
P2PSIP C. Jennings
Internet-Draft Cisco
Intended status: Standards Track B. Lowekamp, Ed.
Expires: May 9, 2013 Skype
 E. Rescorla
 RTFM, Inc.
 S. Baset
 H. Schulzrinne
 Columbia University
 November 05, 2012

 REsource LOcation And Discovery (RELOAD) Base Protocol
 draft-ietf-p2psip-base-23

Abstract

 This specification defines REsource LOcation And Discovery (RELOAD),
 a peer-to-peer (P2P) signaling protocol for use on the Internet. A
 P2P signaling protocol provides its clients with an abstract storage
 and messaging service between a set of cooperating peers that form
 the overlay network. RELOAD is designed to support a P2P Session
 Initiation Protocol (P2PSIP) network, but can be utilized by other
 applications with similar requirements by defining new usages that
 specify the kinds of data that must be stored for a particular
 application. RELOAD defines a security model based on a certificate
 enrollment service that provides unique identities. NAT traversal is
 a fundamental service of the protocol. RELOAD also allows access
 from "client" nodes that do not need to route traffic or store data
 for others.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 9, 2013.

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
http://datatracker.ietf.org/drafts/current/

Jennings, et al. Expires May 9, 2013 [Page 1]

Internet-Draft RELOAD Base November 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/pdf/bcp78
http://trustee.ietf.org/license-info

Jennings, et al. Expires May 9, 2013 [Page 2]

Internet-Draft RELOAD Base November 2012

Table of Contents

 1. Introduction . 8
 1.1. Basic Setting . 9
 1.2. Architecture . 10
 1.2.1. Usage Layer . 13
 1.2.2. Message Transport 14
 1.2.3. Storage . 15
 1.2.4. Topology Plugin 16
 1.2.5. Forwarding and Link Management Layer 16
 1.3. Security . 17
 1.4. Structure of This Document 18
 2. Terminology . 18
 3. Overlay Management Overview 21
 3.1. Security and Identification 21
 3.1.1. Shared-Key Security 23
 3.2. Clients . 23
 3.2.1. Client Routing 24
 3.2.2. Minimum Functionality Requirements for Clients . . . 24
 3.3. Routing . 25
 3.4. Connectivity Management 28
 3.5. Overlay Algorithm Support 28
 3.5.1. Support for Pluggable Overlay Algorithms 29
 3.5.2. Joining, Leaving, and Maintenance Overview 29
 3.6. First-Time Setup . 30
 3.6.1. Initial Configuration 31
 3.6.2. Enrollment . 31
 3.6.3. Diagnostics . 31
 4. RFC 2119 Terminology . 31
 5. Application Support Overview 31
 5.1. Data Storage . 32
 5.1.1. Storage Permissions 33
 5.1.2. Replication . 34
 5.2. Usages . 34
 5.3. Service Discovery 35

5.4. Application Connectivity 35

https://datatracker.ietf.org/doc/pdf/rfc2119

 6. Overlay Management Protocol 35
 6.1. Message Receipt and Forwarding 36
 6.1.1. Responsible ID 36
 6.1.2. Other ID . 37
 6.1.3. Opaque ID . 39
 6.2. Symmetric Recursive Routing 39
 6.2.1. Request Origination 39
 6.2.2. Response Origination 40
 6.3. Message Structure 40
 6.3.1. Presentation Language 41
 6.3.1.1. Common Definitions 42
 6.3.2. Forwarding Header 44

Jennings, et al. Expires May 9, 2013 [Page 3]

Internet-Draft RELOAD Base November 2012

 6.3.2.1. Processing Configuration Sequence Numbers 46
 6.3.2.2. Destination and Via Lists 47
 6.3.2.3. Forwarding Option 49
 6.3.3. Message Contents Format 50
 6.3.3.1. Response Codes and Response Errors 51
 6.3.4. Security Block 53
 6.4. Overlay Topology . 57
 6.4.1. Topology Plugin Requirements 57
 6.4.2. Methods and types for use by topology plugins . . . 58
 6.4.2.1. Join . 58
 6.4.2.2. Leave . 59
 6.4.2.3. Update . 59
 6.4.2.4. RouteQuery 60
 6.4.2.5. Probe . 61
 6.5. Forwarding and Link Management Layer 63
 6.5.1. Attach . 63
 6.5.1.1. Request Definition 64
 6.5.1.2. Response Definition 67
 6.5.1.3. Using ICE With RELOAD 68
 6.5.1.4. Collecting STUN Servers 68
 6.5.1.5. Gathering Candidates 69
 6.5.1.6. Prioritizing Candidates 69
 6.5.1.7. Encoding the Attach Message 70
 6.5.1.8. Verifying ICE Support 70
 6.5.1.9. Role Determination 71
 6.5.1.10. Full ICE . 71
 6.5.1.11. No-ICE . 71
 6.5.1.12. Subsequent Offers and Answers 72

6.5.1.13. Sending Media 72

 6.5.1.14. Receiving Media 72
 6.5.2. AppAttach . 72
 6.5.2.1. Request Definition 72
 6.5.2.2. Response Definition 73
 6.5.3. Ping . 74
 6.5.3.1. Request Definition 74
 6.5.3.2. Response Definition 74
 6.5.4. ConfigUpdate . 75
 6.5.4.1. Request Definition 75
 6.5.4.2. Response Definition 76
 6.6. Overlay Link Layer 76
 6.6.1. Future Overlay Link Protocols 78
 6.6.1.1. HIP . 78
 6.6.1.2. ICE-TCP . 79
 6.6.1.3. Message-oriented Transports 79
 6.6.1.4. Tunneled Transports 79
 6.6.2. Framing Header 79
 6.6.3. Simple Reliability 81
 6.6.3.1. Stop and Wait Sender Algorithm 82

Jennings, et al. Expires May 9, 2013 [Page 4]

Internet-Draft RELOAD Base November 2012

 6.6.4. DTLS/UDP with SR 83
 6.6.5. TLS/TCP with FH, No-ICE 83
 6.6.6. DTLS/UDP with SR, No-ICE 83
 6.7. Fragmentation and Reassembly 84
 7. Data Storage Protocol . 85
 7.1. Data Signature Computation 86
 7.2. Data Models . 87
 7.2.1. Single Value . 88
 7.2.2. Array . 88
 7.2.3. Dictionary . 89
 7.3. Access Control Policies 89
 7.3.1. USER-MATCH . 90
 7.3.2. NODE-MATCH . 90
 7.3.3. USER-NODE-MATCH 90
 7.3.4. NODE-MULTIPLE 90
 7.4. Data Storage Methods 91
 7.4.1. Store . 91
 7.4.1.1. Request Definition 91
 7.4.1.2. Response Definition 95
 7.4.1.3. Removing Values 97
 7.4.2. Fetch . 97

7.4.2.1. Request Definition 98

 7.4.2.2. Response Definition 100
 7.4.3. Stat . 101
 7.4.3.1. Request Definition 101
 7.4.3.2. Response Definition 101
 7.4.4. Find . 103
 7.4.4.1. Request Definition 103
 7.4.4.2. Response Definition 104
 7.4.5. Defining New Kinds 105
 8. Certificate Store Usage 105
 9. TURN Server Usage . 106
 10. Chord Algorithm . 108
 10.1. Overview . 109
 10.2. Hash Function . 109
 10.3. Routing . 110
 10.4. Redundancy . 110
 10.5. Joining . 110
 10.6. Routing Attaches . 112
 10.7. Updates . 112
 10.7.1. Handling Neighbor Failures 113
 10.7.2. Handling Finger Table Entry Failure 114
 10.7.3. Receiving Updates 114
 10.7.4. Stabilization 115
 10.7.4.1. Updating neighbor table 115
 10.7.4.2. Refreshing finger table 116
 10.7.4.3. Adjusting finger table size 116
 10.7.4.4. Detecting partitioning 117

Jennings, et al. Expires May 9, 2013 [Page 5]

Internet-Draft RELOAD Base November 2012

 10.8. Route query . 117
 10.9. Leaving . 118
 11. Enrollment and Bootstrap 119
 11.1. Overlay Configuration 119
 11.1.1. Relax NG Grammar 126
 11.2. Discovery Through Configuration Server 128
 11.3. Credentials . 129
 11.3.1. Self-Generated Credentials 130
 11.4. Searching for a Bootstrap Node 131
 11.5. Contacting a Bootstrap Node 131
 12. Message Flow Example . 132
 13. Security Considerations 138
 13.1. Overview . 138
 13.2. Attacks on P2P Overlays 139

13.3. Certificate-based Security 139

 13.4. Shared-Secret Security 140
 13.5. Storage Security . 141
 13.5.1. Authorization 141
 13.5.2. Distributed Quota 142
 13.5.3. Correctness . 142
 13.5.4. Residual Attacks 142
 13.6. Routing Security . 143
 13.6.1. Background . 143
 13.6.2. Admissions Control 144
 13.6.3. Peer Identification and Authentication 144
 13.6.4. Protecting the Signaling 145
 13.6.5. Routing Loops and Dos Attacks 145
 13.6.6. Residual Attacks 145
 14. IANA Considerations . 146
 14.1. Well-Known URI Registration 146
 14.2. Port Registrations 146
 14.3. Overlay Algorithm Types 147
 14.4. Access Control Policies 147
 14.5. Application-ID . 148
 14.6. Data Kind-ID . 148
 14.7. Data Model . 149
 14.8. Message Codes . 149
 14.9. Error Codes . 151
 14.10. Overlay Link Types 151
 14.11. Overlay Link Protocols 152
 14.12. Forwarding Options 152
 14.13. Probe Information Types 153
 14.14. Message Extensions 153
 14.15. reload URI Scheme 153
 14.15.1. URI Registration 154
 14.16. Media Type Registration 155
 14.17. XML Name Space Registration 156
 14.17.1. Config URL . 156

Jennings, et al. Expires May 9, 2013 [Page 6]

Internet-Draft RELOAD Base November 2012

 14.17.2. Config Chord URL 156
 15. Acknowledgments . 156
 16. References . 157
 16.1. Normative References 157
 16.2. Informative References 159
 Appendix A. Routing Alternatives 162
 A.1. Iterative vs Recursive 162

A.2. Symmetric vs Forward response 163

 A.3. Direct Response . 163
 A.4. Relay Peers . 164
 A.5. Symmetric Route Stability 165
 Appendix B. Why Clients? . 165
 B.1. Why Not Only Peers? 165
 B.2. Clients as Application-Level Agents 166
 Authors' Addresses . 166

Jennings, et al. Expires May 9, 2013 [Page 7]

Internet-Draft RELOAD Base November 2012

1. Introduction

 This document defines REsource LOcation And Discovery (RELOAD), a
 peer-to-peer (P2P) signaling protocol for use on the Internet. It
 provides a generic, self-organizing overlay network service, allowing
 nodes to route messages to other nodes and to store and retrieve data
 in the overlay. RELOAD provides several features that are critical
 for a successful P2P protocol for the Internet:

 Security Framework: A P2P network will often be established among a
 set of peers that do not trust each other. RELOAD leverages a
 central enrollment server to provide credentials for each peer
 which can then be used to authenticate each operation. This
 greatly reduces the possible attack surface.

 Usage Model: RELOAD is designed to support a variety of
 applications, including P2P multimedia communications with the
 Session Initiation Protocol [I-D.ietf-p2psip-sip]. RELOAD allows
 the definition of new application usages, each of which can define
 its own data types, along with the rules for their use. This
 allows RELOAD to be used with new applications through a simple
 documentation process that supplies the details for each
 application.

 NAT Traversal: RELOAD is designed to function in environments where
 many if not most of the nodes are behind NATs or firewalls.
 Operations for NAT traversal are part of the base design,
 including using ICE to establish new RELOAD or application
 protocol connections.

 High Performance Routing: The very nature of overlay algorithms
 introduces a requirement that peers participating in the P2P
 network route requests on behalf of other peers in the network.
 This introduces a load on those other peers, in the form of
 bandwidth and processing power. RELOAD has been defined with a
 simple, lightweight forwarding header, thus minimizing the amount
 of effort required by intermediate peers.

 Pluggable Overlay Algorithms: RELOAD has been designed with an
 abstract interface to the overlay layer to simplify implementing a
 variety of structured (e.g., distributed hash tables) and
 unstructured overlay algorithms. The idea here is that RELOAD
 provides a generic structure that should fit most types of overlay
 topologies (ring, hyperspace, etc.). To instantiate an actual
 network, you combine RELOAD with a specific overlay algorithm,
 which defines how to construct the overlay topology and route
 messages efficiently within it. This specification also defines

Jennings, et al. Expires May 9, 2013 [Page 8]

Internet-Draft RELOAD Base November 2012

 how RELOAD is used with the Chord based DHT algorithm, which is
 mandatory to implement. Specifying a default "must implement"
 overlay algorithm promotes interoperability, while extensibility
 allows selection of overlay algorithms optimized for a particular
 application.

 These properties were designed specifically to meet the requirements
 for a P2P protocol to support SIP. This document defines the base
 protocol for the distributed storage and location service, as well as
 critical usages for NAT traversal and security. The SIP Usage itself
 is described separately in [I-D.ietf-p2psip-sip]. RELOAD is not
 limited to usage by SIP and could serve as a tool for supporting
 other P2P applications with similar needs.

1.1. Basic Setting

 In this section, we provide a brief overview of the operational
 setting for RELOAD. A RELOAD Overlay Instance consists of a set of
 nodes arranged in a partly connected graph. Each node in the overlay
 is assigned a numeric Node-ID which, together with the specific
 overlay algorithm in use, determines its position in the graph and
 the set of nodes it connects to. The figure below shows a trivial
 example which isn't drawn from any particular overlay algorithm, but
 was chosen for convenience of representation.

 +--------+ +--------+ +--------+
 | Node 10|--------------| Node 20|--------------| Node 30|
 +--------+ +--------+ +--------+
 | | |
 | | |
 +--------+ +--------+ +--------+
 | Node 40|--------------| Node 50|--------------| Node 60|
 +--------+ +--------+ +--------+
 | | |
 | | |
 +--------+ +--------+ +--------+
 | Node 70|--------------| Node 80|--------------| Node 90|
 +--------+ +--------+ +--------+
 |
 |
 +--------+
 | Node 85|
 |(Client)|
 +--------+

 Because the graph is not fully connected, when a node wants to send a

 message to another node, it may need to route it through the network.
 For instance, Node 10 can talk directly to nodes 20 and 40, but not

Jennings, et al. Expires May 9, 2013 [Page 9]

Internet-Draft RELOAD Base November 2012

 to Node 70. In order to send a message to Node 70, it would first
 send it to Node 40 with instructions to pass it along to Node 70.
 Different overlay algorithms will have different connectivity graphs,
 but the general idea behind all of them is to allow any node in the
 graph to efficiently reach every other node within a small number of
 hops.

