings, et al. Expires September 8, 2009 [Page 97]

Internet-Draft RELOAD Base March 2009

9.7.2. Receiving Updates

 When a peer, N, receives an Update request, it examines the Node-IDs
 in the UpdateReq and at its neighbor table and decides if this
 UpdateReq would change its neighbor table. This is done by taking
 the set of peers currently in the neighbor table and comparing them
 to the peers in the update request. There are three major cases:

 o The UpdateReq contains peers that would not change the neighbor
 set because they match the neighbor table.
 o The UpdateReq contains peers closer to N than those in its
 neighbor table.
 o The UpdateReq defines peers that indicate a neighbor table further
 away from N than some of its neighbor table. Note that merely
 receiving peers further away does not demonstrate this, since the
 update could be from a node far away from N. Rather, the peers
 would need to bracket N.

 In the first case, no change is needed.

 In the second case, N MUST attempt to Attach to the new peers and if
 it is successful it MUST adjust its neighbor set accordingly. Note
 that it can maintain the now inferior peers as neighbors, but it MUST
 remember the closer ones.

 The third case implies that a neighbor has disappeared, most likely
 because it has simply been disconnected but perhaps because of
 overlay instability. N MUST Probe the questionable peers to discover
 if they are indeed missing and if so, remove them from its neighbor
 table.

 After any Probes and Attaches are done, if the neighbor table
 changes, the peer sends an Update request to each of its neighbors
 that was in either the old table or the new table. These Update
 requests are what ends up filling in the predecessor/successor tables
 of peers that this peer is a neighbor to. A peer MUST NOT enter
 itself in its successor or predecessor table and instead should leave
 the entries empty.

 If peer N which is responsible for a Resource-ID R discovers that the
 replica set for R (the next two nodes in its successor set) has
 changed, it MUST send a Store for any data associated with R to any
 new node in the replica set. It SHOULD NOT delete data from peers
 which have left the replica set.

 When a peer N detects that it is no longer in the replica set for a
 resource R (i.e., there are three predecessors between N and R), it
 SHOULD delete all data associated with R from its local store.

Jennings, et al. Expires September 8, 2009 [Page 98]

Internet-Draft RELOAD Base March 2009

9.7.3. Stabilization

 There are four components to stabilization:
 1. exchange Updates with all peers in its routing table to exchange
 state
 2. search for better peers to place in its finger table
 3. search to determine if the current finger table size is
 sufficiently large
 4. search to determine if the overlay has partitioned and needs to
 recover

 A peer MUST periodically send an Update request to every peer in its
 routing table. The purpose of this is to keep the predecessor and
 successor lists up to date and to detect connection failures. The
 default time is about every ten minutes, but the enrollment server
 SHOULD set this in the configuration document using the "chord-128-2-
 16+-update-frequency" element (denominated in seconds.) A peer
 SHOULD randomly offset these Update requests so they do not occur all
 at once. If an Update request fails or times out, the peer MUST mark
 that entry in the neighbor table invalid and attempt to reestablish a
 connection. If no connection can be established, the peer MUST
 attempt to establish a new peer as its neighbor and do whatever
 replica set adjustments are required. If a finger table entry is
 found to have failed, the peer MUST search for a replacement as
 directed below.

 A peer MUST periodically select a random entry i from the finger
 table and evaluate whether that entry should be replaced. The
 default time interval is about every hour, but the enrollment server
 SHOULD set this in the configuration document using the "chord-128-2-
 16+-probe-frequency" element (denominated in seconds).

 To evaluate whether the i'th finger table entry needs to be replaced,
 if the Node-ID of the entry is not valid for that finger table entry,
 the peer SHOULD search for a better entry. A peer searches for a
 better entry using a Probe request. If the Probe returns a different
 peer than the one currently in this entry of the finger table, then a
 new connection should be formed to replace the old entry in the
 finger table.

 A peer SHOULD consider the finger table entry valid if it is in the
 range [n+2^(numBitsInNodeId-i), n+2^(numBitsInNodeId-(i-1))-
 2^(numBitsInNodeId-(i+1))]. When searching for a better entry, the
 peer SHOULD send the Probe to a Node-ID selected randomly from that
 range. Random selection is preferred over a search for strictly
 spaced entries to minimize the effect of churn on overlay routing
 [minimizing-churn-sigcomm06]. An implementation or subsequent
 specification MAY choose a method for selecting finger table entries

Jennings, et al. Expires September 8, 2009 [Page 99]

Internet-Draft RELOAD Base March 2009

 other than choosing randomly within the range. It is RECOMMENDED
 that any such alternate methods be employed only on finger table
 stabilization and not for the selection of initial finger table
 entries unless the alternative method is faster and imposes less
 overhead on the overlay.

 As an overlay grows, more than 16 entries may be required in the
 finger table for efficient routing. To determine if its finger table
 is sufficiently large, once an hour the peer should perform a Probe
 to determine whether growing its finger table by four entries would
 result in it learning at least two peers that it does not already
 have in its neighbor table. If so, then the finger table SHOULD be
 grown by four entries. Similarly, if the peer observes that its
 closest finger table entries are also in its neighbor table, it MAY
 shrink its finger table to the minimum size of 16 entries. [[OPEN
 ISSUE: there are a variety of algorithms to gauge the population of
 the overlay and select an appropriate finger table size. Need to
 consider which is the best combination of effectiveness and
 simplicity. Also, an example would help here.]]

 To detect that a partitioning has occurred and to heal the overlay, a
 peer P MUST periodically repeat the discovery process used in the
 initial join for the overlay to locate an appropriate bootstrap peer,
 B. If an overlay has multiple mechanisms for discovery it should
 randomly select a method to locate a bootstrap peer. P should then
 send a Probe for its own Node-ID routed through B. If a response is
 received from a peer S', which is not P's successor, then the overlay
 is partitioned and P should send a Attach to S' routed through B,
 followed by an Update sent to S'. (Note that S' may not be in P's
 neighbor table once the overlay is healed, but the connection will
 allow S' to discover appropriate neighbor entries for itself via its
 own stabilization.)

9.8. Route Query

 For this topology plugin, the RouteQueryReq contains no additional
 information. The RouteQueryAns contains the single node ID of the
 next peer to which the responding peer would have routed the request
 message in recursive routing:

 struct {
 NodeId next_id;
 } ChordRouteQueryAns;

 The contents of this structure are as follows:

Jennings, et al. Expires September 8, 2009 [Page 100]

Internet-Draft RELOAD Base March 2009

 next_peer
 The peer to which the responding peer would route the message to
 in order to deliver it to the destination listed in the request.

 If the requester set the send_update flag, the responder SHOULD
 initiate an Update immediately after sending the RouteQueryAns.

9.9. Leaving

 Peers SHOULD send a Leave request prior to exiting the Overlay
 Instance. Any peer which receives a Leave for a peer n in its
 neighbor set must remove it from the neighbor set, update its replica
 sets as appropriate (including Stores of data to new members of the
 replica set) and send Updates containing its new predecessor and
 successor tables.

10. Enrollment and Bootstrap

10.1. Overlay Configuration

 This specification defines a new content type "application/
 p2p-overlay+xml" for an MIME entity that contains overlay
 information. An example document is shown below.

Jennings, et al. Expires September 8, 2009 [Page 101]

Internet-Draft RELOAD Base March 2009

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="config-schema.rnc" type="compact"?>

<overlay xmlns="urn:ietf:params:xml:ns:p2p:config-base"
 xmlns:ext="urn:ietf:params:xml:ns:p2p:config-ext1"
 xmlns:chord="urn:ietf:params:xml:ns:p2p:config-chord-128-2">
 <configuration instance-name="overlay.example.org" sequence="22"
 expiration="2002-10-10T07:00:00Z">
 <attach-lite-permitted>false</attach-lite-permitted>
 <bootstrap-peer>192.0.0.1:5678</bootstrap-peer>
 <bootstrap-peer>192.0.2.2:6789</bootstrap-peer>
 <initial-ttl> 30 </initial-ttl>
 <clients-permitted>false</clients-permitted>
 <max-message-size>4000</max-message-size>
 <credential-server>https://example.org</credential-server>
 <ext:example-extention> foo </ext:example-extention>
 <multicast-bootstrap>192.0.0.3:5678</multicast-bootstrap>
 <chord:probe-frequency>300</chord:probe-frequency>
 <chord:update-frequency>400</chord:update-frequency>
 <self-signed-permitted digest="sha1">false</self-signed-permitted>
 <shared-secret>asecret</shared-secret>
 <topology-plugin>Chord-128-2-16</topology-plugin>
 <root-cert>TODO</root-cert>
 <required-kinds>
 <kind name="sip-registration">
 <data-model>single</data-model>
 <access-control>user-match</access-control>
 <max-count>1</max-count>
 <max-size>100</max-size>
 </kind>
 <kind id="2000">
 <data-model>array</data-model>
 <access-control>user-match</access-control>
 <max-count>22</max-count>
 <max-size>4</max-size>
 <ext:example-kind-extention>1</ext:example-kind-extention>
 </kind>
 </required-kinds>
 </configuration>
 <signature>TODO BASE 64 encoded signature block</signature>
</overlay>

 The file MUST be a well formed XML document and it SHOULD contain an
 encoding declaration in the XML declaration. If the charset
 parameter of the MIME content type declaration is present and it is
 different from the encoding declaration, the charset parameter takes
 precedence. Every application conforming to this specification MUST
 accept the UTF-8 character encoding to ensure minimal

Jennings, et al. Expires September 8, 2009 [Page 102]

Internet-Draft RELOAD Base March 2009

 interoperability. The namespace for the elements defined in this
 specification is urn:ietf:params:xml:ns:p2p:config-base and
 urn:ietf:params:xml:ns:p2p:config-chord-128-2".