 The RELOAD network is not only a messaging network. It is also a
 storage network, albeit one designed for small-scale storage rather
 than for bulk storage of large objects. Records are stored under
 numeric addresses which occupy the same space as node identifiers.
 Peers are responsible for storing the data associated with some set
 of addresses as determined by their Node-ID. For instance, we might
 say that every peer is responsible for storing any data value which
 has an address less than or equal to its own Node-ID, but greater
 than the next lowest Node-ID. Thus, Node-20 would be responsible for
 storing values 11-20.

 RELOAD also supports clients. These are nodes which have Node-IDs
 but do not participate in routing or storage. For instance, in the
 figure above Node 85 is a client. It can route to the rest of the
 RELOAD network via Node 80, but no other node will route through it
 and Node 90 is still responsible for all addresses between 81-90. We
 refer to non-client nodes as peers.

 Other applications (for instance, SIP) can be defined on top of
 RELOAD and use these two basic RELOAD services to provide their own
 services.

1.2. Architecture

 RELOAD is fundamentally an overlay network. The following figure
 shows the layered RELOAD architecture.

Jennings, et al. Expires May 9, 2013 [Page 10]

Internet-Draft RELOAD Base November 2012

 Application

 +-------+ +-------+
 | SIP | | XMPP | ...
 | Usage | | Usage |
 +-------+ +-------+
 ------------------------------------ Messaging Service Boundary
 +------------------+ +---------+
 | Message |<--->| Storage |
 | Transport | +---------+
 +------------------+ ^
 ^ ^ |
 | v v
 | +-------------------+
 | | Topology |
 | | Plugin |
 | +-------------------+
 | ^
 v v
 +------------------+
 | Forwarding & |
 | Link Management |
 +------------------+
 ------------------------------------ Overlay Link Service Boundary
 +-------+ +------+
 |TLS | |DTLS | ...
 +-------+ +------+

 The major components of RELOAD are:

 Usage Layer: Each application defines a RELOAD usage; a set of data

 Kinds and behaviors which describe how to use the services
 provided by RELOAD. These usages all talk to RELOAD through a
 common Message Transport Service.

 Message Transport: Handles end-to-end reliability, manages request
 state for the usages, and forwards Store and Fetch operations to
 the Storage component. Delivers message responses to the
 component initiating the request.

 Storage: The Storage component is responsible for processing
 messages relating to the storage and retrieval of data. It talks
 directly to the Topology Plugin to manage data replication and
 migration, and it talks to the Message Transport component to send
 and receive messages.

Jennings, et al. Expires May 9, 2013 [Page 11]

Internet-Draft RELOAD Base November 2012

 Topology Plugin: The Topology Plugin is responsible for implementing
 the specific overlay algorithm being used. It uses the Message
 Transport component to send and receive overlay management
 messages, to the Storage component to manage data replication, and
 directly to the Forwarding Layer to control hop-by-hop message
 forwarding. This component closely parallels conventional routing
 algorithms, but is more tightly coupled to the Forwarding Layer
 because there is no single "routing table" equivalent used by all
 overlay algorithms.

 Forwarding and Link Management Layer: Stores and implements the
 routing table by providing packet forwarding services between
 nodes. It also handles establishing new links between nodes,
 including setting up connections across NATs using ICE.

 Overlay Link Layer: Responsible for actually transporting traffic
 directly between nodes. Each such protocol includes the
 appropriate provisions for per-hop framing or hop-by-hop ACKs
 required by unreliable transports. TLS [RFC5246] and DTLS
 [RFC6347] are the currently defined "link layer" protocols used by
 RELOAD for hop-by-hop communication. New protocols can be
 defined, as described in Section 6.6.1 and Section 11.1. As this
 document defines only TLS and DTLS, we use those terms throughout
 the remainder of the document with the understanding that some

https://datatracker.ietf.org/doc/pdf/rfc5246
https://datatracker.ietf.org/doc/pdf/rfc6347

 future specification may add new overlay link layers.

 To further clarify the roles of the various layers, this figure
 parallels the architecture with each layer's role from an overlay
 perspective and implementation layer in the internet:

Jennings, et al. Expires May 9, 2013 [Page 12]

Internet-Draft RELOAD Base November 2012

 | Internet Model |
 Real | Equivalent | Reload
 Internet | in Overlay | Architecture
 -------------+-----------------+------------------------------------
 | | +-------+ +-------+
 | Application | | SIP | | XMPP | ...
 | | | Usage | | Usage |
 | | +-------+ +-------+
 | | ----------------------------------
 | |+------------------+ +---------+
 | Transport || Message |<--->| Storage |
 | || Transport | +---------+
 | |+------------------+ ^
 | | ^ ^ |
 | | | v v
 Application | | | +-------------------+
 | (Routing) | | | Topology |
 | | | | Plugin |

 | | | +-------------------+
 | | | ^
 | | v v
 | Network | +------------------+
 | | | Forwarding & |
 | | | Link Management |
 | | +------------------+
 | | ----------------------------------
 Transport | Link | +-------+ +------+
 | | |TLS | |DTLS | ...
 | | +-------+ +------+
 -------------+-----------------+------------------------------------
 Network |
 |
 Link |

 In addition to the above components, nodes communicate with a central
 provisioning infrastructure (not shown) to get configuration
 information, authentication credentials, and the initial set of nodes
 to communicate with to join the overlay.

1.2.1. Usage Layer

 The top layer, called the Usage Layer, has application usages, such
 as the SIP Registration Usage [I-D.ietf-p2psip-sip], that use the
 abstract Message Transport Service provided by RELOAD. The goal of
 this layer is to implement application-specific usages of the generic
 overlay services provided by RELOAD. The usage defines how a
 specific application maps its data into something that can be stored
 in the overlay, where to store the data, how to secure the data, and

Jennings, et al. Expires May 9, 2013 [Page 13]

Internet-Draft RELOAD Base November 2012

 finally how applications can retrieve and use the data.

 The architecture diagram shows both a SIP usage and an XMPP usage. A
 single application may require multiple usages; for example a
 softphone application may also require a voicemail usage. A usage
 may define multiple Kinds of data that are stored in the overlay and
 may also rely on Kinds originally defined by other usages.

 Because the security and storage policies for each Kind are dictated
 by the usage defining the Kind, the usages may be coupled with the
 Storage component to provide security policy enforcement and to

 implement appropriate storage strategies according to the needs of
 the usage. The exact implementation of such an interface is outside
 the scope of this specification.

1.2.2. Message Transport

 The Message Transport component provides a generic message routing
 service for the overlay. The Message Transport layer is responsible
 for end-to-end message transactions. Each peer is identified by its
 location in the overlay as determined by its Node-ID. A component
 that is a client of the Message Transport can perform two basic
 functions:

 o Send a message to a given peer specified by Node-ID or to the peer
 responsible for a particular Resource-ID.
 o Receive messages that other peers sent to a Node-ID or Resource-ID
 for which the receiving peer is responsible.

 All usages rely on the Message Transport component to send and
 receive messages from peers. For instance, when a usage wants to
 store data, it does so by sending Store requests. Note that the
 Storage component and the Topology Plugin are themselves clients of
 the Message Transport, because they need to send and receive messages
 from other peers.

 The Message Transport Service is responsible for end-to-end
 reliability, accomplished by timer-based retransmissions. Unlike the
 Internet transport layer, however, this layer does not provide
 congestion control. RELOAD is a request-response protocol, with no
 more than two pairs of request-response messages used in typical
 transactions between pairs of nodes, therefore there are no
 opportunities to observe and react to end-to-end congestion. As with
 all Internet applications, implementers are strongly discouraged from
 writing applications that react to loss by immediately retrying the
 transaction.

 The Message Transport Service is similar to those described as

Jennings, et al. Expires May 9, 2013 [Page 14]

Internet-Draft RELOAD Base November 2012

 providing "Key based routing" (KBR), although as RELOAD supports
 different overlay algorithms (including non-DHT overlay algorithms)
 that calculate keys in different ways, the actual interface must
 accept Resource Names rather than actual keys.

 Stability of the underlying network supporting the overlay (the
 Internet) and congestion control between overlay neighbors, which
 exchange routing updates and data replicas in addition to forwarding
 end-to-end messages, is handled by the Forwarding and Link Management
 layer described below.

 Real-world experience has shown that a fixed timeout for the end-to-
 end retransmission timer is sufficient for practical overlay
 networks. This timer is adjustable via the overlay configuration.
 As the overlay configuration can be rapidly updated, this value could
 be dynamically adjusted at coarse time scales, although algorithms
 for determining how to accomplish this are beyond the scope of this
 specification. In many cases, however, more appropriate means of
 improving network performance, such as the Topology Plugin removing
 lossy links from use in overlay routing or reducing the overall hop-
 count of end-to-end paths will be more effective than simply
 increasing the retransmission timer.

1.2.3. Storage

 One of the major functions of RELOAD is to allow nodes to store data
 in the overlay and to retrieve data stored by other nodes or by
 themselves. The Storage component is responsible for processing data
 storage and retrieval messages. For instance, the Storage component
 might receive a Store request for a given resource from the Message
 Transport. It would then query the appropriate usage before storing
 the data value(s) in its local data store and sending a response to
 the Message Transport for delivery to the requesting node.
 Typically, these messages will come from other nodes, but depending
 on the overlay topology, a node might be responsible for storing data
 for itself as well, especially if the overlay is small.

 A peer's Node-ID determines the set of resources that it will be
 responsible for storing. However, the exact mapping between these is
 determined by the overlay algorithm in use. The Storage component
 will only receive a Store request from the Message Transport if this
 peer is responsible for that Resource-ID. The Storage component is
 notified by the Topology Plugin when the Resource-IDs for which it is
 responsible change, and the Storage component is then responsible for
 migrating resources to other peers, as required.

Jennings, et al. Expires May 9, 2013 [Page 15]

Internet-Draft RELOAD Base November 2012

1.2.4. Topology Plugin

 RELOAD is explicitly designed to work with a variety of overlay
 algorithms. In order to facilitate this, the overlay algorithm
 implementation is provided by a Topology Plugin so that each overlay
 can select an appropriate overlay algorithm that relies on the common
 RELOAD core protocols and code.

 The Topology Plugin is responsible for maintaining the overlay
 algorithm Routing Table, which is consulted by the Forwarding and
 Link Management Layer before routing a message. When connections are
 made or broken, the Forwarding and Link Management Layer notifies the
 Topology Plugin, which adjusts the routing table as appropriate. The
 Topology Plugin will also instruct the Forwarding and Link Management
 Layer to form new connections as dictated by the requirements of the
 overlay algorithm Topology. The Topology Plugin issues periodic
 update requests through Message Transport to maintain and update its
 Routing Table.

 As peers enter and leave, resources may be stored on different peers,
 so the Topology Plugin also keeps track of which peers are
 responsible for which resources. As peers join and leave, the
 Topology Plugin instructs the Storage component to issue resource
 migration requests as appropriate, in order to ensure that other
 peers have whatever resources they are now responsible for. The
 Topology Plugin is also responsible for providing for redundant data
 storage to protect against loss of information in the event of a peer
 failure and to protect against compromised or subversive peers.

1.2.5. Forwarding and Link Management Layer

 The Forwarding and Link Management Layer is responsible for getting a
 message to the next peer, as determined by the Topology Plugin. This
 Layer establishes and maintains the network connections as required
 by the Topology Plugin. This layer is also responsible for setting
 up connections to other peers through NATs and firewalls using ICE,
 and it can elect to forward traffic using relays for NAT and firewall
 traversal.

 Congestion control is implemented at this layer to protect the
 Internet paths used to form the link in the overlay. Additionally,
 retransmission is performed to improve the reliability of end-to-end
 transactions. The relationship between this layer and the Message
 Transport Layer is similar to the relationship between link-level
 congestion control and retransmission in modern wireless networks is
 to Internet transport protocols.

 This layer provides a generic interface that allows the topology

Jennings, et al. Expires May 9, 2013 [Page 16]

Internet-Draft RELOAD Base November 2012

 plugin to control the overlay and resource operations and messages.
 Since each overlay algorithm is defined and functions differently, we
 generically refer to the table of other peers that the overlay
 algorithm maintains and uses to route requests (neighbors) as a
 Routing Table. The Topology Plugin actually owns the Routing Table,
 and forwarding decisions are made by querying the Topology Plugin for
 the next hop for a particular Node-ID or Resource-ID. If this node
 is the destination of the message, the message is delivered to the
 Message Transport.

 This layer also utilizes a framing header to encapsulate messages as
 they are forwarding along each hop. This header aids reliability
 congestion control, flow control, etc. It has meaning only in the
 context of that individual link.

 The Forwarding and Link Management Layer sits on top of the Overlay
 Link Layer protocols that carry the actual traffic. This
 specification defines how to use DTLS and TLS protocols to carry
 RELOAD messages.

1.3. Security

 RELOAD's security model is based on each node having one or more
 public key certificates. In general, these certificates will be
 assigned by a central server which also assigns Node-IDs, although
 self-signed certificates can be used in closed networks. These
 credentials can be leveraged to provide communications security for
 RELOAD messages. RELOAD provides communications security at three
 levels:

 Connection Level: Connections between nodes are secured with TLS,
 DTLS, or potentially some to be defined future protocol.
 Message Level: Each RELOAD message is signed.
 Object Level: Stored objects are signed by the creating node.

 These three levels of security work together to allow nodes to verify
 the origin and correctness of data they receive from other nodes,
 even in the face of malicious activity by other nodes in the overlay.
 RELOAD also provides access control built on top of these
 communications security features. Because the peer responsible for

 storing a piece of data can validate the signature on the data being
 stored, the responsible peer can determine whether a given operation
 is permitted or not.