 The file can contain multiple "configuration" elements where each one
 contains the configuration information for a different overlay. Each
 "configuration" has the following attributes:

 instance-name: name of the overlay
 expiration: time in future at which this overlay configuration is
 not longer valid and need to be retrieved again
 sequence: a monotonically increasing sequence number between 1 and
 65534

 Inside each overlay element, the following elements can occur:

 topology-plugin This element has an attribute called algorithm-name
 that describes the overlay-algorithm being used.
 root-cert This element contains a PEM encoded X.509v3 certificate
 that is the root trust store used to sign all certificates in this
 overlay. There can be more than one of these.
 required-kinds This element indicates the kinds that members must
 support. It has three attributes:
 * kind: either a string representing the kind (the name
 registered to IANA) or an integer kind-id allocated out of
 private space
 * max-count: the maximum number of values which members of the
 overlay must support.
 * data-model: the data model to be used.
 * max-size: the maximum size of individual values.
 * access-control: the access control model to be used.
 All of these values MUST be provided. If the kind is registered
 with IANA, the data-model and access-control attributes MUST match
 those in the kind registration. For instance, the example above
 indicates that members must support SIP-REGISTRATION with a
 maximum of 10 values of up to 1000 bytes each. Multiple required-
 kinds elements MAY be present. [TODO: we need some way to
 indicate iteration counters for NODE-MULTIPLE. Can some XML
 wizard help?]
 credential-server This element contains the URL at which the
 credential server can be reached in a "url" element. This URL
 MUST be of type "https:". More than one credential-server element
 may be present.
 self-signed-permitted This element indicates whether self-signed
 certificates are permitted. If it is set to "true", then self-
 signed certificates are allowed, in which case the credential-
 server and root-cert elements may be absent. Otherwise, it SHOULD
 be absent, but MAY be set "false". This element also contains an

Jennings, et al. Expires September 8, 2009 [Page 103]

Internet-Draft RELOAD Base March 2009

 attribute "digest" which indicates the digest to be used to
 compute the Node-ID. Valid values for this parameter are "SHA-1"
 and "SHA-256".
 bootstrap-peer This elements represents the address of one of the
 bootstrap peers. It has an attribute called "address" that
 represents the IP address (either IPv4 or IPv6, since they can be
 distinguished) and an attribute called "port" that represents the
 port. More than one bootstrap-peer element may be present.
 multicast-bootstrap This element represents the address of a
 multicast address and port that may be used for bootstrap and that
 peers SHOULD listen on to enable bootstrap. It has an attributed
 called "address" that represents the IP address and an attribute
 called "port" that represents the port. More than one "multicast-
 bootstrap" element may be present.
 clients-permitted This element represents whether clients are
 permitted or whether all nodes must be peers. If it is set to
 "TRUE" or absent, this indicates that clients are permitted. If
 it is set to "FALSE" then nodes MUST join as peers.
 attach-lite-permitted This element represents whether nodes are
 allowed to use the AttachLite request in this overlay. If it is
 absent, it is treated as if it was set to "FALSE".
 chord-128-2-16+-update-frequency The update frequency for the
 Chord-128-2-16+ topology plugin (see Section 9).
 chord-128-2-16+-probe-frequency The probe frequency for the Chord-
 128-2-16+ topology plugin (see Section 9).
 credential-server Base URL for credential server.
 shared-secret If shared secret mode is used, this contains the
 shared secret.
 max-message-size Maximum size in bytes of any message in the
 overlay. If this value is not present, the default is 5000.
 initial-ttl Initial default TTL (time to live, see section XXX) for
 messages. If this value is not present, the default is 100.

 The configuration file is a binary file and can not be changed,
 including whitepsace changes or the signature will break. The
 signature is computed by taking each configuration element and
 starting form, and including, the first < at the start of
 <configuration> up to and including the > in </configuration> and
 treating this as a binary blob thats sigend using the standard
 SecurityBlock defined in Section 5.3.4. The SecurityBlock is base 64
 encoded using base64 alphabet from RFC[RFC4648] and put in the
 signature element following the configuration object in the config
 file.

10.1.1. Relax NG Grammars

 The grammar for the configuration data is:

Jennings, et al. Expires September 8, 2009 [Page 104]

Internet-Draft RELOAD Base March 2009

namespace chord = "urn:ietf:params:xml:ns:p2p:config-chord-128-2"
namespace local = ""
default namespace p2pcf = "urn:ietf:params:xml:ns:p2p:config-base"
namespace rng = "http://relaxng.org/ns/structure/1.0"

anything =
 (element * { anything }
 | attribute * { text }
 | text)*
foreign-elements = element * - (p2pcf:* | local:* | chord:*) { anything }*
hostPort = text
start =
 element p2pcf:overlay {
 element configuration {
 attribute instance-name { text },
 attribute expiration { xsd:dateTime },
 attribute sequence { xsd:long },
 parameter
 },
 element signature {
 attribute algorithm { signature-algorithm-type }?,
 xsd:base64Binary
 }?
 }
signature-algorithm-type |= "rsa-sha1"
parameter &= element topology-plugin { topology-plugin-type }
parameter &= element max-message-size { xsd:int }?
parameter &= element initial-ttl { xsd:int }?
parameter &= element root-cert { text }?
parameter &= element required-kinds { kinds* }
parameter &= element credential-server { xsd:anyURI }?
parameter &=
 element self-signed-permitted {
 attribute digest { self-signed-digest-type },
 xsd:boolean
 }?
self-signed-digest-type |= "sha1"
parameter &=
 element bootstrap-peer { hostPort
 }+
parameter &=
 element multicast-bootstrap { hostPort
 }*
parameter &= element clients-permitted { xsd:boolean }?
parameter &= element attach-lite-permitted { xsd:boolean }?
parameter &= element shared-secret { xsd:string }?
parameter &= foreign-elements*
kinds =

Jennings, et al. Expires September 8, 2009 [Page 105]

Internet-Draft RELOAD Base March 2009

 element kind {
 (attribute name { kind-names }
 | attribute id { xsd:int }),
 kind-paramter
 }
kind-paramter &= element max-count { xsd:int }
kind-paramter &= element max-size { xsd:int }
kind-paramter &= element data-model { data-model-type }
data-model-type |= "single"
data-model-type |= "array"
data-model-type |= "dictionary"
kind-paramter &= element access-control { access-control-type }
kind-paramter &= element max-node-muliple { xsd:int }
access-control-type |= "user-match"
access-control-type |= "node-match"
access-control-type |= "user-node-match"
access-control-type |= "node-multiple"
access-control-type |= "user-match-with-anon-create"
kind-paramter &= foreign-elements*
Chord specific paramters
topology-plugin-type |= "Chord-128-2-16"
kind-names |= "sip-registration"
kind-names |= "turn-service"
parameter &= element chord:update-frequency { xsd:int }?
parameter &= element chord:probe-frequency { xsd:int }?

10.2. Discovery Through Enrollment Server

 When a peer first joins a new overlay, it starts with a discovery
 process to find an enrollment server. Related work to the approach
 used here is described in [I-D.garcia-p2psip-dns-sd-bootstrapping]
 and [I-D.matthews-p2psip-bootstrap-mechanisms]. Another scheme for
 referencing overlays is described in
 [I-D.hardie-p2poverlay-pointers]. The peer first determines the
 overlay name. This value is provided by the user or some other out
 of band provisioning mechanism. If the name is an IP address, that
 is directly used otherwise the peer MUST do a DNS SRV query using a
 Service name of "p2p_enroll" and a protocol of tcp to find an
 enrollment server.

 Once an address for the enrollment servers is determined, the peer
 forms an HTTPS connection to that IP address. The certificate MUST
 match the overlay name as described in [RFC2818].

 Whenever a peer contacts the enrollment server, it MUST fetch a new
 copy of the configuration file. To do this, the peer performs a GET
 to the URL formed by appending a path of "/p2psip/enroll" to the
 overlay name. For example, if the overlay name was example.com, the

https://datatracker.ietf.org/doc/html/rfc2818

Jennings, et al. Expires September 8, 2009 [Page 106]

Internet-Draft RELOAD Base March 2009

 URL would be "https://example.com/p2psip/enroll". The result is an
 XML configuration file described above, which replaces any previously
 learned configuration file for this overlay.