 RELOAD also provides an optional shared secret based admission
 control feature using shared secrets and TLS-PSK. In order to form a
 TLS connection to any node in the overlay, a new node needs to know
 the shared overlay key, thus restricting access to authorized users

Jennings, et al. Expires May 9, 2013 [Page 17]

Internet-Draft RELOAD Base November 2012

 only. This feature is used together with certificate-based access
 control, not as a replacement for it. It is typically used when
 self-signed certificates are being used but would generally not be
 used when the certificates were all signed by an enrollment server.

1.4. Structure of This Document

 The remainder of this document is structured as follows.

 o Section 2 provides definitions of terms used in this document.
 o Section 3 provides an overview of the mechanisms used to establish
 and maintain the overlay.
 o Section 5 provides an overview of the mechanism RELOAD provides to
 support other applications.
 o Section 6 defines the protocol messages that RELOAD uses to
 establish and maintain the overlay.
 o Section 7 defines the protocol messages that are used to store and
 retrieve data using RELOAD.
 o Section 8 defines the Certificate Store Usage that is fundamental
 to RELOAD security.
 o Section 9 defines the TURN Server Usage needed to locate TURN
 servers for NAT traversal.
 o Section 10 defines a specific Topology Plugin using Chord based
 algorithm.
 o Section 11 defines the mechanisms that new RELOAD nodes use to
 join the overlay for the first time.
 o Section 12 provides an extended example.

2. Terminology

 Terms used in this document are defined inline when used and are also
 defined below for reference.

 DHT: A distributed hash table. A DHT is an abstract hash table
 service realized by storing the contents of the hash table across
 a set of peers.

 Overlay Algorithm: An overlay algorithm defines the rules for
 determining which peers in an overlay store a particular piece of
 data and for determining a topology of interconnections amongst
 peers in order to find a piece of data.

Jennings, et al. Expires May 9, 2013 [Page 18]

Internet-Draft RELOAD Base November 2012

 Overlay Instance: A specific overlay algorithm and the collection of
 peers that are collaborating to provide read and write access to
 it. There can be any number of overlay instances running in an IP
 network at a time, and each operates in isolation of the others.

 Peer: A host that is participating in the overlay. Peers are
 responsible for holding some portion of the data that has been
 stored in the overlay and also route messages on behalf of other
 hosts as required by the Overlay Algorithm.

 Client: A host that is able to store data in and retrieve data from
 the overlay but which is not participating in routing or data
 storage for the overlay.

 Kind: A Kind defines a particular type of data that can be stored in
 the overlay. Applications define new Kinds to store the data they
 use. Each Kind is identified with a unique integer called a
 Kind-ID.

 Node: We use the term "Node" to refer to a host that may be either a
 Peer or a Client. Because RELOAD uses the same protocol for both
 clients and peers, much of the text applies equally to both.
 Therefore we use "Node" when the text applies to both Clients and
 Peers and the more specific term (i.e. client or peer) when the
 text applies only to Clients or only to Peers.

 Node-ID: A fixed-length value that uniquely identifies a node.
 Node-IDs of all 0s and all 1s are reserved and are invalid Node-
 IDs. A value of zero is not used in the wire protocol but can be
 used to indicate an invalid node in implementations and APIs. The
 Node-ID of all 1s is used on the wire protocol as a wildcard.

 Joining Peer: A node that is attempting to become a Peer in a
 particular Overlay.

 Admitting Peer: A Peer in the Overlay which helps the Joining Peer
 join the Overlay.

 Bootstrap Node: A network node used by Joining Peers to help locate
 the Admitting Peer.

 Peer Admission: The act of admitting a peer (the "Joining Peer")
 into an Overlay. After the admission process is over, the joining
 peer is a fully-functional peer of the overlay. During the
 admission process, the joining peer may need to present
 credentials to prove that it has sufficient authority to join the
 overlay.

Jennings, et al. Expires May 9, 2013 [Page 19]

Internet-Draft RELOAD Base November 2012

 Resource: An object or group of objects associated with a string
 identifier. See "Resource Name" below.

 Resource Name: The potentially human readable name by which a
 resource is identified. In unstructured P2P networks, the
 resource name is sometimes used directly as a Resource-ID. In
 structured P2P networks the resource name is typically mapped into
 a Resource-ID by using the string as the input to hash function.
 Structured and unstructured P2P networks are described in
 [RFC5694]. A SIP resource, for example, is often identified by
 its AOR which is an example of a Resource Name.

 Resource-ID: A value that identifies some resources and which is
 used as a key for storing and retrieving the resource. Often this
 is not human friendly/readable. One way to generate a Resource-ID
 is by applying a mapping function to some other unique name (e.g.,
 user name or service name) for the resource. The Resource-ID is
 used by the distributed database algorithm to determine the peer

https://datatracker.ietf.org/doc/pdf/rfc5694

 or peers that are responsible for storing the data for the
 overlay. In structured P2P networks, Resource-IDs are generally
 fixed length and are formed by hashing the resource name. In
 unstructured networks, resource names may be used directly as
 Resource-IDs and may be variable lengths.

 Connection Table: The set of nodes to which a node is directly
 connected. This includes nodes with which Attach handshakes have
 been done but which have not sent any Updates.

 Routing Table: The set of peers which a node can use to route
 overlay messages. In general, these peers will all be on the
 connection table but not vice versa, because some peers will have
 Attached but not sent updates. Peers may send messages directly
 to peers that are in the connection table but may only route
 messages to other peers through peers that are in the routing
 table.

 Destination List: A list of IDs through which a message is to be
 routed, in strict order. A single Node-ID or a Resource-ID is a
 trivial form of destination list. When multiple Node-IDs are
 specified (no more than one Resource-ID is permitted, and it MUST
 be the last entry) a Destination List is a loose source route.

 Usage: A usage is an application that wishes to use the overlay for
 some purpose. Each application wishing to use the overlay defines
 a set of data Kinds that it wishes to use. The SIP usage defines
 the location data Kind.

Jennings, et al. Expires May 9, 2013 [Page 20]

Internet-Draft RELOAD Base November 2012

 Transaction ID: A randomly chosen identifier selected by the
 originator of a request and used to correlate requests and
 responses.

 The term "maximum request lifetime" is the maximum time a request
 will wait for a response; it defaults to 15 seconds. The term
 "successor replacement hold-down time" is the amount of time to wait
 before starting replication when a new successor is found; it
 defaults to 30 seconds.

3. Overlay Management Overview

 The most basic function of RELOAD is as a generic overlay network.
 Nodes need to be able to join the overlay, form connections to other
 nodes, and route messages through the overlay to nodes to which they
 are not directly connected. This section provides an overview of the
 mechanisms that perform these functions.

3.1. Security and Identification

 The overlay parameters are specified in a configuration document.
 Because the parameters include security critical information such as
 the certificate signing trust anchors, the configuration document
 must be retrieved securely. The initial configuration document is
 either initially fetched over HTTPS or manually provisioned;
 subsequent configuration document updates are received either by
 periodically refreshing from the configuration server, or, more
 commonly, by being flood filled through the overlay, which allows for
 fast propagation once an update is pushed. In the latter case,
 updates are via digital signatures tracing back to the initial
 configuration document.

 Every node in the RELOAD overlay is identified by a Node-ID. The
 Node-ID is used for three major purposes:

 o To address the node itself.
 o To determine its position in the overlay topology when the overlay
 is structured.
 o To determine the set of resources for which the node is
 responsible.

 Each node has a certificate [RFC5280] containing this Node-ID, which
 is unique within an overlay instance.

 The certificate serves multiple purposes:

Jennings, et al. Expires May 9, 2013 [Page 21]

Internet-Draft RELOAD Base November 2012

 o It entitles the user to store data at specific locations in the
 Overlay Instance. Each data Kind defines the specific rules for
 determining which certificates can access each Resource-ID/Kind-ID
 pair. For instance, some Kinds might allow anyone to write at a
 given location, whereas others might restrict writes to the owner

https://datatracker.ietf.org/doc/pdf/rfc5280

 of a single certificate.
 o It entitles the user to operate a node that has a Node-ID found in
 the certificate. When the node forms a connection to another
 peer, it uses this certificate so that a node connecting to it
 knows it is connected to the correct node (technically: a (D)TLS
 association with client authentication is formed.) In addition,
 the node can sign messages, thus providing integrity and
 authentication for messages which are sent from the node.
 o It entitles the user to use the user name found in the
 certificate.

 If a user has more than one device, typically they would get one
 certificate for each device. This allows each device to act as a
 separate peer.

 RELOAD supports multiple certificate issuance models. The first is
 based on a central enrollment process which allocates a unique name
 and Node-ID and puts them in a certificate for the user. All peers
 in a particular Overlay Instance have the enrollment server as a
 trust anchor and so can verify any other peer's certificate.

 In some settings, a group of users want to set up an overlay network
 but are not concerned about attack by other users in the network.
 For instance, users on a LAN might want to set up a short term ad hoc
 network without going to the trouble of setting up an enrollment
 server. RELOAD supports the use of self-generated, self-signed
 certificates. When self-signed certificates are used, the node also
 generates its own Node-ID and username. The Node-ID is computed as a
 digest of the public key, to prevent Node-ID theft. Note that the
 relevant cryptographic property for the digest is preimage
 resistance. Collision-resistance is not required since an attacker
 who can create two nodes with the same Node-ID but different public
 key obtains no advantage. This model is still subject to a number of
 known attacks (most notably Sybil attacks [Sybil]) and can only be
 safely used in closed networks where users are mutually trusting.
 Another drawback of this approach is that user's data is then tied to
 their keys, so if a key is changed any data stored under their
 Node-ID must then be re-stored. This is not an issue for centrally-
 issued Node-IDs provided that the CA re-issues the same Node-ID when
 a new certificate is generated.

 The general principle here is that the security mechanisms (TLS and
 message signatures) are always used, even if the certificates are

Jennings, et al. Expires May 9, 2013 [Page 22]

Internet-Draft RELOAD Base November 2012

 self-signed. This allows for a single set of code paths in the
 systems with the only difference being whether certificate
 verification is required to chain to a single root of trust.

3.1.1. Shared-Key Security

 RELOAD also provides an admission control system based on shared
 keys. In this model, the peers all share a single key which is used
 to authenticate the peer-to-peer connections via TLS-PSK/TLS-SRP.

3.2. Clients

 RELOAD defines a single protocol that is used both as the peer
 protocol and as the client protocol for the overlay. This simplifies
 implementation, particularly for devices that may act in either role,
 and allows clients to inject messages directly into the overlay.

 We use the term "peer" to identify a node in the overlay that routes
 messages for nodes other than those to which it is directly
 connected. Peers also have storage responsibilities. We use the
 term "client" to refer to nodes that do not have routing or storage
 responsibilities. When text applies to both peers and clients, we
 will simply refer to such devices as "nodes."

 RELOAD's client support allows nodes that are not participating in
 the overlay as peers to utilize the same implementation and to
 benefit from the same security mechanisms as the peers. Clients
 possess and use certificates that authorize the user to store data at
 certain locations in the overlay. The Node-ID in the certificate is
 used to identify the particular client as a member of the overlay and
 to authenticate its messages.

 In RELOAD, unlike some other designs, clients are not a first-class
 entity. From the perspective of a peer, a client is simply a node
 which has not yet sent any Updates or Joins. It might never do so
 (if it's a client) or it might eventually do so (if it's just a node
 that's taking a long time to join). The routing and storage rules
 for RELOAD provide for correct behavior by peers regardless of
 whether other nodes attached to them are clients or peers. Of
 course, a client implementation must know that it intends to be a
 client, but this localizes complexity only to that node.

 For more discussion of the motivation for RELOAD's client support,
 see Appendix B.

Jennings, et al. Expires May 9, 2013 [Page 23]

Internet-Draft RELOAD Base November 2012

3.2.1. Client Routing

 Clients may insert themselves in the overlay in two ways:

 o Establish a connection to the peer responsible for the client's
 Node-ID in the overlay. Then requests may be sent from/to the
 client using its Node-ID in the same manner as if it were a peer,
 because the responsible peer in the overlay will handle the final
 step of routing to the client. This may require a TURN relay in
 cases where NATs or firewalls prevent a client from forming a
 direct connections with its responsible peer. Note that clients
 that choose this option need to process Update messages from the
 peer. Those updates can indicate that the peer no longer is
 responsible for the Client's Node-ID. The client would then need
 to form a connection to the appropriate peer. Failure to do so
 will result in the client no longer receiving messages.
 o Establish a connection with an arbitrary peer in the overlay
 (perhaps based on network proximity or an inability to establish a
 direct connection with the responsible peer). In this case, the
 client will rely on RELOAD's Destination List feature to ensure
 reachability. The client can initiate requests, and any node in
 the overlay that knows the Destination List to its current
 location can reach it, but the client is not directly reachable
 using only its Node-ID. If the client is to receive incoming
 requests from other members of the overlay, the Destination List
 required to reach it must be learnable via other mechanisms, such
 as being stored in the overlay by a usage. A client connected
 this way using a certificate with only a single Node-ID MAY
 proceed to use the connection without performing an Attach. A
 client wishing to connect using this mechanism with a certificate
 with multiple Node-IDs can use a Ping to probe the Node-ID of the
 node to which it is connected before doing the Attach.

3.2.2. Minimum Functionality Requirements for Clients

 A node may act as a client simply because it does not have the
 resources or even an implementation of the topology plugin required
 to act as a peer in the overlay. In order to exchange RELOAD
 messages with a peer, a client MUST meet a minimum level of
 functionality. Such a client MUST:

 o Implement RELOAD's connection-management operations that are used

 to establish the connection with the peer.
 o Implement RELOAD's data retrieval methods (with client
 functionality).
 o Be able to calculate Resource-IDs used by the overlay.

Jennings, et al. Expires May 9, 2013 [Page 24]

Internet-Draft RELOAD Base November 2012

 o Possess security credentials required by the overlay it is
 implementing.

 A client speaks the same protocol as the peers, knows how to
 calculate Resource-IDs, and signs its requests in the same manner as
 peers. While a client does not necessarily require a full
 implementation of the overlay algorithm, calculating the Resource-ID
 requires an implementation of the appropriate algorithm for the
 overlay.

3.3. Routing

 This section will discuss the capabilities of RELOAD's routing layer,
 the protocol features used to implement them, and a brief overview of
 how they are used. Appendix A discusses some alternative designs and
 the tradeoffs that would be necessary to support them.