 [[OPEN ISSUE: for unsecured overlays or overlays not specified by
 domain name, need to specify another way to obtain/validate certs and
 to update configuration info]]

10.3. Credentials

 If the configuration document contains a credential-server element,
 credentials are required to join the Overlay Instance. A peer which
 does not yet have credentials MUST contact the credential server to
 acquire them.

 RELOAD defines its own trivial certificate request protocol. We
 would have liked to use an existing protocol, but were concerned
 about the implementation burden of even the simplest of those
 protocols, such as [RFC5272]) and [RFC5273]. Our objective was to
 have a protocol which could be easily implemented in a Web server
 which the operator did not control (e.g., in a hosted service) and
 was compatible with the existing certificate handling tooling as used
 with the Web certificate infrastructure. This means accepting bare
 PKCS#10 requests and returning a single bare X.509 certificate.
 Although the MIME types for these objects are defined, none of the
 existing protocols support exactly this model.

 The certificate request protocol is performed over HTTPS. The
 request is an HTTP POST with the following properties:

 o If authentication is required, there is a URL parameter of
 "password" containing the user's password in the clear (hence the
 need for HTTPS)
 o The body is of content type "application/pkcs10", as defined in
 [RFC2311].
 o The Accept header contains the type "application/pkix-cert",
 indicating the type that is expected in the response.

 The credential server MUST authenticate the request using the
 provided user name and password. If the authentication succeeds and
 the requested user name is acceptable, the server and returns a
 certificate. The SubjectAltName field in the certificate contains
 the following values:

 o One or more Node-IDs which MUST be cryptographically random
 [RFC4086]. These MUST be chosen by the credential server in such
 a way that they are unpredictable to the requesting user. These
 are of type URI and MUST contain RELOAD URIs as described in

https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc5273
https://datatracker.ietf.org/doc/html/rfc2311
https://datatracker.ietf.org/doc/html/rfc4086

Jennings, et al. Expires September 8, 2009 [Page 107]

Internet-Draft RELOAD Base March 2009

Section 13.12 and MUST contain a Destination list with a single
 entry of type "node_id".
 o The names this user is allowed to use in the overlay, using type
 rfc822Name.

 The certificate is returned as type "application/pkix-cert", with an
 HTTP status code of 200 OK. Certificate processing errors should be
 treated as HTTP errors and have appropriate HTTP stats codes. [TODO:
 There needs to be some text here about how the interaction with other
 HTTP features works. This awaits the example from the apps ADs with
 HELD.]

 The client MUST check that the certificate returned was signed by one
 of the certificates received in the "root-cert" list of the overlay
 configuration data. The peer then reads the certificate to find the
 Node-IDs it can use.

10.3.1. Self-Generated Credentials

 If the "self-signed-permitted" element is present and set to "TRUE",
 then a node MUST generate its own self-signed certificate to join the
 overlay. The self-signed certificate MAY contain any user name of
 the users choice. Users SHOULD make some attempt to make it unique
 but this document does not specify any mechanisms for that.

 The Node-ID MUST be computed by applying the digest specified in the
 self-signed-permitted element to the DER representation of the user's
 public key. When accepting a self-signed certificate, nodes MUST
 check that the Node-ID and public keys match. This prevents Node-ID
 theft.

 Once the node has constructed a self-signed certificate, it MAY join
 the overlay. Before storing its certificate in the overlay
 (Section 7) it SHOULD look to see if the user name is already taken
 and if so choose another user name. Note that this only provides
 protection against accidental name collisions. Name theft is still
 possible. If protection against name theft is desired, then the
 enrollment service must be used.

10.4. Joining the Overlay Peer

 In order to join the overlay, the peer MUST contact a peer.
 Typically this means contacting the bootstrap peers, since they are
 guaranteed to have public IP addresses (the system should not
 advertise them as bootstrap peers otherwise). If the peer has cached
 peers it SHOULD contact them first by sending a Probe request to the
 known peer address with the destination Node-ID set to that peer's
 Node-ID.

Jennings, et al. Expires September 8, 2009 [Page 108]

Internet-Draft RELOAD Base March 2009

 If no cached peers are available, then the peer SHOULD send a Probe
 request to the address and port found in the broadcast-peers element
 in the configuration document. This MAY be a multicast or anycast
 address. The Probe should use the wildcard Node-ID as the
 destination Node-ID.

 The responder peer that receives the Probe request SHOULD check that
 the overlay name is correct and that the requester peer sending the
 request has appropriate credentials for the overlay before responding
 to the Probe request even if the response is only an error.

 When the requester peer finally does receive a response from some
 responding peer, it can note the Node-ID in the response and use this
 Node-ID to start sending requests to join the Overlay Instance as
 described in Section 5.4.

 After a peer has successfully joined the overlay network, it SHOULD
 periodically look at any peers to which it has managed to form direct
 connections. Some of these peers MAY be added to the cached-peers
 list and used in future boots. Peers that are not directly connected
 MUST NOT be cached. The RECOMMENDED number of peers to cache is 10.

11. Message Flow Example

 In the following example, we assume that JP has formed a connection
 to one of the bootstrap peers. JP then sends an Attach through that
 peer to the admitting peer (AP) to initiate a connection. When AP
 responds, JP and AP use ICE to set up a connection and then set up
 TLS.

Jennings, et al. Expires September 8, 2009 [Page 109]

Internet-Draft RELOAD Base March 2009

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach Dest=JP | | | | |
 |-->|
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=JP | | |
 | | |<--------------------------------------|
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=JP | | |
 | | |-------->| | | |
 | | | | | | |
 | | | | | | |
 | | |AttachAns | | |
 | | |<--------| | | |
 | | | | | | |
 | | | | | | |
 | | |AttachAns | | |
 | | |-------------------------------------->|
 | | | | | | |
 | | | | | | |
 |AttachAns | | | | |
 |<--|
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |.............................| | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |

 Once JP has connected to AP, it needs to populate its Routing Table.
 In Chord, this means that it needs to populate its neighbor table and
 its finger table. To populate its neighbor table, it needs the
 successor of AP, NP. It sends an Attach to the Resource-IP AP+1,
 which gets routed to NP. When NP responds, JP and NP use ICE and TLS
 to set up a connection.

 [[TODO: there should be a Probe here before populating]]

Jennings, et al. Expires September 8, 2009 [Page 110]

Internet-Draft RELOAD Base March 2009

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach AP+1 | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | | |Attach AP+1 | |
 | | | |-------->| | |
 | | | | | | |
 | | | | | | |
 | | | |AttachAns | |
 | | | |<--------| | |
 | | | | | | |
 | | | | | | |
 |AttachAns | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |Attach | | | | | |
 |-------------------------------------->| | |
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |.......................................| | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |

 JP also needs to populate its finger table (for Chord). It issues a
 Attach to a variety of locations around the overlay. The diagram
 below shows it sending an Attach halfway around the Chord ring the JP
 + 2^127.

Jennings, et al. Expires September 8, 2009 [Page 111]

Internet-Draft RELOAD Base March 2009

 JP NP XX TP
 | | | |
 | | | |
 | | | |
 |Attach JP+2<<126 | |
 |-------->| | |
 | | | |
 | | | |
 | |Attach JP+2<<126 |
 | |-------->| |
 | | | |
 | | | |
 | | |Attach JP+2<<126
 | | |-------->|
 | | | |
 | | | |
 | | |AttachAns|
 | | |<--------|
 | | | |
 | | | |
 | |AttachAns| |
 | |<--------| |
 | | | |
 | | | |
 |AttachAns| | |
 |<--------| | |
 | | | |
 | | | |
 |TLS | | |
 |.............................|
 | | | |
 | | | |
 | | | |
 | | | |

 Once JP has a reasonable set of connections he is ready to take his
 place in the DHT. He does this by sending a Join to AP. AP does a
 series of Store requests to JP to store the data that JP will be
 responsible for. AP then sends JP an Update explicitly labeling JP
 as its predecessor. At this point, JP is part of the ring and
 responsible for a section of the overlay. AP can now forget any data
 which is assigned to JP and not AP.

Jennings, et al. Expires September 8, 2009 [Page 112]

Internet-Draft RELOAD Base March 2009

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |JoinReq | | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |JoinAns | | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreReq Data A | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreAns | | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |StoreReq Data B | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreAns | | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |

 In Chord, JP's neighbor table needs to contain its own predecessors.
 It couldn't connect to them previously because Chord has no way to
 route immediately to your predecessors. However, now that it has
 received an Update from AP, it has APs predecessors, which are also
 its own, so it sends Attaches to them. Below it is shown connecting
 to its closest predecessor, PP.

Jennings, et al. Expires September 8, 2009 [Page 113]

Internet-Draft RELOAD Base March 2009

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach Dest=PP | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=PP | | |
 | | |<--------| | | |
 | | | | | | |
 | | | | | | |
 | | |AttachAns| | | |
 | | |-------->| | | |
 | | | | | | |
 | | | | | | |
 |AttachAns| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |...................| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |------------------>| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<------------------| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |-------------------------------------->| | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<--------------------------------------| | |
 | | | | | | |
 | | | | | | |

Jennings, et al. Expires September 8, 2009 [Page 114]

Internet-Draft RELOAD Base March 2009

 Finally, now that JP has a copy of all the data and is ready to route
 messages and receive requests, it sends Updates to everyone in its
 Routing Table to tell them it is ready to go. Below, it is shown
 sending such an update to TP.

 JP NP XX TP
 | | | |
 | | | |
 | | | |
 |Update | | |
 |---------------------------->|
 | | | |
 | | | |
 |UpdateAns| | |
 |<----------------------------|
 | | | |
 | | | |
 | | | |
 | | | |

12. Security Considerations

12.1. Overview

 RELOAD provides a generic storage service, albeit one designed to be
 useful for P2PSIP. In this section we discuss security issues that
 are likely to be relevant to any usage of RELOAD.

 In any Overlay Instance, any given user depends on a number of peers
 with which they have no well-defined relationship except that they
 are fellow members of the Overlay Instance. In practice, these other
 nodes may be friendly, lazy, curious, or outright malicious. No
 security system can provide complete protection in an environment
 where most nodes are malicious. The goal of security in RELOAD is to
 provide strong security guarantees of some properties even in the
 face of a large number of malicious nodes and to allow the overlay to
 function correctly in the face of a modest number of malicious nodes.

 P2PSIP deployments require the ability to authenticate both peers and
 resources (users) without the active presence of a trusted entity in
 the system. We describe two mechanisms. The first mechanism is
 based on public key certificates and is suitable for general
 deployments. The second is an admission control mechanism based on
 an overlay-wide shared symmetric key.

Jennings, et al. Expires September 8, 2009 [Page 115]

Internet-Draft RELOAD Base March 2009

12.2. Attacks on P2P Overlays

 The two basic functions provided by overlay nodes are storage and
 routing: some node is responsible for storing a peer's data and for
 allowing a peer to fetch other peer's data. Some other set of nodes
 are responsible for routing messages to and from the storing nodes.
 Each of these issues is covered in the following sections.

 P2P overlays are subject to attacks by subversive nodes that may
 attempt to disrupt routing, corrupt or remove user registrations, or
 eavesdrop on signaling. The certificate-based security algorithms we
 describe in this draft are intended to protect overlay routing and
 user registration information in RELOAD messages.

 To protect the signaling from attackers pretending to be valid peers
 (or peers other than themselves), the first requirement is to ensure
 that all messages are received from authorized members of the
 overlay. For this reason, RELOAD transports all messages over a
 secure channel (TLS and DTLS are defined in this document) which
 provides message integrity and authentication of the directly
 communicating peer. In addition, messages and data are digitally
 signed with the sender's private key, providing end-to-end security
 for communications.

12.3. Certificate-based Security

 This specification stores users' registrations and possibly other
 data in an overlay network. This requires a solution to securing
 this data as well as securing, as well as possible, the routing in
 the overlay. Both types of security are based on requiring that
 every entity in the system (whether user or peer) authenticate
 cryptographically using an asymmetric key pair tied to a certificate.

 When a user enrolls in the Overlay Instance, they request or are
 assigned a unique name, such as "alice@dht.example.net". These names
 are unique and are meant to be chosen and used by humans much like a
 SIP Address of Record (AOR) or an email address. The user is also
 assigned one or more Node-IDs by the central enrollment authority.
 Both the name and the peer ID are placed in the certificate, along
 with the user's public key.

 Each certificate enables an entity to act in two sorts of roles:

 o As a user, storing data at specific Resource-IDs in the Overlay
 Instance corresponding to the user name.
 o As a overlay peer with the peer ID(s) listed in the certificate.

 Note that since only users of this Overlay Instance need to validate

Jennings, et al. Expires September 8, 2009 [Page 116]

Internet-Draft RELOAD Base March 2009

 a certificate, this usage does not require a global PKI. Instead,
 certificates are signed by require a central enrollment authority
 which acts as the certificate authority for the Overlay Instance.
 This authority signs each peer's certificate. Because each peer
 possesses the CA's certificate (which they receive on enrollment)
 they can verify the certificates of the other entities in the overlay
 without further communication. Because the certificates contain the
 user/peer's public key, communications from the user/peer can be
 verified in turn.

 If self-signed certificates are used, then the security provided is
 significantly decreased, since attackers can mount Sybil attacks. In
 addition, attackers cannot trust the user names in certificates
 (though they can trust the Node-IDs because they are
 cryptographically verifiable). This scheme is only appropriate for
 small deployments, such as a small office or ad hoc overlay set up
 among participants in a meeting. Some additional security can be
 provided by using the shared secret admission control scheme as well.

 Because all stored data is signed by the owner of the data the
 storing peer can verify that the storer is authorized to perform a
 store at that Resource-ID and also allows any consumer of the data to
 verify the provenance and integrity of the data when it retrieves it.

 All implementations MUST implement certificate-based security.

12.4. Shared-Secret Security

 RELOAD also supports a shared secret admission control scheme that
 relies on a single key that is shared among all members of the
 overlay. It is appropriate for small groups that wish to form a
 private network without complexity. In shared secret mode, all the
 peers share a single symmetric key which is used to key TLS-PSK
 [RFC4279] or TLS-SRP [RFC5054] mode. A peer which does not know the
 key cannot form TLS connections with any other peer and therefore
 cannot join the overlay.

 One natural approach to a shared-secret scheme is to use a user-
 entered password as the key. The difficulty with this is that in
 TLS-PSK mode, such keys are very susceptible to dictionary attacks.
 If passwords are used as the source of shared-keys, then TLS-SRP is a
 superior choice because it is not subject to dictionary attacks.

12.5. Storage Security

 When certificate-based security is used in RELOAD, any given
 Resource-ID/Kind-ID pair (a slot) is bound to some small set of
 certificates. In order to write data in a slot, the writer must

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5054

Jennings, et al. Expires September 8, 2009 [Page 117]

Internet-Draft RELOAD Base March 2009

 prove possession of the private key for one of those certificates.
 Moreover, all data is stored signed by the certificate which
 authorized its storage. This set of rules makes questions of
 authorization and data integrity - which have historically been
 thorny for overlays - relatively simple.

12.5.1. Authorization

 When a client wants to store some value in a slot, it first digitally
 signs the value with its own private key. It then sends a Store
 request that contains both the value and the signature towards the
 storing peer (which is defined by the Resource Name construction
 algorithm for that particular kind of value).

 When the storing peer receives the request, it must determine whether
 the storing client is authorized to store in this slot. In order to
 do so, it executes the Resource Name construction algorithm for the
 specified kind based on the user's certificate information. It then
 computes the Resource-ID from the Resource Name and verifies that it
 matches the slot which the user is requesting to write to. If it
 does, the user is authorized to write to this slot, pending quota
 checks as described in the next section.

 For example, consider the certificate with the following properties:

 User name: alice@dht.example.com
 Node-ID: 013456789abcdef
 Serial: 1234

 If Alice wishes to Store a value of the "SIP Location" kind, the
 Resource Name will be the SIP AOR "sip:alice@dht.example.com". The
 Resource-ID will be determined by hashing the Resource Name. When a
 peer receives a request to store a record at Resource-ID X, it takes
 the signing certificate and recomputes the Resource Name, in this
 case "alice@dht.example.com". If H("alice@dht.example.com")=X then
 the Store is authorized. Otherwise it is not. Note that the
 Resource Name construction algorithm may be different for other
 kinds.

12.5.2. Distributed Quota

 Being a peer in a Overlay Instance carries with it the responsibility
 to store data for a given region of the Overlay Instance. However,
 if clients were allowed to store unlimited amounts of data, this
 would create unacceptable burdens on peers, as well as enabling
 trivial denial of service attacks. RELOAD addresses this issue by
 requiring configurations to define maximum sizes for each kind of
 stored data. Attempts to store values exceeding this size MUST be

Jennings, et al. Expires September 8, 2009 [Page 118]

Internet-Draft RELOAD Base March 2009

 rejected (if peers are inconsistent about this, then strange
 artifacts will happen when the zone of responsibility shifts and a
 different peer becomes responsible for overlarge data). Because each
 slot is bound to a small set of certificates, these size restrictions
 also create a distributed quota mechanism, with the quotas
 administered by the central enrollment server.

 Allowing different kinds of data to have different size restrictions
 allows new usages the flexibility to define limits that fit their
 needs without requiring all usages to have expansive limits.

12.5.3. Correctness

 Because each stored value is signed, it is trivial for any retrieving
 peer to verify the integrity of the stored value. Some more care
 needs to be taken to prevent version rollback attacks. Rollback
 attacks on storage are prevented by the use of store times and
 lifetime values in each store. A lifetime represents the latest time
 at which the data is valid and thus limits (though does not
 completely prevent) the ability of the storing node to perform a
 rollback attack on retrievers. In order to prevent a rollback attack
 at the time of the Store request, we require that storage times be
 monotonically increasing. Storing peers MUST reject Store requests
 with storage times smaller than or equal to those they are currently
 storing. In addition, a fetching node which receives a data value
 with a storage time older than the result of the previous fetch knows
 a rollback has occurred.