 RELOAD's routing provides the following capabilities:

 Resource-based routing: RELOAD supports routing messages based
 soley on the name of the resource. Such messages are delivered to
 a node that is responsible for that resource. Both structured and
 unstructured overlays are supported, so the route may not be
 deterministic for all Topology Plugins.
 Node-based routing: RELOAD supports routing messages to a specific
 node in the overlay.
 Clients: RELOAD supports requests from and to clients that do not
 participate in overlay routing, located via either of the
 mechanisms described above.
 Bridging overlays: Similar to how a Destination List is used to
 reach a client attached via an arbitrary peer, RELOAD can route
 messages between two different overlays by building a destination
 list that includes a peer (or client) with connectivity to both
 networks.
 NAT Traversal: RELOAD supports establishing and using connections

 between nodes separated by one or more NATs, including locating
 peers behind NATs for those overlays allowing/requiring it.
 Low state: RELOAD's routing algorithms do not require significant
 state (i.e., state linear or greater in the number of outstanding
 messages that have passed through it) to be stored on intermediate
 peers.
 Routability in unstable topologies: Overlay topology changes
 constantly in an overlay of moderate size due to the failure of
 individual nodes and links in the system. RELOAD's routing allows
 peers to re-route messages when a failure is detected, and replies
 can be returned to the requesting node as long as the peers that
 originally forwarded the successful request do not fail before the
 response is returned.

Jennings, et al. Expires May 9, 2013 [Page 25]

Internet-Draft RELOAD Base November 2012

 RELOAD's routing utilizes three basic mechanisms:

 Destination Lists: While in principle it is possible to just
 inject a message into the overlay with a single Node-ID as the
 destination, RELOAD provides a source routing capability in the
 form of "Destination Lists". A Destination List provides a list
 of the nodes through which a message must flow in order (i.e., it
 is loose source routed). The minimal destination list contains
 just a single value.
 Via Lists: In order to allow responses to follow the same path as
 requests, each message also contains a "Via List", which is
 appended to by each node a message traverses. This via list can
 then be inverted and used as a destination list for the response.
 RouteQuery: The RouteQuery method allows a node to query a peer
 for the next hop it will use to route a message. This method is
 useful for diagnostics and for iterative routing.

 The basic routing mechanism used by RELOAD is Symmetric Recursive.
 We will first describe symmetric recursive routing and then discuss
 its advantages in terms of the requirements discussed above.

 Symmetric recursive routing requires that a request message follow a
 path through the overlay to the destination: each peer forwards the
 message closer to its destination. The return path of the response
 is then the same path followed in reverse. For example, a message
 following a route from A to Z through B and X:

 A B X Z

 ---------->
 Dest=Z
 ---------->
 Via=A
 Dest=Z
 ---------->
 Via=A,B
 Dest=Z

 <----------
 Dest=X,B,A
 <----------
 Dest=B,A
 <----------
 Dest=A

 Note that the preceding Figure does not indicate whether A is a

Jennings, et al. Expires May 9, 2013 [Page 26]

Internet-Draft RELOAD Base November 2012

 client or peer: A forwards its request to B and the response is
 returned to A in the same manner regardless of A's role in the
 overlay.

 This figure shows use of full via lists by intermediate peers B and
 X. However, if B and/or X are willing to store state, then they may
 elect to truncate the lists, save that information internally (keyed
 by the transaction id), and return the response message along the
 path from which it was received when the response is received. This
 option requires greater state to be stored on intermediate peers but
 saves a small amount of bandwidth and reduces the need for modifying
 the message en route. Selection of this mode of operation is a
 choice for the individual peer; the techniques are interoperable even
 on a single message. The figure below shows B using full via lists
 but X truncating them to X1 and saving the state internally.

 A B X Z

 ---------->
 Dest=Z

 ---------->
 Via=A
 Dest=Z
 ---------->
 Via=X1
 Dest=Z

 <----------
 Dest=X,X1
 <----------
 Dest=B,A
 <----------
 Dest=A

 As before, when B receives the message, he creates a via list
 consisting of [A]. However, instead of sending [A, B], X creates an
 opaque ID X1 which maps internally to [A, B] (perhaps by being an
 encryption of [A, B] and forwards to Z with only X1 as the via list.
 When the response arrives at X, it maps X1 back to [A, B] and then
 inverts it to produce the new destination list [B, A] and routes it
 to B.

 RELOAD also supports a basic Iterative routing mode (where the
 intermediate peers merely return a response indicating the next hop,
 but do not actually forward the message to that next hop themselves).
 Iterative routing is implemented using the RouteQuery method, which
 requests this behavior. Note that iterative routing is selected only

Jennings, et al. Expires May 9, 2013 [Page 27]

Internet-Draft RELOAD Base November 2012

 by the initiating node.

3.4. Connectivity Management

 In order to provide efficient routing, a peer needs to maintain a set
 of direct connections to other peers in the Overlay Instance. Due to
 the presence of NATs, these connections often cannot be formed
 directly. Instead, we use the Attach request to establish a
 connection. Attach uses ICE [RFC5245] to establish the connection.
 It is assumed that the reader is familiar with ICE.

 Say that peer A wishes to form a direct connection to peer B. It
 gathers ICE candidates and packages them up in an Attach request
 which it sends to B through usual overlay routing procedures. B does

https://datatracker.ietf.org/doc/pdf/rfc5245

 its own candidate gathering and sends back a response with its
 candidates. A and B then do ICE connectivity checks on the candidate
 pairs. The result is a connection between A and B. At this point, A
 and B can add each other to their routing tables and send messages
 directly between themselves without going through other overlay
 peers.

 There are two cases where Attach is not used. The first is when a
 peer is joining the overlay and is not connected to any peers. In
 order to support this case, some small number of "bootstrap nodes"
 typically need to be publicly accessible so that new peers can
 directly connect to them. Section 11 contains more detail on this.
 The second case is when a client connects to a peer at an arbitrary
 IP address, rather than to its responsible peer, as described in the
 second bullet point of Section 3.2.1.

 In general, a peer needs to maintain connections to all of the peers
 near it in the Overlay Instance and to enough other peers to have
 efficient routing (the details depend on the specific overlay). If a
 peer cannot form a connection to some other peer, this isn't
 necessarily a disaster; overlays can route correctly even without
 fully connected links. However, a peer should try to maintain the
 specified link set and if it detects that it has fewer direct
 connections, should form more as required. This also implies that
 peers need to periodically verify that the connected peers are still
 alive and if not try to reform the connection or form an alternate
 one.

3.5. Overlay Algorithm Support

 The Topology Plugin allows RELOAD to support a variety of overlay
 algorithms. This specification defines a DHT based on Chord, which
 is mandatory to implement, but the base RELOAD protocol is designed
 to support a variety of overlay algorithms. The information needed

Jennings, et al. Expires May 9, 2013 [Page 28]

Internet-Draft RELOAD Base November 2012

 to implement this DHT is fully contained in this specification but it
 is easier to understand if you are familiar with Chord [Chord] based
 DHTs. A nice tutorial can be found at [wikiChord].

3.5.1. Support for Pluggable Overlay Algorithms

 RELOAD defines three methods for overlay maintenance: Join, Update,

 and Leave. However, the contents of those messages, when they are
 sent, and their precise semantics are specified by the actual overlay
 algorithm, which is specified by configuration for all nodes in the
 overlay, and thus known to nodes prior to their attempting to join
 the overlay. RELOAD merely provides a framework of commonly-needed
 methods that provides uniformity of notation (and ease of debugging)
 for a variety of overlay algorithms.

3.5.2. Joining, Leaving, and Maintenance Overview

 When a new peer wishes to join the Overlay Instance, it MUST have a
 Node-ID that it is allowed to use and a set of credentials which
 match that Node-ID. When an enrollment server is used that Node-ID
 will be in the certificate the node received from the enrollment
 server. The details of the joining procedure are defined by the
 overlay algorithm, but the general steps for joining an Overlay
 Instance are:

 o Forming connections to some other peers.
 o Acquiring the data values this peer is responsible for storing.
 o Informing the other peers which were previously responsible for
 that data that this peer has taken over responsibility.

 The first thing the peer needs to do is to form a connection to some
 "bootstrap node". Because this is the first connection the peer
 makes, these nodes MUST have public IP addresses so that they can be
 connected to directly. Once a peer has connected to one or more
 bootstrap nodes, it can form connections in the usual way by routing
 Attach messages through the overlay to other nodes. Once a peer has
 connected to the overlay for the first time, it can cache the set of
 past adjacencies which have public IP address and attempt to use them
 as future bootstrap nodes. Note that this requires some notion of
 which addresses are likely to be public as discussed in Section 9.

 Once a peer has connected to a bootstrap node, it then needs to take
 up its appropriate place in the overlay. This requires two major
 operations:

 o Forming connections to other peers in the overlay to populate its
 Routing Table.

Jennings, et al. Expires May 9, 2013 [Page 29]

Internet-Draft RELOAD Base November 2012

 o Getting a copy of the data it is now responsible for storing and
 assuming responsibility for that data.

 The second operation is performed by contacting the Admitting Peer
 (AP), the node which is currently responsible for that section of the
 overlay.

 The details of this operation depend mostly on the overlay algorithm
 involved, but a typical case would be:

 1. JP (Joining Peer) sends a Join request to AP (Admitting Peer)
 announcing its intention to join.
 2. AP sends a Join response.
 3. AP does a sequence of Stores to JP to give it the data it will
 need.
 4. AP does Updates to JP and to other peers to tell it about its own
 routing table. At this point, both JP and AP consider JP
 responsible for some section of the Overlay Instance.
 5. JP makes its own connections to the appropriate peers in the
 Overlay Instance.

 After this process is completed, JP is a full member of the Overlay
 Instance and can process Store/Fetch requests.

 Note that the first node is a special case. When ordinary nodes
 cannot form connections to the bootstrap nodes, then they are not
 part of the overlay. However, the first node in the overlay can
 obviously not connect to other nodes. In order to support this case,
 potential first nodes (which must also serve as bootstrap nodes
 initially) must somehow be instructed (perhaps by configuration
 settings) that they are the entire overlay, rather than not part of
 it.

 Note that clients do not perform either of these operations.

3.6. First-Time Setup

 Previous sections addressed how RELOAD works once a node has
 connected. This section provides an overview of how users get
 connected to the overlay for the first time. RELOAD is designed so
 that users can start with the name of the overlay they wish to join
 and perhaps a username and password, and leverage that into having a
 working peer with minimal user intervention. This helps avoid the
 problems that have been experienced with conventional SIP clients
 where users are required to manually configure a large number of
 settings.

Jennings, et al. Expires May 9, 2013 [Page 30]

Internet-Draft RELOAD Base November 2012

3.6.1. Initial Configuration

 In the first phase of the process, the user starts out with the name
 of the overlay and uses this to download an initial set of overlay
 configuration parameters. The node does a DNS SRV lookup on the
 overlay name to get the address of a configuration server. It can
 then connect to this server with HTTPS [RFC2818] to download a
 configuration document which contains the basic overlay configuration
 parameters as well as a set of bootstrap nodes which can be used to
 join the overlay. The expected domain name for HTTPS is the name of
 the overlay.

 If a node already has the valid configuration document that it
 received by some out of band method, this step can be skipped. Note
 that that out of band method must provide authentication and
 integrity, because the configuration document contains the trust
 anchors for the system.

3.6.2. Enrollment

 If the overlay is using centralized enrollment, then a user needs to
 acquire a certificate before joining the overlay. The certificate
 attests both to the user's name within the overlay and to the Node-
 IDs which they are permitted to operate. In that case, the
 configuration document will contain the address of an enrollment
 server which can be used to obtain such a certificate. The
 enrollment server may (and probably will) require some sort of
 username and password before issuing the certificate. The enrollment
 server's ability to restrict attackers' access to certificates in the
 overlay is one of the cornerstones of RELOAD's security.

3.6.3. Diagnostics

 Significant advice around managing a RELOAD overlay and extensions
 for diagnostics are described in [I-D.ietf-p2psip-diagnostics].

4. RFC 2119 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/pdf/rfc2818
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2119

5. Application Support Overview

 RELOAD is not intended to be used alone, but rather as a substrate
 for other applications. These applications can use RELOAD for a

Jennings, et al. Expires May 9, 2013 [Page 31]

Internet-Draft RELOAD Base November 2012

 variety of purposes:

 o To store data in the overlay and retrieve data stored by other
 nodes.
 o As a discovery mechanism for services such as TURN.
 o To form direct connections which can be used to transmit
 application-level messages without using the overlay.

 This section provides an overview of these services.

5.1. Data Storage

 RELOAD provides operations to Store and Fetch data. Each location in
 the Overlay Instance is referenced by a Resource-ID. However, each
 location may contain data elements corresponding to multiple Kinds
 (e.g., certificate, SIP registration). Similarly, there may be
 multiple elements of a given Kind, as shown below:

 +--------------------------------+
 | Resource-ID |
 | |
 | +------------+ +------------+ |
 | | Kind 1 | | Kind 2 | | | | | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | +------------+ |
 | | +--------+ | |
 | | | Value | | |
 | | +--------+ | |
 | +------------+ |

 +--------------------------------+

 Each Kind is identified by a Kind-ID, which is a code point either
 assigned by IANA or allocated out of a private range. As part of the
 Kind definition, protocol designers may define constraints, such as
 limits on size, on the values which may be stored. For many Kinds,
 the set may be restricted to a single value; some sets may be allowed
 to contain multiple identical items while others may only have unique
 items. Note that a Kind may be employed by multiple usages and new
 usages are encouraged to use previously defined Kinds where possible.
 We define the following data models in this document, though other
 usages can define their own structures:

Jennings, et al. Expires May 9, 2013 [Page 32]

Internet-Draft RELOAD Base November 2012

 single value: There can be at most one item in the set and any value
 overwrites the previous item.

 array: Many values can be stored and addressed by a numeric index.

 dictionary: The values stored are indexed by a key. Often this key
 is one of the values from the certificate of the peer sending the
 Store request.

 In order to protect stored data from tampering, by other nodes, each
 stored value is individually digitally signed by the node which
 created it. When a value is retrieved, the digital signature can be
 verified to detect tampering.

5.1.1. Storage Permissions

 A major issue in peer-to-peer storage networks is minimizing the
 burden of becoming a peer, and in particular minimizing the amount of
 data which any peer is required to store for other nodes. RELOAD
 addresses this issue by only allowing any given node to store data at
 a small number of locations in the overlay, with those locations
 being determined by the node's certificate. When a peer uses a Store
 request to place data at a location authorized by its certificate, it
 signs that data with the private key that corresponds to its
 certificate. Then the peer responsible for storing the data is able
 to verify that the peer issuing the request is authorized to make
 that request. Each data Kind defines the exact rules for determining
 what certificate is appropriate.

 The most natural rule is that a certificate authorizes a user to
 store data keyed with their user name X. Thus, only a user with a
 certificate for "alice@example.org" could write to that location in
 the overlay. However, other usages can define any rules they choose,
 including publicly writable values.

 The digital signature over the data serves two purposes. First, it
 allows the peer responsible for storing the data to verify that this
 Store is authorized. Second, it provides integrity for the data.
 The signature is saved along with the data value (or values) so that
 any reader can verify the integrity of the data. Of course, the
 responsible peer can "lose" the value but it cannot undetectably
 modify it.

 The size requirements of the data being stored in the overlay are
 variable. For instance, a SIP AOR and voicemail differ widely in the
 storage size. RELOAD leaves it to the Usage and overlay
 configuration to limit size imbalance of various Kinds.

Jennings, et al. Expires May 9, 2013 [Page 33]

Internet-Draft RELOAD Base November 2012

5.1.2. Replication

 Replication in P2P overlays can be used to provide:

 persistence: if the responsible peer crashes and/or if the storing
 peer leaves the overlay
 security: to guard against DoS attacks by the responsible peer or
 routing attacks to that responsible peer
 load balancing: to balance the load of queries for popular
 resources.

 A variety of schemes are used in P2P overlays to achieve some of
 these goals. Common techniques include replicating on neighbors of
 the responsible peer, randomly locating replicas around the overlay,
 or replicating along the path to the responsible peer.

 The core RELOAD specification does not specify a particular
 replication strategy. Instead, the first level of replication
 strategies are determined by the overlay algorithm, which can base
 the replication strategy on its particular topology. For example,
 Chord places replicas on successor peers, which will take over
 responsibility should the responsible peer fail [Chord].

 If additional replication is needed, for example if data persistence
 is particularly important for a particular usage, then that usage may
 specify additional replication, such as implementing random
 replications by inserting a different well known constant into the
 Resource Name used to store each replicated copy of the resource.
 Such replication strategies can be added independent of the
 underlying algorithm, and their usage can be determined based on the
 needs of the particular usage.

5.2. Usages

 By itself, the distributed storage layer just provides infrastructure
 on which applications are built. In order to do anything useful, a
 usage must be defined. Each Usage needs to specify several things:

 o Registers Kind-ID code points for any Kinds that the Usage
 defines.
 o Defines the data structure for each of the Kinds.
 o Defines access control rules for each of the Kinds.
 o Defines how the Resource Name is hashed to form the Resource-ID
 where each Kind is stored.
 o Describes how values will be merged after a network partition.
 Unless otherwise specified, the default merging rule is to act as
 if all the values that need to be merged were stored and as if the
 order they were stored in corresponds to the stored time values

Jennings, et al. Expires May 9, 2013 [Page 34]

Internet-Draft RELOAD Base November 2012

 associated with (and carried in) their values. Because the stored
 time values are those associated with the peer which did the
 writing, clock skew is generally not an issue. If two nodes are
 on different partitions, write to the same location, and have
 clock skew, this can create merge conflicts. However because
 RELOAD deliberately segregates storage so that data from different
 users and peers is stored in different locations, and a single
 peer will typically only be in a single network partition, this
 case will generally not arise.

 The Kinds defined by a usage may also be applied to other usages.
 However, a need for different parameters, such as different size
 limits, would imply the need to create a new Kind.

5.3. Service Discovery

 RELOAD does not currently define a generic service discovery
 algorithm as part of the base protocol, although a simplistic TURN-
 specific discovery mechanism is provided. A variety of service
 discovery algorithms can be implemented as extensions to the base
 protocol, such as the service discovery algorithm ReDIR
 [opendht-sigcomm05] or [I-D.ietf-p2psip-service-discovery].

5.4. Application Connectivity

 There is no requirement that a RELOAD usage must use RELOAD's
 primitives for establishing its own communication if it already
 possesses its own means of establishing connections. For example,
 one could design a RELOAD-based resource discovery protocol which
 used HTTP to retrieve the actual data.

 For more common situations, however, it is the overlay itself -
 rather than an external authority such as DNS - which is used to
 establish a connection. RELOAD provides connectivity to applications
 using the AppAttach method. For example, if a P2PSIP node wishes to
 establish a SIP dialog with another P2PSIP node, it will use
 AppAttach to establish a direct connection with the other node. This
 new connection is separate from the peer protocol connection. It is
 a dedicated UDP or TCP flow used only for the SIP dialog.

6. Overlay Management Protocol

 This section defines the basic protocols used to create, maintain,
 and use the RELOAD overlay network. We start by defining the basic
 concept of how message destinations are interpreted when routing
 messages. We then describe the symmetric recursive routing model,
 which is RELOAD's default routing algorithm. We then define the

Jennings, et al. Expires May 9, 2013 [Page 35]

Internet-Draft RELOAD Base November 2012

 message structure and then finally define the messages used to join
 and maintain the overlay.

6.1. Message Receipt and Forwarding

 When a node receives a message, it first examines the overlay,
 version, and other header fields to determine whether the message is
 one it can process. If any of these are incorrect (e.g., the message

 is for an overlay in which the peer does not participate) it is an
 error and the message MUST be discarded. The peer SHOULD generate an
 appropriate error but local policy can override this and cause the
 messages to be silently dropped.

 Once the peer has determined that the message is correctly formatted
 (note that this does not include signature checking on intermediate
 nodes as the message may be fragmented) it examines the first entry
 on the destination list. There are three possible cases here:

 o The first entry on the destination list is an ID for which the
 peer is responsible. A peer is always responsible for the
 wildcard Node-ID. Handling of this case is described in
 Section 6.1.1.
 o The first entry on the destination list is an ID for which another
 peer is responsible. Handling of this case is described in
 Section 6.1.2.
 o The first entry on the destination list is an opaque ID that is
 being used for destination list compression. Handling of this
 case is described in Section 6.1.3. Note that opaque IDs can be
 distinguished from Node-IDs and Resource-IDs on the wire as
 described in Section 6.3.2.2).

 These cases are handled as discussed below.

6.1.1. Responsible ID

 If the first entry on the destination list is an ID for which the
 peer is responsible, there are several (mutually exclusive) sub-cases
 to consider.

 o If the entry is a Resource-ID, then it MUST be the only entry on
 the destination list. If there are other entries, the message
 MUST be silently dropped. Otherwise, the message is destined for
 this node and it verify the signature and pass it up to the upper
 layers.
 o If the entry is a Node-ID which equals this node's Node-ID, then
 the message is destined for this node. If this is the only entry
 on the destination list, the message is destined for this node and
 so the node passes it up to the upper layers. Otherwise the node

Jennings, et al. Expires May 9, 2013 [Page 36]

Internet-Draft RELOAD Base November 2012

 removes the entry from the destination list and repeats the

 routing process with the next entry on the destination list. If
 the message is a response and list compression was used, then the
 node first modifies the destination list to reinsert the saved
 state, e.g., by unpacking any opaque IDS.
 o If the entry is the wildcard Node-ID, the message is destined for
 this node and it passes it up to the upper layers.
 o If the entry is a Node-ID which is not equal to this node, then
 the node MUST drop the message silently unless the Node-ID
 corresponds to a node which is directly connected to this node
 (i.e., a client). In the later case, it MUST forward the message
 to the destination node as described in the next section.

 Note that this implies that in order to address a message to "the
 peer that controls region X", a sender sends to Resource-ID X, not
 Node-ID X.

6.1.2. Other ID

 If neither of the other three cases applies, then the peer MUST
 forward the message towards the first entry on the destination list.
 This means that it MUST select one of the peers to which it is
 connected and which is likely to be responsible for the first entry
 on the destination list. If the first entry on the destination list
 is in the peer's connection table, then it SHOULD forward the message
 to that peer directly. Otherwise, the peer consults the routing
 table to forward the message.

 Any intermediate peer which forwards a RELOAD request MUST ensure
 that if it receives a response to that message the response can be
 routed back through the set of nodes through which the request
 passed. There are two major ways of accomplishing this:

 o The peer can add an entry to the via list in the forwarding header
 that will enable it to determine the correct node.
 o The peer can keep per-transaction state which will allow it to
 determine the correct node.

 As an example of the first strategy, consider an example with nodes
 A, B, C, D and E. If node D receives a message from node C with via
 list [A, B], then D would forward to the next node E with via list
 [A, B, C]. Now, if E wants to respond to the message, it reverses
 the via list to produce the destination list, resulting in [D, C, B,
 A]. When D forwards the response to C, the destination list will
 contain [C, B, A].

 As an example of the second strategy, if node D receives a message
 from node C with transaction ID X and via list [A, B], it could store

Jennings, et al. Expires May 9, 2013 [Page 37]

Internet-Draft RELOAD Base November 2012

 [X, C] in its state database and forward the message with the via
 list unchanged. When D receives the response, it consults its state
 database for transaction id X, determines that the request came from
 C, and forwards the response to C.

 Intermediate peers which modify the via list are not required to
 simply add entries. The only requirement is that the peer MUST be
 able to reconstruct the correct destination list on the return route.
 RELOAD provides explicit support for this functionality in the form
 of opaque IDs, which can replace any number of via list entries. For
 instance, in the above example, Node D might send E a via list
 containing only the opaque ID I. E would then use the destination
 list [D, I] to send its return message. When D processes this
 destination list, it would detect that I is a opaque ID, recover the
 via list [A, B, C], and reverse that to produce the correct
 destination list [C, B, A] before sending it to C. This feature is
 called List Compression. Possibilities for a opaque ID include a
 compressed version of the original via list or an index into a state
 database containing the original via list, but the details are a
 local matter.

 No matter what mechanism for storing via list state is used, if an
 intermediate peer exits the overlay, then on the return trip the
 message cannot be forwarded and will be dropped. The ordinary
 timeout and retransmission mechanisms provide stability over this
 type of failure.

 Note that if an intermediate peer retains per-transaction state
 instead of modifying the via list, it needs some mechanism for timing
 out that state, otherwise its state database will grow without bound.
 Whatever algorithm is used, unless a FORWARD_CRITICAL forwarding
 option or overlay configuration option explicitly indicates this
 state is not needed, the state MUST be maintained for at least the
 value of the overlay-reliability-timer configuration parameter and
 MAY be kept longer. Future extension, such as [I-D.ietf-p2psip-rpr],
 may define mechanisms for determining when this state does not need
 to be retained.

 None of the above mechanisms are required for responses, since there
 is no need to ensure that subsequent requests follow the same path.

 To be precise on the responsibility of the intermediate node, suppose
 that an intermediate node, A, receives a message from node B with via
 list [X, Y, Z]. Node A MUST implement an algorithm that ensures that
 A returns a response to this request to node B with the destination
 list [B, Z, Y, X], provided that the node to which A forwards the

 request follows the same contract. Node A normally learns the
 Node-ID B is using via an Attach, but a node using a certificate with

Jennings, et al. Expires May 9, 2013 [Page 38]

Internet-Draft RELOAD Base November 2012

 a single Node-ID MAY elect to not send an Attach (see Section 3.2.1
 bullet 2). If a node with a certificate with multiple Node-IDs
 attempts to route a message other than a Ping or Attach through a
 node without performing an Attach, the receiving node MUST reject the
 request with an Error_Forbidden error. The node MUST implement
 support for returning responses to a Ping or Attach request made by a
 joining node Attaching to its responsible peer.

6.1.3. Opaque ID

 If the first entry in the destination list is an opaque ID (e.g., a
 compressed via list), the peer MUST replace that entry with the
 original via list that it replaced and then re-examine the
 destination list to determine which of the three cases in Section 6.1
 now applies.

6.2. Symmetric Recursive Routing

 This Section defines RELOAD's Symmetric Recursive Routing (SRR)
 algorithm, which is the default algorithm used by nodes to route
 messages through the overlay. All implementations MUST implement
 this routing algorithm. An overlay MAY be configured to use
 alternative routing algorithms, and alternative routing algorithms
 MAY be selected on a per-message basis. I.e., a node in an overlay
 which supports SRR and routing algorithm RPR [I-D.ietf-p2psip-rpr]
 might use SRR some of the time and RPR some of the time.

6.2.1. Request Origination

 In order to originate a message to a given Node-ID or Resource-ID, a
 node constructs an appropriate destination list. The simplest such
 destination list is a single entry containing the Node-ID or
 Resource-ID. The resulting message uses the normal overlay routing
 mechanisms to forward the message to that destination. The node can
 also construct a more complicated destination list for source
 routing.

 Once the message is constructed, the node sends the message to some
 adjacent peer. If the first entry on the destination list is

 directly connected, then the message MUST be routed down that
 connection. Otherwise, the topology plugin MUST be consulted to
 determine the appropriate next hop.

 Parallel requests for a resource are a common solution to improve
 reliability in the face of churn or of subversive peers. Parallel
 searches for usage-specified replicas are managed by the usage layer,
 for instance by having the usage store data at multiple Resource-IDs
 with the requesting node sending requests to each of those Resource-

Jennings, et al. Expires May 9, 2013 [Page 39]

Internet-Draft RELOAD Base November 2012

 IDs. However, a single request MAY also be routed through multiple
 adjacent peers, even when known to be sub-optimal, to improve
 reliability [vulnerabilities-acsac04]. Such parallel searches MAY be
 specified by the topology plugin, in which case it would return
 multiple next hops and the request would be routed to all of them.

 Because messages may be lost in transit through the overlay, RELOAD
 incorporates an end-to-end reliability mechanism. When an
 originating node transmits a request it MUST set a timer to the
 current overlay-reliability-timer. If a response has not been
 received when the timer fires, the request is retransmitted with the
 same transaction identifier. The request MAY be retransmitted up to
 4 times (for a total of 5 messages). After the timer for the fifth
 transmission fires, the message SHALL be considered to have failed.
 Note that this retransmission procedure is not followed by
 intermediate nodes. They follow the hop-by-hop reliability procedure
 described in Section 6.6.3.