12.5.4. Residual Attacks

 The mechanisms described here provide a high degree of security, but
 some attacks remain possible. Most simply, it is possible for
 storing nodes to refuse to store a value (i.e., reject any request).
 In addition, a storing node can deny knowledge of values which it
 previously accepted. To some extent these attacks can be ameliorated
 by attempting to store to/retrieve from replicas, but a retrieving
 client does not know whether it should try this or not, since there
 is a cost to doing so.

 Although the certificate-based authentication scheme prevents a
 single peer from being able to forge data owned by other peers.
 Furthermore, although a subversive peer can refuse to return data
 resources for which it is responsible it cannot return forged data
 because it cannot provide authentication for such registrations.
 Therefore parallel searches for redundant registrations can mitigate
 most of the affects of a compromised peer. The ultimate reliability
 of such an overlay is a statistical question based on the replication
 factor and the percentage of compromised peers.

Jennings, et al. Expires September 8, 2009 [Page 119]

Internet-Draft RELOAD Base March 2009

 In addition, when a kind is multivalued (e.g., an array data model),
 the storing node can return only some subset of the values, thus
 biasing its responses. This can be countered by using single values
 rather than sets, but that makes coordination between multiple
 storing agents much more difficult. This is a trade off that must be
 made when designing any usage.

12.6. Routing Security

 Because the storage security system guarantees (within limits) the
 integrity of the stored data, routing security focuses on stopping
 the attacker from performing a DOS attack on the system by misrouting
 requests in the overlay. There are a few obvious observations to
 make about this. First, it is easy to ensure that an attacker is at
 least a valid peer in the Overlay Instance. Second, this is a DOS
 attack only. Third, if a large percentage of the peers on the
 Overlay Instance are controlled by the attacker, it is probably
 impossible to perfectly secure against this.

12.6.1. Background

 In general, attacks on DHT routing are mounted by the attacker
 arranging to route traffic through or two nodes it controls. In the
 Eclipse attack [Eclipse] the attacker tampers with messages to and
 from nodes for which it is on-path with respect to a given victim
 node. This allows it to pretend to be all the nodes that are
 reachable through it. In the Sybil attack [Sybil], the attacker
 registers a large number of nodes and is therefore able to capture a
 large amount of the traffic through the DHT.

 Both the Eclipse and Sybil attacks require the attacker to be able to
 exercise control over her peer IDs. The Sybil attack requires the
 creation of a large number of peers. The Eclipse attack requires
 that the attacker be able to impersonate specific peers. In both
 cases, these attacks are limited by the use of centralized,
 certificate-based admission control.

12.6.2. Admissions Control

 Admission to an RELOAD Overlay Instance is controlled by requiring
 that each peer have a certificate containing its peer ID. The
 requirement to have a certificate is enforced by using certificate-
 based mutual authentication on each connection. Thus, whenever a
 peer connects to another peer, each side automatically checks that
 the other has a suitable certificate. These peer IDs are randomly
 assigned by the central enrollment server. This has two benefits:

Jennings, et al. Expires September 8, 2009 [Page 120]

Internet-Draft RELOAD Base March 2009

 o It allows the enrollment server to limit the number of peer IDs
 issued to any individual user.
 o It prevents the attacker from choosing specific peer IDs.

 The first property allows protection against Sybil attacks (provided
 the enrollment server uses strict rate limiting policies). The
 second property deters but does not completely prevent Eclipse
 attacks. Because an Eclipse attacker must impersonate peers on the
 other side of the attacker, he must have a certificate for suitable
 peer IDs, which requires him to repeatedly query the enrollment
 server for new certificates which only will match by chance. From
 the attacker's perspective, the difficulty is that if he only has a
 small number of certificates the region of the Overlay Instance he is
 impersonating appears to be very sparsely populated by comparison to
 the victim's local region.

12.6.3. Peer Identification and Authentication

 In general, whenever a peer engages in overlay activity that might
 affect the routing table it must establish its identity. This
 happens in two ways. First, whenever a peer establishes a direct
 connection to another peer it authenticates via certificate-based
 mutual authentication. All messages between peers are sent over this
 protected channel and therefore the peers can verify the data origin
 of the last hop peer for requests and responses without further
 cryptography.

 In some situations, however, it is desirable to be able to establish
 the identity of a peer with whom one is not directly connected. The
 most natural case is when a peer Updates its state. At this point,
 other peers may need to update their view of the overlay structure,
 but they need to verify that the Update message came from the actual
 peer rather than from an attacker. To prevent this, all overlay
 routing messages are signed by the peer that generated them.

 [OPEN ISSUE: this allows for replay attacks on requests. There are
 two basic defenses here. The first is global clocks and loose anti-
 replay. The second is to refuse to take any action unless you verify
 the data with the relevant node. This issue is undecided.]

 [TODO: I think we are probably going to end up with generic
 signatures or at least optional signatures on all overlay messages.]

12.6.4. Protecting the Signaling

 The goal here is to stop an attacker from knowing who is signaling
 what to whom. An attacker being able to observe the activities of a
 specific individual is unlikely given the randomization of IDs and

Jennings, et al. Expires September 8, 2009 [Page 121]

Internet-Draft RELOAD Base March 2009

 routing based on the present peers discussed above. Furthermore,
 because messages can be routed using only the header information, the
 actual body of the RELOAD message can be encrypted during
 transmission.

 There are two lines of defense here. The first is the use of TLS or
 DTLS for each communications link between peers. This provides
 protection against attackers who are not members of the overlay. The
 second line of defense, if certificate-based security is used, is to
 digitally sign each message. This prevents adversarial peers from
 modifying messages in flight, even if they are on the routing path.

12.6.5. Residual Attacks

 The routing security mechanisms in RELOAD are designed to contain
 rather than eliminate attacks on routing. It is still possible for
 an attacker to mount a variety of attacks. In particular, if an
 attacker is able to take up a position on the overlay routing between
 A and B it can make it appear as if B does not exist or is
 disconnected. It can also advertise false network metrics in attempt
 to reroute traffic. However, these are primarily DoS attacks.

 The certificate-based security scheme secures the namespace, but if
 an individual peer is compromised or if an attacker obtains a
 certificate from the CA, then a number of subversive peers can still
 appear in the overlay. While these peers cannot falsify responses to
 resource queries, they can respond with error messages, effecting a
 DoS attack on the resource registration. They can also subvert
 routing to other compromised peers. To defend against such attacks,
 a resource search must still consist of parallel searches for
 replicated registrations.

13. IANA Considerations

 This section contains the new code points registered by this
 document. [NOTE TO IANA/RFC-EDITOR: Please replace RFC-AAAA with
 the RFC number for this specification in the following list.]

13.1. Port Registrations

 IANA has already allocated a port for the main peer to peer protocol.
 This port has the name p2p-sip and the port number of 6084. The
 names of this port may need to be changed as this draft progresses
 and if it does careful instructions will be needed to IANA to ensure
 the final RFC and IANA registrations are in sync.

 [[TODO - add IANA registration for p2p_enroll SRV and p2p_menroll]]

Jennings, et al. Expires September 8, 2009 [Page 122]

Internet-Draft RELOAD Base March 2009

13.2. Overlay Algorithm Types

 IANA SHALL create a "RELOAD Overlay Algorithm Type" Registry.
 Entries in this registry are strings denoting the names of overlay
 algorithms. The registration policy for this registry is RFC 5226
 IETF Review. The initial contents of this registry are:

 +-----------------+----------+
 | Algorithm Name | RFC |
 +-----------------+----------+
 | chord-128-2-16+ | RFC-AAAA |
 +-----------------+----------+

13.3. Access Control Policies

 IANA SHALL create a "RELOAD Access Control Policy" Registry. Entries
 in this registry are strings denoting access control policies, as
 described in Section 6.3. New entries in this registry SHALL be
 registered via RFC 5226 IETF Review. The initial contents of this
 registry are:

 USER-MATCH
 NODE-MATCH
 USER-NODE-MATCH
 NODE-MULTIPLE
 USER-MATCH-WITH-ANONYMOUS-CREATE

13.4. Data Kind-ID

 IANA SHALL create a "RELOAD Data Kind-ID" Registry. Entries in this
 registry are 32-bit integers denoting data kinds, as described in

Section 4.1.2. Code points in the range 0x00000001 to 0x7fffffff
 SHALL be registered via RFC 5226 Standards Action. Code points in
 the range 0x8000000 to 0xf0000000 SHALL be registered via RFC 5226
 Expert Review. Code points in the range 0xf0000001 to 0xffffffff are
 reserved for private use via the kind description mechanism described
 in Section 10. The initial contents of this registry are:

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Jennings, et al. Expires September 8, 2009 [Page 123]