 The above algorithm can result in multiple requests being delivered
 to a node. Receiving nodes MUST generate semantically equivalent
 responses to retransmissions of the same request (this can be
 determined by transaction id) if the request is received within the
 maximum request lifetime (15 seconds). For some requests (e.g.,
 Fetch) this can be accomplished merely by processing the request
 again. For other requests, (e.g., Store) it may be necessary to
 maintain state for the duration of the request lifetime.

6.2.2. Response Origination

 When a peer sends a response to a request using this routing
 algorithm, it MUST construct the destination list by reversing the
 order of the entries on the via list. This has the result that the

 response traverses the same peers as the request traversed, except in
 reverse order (symmetric routing).

6.3. Message Structure

 RELOAD is a message-oriented request/response protocol. The messages
 are encoded using binary fields. All integers are represented in
 network byte order. The general philosophy behind the design was to
 use Type, Length, Value fields to allow for extensibility. However,
 for the parts of a structure that were required in all messages, we
 just define these in a fixed position, as adding a type and length
 for them is unnecessary and would simply increase bandwidth and
 introduces new potential for interoperability issues.

 Each message has three parts, concatenated as shown below:

Jennings, et al. Expires May 9, 2013 [Page 40]

Internet-Draft RELOAD Base November 2012

 +-------------------------+
 | Forwarding Header |
 +-------------------------+
 | Message Contents |
 +-------------------------+
 | Security Block |
 +-------------------------+

 The contents of these parts are as follows:

 Forwarding Header: Each message has a generic header which is used
 to forward the message between peers and to its final destination.
 This header is the only information that an intermediate peer
 (i.e., one that is not the target of a message) needs to examine.

 Message Contents: The message being delivered between the peers.
 From the perspective of the forwarding layer, the contents are
 opaque, however, they are interpreted by the higher layers.

 Security Block: A security block containing certificates and a
 digital signature over the "Message Contents" section. Note that
 this signature can be computed without parsing the message
 contents. All messages MUST be signed by their originator.

 The following sections describe the format of each part of the
 message.

6.3.1. Presentation Language

 The structures defined in this document are defined using a C-like
 syntax based on the presentation language used to define TLS
 [RFC5246]. Advantages of this style include:

 o It is familiar enough looking that most readers can grasp it
 quickly.
 o The ability to define nested structures allows a separation
 between high-level and low-level message structures.
 o It has a straightforward wire encoding that allows quick
 implementation, but the structures can be comprehended without
 knowing the encoding.
 o The ability to mechanically compile encoders and decoders.

 Several idiosyncrasies of this language are worth noting.

 o All lengths are denoted in bytes, not objects.

Jennings, et al. Expires May 9, 2013 [Page 41]

Internet-Draft RELOAD Base November 2012

 o Variable length values are denoted like arrays with angle
 brackets.
 o "select" is used to indicate variant structures.

 For instance, "uint16 array<0..2^8-2>;" represents up to 254 bytes
 which corresponds to up to 127 values of two bytes (16 bits) each.

6.3.1.1. Common Definitions

 The following definitions are used throughout RELOAD and so are
 defined here. They also provide a convenient introduction to how to
 read the presentation language.

 An enum represents an enumerated type. The values associated with
 each possibility are represented in parentheses and the maximum value
 is represented as a nameless value, for purposes of describing the
 width of the containing integral type. For instance, Boolean
 represents a true or false:

https://datatracker.ietf.org/doc/pdf/rfc5246

 enum { false (0), true(1), (255) } Boolean;

 A boolean value is either a 1 or a 0. The max value of 255 indicates
 this is represented as a single byte on the wire.

 The NodeId, shown below, represents a single Node-ID.

 typedef opaque NodeId[NodeIdLength];

 A NodeId is a fixed-length structure represented as a series of
 bytes, with the most significant byte first. The length is set on a
 per-overlay basis within the range of 16-20 bytes (128 to 160 bits).
 (See Section 11.1 for how NodeIdLength is set.) Note: the use of
 "typedef" here is an extension to the TLS language, but its meaning
 should be relatively obvious. Note the [size] syntax defines a
 fixed length element that does not include the length of the element
 in the on the wire encoding.

 A ResourceId, shown below, represents a single Resource-ID.

 typedef opaque ResourceId<0..2^8-1>;

 Like a NodeId, a ResourceId is an opaque string of bytes, but unlike
 NodeIds, ResourceIds are variable length, up to 254 bytes (2040 bits)

Jennings, et al. Expires May 9, 2013 [Page 42]

Internet-Draft RELOAD Base November 2012

 in length. On the wire, each ResourceId is preceded by a single
 length byte (allowing lengths up to 255). Thus, the 3-byte value
 "FOO" would be encoded as: 03 46 4f 4f. Note the < range > syntax
 defines a variable length element that does include the length of the
 element in the on the wire encoding. The number of bytes to encode
 the length on the wire is derived by range; i.e., it is the minimum
 number of bytes which can encode the largest range value.

 A more complicated example is IpAddressPort, which represents a
 network address and can be used to carry either an IPv6 or IPv4
 address:

 enum { reservedAddr(0), ipv4_address(1), ipv6_address(2),
 (255) } AddressType;

 struct {
 uint32 addr;
 uint16 port;
 } IPv4AddrPort;

 struct {
 uint128 addr;
 uint16 port;
 } IPv6AddrPort;

 struct {
 AddressType type;
 uint8 length;

 select (type) {
 case ipv4_address:
 IPv4AddrPort v4addr_port;

 case ipv6_address:
 IPv6AddrPort v6addr_port;

 /* This structure can be extended */
 };
 } IpAddressPort;

 The first two fields in the structure are the same no matter what
 kind of address is being represented:

Jennings, et al. Expires May 9, 2013 [Page 43]

Internet-Draft RELOAD Base November 2012

 type: the type of address (v4 or v6).
 length: the length of the rest of the structure.

 By having the type and the length appear at the beginning of the

 structure regardless of the kind of address being represented, an
 implementation which does not understand new address type X can still
 parse the IpAddressPort field and then discard it if it is not
 needed.

 The rest of the IpAddressPort structure is either an IPv4AddrPort or
 an IPv6AddrPort. Both of these simply consist of an address
 represented as an integer and a 16-bit port. As an example, here is
 the wire representation of the IPv4 address "192.0.2.1" with port
 "6100".

 01 ; type = IPv4
 06 ; length = 6
 c0 00 02 01 ; address = 192.0.2.1
 17 d4 ; port = 6100

 Unless a given structure that uses a select explicitly allows for
 unknown types in the select, any unknown type SHOULD be treated as an
 parsing error and the whole message discarded with no response.

6.3.2. Forwarding Header

 The forwarding header is defined as a ForwardingHeader structure, as
 shown below.

 struct {
 uint32 relo_token;
 uint32 overlay;
 uint16 configuration_sequence;
 uint8 version;
 uint8 ttl;
 uint32 fragment;
 uint32 length;
 uint64 transaction_id;
 uint32 max_response_length;
 uint16 via_list_length;
 uint16 destination_list_length;
 uint16 options_length;
 Destination via_list[via_list_length];
 Destination destination_list
 [destination_list_length];
 ForwardingOption options[options_length];
 } ForwardingHeader;

Jennings, et al. Expires May 9, 2013 [Page 44]

Internet-Draft RELOAD Base November 2012

 The contents of the structure are:

 relo_token: The first four bytes identify this message as a RELOAD
 message. This field MUST contain the value 0xd2454c4f (the string
 'RELO' with the high bit of the first byte set).

 overlay: The 32 bit checksum/hash of the overlay being used. This
 MUST be formed by taking the lower 32 bits of the SHA-1 [RFC3174]
 hash of the overlay name. The purpose of this field is to allow
 nodes to participate in multiple overlays and to detect accidental
 misconfiguration. This is not a security critical function. The
 overlay name MUST consist of a sequence of characters what would
 be allowable as a DNS name.

 configuration_sequence: The sequence number of the configuration
 file.

 version: The version of the RELOAD protocol being used. This is a
 fixed point integer between 0.1 and 25.4. This document describes
 version 1.0, with a value of 0x0a. [Note: Pre-RFC versions used
 version number 0.1]. Nodes MUST reject messages with other
 versions.

 ttl: An 8 bit field indicating the number of iterations, or hops, a
 message can experience before it is discarded. The TTL value MUST
 be decremented by one at every hop along the route the message
 traverses just before transmission. If a received message has a
 TTL of 0, and the message is not destined for the receiving node,
 then the message MUST NOT be propagated further and a
 "Error_TTL_Exceeded" error should be generated. The initial value
 of the TTL SHOULD be 100 and MUST NOT exceed 100 unless defined
 otherwise by the overlay configuration. Implementations which
 receive message with a TTL greater than the current value of
 initial-ttl (or the 100 default) MUST discard the message and send
 an "Error_TTL_Exceeded" error.

 fragment: This field is used to handle fragmentation. The high bit
 (0x80000000) MUST be set for historical reasons. If the next bit
 (0x40000000) is set to 1, it indicates that this is the last (or
 only) fragment. The next six bits (0x20000000 to 0x01000000) are
 reserved and SHOULD be set to zero. The remainder of the field is
 used to indicate the fragment offset; see Section 6.7.

https://datatracker.ietf.org/doc/pdf/rfc3174

Jennings, et al. Expires May 9, 2013 [Page 45]

Internet-Draft RELOAD Base November 2012

 length: The count in bytes of the size of the message, including the
 header.

 transaction_id: A unique 64 bit number that identifies this
 transaction and also allows receivers to disambiguate transactions
 which are otherwise identical. In order to provide a high
 probability that transaction IDs are unique, they MUST be randomly
 generated. Responses use the same Transaction ID as the request
 they correspond to. Transaction IDs are also used for fragment
 reassembly.

 max_response_length: The maximum size in bytes of a response. Used
 by requesting nodes to avoid receiving (unexpected) very large
 responses. If this value is non-zero, responding peers MUST check
 that any response would not exceed it and if so generate an
 "Error_Incompatible_with_Overlay" value. This value SHOULD be set
 to zero for responses.

 via_list_length: The length of the via list in bytes. Note that in
 this field and the following two length fields we depart from the
 usual variable-length convention of having the length immediately
 precede the value in order to make it easier for hardware decoding
 engines to quickly determine the length of the header.

 destination_list_length: The length of the destination list in
 bytes.

 options_length: The length of the header options in bytes.

 via_list: The via_list contains the sequence of destinations through
 which the message has passed. The via_list starts out empty and
 grows as the message traverses each peer.

 destination_list: The destination_list contains a sequence of
 destinations which the message should pass through. The
 destination list is constructed by the message originator. The
 first element in the destination list is where the message goes
 next. The list shrinks as the message traverses each listed peer.

 options: Contains a series of ForwardingOption entries. See

 Section 6.3.2.3.

6.3.2.1. Processing Configuration Sequence Numbers

 In order to be part of the overlay, a node MUST have a copy of the
 overlay configuration document. In order to allow for configuration
 document changes, each version of the configuration document has a
 sequence number which is monotonically increasing mod 65535. Because

Jennings, et al. Expires May 9, 2013 [Page 46]

Internet-Draft RELOAD Base November 2012

 the sequence number may in principle wrap, greater than or less than
 are interpreted by modulo arithmetic as in TCP.

 When a destination node receives a request, it MUST check that the
 configuration_sequence field is equal to its own configuration
 sequence number. If they do not match, it MUST generate an error,
 either Error_Config_Too_Old or Error_Config_Too_New. In addition, if
 the configuration file in the request is too old, it MUST generate a
 ConfigUpdate message to update the requesting node. This allows new
 configuration documents to propagate quickly throughout the system.
 The one exception to this rule is that if the configuration_sequence
 field is equal to 0xffff, and the message type is ConfigUpdate, then
 the message MUST be accepted regardless of the receiving node's
 configuration sequence number. Since 65535 is a special value, peers
 sending a new configuration when the configuration sequence is
 currently 65534 MUST set the configuration sequence number to 0 when
 they send out a new configuration.

6.3.2.2. Destination and Via Lists

 The destination list and via list are sequences of Destination
 values:

 enum { reserved(0), node(1), resource(2), opaque_id_type(3),
 /* 128-255 not allowed */ (255) }
 DestinationType;

 select (destination_type) {
 case node:
 NodeId node_id;

 case resource:
 ResourceId resource_id;

 case opaque_id_type:
 opaque opaque_id<0..2^8-1>;

 /* This structure may be extended with new types */
 } DestinationData;

 struct {
 DestinationType type;
 uint8 length;
 DestinationData destination_data;
 } Destination;

 struct {
 uint16 opaque_id; /* top bit MUST be 1 */

Jennings, et al. Expires May 9, 2013 [Page 47]

Internet-Draft RELOAD Base November 2012

 } Destination;

 If a destination structure has its first bit set to 1, then it is a
 16 bit integer. If the first bit is not set, then it is a structure
 starting with DestinationType. If it is a 16 bit integer, it is
 treated as if it were a full structure with a DestinationType of
 opaque_id_type and a opaque_id that was 2 bytes long with the value
 of the 16 bit integer. When the destination structure is not a 16
 bit integer, it is the TLV structure with the following contents:

 type
 The type of the DestinationData Payload Data Unit (PDU). This may
 be one of "node", "resource", or "opaque_id_type".

 length
 The length of the destination_data.

 destination_data
 The destination value itself, which is an encoded DestinationData
 structure, depending on the value of "type".

 Note: This structure encodes a type, length, value. The length
 field specifies the length of the DestinationData values, which
 allows the addition of new DestinationTypes. This allows an
 implementation which does not understand a given DestinationType

 to skip over it.

 A DestinationData can be one of three types:

 node
 A Node-ID.

 opaque
 A compressed list of Node-IDs and an eventual Resource-ID.
 Because this value was compressed by one of the peers, it is only
 meaningful to that peer and cannot be decoded by other peers.
 Thus, it is represented as an opaque string.

 resource
 The Resource-ID of the resource which is desired. This type MUST
 only appear in the final location of a destination list and MUST
 NOT appear in a via list. It is meaningless to try to route
 through a resource.