Internet-Draft RELOAD Base March 2009

 +--------------------+------------+----------+
 | Kind | Kind-ID | RFC |
 +--------------------+------------+----------+
 | INVALID | 0 | RFC-AAAA |
 | SIP-REGISTRATION | 1 | RFC-AAAA |
 | TURN_SERVICE | 2 | RFC-AAAA |
 | CERTIFICATE | 3 | RFC-AAAA |
 | ROUTING_TABLE_SIZE | 4 | RFC-AAAA |
 | SOFTWARE_VERSION | 5 | RFC-AAAA |
 | MACHINE_UPTIME | 6 | RFC-AAAA |
 | APP_UPTIME | 7 | RFC-AAAA |
 | MEMORY_FOOTPRINT | 8 | RFC-AAAA |
 | DATASIZE_StoreD | 9 | RFC-AAAA |
 | INSTANCES_StoreD | 10 | RFC-AAAA |
 | MESSAGES_SENT_RCVD | 11 | RFC-AAAA |
 | EWMA_BYTES_SENT | 12 | RFC-AAAA |
 | EWMA_BYTES_RCVD | 13 | RFC-AAAA |
 | LAST_CONTACT | 14 | RFC-AAAA |
 | RTT | 15 | RFC-AAAA |
 | Reserved | 0x7fffffff | RFC-AAAA |
 | Reserved | 0xffffffff | RFC-AAAA |
 +--------------------+------------+----------+

13.5. Data Model

 IANA SHALL create a "RELOAD Data Model" Registry. Entries in this
 registry are 8-bit integers denoting data models, as described in

Section 6.2. Code points in this registry SHALL be registered via
RFC 5226 IETF Review. The initial contents of this registry are:

 +--------------+------+----------+
 | Data Model | Code | RFC |
 +--------------+------+----------+
 | INVALID | 0 | RFC-AAAA |
 | SINGLE_VALUE | 1 | RFC-AAAA |
 | ARRAY | 2 | RFC-AAAA |
 | DICTIONARY | 3 | RFC-AAAA |
 | RESERVED | 255 | RFC-AAAA |
 +--------------+------+----------+

13.6. Message Codes

 IANA SHALL create a "RELOAD Message Code" Registry. Entries in this
 registry are 16-bit integers denoting method codes as described in

Section 5.3.3. These codes SHALL be registered via RFC 5226
 Standards Action. The initial contents of this registry are:

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Jennings, et al. Expires September 8, 2009 [Page 124]

Internet-Draft RELOAD Base March 2009

 +-------------------+----------------+----------+
 | Message Code Name | Code Value | RFC |
 +-------------------+----------------+----------+
 | invalid | 0 | RFC-AAAA |
 | probe_req | 1 | RFC-AAAA |
 | probe_ans | 2 | RFC-AAAA |
 | attach_req | 3 | RFC-AAAA |
 | attach_ans | 4 | RFC-AAAA |
 | unused | 5 | |
 | unused | 6 | |
 | store_req | 7 | RFC-AAAA |
 | store_ans | 8 | RFC-AAAA |
 | fetch_req | 9 | RFC-AAAA |
 | fetch_ans | 10 | RFC-AAAA |
 | remove_req | 11 | RFC-AAAA |
 | remove_ans | 12 | RFC-AAAA |
 | find_req | 13 | RFC-AAAA |
 | find_ans | 14 | RFC-AAAA |
 | join_req | 15 | RFC-AAAA |
 | join_ans | 16 | RFC-AAAA |
 | leave_req | 17 | RFC-AAAA |
 | leave_ans | 18 | RFC-AAAA |
 | update_req | 19 | RFC-AAAA |
 | update_ans | 20 | RFC-AAAA |
 | route_query_req | 21 | RFC-AAAA |
 | route_query_ans | 22 | RFC-AAAA |
 | ping_req | 23 | RFC-AAAA |
 | ping_ans | 24 | RFC-AAAA |
 | stat_req | 25 | RFC-AAAA |
 | stat_ans | 26 | RFC-AAAA |
 | attachlite_req | 27 | RFC-AAAA |
 | attachlite_ans | 28 | RFC-AAAA |
 | reserved | 0x8000..0xfffe | RFC-AAAA |
 | error | 0xffff | RFC-AAAA |
 +-------------------+----------------+----------+

13.7. Error Codes

 IANA SHALL create a "RELOAD Error Code" Registry. Entries in this
 registry are 16-bit integers denoting error codes. New entries SHALL
 be defined via RFC 5226 Standards Action. The initial contents of
 this registry are:

https://datatracker.ietf.org/doc/html/rfc5226

Jennings, et al. Expires September 8, 2009 [Page 125]

Internet-Draft RELOAD Base March 2009

 +-------------------------------------+----------------+----------+
 | Error Code Name | Code Value | RFC |
 +-------------------------------------+----------------+----------+
 | invalid | 0 | RFC-AAAA |
 | Error_Unauthorized | 1 | RFC-AAAA |
 | Error_Forbidden | 2 | RFC-AAAA |
 | Error_Not_Found | 3 | RFC-AAAA |
 | Error_Request_Timeout | 4 | RFC-AAAA |
 | Error_Precondition_Failed | 5 | RFC-AAAA |
 | Error_Incompatible_with_Overlay | 6 | RFC-AAAA |
 | Error_Unsupported_Forwarding_Option | 7 | RFC-AAAA |
 | Error_Data_Too_Large | 8 | RFC-AAAA |
 | Error_Data_Too_Old | 9 | RFC-AAAA |
 | Error_TTL_Exceeded | 10 | RFC-AAAA |
 | Error_Message_Too_Large | 11 | RFC-AAAA |
 | reserved | 0x8000..0xfffe | RFC-AAAA |
 +-------------------------------------+----------------+----------+

13.8. Route Log Extension Types

 IANA SHALL create a "RELOAD Route Log Extension Type Registry." New
 entries SHALL be defined via RFC 5226 Specification Required. The
 initial contents of this registry are:

 +--------------------------+------+---------------+
 | Route Log Extension Name | Code | Specification |
 +--------------------------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +--------------------------+------+---------------+

13.9. Overlay Link Types

 IANA shall create a "RELOAD Overlay Link Type Registry." New entries
 SHALL be defined via RFC 5226 Standards Action. This registry SHALL
 be initially populated with the following values:

 +----------+------+---------------+
 | Protocol | Code | Specification |
 +----------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | tcp_tls | 1 | RFC-AAAA |
 | udp_dtls | 2 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +----------+------+---------------+

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Jennings, et al. Expires September 8, 2009 [Page 126]

Internet-Draft RELOAD Base March 2009

13.10. Forwarding Options

 IANA shall create a "Forwarding Option Registry". Entries in this
 registry between 1 and 127 SHALL be defined via RFC 5226 Standards
 Action. Entries in this registry between 128 and 254 SHALL be
 defined via RFC 5226 Specification Required. This registry SHALL be
 initially populated with the following values:

 +-------------------+------+---------------+
 | Forwarding Option | Code | Specification |
 +-------------------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +-------------------+------+---------------+

13.11. Probe Information Types

 IANA shall create a "RELOAD Probe Information Type Registry".
 Entries in this registry SHALL be defined via RFC 5226 Standards
 Action. This registry SHALL be initially populated with the
 following values:

 +-----------------+------+---------------+
 | Probe Option | Code | Specification |
 +-----------------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | responsible_set | 1 | RFC-AAAA |
 | requested_info | 2 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +-----------------+------+---------------+

13.12. reload: URI Scheme

 This section describes the scheme for a reload: URI, which can be
 used to refer to either:

 o A peer.
 o A resource inside a peer.

 The reload: URI is defined using a subset of the URI schema
 specified in Appendix A of RFC 3986 [REF] and the associated URI
 Guidelines [REF: RFC4395] per the following ABNF syntax:

 RELOAD-URI = "reload://" destination "@" overlay "/"
 [specifier]

 destination = 1 * HEXDIG
 overlay = reg-name

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc3986#appendix-A
https://datatracker.ietf.org/doc/html/rfc4395

Jennings, et al. Expires September 8, 2009 [Page 127]

Internet-Draft RELOAD Base March 2009

 specifier = 1*HEXDIG

 The definitions of these productions are as follows:

 destination: a hex-encoded Destination List object.

 overlay: the name of the overlay.

 specifier : a hex-encoded StoredDataSpecifier indicating the data
 element.

 If no specifier is present than this URI addresses the peer which can
 be reached via the indicated destination list at the indicated
 overlay name. If a specifier is present, then the URI addresses the
 data value.

13.12.1. URI Registration

 The following summarizes the information necessary to register the
 reload: URI.

 URI Scheme Name: reload
 Status: permanent
 URI Scheme Syntax: see Section 13.12.
 URI Scheme Semantics: The reload: URI is intended to be used as a
 reference to a RELOAD peer or resource.
 Encoding Considerations: The reload: URI is not intended to be
 human-readable text, therefore they are encoded entirely in US-
 ASCII.
 Applications/protocols that use this URI scheme: The RELOAD
 protocol described in RFC-AAAA.
 TBD for the rest of this template.