 One possible encoding of the 16 bit integer version as an opaque
 identifier is to encode an index into a connection table. To avoid
 misrouting responses in the event a response is delayed and the

Jennings, et al. Expires May 9, 2013 [Page 48]

Internet-Draft RELOAD Base November 2012

 connection table entry has changed, the identifier SHOULD be split
 between an index and a generation counter for that index. At
 startup, the generation counters should be initialized to random
 values. An implementation could use 12 bits for the connection table
 index and 3 bits for the generation counter. (Note that this does
 not suggest a 4096 entry connection table for every peer, only the
 ability to encode for a larger connection table.) When a connection
 table slot is used for a new connection, the generation counter is
 incremented (with wrapping). Connection table slots are used on a
 rotating basis to maximize the time interval between uses of the same
 slot for different connections. When routing a message to an entry
 in the destination list encoding a connection table entry, the peer
 confirms that the generation counter matches the current generation
 counter of that index before forwarding the message. If it does not
 match, the message is silently dropped.

6.3.2.3. Forwarding Option

 The Forwarding header can be extended with forwarding header options,

 which are a series of ForwardingOptions structures:

 enum { reservedForwarding(0), (255) }
 ForwardingOptionType;

 struct {
 ForwardingOptionType type;
 uint8 flags;
 uint16 length;
 select (type) {
 /* This type may be extended */
 };
 } ForwardingOption;

 Each ForwardingOption consists of the following values:

 type
 The type of the option. This structure allows for unknown options
 types.

 length
 The length of the rest of the structure.

Jennings, et al. Expires May 9, 2013 [Page 49]

Internet-Draft RELOAD Base November 2012

 flags
 Three flags are defined FORWARD_CRITICAL(0x01),
 DESTINATION_CRITICAL(0x02), and RESPONSE_COPY(0x04). These flags
 MUST NOT be set in a response. If the FORWARD_CRITICAL flag is
 set, any peer that would forward the message but does not
 understand this options MUST reject the request with an
 Error_Unsupported_Forwarding_Option error response. If the
 DESTINATION_CRITICAL flag is set, any node that generates a
 response to the message but does not understand the forwarding
 option MUST reject the request with an
 Error_Unsupported_Forwarding_Option error response. If the
 RESPONSE_COPY flag is set, any node generating a response MUST

 copy the option from the request to the response except that the
 RESPONSE_COPY, FORWARD_CRITICAL and DESTINATION_CRITICAL flags
 MUST be cleared.

 option
 The option value.

6.3.3. Message Contents Format

 The second major part of a RELOAD message is the contents part, which
 is defined by MessageContents:

 enum { reservedMessagesExtension(0), (2^16-1) } MessageExtensionType;

 struct {
 MessageExtensionType type;
 Boolean critical;
 opaque extension_contents<0..2^32-1>;
 } MessageExtension;

 struct {
 uint16 message_code;
 opaque message_body<0..2^32-1>;
 MessageExtension extensions<0..2^32-1>;
 } MessageContents;

 The contents of this structure are as follows:

 message_code
 This indicates the message that is being sent. The code space is
 broken up as follows.

Jennings, et al. Expires May 9, 2013 [Page 50]

Internet-Draft RELOAD Base November 2012

 0 Reserved

 1 .. 0x7fff Requests and responses. These code points are always
 paired, with requests being odd and the corresponding response

 being the request code plus 1. Thus, "probe_request" (the
 Probe request) has value 1 and "probe_answer" (the Probe
 response) has value 2

 0xffff Error
 The message codes are defined in Section 14.8
 message_body
 The message body itself, represented as a variable-length string
 of bytes. The bytes themselves are dependent on the code value.
 See the sections describing the various RELOAD methods (Join,
 Update, Attach, Store, Fetch, etc.) for the definitions of the
 payload contents.
 extensions
 Extensions to the message. Currently no extensions are defined,
 but new extensions can be defined by the process described in
 Section 14.14.

 All extensions have the following form:

 type
 The extension type.

 critical
 Whether this extension must be understood in order to process the
 message. If critical = True and the recipient does not understand
 the message, it MUST generate an Error_Unknown_Extension error.
 If critical = False, the recipient MAY choose to process the
 message even if it does not understand the extension.

 extension_contents
 The contents of the extension (extension-dependent).

6.3.3.1. Response Codes and Response Errors

 A node processing a request returns its status in the message_code
 field. If the request was a success, then the message code is the
 response code that matches the request (i.e., the next code up). The
 response payload is then as defined in the request/response
 descriptions.

 If the request has failed, then the message code is set to 0xffff
 (error) and the payload MUST be an error_response message, as shown

Jennings, et al. Expires May 9, 2013 [Page 51]

Internet-Draft RELOAD Base November 2012

 below.

 When the message code is 0xffff, the payload MUST be an
 ErrorResponse.

 public struct {
 uint16 error_code;
 opaque error_info<0..2^16-1>;
 } ErrorResponse;

 The contents of this structure are as follows:

 error_code
 A numeric error code indicating the error that occurred.

 error_info
 An optional arbitrary byte string. Unless otherwise specified,
 this will be a UTF-8 text string providing further information
 about what went wrong. Developers are encouraged to put enough
 diagnostic information to be useful in error_info.

 The following error code values are defined. The numeric values for
 these are defined in Section 14.9.

 Error_Forbidden: The requesting node does not have permission to
 make this request.

 Error_Not_Found: The resource or node cannot be found or does not
 exist.

 Error_Request_Timeout: A response to the request has not been
 received in a suitable amount of time. The requesting node MAY
 resend the request at a later time.

 Error_Data_Too_Old: A store cannot be completed because the
 storage_time precedes the existing value.

 Error_Data_Too_Large: A store cannot be completed because the
 requested object exceeds the size limits for that Kind.

 Error_Generation_Counter_Too_Low: A store cannot be completed
 because the generation counter precedes the existing value.

Jennings, et al. Expires May 9, 2013 [Page 52]

Internet-Draft RELOAD Base November 2012

 Error_Incompatible_with_Overlay: A peer receiving the request is
 using a different overlay, overlay algorithm, or hash algorithm,
 or some other parameter that is inconsistent with the overlay
 configuration.

 Error_Unsupported_Forwarding_Option: A node receiving the request
 with a forwarding options flagged as critical but the node does
 not support this option. See section Section 6.3.2.3.

 Error_TTL_Exceeded: A peer receiving the request where the TTL got
 decremented to zero. See section Section 6.3.2.

 Error_Message_Too_Large: A peer receiving the request that was too
 large. See section Section 6.6.

 Error_Response_Too_Large: A node would have generated a response
 that is too large per the max_response_length field.

 Error_Config_Too_Old: A destination node received a request with a
 configuration sequence that's too old. See Section 6.3.2.1.

 Error_Config_Too_New: A destination node received a request with a
 configuration sequence that's too new. See Section 6.3.2.1.

 Error_Unknown_Kind: A destination peer received a request with an
 unknown Kind-ID. See Section 7.4.1.2.

 Error_In_Progress: An Attach is already in progress to this peer.
 See Section 6.5.1.2.

 Error_Unknown_Extension: A destination node received a request with
 an unknown extension.

 Error_Invalid_Message: Something about this message is invalid but
 it doesn't fit the other error codes. When this message is sent,
 implementations SHOULD provide some meaningful description in
 error_info to aid in debugging.

6.3.4. Security Block

 The third part of a RELOAD message is the security block. The

 security block is represented by a SecurityBlock structure:

Jennings, et al. Expires May 9, 2013 [Page 53]

Internet-Draft RELOAD Base November 2012

 struct {
 CertificateType type;
 opaque certificate<0..2^16-1>;
 } GenericCertificate;

 struct {
 GenericCertificate certificates<0..2^16-1>;
 Signature signature;
 } SecurityBlock;

 The contents of this structure are:

 certificates
 A bucket of certificates.

 signature
 A signature.

 The certificates bucket SHOULD contain all the certificates necessary
 to verify every signature in both the message and the internal
 message objects, except for those certificates in a root-cert element
 of the current configuration file. This is the only location in the
 message which contains certificates, thus allowing for only a single
 copy of each certificate to be sent. In systems that have an
 alternative certificate distribution mechanism, some certificates MAY
 be omitted. However, unless an alternative mechanism for immediately
 generating certificates, such as shared secret security
 (Section 13.4) is used, it is strongly RECOMMENDED that implementors
 include all referenced certificates, otherwise there is the
 possibility that messages may not be immediately verifiable because
 certificates must first be retrieved.

 NOTE TO IMPLEMENTERS: This requirement implies that a peer storing
 data is obligated to retain certificates for the data it holds

 regardless of whether it is responsible for or actually holding the
 certificates for the Certificate Store usage.

 Each certificate is represented by a GenericCertificate structure,
 which has the following contents:

 type
 The type of the certificate, as defined in [RFC6091]. Only the
 use of X.509 certificates is defined in this document.

Jennings, et al. Expires May 9, 2013 [Page 54]

Internet-Draft RELOAD Base November 2012

 certificate
 The encoded version of the certificate. For X.509 certificates,
 it is the DER form.

 The signature is computed over the payload and parts of the
 forwarding header. The payload, in case of a Store, may contain an
 additional signature computed over a StoreReq structure. All
 signatures are formatted using the Signature element. This element
 is also used in other contexts where signatures are needed. The
 input structure to the signature computation varies depending on the
 data element being signed.

 enum { reservedSignerIdentity(0),
 cert_hash(1), cert_hash_node_id(2),
 none(3)
 (255) } SignerIdentityType;

 struct {
 select (identity_type) {

 case cert_hash;
 HashAlgorithm hash_alg; // From TLS
 opaque certificate_hash<0..2^8-1>;

 case cert_hash_node_id:
 HashAlgorithm hash_alg; // From TLS
 opaque certificate_node_id_hash<0..2^8-1>;

https://datatracker.ietf.org/doc/pdf/rfc6091

 case none:
 /* empty */
 /* This structure may be extended with new types if necessary*/
 };
 } SignerIdentityValue;

 struct {
 SignerIdentityType identity_type;
 uint16 length;
 SignerIdentityValue identity[SignerIdentity.length];
 } SignerIdentity;

 struct {
 SignatureAndHashAlgorithm algorithm; // From TLS
 SignerIdentity identity;
 opaque signature_value<0..2^16-1>;
 } Signature;

 The signature construct contains the following values:

Jennings, et al. Expires May 9, 2013 [Page 55]

Internet-Draft RELOAD Base November 2012

 algorithm
 The signature algorithm in use. The algorithm definitions are
 found in the IANA TLS SignatureAlgorithm and HashAlgorithm
 Registries. All implementations MUST support RSASSA-PKCS1-v1_5
 [RFC3447] signatures with SHA-256 hashes.

 identity
 The identity used to form the signature.

 signature_value
 The value of the signature.

 There are two permitted identity formats, one for a certificate with
 only one Node-ID and one for a certificate with multiple Node-IDs.
 In the first case, the cert_hash type MUST be used. The hash_alg
 field is used to indicate the algorithm used to produce the hash.
 The certificate_hash contains the hash of the certificate object
 (i.e., the DER-encoded certificate).

 In the second case, the cert_hash_node_id type MUST be used. The

https://datatracker.ietf.org/doc/pdf/rfc3447

 hash_alg is as in cert_hash but the cert_hash_node_id is computed
 over the NodeId used to sign concatenated with the certificate.
 I.e., H(NodeId || certificate). The NodeId is represented without
 any framing or length fields, as simple raw bytes. This is safe
 because NodeIds are fixed-length for a given overlay.

 For signatures over messages the input to the signature is computed
 over:

 overlay || transaction_id || MessageContents || SignerIdentity

 where overlay and transaction_id come from the forwarding header and
 || indicates concatenation.

 The input to signatures over data values is different, and is
 described in Section 7.1.

 All RELOAD messages MUST be signed. Upon receipt (and fragment
 reassembly if needed) the destination node MUST verify the signature
 and the authorizing certificate. If the signature fails, the
 implementation SHOULD simply drop the message and MUST not process
 it. This check provides a minimal level of assurance that the
 sending node is a valid part of the overlay as well as cryptographic
 authentication of the sending node. In addition, responses MUST be
 checked as follows by the requesting node:

Jennings, et al. Expires May 9, 2013 [Page 56]

Internet-Draft RELOAD Base November 2012

 1. The response to a message sent to a specific Node-ID MUST have
 been sent by that Node-ID.
 2. The response to a message sent to a Resource-ID MUST have been
 sent by a Node-ID which is as close to or closer to the target
 Resource-ID than any node in the requesting node's neighbor
 table.

 The second condition serves as a primitive check for responses from
 wildly wrong nodes but is not a complete check. Note that in periods
 of churn, it is possible for the requesting node to obtain a closer
 neighbor while the request is outstanding. This will cause the
 response to be rejected and the request to be retransmitted.

 In addition, some methods (especially Store) have additional

 authentication requirements, which are described in the sections
 covering those methods.

6.4. Overlay Topology

 As discussed in previous sections, RELOAD does not itself implement
 any overlay topology. Rather, it relies on Topology Plugins, which
 allow a variety of overlay algorithms to be used while maintaining
 the same RELOAD core. This section describes the requirements for
 new topology plugins and the methods that RELOAD provides for overlay
 topology maintenance.

6.4.1. Topology Plugin Requirements

 When specifying a new overlay algorithm, at least the following need
 to be described:

 o Joining procedures, including the contents of the Join message.
 o Stabilization procedures, including the contents of the Update
 message, the frequency of topology probes and keepalives, and the
 mechanism used to detect when peers have disconnected.
 o Exit procedures, including the contents of the Leave message.
 o The length of the Resource-IDs. For DHTs, the hash algorithm to
 compute the hash of an identifier.
 o The procedures that peers use to route messages.
 o The replication strategy used to ensure data redundancy.

 All overlay algorithms MUST specify maintenance procedures that send
 Updates to clients and peers that have established connections to the
 peer responsible for a particular ID when the responsibility for that
 ID changes. Because tracking this information is difficult, overlay
 algorithms MAY simply specify that an Update is sent to all members
 of the Connection Table whenever the range of IDs for which the peer
 is responsible changes.

Jennings, et al. Expires May 9, 2013 [Page 57]

Internet-Draft RELOAD Base November 2012

6.4.2. Methods and types for use by topology plugins

 This section describes the methods that topology plugins use to join,
 leave, and maintain the overlay.