14. Acknowledgments

 This draft is a merge of the "REsource LOcation And Discovery
 (RELOAD)" draft by David A. Bryan, Marcia Zangrilli and Bruce B.
 Lowekamp, the "Address Settlement by Peer to Peer" draft by Cullen
 Jennings, Jonathan Rosenberg, and Eric Rescorla, the "Security
 Extensions for RELOAD" draft by Bruce B. Lowekamp and James Deverick,
 the "A Chord-based DHT for Resource Lookup in P2PSIP" by Marcia
 Zangrilli and David A. Bryan, and the Peer-to-Peer Protocol (P2PP)
 draft by Salman A. Baset, Henning Schulzrinne, and Marcin
 Matuszewski. Thanks to the authors of RFC 5389 for text included
 from that.

https://datatracker.ietf.org/doc/html/rfc5389

Jennings, et al. Expires September 8, 2009 [Page 128]

Internet-Draft RELOAD Base March 2009

 Thanks to the many people who contributed including: Michael Chen,
 TODO - fill in.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [I-D.ietf-behave-turn]
 Rosenberg, J., Mahy, R., and P. Matthews, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)",

draft-ietf-behave-turn-12 (work in progress),
 November 2008.

 [RFC5273] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC): Transport Protocols", RFC 5273, June 2008.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [I-D.ietf-mmusic-ice-tcp]
 Rosenberg, J., "TCP Candidates with Interactive
 Connectivity Establishment (ICE)",

draft-ietf-mmusic-ice-tcp-07 (work in progress),
 July 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-12
https://datatracker.ietf.org/doc/html/rfc5273
https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-tcp-07
https://datatracker.ietf.org/doc/html/rfc5246

Jennings, et al. Expires September 8, 2009 [Page 129]

Internet-Draft RELOAD Base March 2009

 Security", RFC 4347, April 2006.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, September 2008.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

15.2. Informative References

 [RFC4828] Floyd, S. and E. Kohler, "TCP Friendly Rate Control
 (TFRC): The Small-Packet (SP) Variant", RFC 4828,
 April 2007.

 [I-D.ietf-p2psip-concepts]
 Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",

draft-ietf-p2psip-concepts-02 (work in progress),
 July 2008.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC5382] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, October 2008.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4571] Lazzaro, J., "Framing Real-time Transport Protocol (RTP)
 and RTP Control Protocol (RTCP) Packets over Connection-
 Oriented Transport", RFC 4571, July 2006.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-concepts-02
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4571
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086

Jennings, et al. Expires September 8, 2009 [Page 130]

Internet-Draft RELOAD Base March 2009

 Authentication", RFC 5054, November 2007.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [I-D.matthews-p2psip-bootstrap-mechanisms]
 Cooper, E., "Bootstrap Mechanisms for P2PSIP",

draft-matthews-p2psip-bootstrap-mechanisms-00 (work in
 progress), February 2007.

 [I-D.garcia-p2psip-dns-sd-bootstrapping]
 Garcia, G., "P2PSIP bootstrapping using DNS-SD",

draft-garcia-p2psip-dns-sd-bootstrapping-00 (work in
 progress), October 2007.

 [I-D.pascual-p2psip-clients]
 Pascual, V., Matuszewski, M., Shim, E., Zhang, H., and S.
 Yongchao, "P2PSIP Clients",

draft-pascual-p2psip-clients-01 (work in progress),
 February 2008.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC2311] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., and
 L. Repka, "S/MIME Version 2 Message Specification",

RFC 2311, March 1998.

 [I-D.jiang-p2psip-sep]
 Jiang, X. and H. Zhang, "Service Extensible P2P Peer
 Protocol", draft-jiang-p2psip-sep-01 (work in progress),
 February 2008.

 [I-D.zheng-p2psip-diagnose]
 Yongchao, S. and X. Jiang, "Diagnose P2PSIP Overlay
 Network", draft-zheng-p2psip-diagnose-04 (work in
 progress), December 2008.

 [I-D.hardie-p2poverlay-pointers]
 Hardie, T., "Mechanisms for use in pointing to overlay
 networks, nodes, or resources",

draft-hardie-p2poverlay-pointers-00 (work in progress),
 January 2008.

 [I-D.ietf-p2psip-sip]

https://datatracker.ietf.org/doc/html/rfc5054
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/draft-matthews-p2psip-bootstrap-mechanisms-00
https://datatracker.ietf.org/doc/html/draft-garcia-p2psip-dns-sd-bootstrapping-00
https://datatracker.ietf.org/doc/html/draft-pascual-p2psip-clients-01
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc2311
https://datatracker.ietf.org/doc/html/draft-jiang-p2psip-sep-01
https://datatracker.ietf.org/doc/html/draft-zheng-p2psip-diagnose-04
https://datatracker.ietf.org/doc/html/draft-hardie-p2poverlay-pointers-00

Jennings, et al. Expires September 8, 2009 [Page 131]

Internet-Draft RELOAD Base March 2009

 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "A SIP Usage for RELOAD",

draft-ietf-p2psip-sip-00 (work in progress), October 2008.

 [Sybil] Douceur, J., "The Sybil Attack", IPTPS 02, March 2002.

 [Eclipse] Singh, A., Ngan, T., Druschel, T., and D. Wallach,
 "Eclipse Attacks on Overlay Networks: Threats and
 Defenses", INFOCOM 2006, April 2006.

 [non-transitive-dhts-worlds05]
 Freedman, M., Lakshminarayanan, K., Rhea, S., and I.
 Stoica, "Non-Transitive Connectivity and DHTs",
 WORLDS'05.

 [lookups-churn-p2p06]
 Wu, D., Tian, Y., and K. Ng, "Analytical Study on
 Improving DHT Lookup Performance under Churn", IEEE
 P2P'06.

 [bryan-design-hotp2p08]
 Bryan, D., Lowekamp, B., and M. Zangrilli, "The Design of
 a Versatile, Secure P2PSIP Communications Architecture for
 the Public Internet", Hot-P2P'08.

 [opendht-sigcomm05]
 Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J.,
 Ratnasamy, S., Shenker, S., Stoica, I., and H. Yu,
 "OpenDHT: A Public DHT and its Uses", SIGCOMM'05.

 [Chord] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,
 Kaashoek, M., Dabek, F., and H. Balakrishnan, "Chord: A
 Scalable Peer-to-peer Lookup Protocol for Internet
 Applications", IEEE/ACM Transactions on Networking Volume
 11, Issue 1, 17-32, Feb 2003.

 [vulnerabilities-acsac04]
 Srivatsa, M. and L. Liu, "Vulnerabilities and Security
 Threats in Structured Peer-to-Peer Systems: A Quantitative
 Analysis", ACSAC 2004.

 [handling-churn-usenix04]
 Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz,
 "Handling Churn in a DHT", USENIX 2004.

 [minimizing-churn-sigcomm06]
 Godfrey, P., Shenker, S., and I. Stoica, "Minimizing Churn
 in Distributed Systems", SIGCOMM 2006.

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-sip-00

Jennings, et al. Expires September 8, 2009 [Page 132]

Internet-Draft RELOAD Base March 2009

Appendix A. Change Log

A.1. Changes since draft-ietf-p2psip-reload-01

 o Added the ability to introduce new kinds dynamically.
 o Added configuration file updating.
 o Major revisions to reliability and flow control algorithms.
 o Moved diagnostics out--they no go in a separate draft.
 o Removed REMOVE: you now store a "nonexistent" element.

A.2. Changes since draft-ietf-p2psip-reload-00

 o Split base protocol from combined draft into new draft.
 o Update architecture discussion to address concerns raised about
 clarity of roles.
 o Moved extensive discussion of routing and client behaviors to
 appendix.
 o Split Ping into Ping and Probe
 o Added AttachLite to provide way to implement ICE-Lite
 o added Stat call for retrieving meta-data
 o added discussion of periodic vs reactive recovery issue
 o changed finger table stabilization to prefer long-lived over best-
 match
 o updated IANA considerations to be more complete
 o changed error codes from http-based

A.3. Changes since draft-ietf-p2psip-base-00

 o removed TUNNEL method
 o allow implementations more flexibility in picking finger table
 entry and revise random range
 o decouple overlay configuration from enrollment server
 o add error for data too large
 o change architecture to overlay perspective from previous revision
 and update terminology in document to match

A.4. Changes since draft-ietf-p2psip-base-01

 o reordered message routing section to clarify that other routing
 algorithms are possible besides symmetric recursive.
 o clarified document IPR terms

A.5. Changes since draft-ietf-p2psip-base-01a

 o Fragment offset was too small to hold 2^24 bit messages so fixed
 this from 16 bits to 32 bits.

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-reload-01
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-reload-00
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-00
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-01
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-01a

Jennings, et al. Expires September 8, 2009 [Page 133]

Internet-Draft RELOAD Base March 2009

 o Changed absolute times from seconds to milliseconds
 o Added error for messages over max size
 o Added error for TTL expired
 o Add time in response to PING
 o Clarified retransmission and fragmentation algorithm
 o Clarified acknowledgement tracking for congestion control

Appendix B. Routing Alternatives

 Significant discussion has been focused on the selection of a routing
 algorithm for P2PSIP. This section discusses the motivations for
 selection of symmetric recursive routing for RELOAD and describes the
 extensions that would be required to support additional routing
 algorithms.

B.1. Iterative vs Recursive

 Iterative routing has a number of advantages. It is easier to debug,
 consumes fewer resources on intermediate peers, and allows the
 querying peer to identify and route around misbehaving peers
 [non-transitive-dhts-worlds05]. However, in the presence of NATs
 iterative routing is intolerably expensive because a new connection
 must be established for each hop (using ICE) [bryan-design-hotp2p08].

 Iterative routing is supported through the Route_Query mechanism and
 is primarily intended for debugging. It is also allows the querying
 peer to evaluate the routing decisions made by the peers at each hop,
 consider alternatives, and perhaps detect at what point the
 forwarding path fails.

B.2. Symmetric vs Forward response

 An alternative to the symmetric recursive routing method used by
 RELOAD is Forward-Only routing, where the response is routed to the
 requester as if it is a new message initiating by the responder (in
 the previous example, Z sends the response to A as if it were sending
 a request). Forward-only routing requires no state in either the
 message or intermediate peers.

 The drawback of forward-only routing is that it does not work when
 the overlay is unstable. For example, if A is in the process of
 joining the overlay and is sending a Join request to Z, it is not yet
 reachable via forward routing. Even if it is established in the
 overlay, if network failures produce temporary instability, A may not
 be reachable (and may be trying to stabilize its network connectivity
 via Attach messages).

Jennings, et al. Expires September 8, 2009 [Page 134]

Internet-Draft RELOAD Base March 2009

 Furthermore, forward-only responses are less likely to reach the
 querying peer than symmetric recursive because the forward path is
 more likely to have a failed peer than the request path (which was
 just tested to route the request) [non-transitive-dhts-worlds05].

 An extension to RELOAD that supports forward-only routing but relies
 on symmetric responses as a fallback would be possible, but due to
 the complexities of determining when to use forward-only and when to
 fallback to symmetric, we have chosen not to include it as an option
 at this point.

B.3. Direct Response

 Another routing option is Direct Response routing, in which the
 response is returned directly to the querying node. In the previous
 example, if A encodes its IP address in the request, then Z can
 simply deliver the response directly to A. In the absence of NATs or
 other connectivity issues, this is the optimal routing technique.

 The challenge of implementing direct response is the presence of
 NATs. There are a number of complexities that must be addressed. In
 this discussion, we will continue our assumption that A issued the
 request and Z is generating the response.

 o The IP address listed by A may be unreachable, either due to NAT
 or firewall rules. Therefore, a direct response technique must
 fallback to symmetric response [non-transitive-dhts-worlds05].
 The hop-by-hop ACKs used by RELOAD allow Z to determine when A has
 received the message (and the TLS negotiation will provide earlier
 confirmation that A is reachable), but this fallback requires a
 timeout that will increase the response latency whenever A is not
 reachable from Z.
 o Whenever A is behind a NAT it will have multiple candidate IP
 addresses, each of which must be advertised to ensure
 connectivity, therefore Z will need to attempt multiple
 connections to deliver the response.
 o One (or all) of A's candidate addresses may route from Z to a
 different device on the Internet. In the worst case these nodes
 may actually be running RELOAD on the same port. Therefore,
 establishing a secure connection to authenticate A before
 delivering the response is absolutely necessary. This step
 diminishes the efficiency of direct response because multiple
 roundtrips are required before the message can be delivered.
 o If A is behind a NAT and does not have a connection already
 established with Z, there are only two ways the direct response
 will work. The first is that A and Z are both behind the same
 NAT, in which case the NAT is not involved. In the more common
 case, when Z is outside A's NAT, the response will only be

Jennings, et al. Expires September 8, 2009 [Page 135]

Internet-Draft RELOAD Base March 2009

 received if A's NAT implements endpoint-independent filtering. As
 the choice of filtering mode conflates application transparency
 with security [RFC4787], and no clear recommendation is available,
 the prevalence of this feature in future devices remains unclear.

 An extension to RELOAD that supports direct response routing but
 relies on symmetric responses as a fallback would be possible, but
 due to the complexities of determining when to use direct response
 and when to fallback to symmetric, and the reduced performance for
 responses to peers behind restrictive NATs, we have chosen not to
 include it as an option at this point.

B.4. Relay Peers

 SEP [I-D.jiang-p2psip-sep] has proposed implementing a form of direct
 response by having A identify a peer, Q, that will be directly
 reachable by any other peer. A uses Attach to establish a connection
 with Q and advertises Q's IP address in the request sent to Z. Z
 sends the response to Q, which relays it to A. This then reduces the
 latency to two hops, plus Z negotiating a secure connection to Q.

 This technique relies on the relative population of nodes such as A
 that require relay peers and peers such as Q that are capable of
 serving as a relay peer. It also requires nodes to be able to
 identify which category they are in. This identification problem has
 turned out to be hard to solve and is still an open area of
 exploration.

 An extension to RELOAD that supports relay peers is possible, but due
 to the complexities of implementing such an alternative, we have not
 added such a feature to RELOAD at this point.

 A concept similar to relay peers, essentially choosing a relay peer
 at random, has previously been suggested to solve problems of
 pairwise non-transitivity [non-transitive-dhts-worlds05], but
 deterministic filtering provided by NATs make random relay peers no
 more likely to work than the responding peer.

B.5. Symmetric Route Stability

 A common concern about symmetric recursive routing has been that one
 or more peers along the request path may fail before the response is
 received. The significance of this problem essentially depends on
 the response latency of the overlay. An overlay that produces slow
 responses will be vulnerable to churn, whereas responses that are
 delivered very quickly are vulnerable only to failures that occur
 over that small interval.

https://datatracker.ietf.org/doc/html/rfc4787

Jennings, et al. Expires September 8, 2009 [Page 136]

Internet-Draft RELOAD Base March 2009

 The other aspect of this issue is whether the request itself can be
 successfully delivered. Assuming typical connection maintenance
 intervals, the time period between the last maintenance and the
 request being sent will be orders of magnitude greater than the delay
 between the request being forwarded and the response being received.
 Therefore, if the path was stable enough to be available to route the
 request, it is almost certainly going to remain available to route
 the response.

 An overlay that is unstable enough to suffer this type of failure
 frequently is unlikely to be able to support reliable functionality
 regardless of the routing mechanism. However, regardless of the
 stability of the return path, studies show that in the event of high
 churn, iterative routing is a better solution to ensure request
 completion [lookups-churn-p2p06] [non-transitive-dhts-worlds05]

 Finally, because RELOAD retries the end-to-end request, that retry
 will address the issues of churn that remain.

Appendix C. Why Clients?

 There are a wide variety of reasons a node may act as a client rather
 than as a peer [I-D.pascual-p2psip-clients]. This section outlines
 some of those scenarios and how the client's behavior changes based
 on its capabilities.

C.1. Why Not Only Peers?

 For a number of reasons, a particular node may be forced to act as a
 client even though it is willing to act as a peer. These include:

 o The node does not have appropriate network connectivity, typically
 because it has a low-bandwidth network connection.
 o The node may not have sufficient resources, such as computing
 power, storage space, or battery power.
 o The overlay algorithm may dictate specific requirements for peer
 selection. These may include participation in the overlay to
 determine trustworthiness, control the number of peers in the
 overlay to reduce overly-long routing paths, or ensure minimum
 application uptime before a node can join as a peer.

 The ultimate criteria for a node to become a peer are determined by
 the overlay algorithm and specific deployment. A node acting as a
 client that has a full implementation of RELOAD and the appropriate
 overlay algorithm is capable of locating its responsible peer in the
 overlay and using CONNECT to establish a direct connection to that
 peer. In that way, it may elect to be reachable under either of the

Jennings, et al. Expires September 8, 2009 [Page 137]

Internet-Draft RELOAD Base March 2009

 routing approaches listed above. Particularly for overlay algorithms
 that elect nodes to serve as peers based on trustworthiness or
 population, the overlay algorithm may require such a client to locate
 itself at a particular place in the overlay.

C.2. Clients as Application-Level Agents

 SIP defines an extensive protocol for registration and security
 between a client and its registrar/proxy server(s). Any SIP device
 can act as a client of a RELOAD-based P2PSIP overlay if it contacts a
 peer that implements the server-side functionality required by the
 SIP protocol. In this case, the peer would be acting as if it were
 the user's peer, and would need the appropriate credentials for that
 user.

 Application-level support for clients is defined by a usage. A usage
 offering support for application-level clients should specify how the
 security of the system is maintained when the data is moved between
 the application and RELOAD layers.

Authors' Addresses

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 MS: SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 421-9990
 Email: fluffy@cisco.com

 Bruce B. Lowekamp (editor)
 unaffiliated
 2790 Linden Ln
 Williamsburg, VA 23185
 USA

 Email: bbl@lowekamp.net

Jennings, et al. Expires September 8, 2009 [Page 138]

Internet-Draft RELOAD Base March 2009

 Eric Rescorla
 Network Resonance
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 320-8549
 Email: ekr@networkresonance.com

 Salman A. Baset
 Columbia University
 1214 Amsterdam Avenue
 New York, NY
 USA

 Email: salman@cs.columbia.edu

 Henning Schulzrinne
 Columbia University
 1214 Amsterdam Avenue
 New York, NY
 USA

 Email: hgs@cs.columbia.edu

Jennings, et al. Expires September 8, 2009 [Page 139]