6.4.2.1. Join

 A new peer (but one that already has credentials) uses the JoinReq
 message to join the overlay. The JoinReq is sent to the responsible
 peer depending on the routing mechanism described in the topology
 plugin. This notifies the responsible peer that the new peer is
 taking over some of the overlay and it needs to synchronize its
 state.

 struct {
 NodeId joining_peer_id;
 opaque overlay_specific_data<0..2^16-1>;
 } JoinReq;

 The minimal JoinReq contains only the Node-ID which the sending peer
 wishes to assume. Overlay algorithms MAY specify other data to
 appear in this request. Receivers of the JoinReq MUST verify that
 the joining_peer_id field matches the Node-ID used to sign the
 message and if not MUST reject the message with an Error_Forbidden
 error.

 Because joins may only be executed between nodes which are directly
 adjacent, receiving peers MUST verify that any JoinReq they receive
 arrives from a transport channel that is bound to the Node-ID to be
 assumed by the joining peer.) This also prevents replay attacks
 provided that DTLS anti-replay is used.

 If the request succeeds, the responding peer responds with a JoinAns
 message, as defined below:

 struct {
 opaque overlay_specific_data<0..2^16-1>;
 } JoinAns;

 If the request succeeds, the responding peer MUST follow up by
 executing the right sequence of Stores and Updates to transfer the
 appropriate section of the overlay space to the joining peer. In
 addition, overlay algorithms MAY define data to appear in the
 response payload that provides additional info.

 Joining nodes MUST verify that the signature on the JoinAns message
 matches the expected target (i.e., the adjacency over which they are

Jennings, et al. Expires May 9, 2013 [Page 58]

Internet-Draft RELOAD Base November 2012

 joining.) If not, they MUST discard the message.

 In general, nodes which cannot form connections SHOULD report an
 error to the user. However, implementations MUST provide some
 mechanism whereby nodes can determine that they are potentially the
 first node and take responsibility for the overlay (the idea is to
 avoid having ordinary nodes try to become responsible for the entire
 overlay during a partition.) This specification does not mandate any
 particular mechanism, but a configuration flag or setting seems
 appropriate.

6.4.2.2. Leave

 The LeaveReq message is used to indicate that a node is exiting the
 overlay. A node SHOULD send this message to each peer with which it
 is directly connected prior to exiting the overlay.

 struct {
 NodeId leaving_peer_id;
 opaque overlay_specific_data<0..2^16-1>;
 } LeaveReq;

 LeaveReq contains only the Node-ID of the leaving peer. Overlay
 algorithms MAY specify other data to appear in this request.
 Receivers of the LeaveReq MUST verify that the leaving_peer_id field
 matches the Node-ID used to sign the message and if not MUST reject
 the message with an Error_Forbidden error.

 Because leaves may only be executed between nodes which are directly
 adjacent, receiving peers MUST verify that any LeaveReq they receive
 arrives from a transport channel that is bound to the Node-ID to be
 assumed by the leaving peer.) This also prevents replay attacks
 provided that DTLS anti-replay is used.

 Upon receiving a Leave request, a peer MUST update its own routing
 table, and send the appropriate Store/Update sequences to re-
 stabilize the overlay.

6.4.2.3. Update

 Update is the primary overlay-specific maintenance message. It is
 used by the sender to notify the recipient of the sender's view of
 the current state of the overlay (its routing state), and it is up to
 the recipient to take whatever actions are appropriate to deal with
 the state change. In general, peers send Update messages to all
 their adjacencies whenever they detect a topology shift.

Jennings, et al. Expires May 9, 2013 [Page 59]

Internet-Draft RELOAD Base November 2012

 When a peer receives an Attach request with the send_update flag set
 to True (Section 6.4.2.4.1), it MUST send an Update message back to
 the sender of the Attach request after the completion of the
 corresponding ICE check and TLS connection. Note that the sender of
 a such Attach request may not have joined the overlay yet.

 When a peer detects through an Update that it is no longer
 responsible for any data value it is storing, it MUST attempt to
 Store a copy to the correct node unless it knows the newly
 responsible node already has a copy of the data. This prevents data
 loss during large-scale topology shifts such as the merging of
 partitioned overlays.

 The contents of the UpdateReq message are completely overlay-
 specific. The UpdateAns response is expected to be either success or
 an error.

6.4.2.4. RouteQuery

 The RouteQuery request allows the sender to ask a peer where they
 would route a message directed to a given destination. In other
 words, a RouteQuery for a destination X requests the Node-ID for the
 node that the receiving peer would next route to in order to get to
 X. A RouteQuery can also request that the receiving peer initiate an
 Update request to transfer the receiving peer's routing table.

 One important use of the RouteQuery request is to support iterative
 routing. The sender selects one of the peers in its routing table
 and sends it a RouteQuery message with the destination field set to
 the Node-ID or Resource-ID it wishes to route to. The receiving peer
 responds with information about the peers to which the request would
 be routed. The sending peer MAY then use the Attach method to attach
 to that peer(s), and repeat the RouteQuery. Eventually, the sender
 gets a response from a peer that is closest to the identifier in the
 destination field as determined by the topology plugin. At that
 point, the sender can send messages directly to that peer.

6.4.2.4.1. Request Definition

 A RouteQueryReq message indicates the peer or resource that the
 requesting node is interested in. It also contains a "send_update"
 option allowing the requesting node to request a full copy of the
 other peer's routing table.

 struct {
 Boolean send_update;
 Destination destination;
 opaque overlay_specific_data<0..2^16-1>;

Jennings, et al. Expires May 9, 2013 [Page 60]

Internet-Draft RELOAD Base November 2012

 } RouteQueryReq;

 The contents of the RouteQueryReq message are as follows:

 send_update
 A single byte. This may be set to True to indicate that the
 requester wishes the responder to initiate an Update request
 immediately. Otherwise, this value MUST be set to False.

 destination
 The destination which the requester is interested in. This may be
 any valid destination object, including a Node-ID, opaque ID, or
 Resource-ID.

 overlay_specific_data
 Other data as appropriate for the overlay.

6.4.2.4.2. Response Definition

 A response to a successful RouteQueryReq request is a RouteQueryAns
 message. This is completely overlay specific.

6.4.2.5. Probe

 Probe provides primitive "exploration" services: it allows a node to
 determine which resources another node is responsible for; and it
 allows some discovery services using multicast, anycast, or
 broadcast. A probe can be addressed to a specific Node-ID, or the
 peer controlling a given location (by using a Resource-ID). In
 either case, the target Node-IDs respond with a simple response
 containing some status information.

6.4.2.5.1. Request Definition

 The ProbeReq message contains a list (potentially empty) of the
 pieces of status information that the requester would like the
 responder to provide.

 enum { reservedProbeInformation(0), responsible_set(1),
 num_resources(2), uptime(3), (255) }
 ProbeInformationType;

 struct {
 ProbeInformationType requested_info<0..2^8-1>;
 } ProbeReq;

Jennings, et al. Expires May 9, 2013 [Page 61]

Internet-Draft RELOAD Base November 2012

 The currently defined values for ProbeInformation are:

 responsible_set
 indicates that the peer should Respond with the fraction of the
 overlay for which the responding peer is responsible.

 num_resources
 indicates that the peer should Respond with the number of
 resources currently being stored by the peer.

 uptime
 indicates that the peer should Respond with how long the peer has
 been up in seconds.

6.4.2.5.2. Response Definition

 A successful ProbeAns response contains the information elements
 requested by the peer.

 struct {
 select (type) {
 case responsible_set:
 uint32 responsible_ppb;

 case num_resources:
 uint32 num_resources;

 case uptime:
 uint32 uptime;

 /* This type may be extended */

 };
 } ProbeInformationData;

 struct {
 ProbeInformationType type;
 uint8 length;
 ProbeInformationData value;
 } ProbeInformation;

 struct {
 ProbeInformation probe_info<0..2^16-1>;
 } ProbeAns;

Jennings, et al. Expires May 9, 2013 [Page 62]

Internet-Draft RELOAD Base November 2012

 A ProbeAns message contains a sequence of ProbeInformation
 structures. Each has a "length" indicating the length of the
 following value field. This structure allows for unknown option
 types.

 Each of the current possible Probe information types is a 32-bit
 unsigned integer. For type "responsible_ppb", it is the fraction of
 the overlay for which the peer is responsible in parts per billion.
 For type "num_resources", it is the number of resources the peer is
 storing. For the type "uptime" it is the number of seconds the peer
 has been up.

 The responding peer SHOULD include any values that the requesting
 node requested and that it recognizes. They SHOULD be returned in
 the requested order. Any other values MUST NOT be returned.

6.5. Forwarding and Link Management Layer

 Each node maintains connections to a set of other nodes defined by
 the topology plugin. This section defines the methods RELOAD uses to
 form and maintain connections between nodes in the overlay. Three
 methods are defined:

 Attach: used to form RELOAD connections between nodes using ICE
 for NAT traversal. When node A wants to connect to node B, it
 sends an Attach message to node B through the overlay. The Attach
 contains A's ICE parameters. B responds with its ICE parameters
 and the two nodes perform ICE to form connection. Attach also
 allows two nodes to connect via No-ICE instead of full ICE.
 AppAttach: used to form application layer connections between
 nodes.
 Ping: is a simple request/response which is used to verify
 connectivity of the target peer.

6.5.1. Attach

 A node sends an Attach request when it wishes to establish a direct
 TCP or UDP connection to another node for the purpose of sending
 RELOAD messages. A client that can establish a connection directly
 need not send an Attach as described in the second bullet of
 Section 3.2.1

 As described in Section 6.1, an Attach may be routed to either a
 Node-ID or to a Resource-ID. An Attach routed to a specific Node-ID
 will fail if that node is not reached. An Attach routed to a
 Resource-ID will establish a connection with the peer currently
 responsible for that Resource-ID, which may be useful in establishing
 a direct connection to the responsible peer for use with frequent or

Jennings, et al. Expires May 9, 2013 [Page 63]

Internet-Draft RELOAD Base November 2012

 large resource updates.

 An Attach in and of itself does not result in updating the routing
 table of either node. That function is performed by Updates. If
 node A has Attached to node B, but not received any Updates from B,
 it MAY route messages which are directly addressed to B through that
 channel but MUST NOT route messages through B to other peers via that
 channel. The process of Attaching is separate from the process of
 becoming a peer (using Join and Update), to prevent half-open states
 where a node has started to form connections but is not really ready
 to act as a peer. Thus, clients (unlike peers) can simply Attach
 without sending Join or Update.

6.5.1.1. Request Definition

 An Attach request message contains the requesting node ICE connection
 parameters formatted into a binary structure.

Jennings, et al. Expires May 9, 2013 [Page 64]

Internet-Draft RELOAD Base November 2012

 enum { reservedOverlayLink(0), DTLS-UDP-SR(1),
 DTLS-UDP-SR-NO-ICE(3), TLS-TCP-FH-NO-ICE(4),
 (255) } OverlayLinkType;

 enum { reservedCand(0), host(1), srflx(2), prflx(3), relay(4),
 (255) } CandType;

 struct {

 opaque name<0..2^16-1>;
 opaque value<0..2^16-1>;
 } IceExtension;

 struct {
 IpAddressPort addr_port;
 OverlayLinkType overlay_link;
 opaque foundation<0..255>;
 uint32 priority;
 CandType type;
 select (type) {
 case host:
 ; /* Empty */
 case srflx:
 case prflx:
 case relay:
 IpAddressPort rel_addr_port;
 };
 IceExtension extensions<0..2^16-1>;
 } IceCandidate;

 struct {
 opaque ufrag<0..2^8-1>;
 opaque password<0..2^8-1>;
 opaque role<0..2^8-1>;
 IceCandidate candidates<0..2^16-1>;
 Boolean send_update;
 } AttachReqAns;

 The values contained in AttachReqAns are:

 ufrag
 The username fragment (from ICE).

 password

Jennings, et al. Expires May 9, 2013 [Page 65]

Internet-Draft RELOAD Base November 2012

 The ICE password.

 role
 An active/passive/actpass attribute from RFC 4145 [RFC4145]. This
 value MUST be 'passive' for the offerer (the peer sending the
 Attach request) and 'active' for the answerer (the peer sending
 the Attach response).

 candidates
 One or more ICE candidate values, as described below.
 send_update
 Has the same meaning as the send_update field in RouteQueryReq.

 Each ICE candidate is represented as an IceCandidate structure, which
 is a direct translation of the information from the ICE string
 structures, with the exception of the component ID. Since there is
 only one component, it is always 1, and thus left out of the
 structure. The remaining values are specified as follows:

 addr_port
 corresponds to the connection-address and port productions.

 overlay_link
 corresponds to the OverlayLinkType production, Overlay Link
 protocols used with No-ICE MUST specify "No-ICE" in their
 description. Future overlay link values can be added by defining
 new OverlayLinkType values in the IANA registry in Section 14.10.
 Future extensions to the encapsulation or framing that provide for
 backward compatibility with that specified by a previously defined
 OverlayLinkType values MUST use that previous value.
 OverlayLinkType protocols are defined in Section 6.6
 A single AttachReqAns MUST NOT include both candidates whose
 OverlayLinkType protocols use ICE (the default) and candidates
 that specify "No-ICE".

 foundation
 corresponds to the foundation production.

 priority
 corresponds to the priority production.

 type
 corresponds to the cand-type production.

Jennings, et al. Expires May 9, 2013 [Page 66]

https://datatracker.ietf.org/doc/pdf/rfc4145
https://datatracker.ietf.org/doc/pdf/rfc4145

Internet-Draft RELOAD Base November 2012

 rel_addr_port
 corresponds to the rel-addr and rel-port productions. Only
 present for types "relay", "srflx" and "prflx".

 extensions
 ICE extensions. The name and value fields correspond to binary
 translations of the equivalent fields in the ICE extensions.

 These values should be generated using the procedures described in
 Section 6.5.1.3.

6.5.1.2. Response Definition

 If a peer receives an Attach request, it MUST determine how to
 process the request as follows:

 o If it has not initiated an Attach request to the originating peer
 of this Attach request, it MUST process this request and SHOULD
 generate its own response with an AttachReqAns. It should then
 begin ICE checks.
 o If it has already sent an Attach request to and received the
 response from the originating peer of this Attach request, and as
 a result, an ICE check and TLS connection is in progress, then it
 SHOULD generate an Error_In_Progress error instead of an
 AttachReqAns.
 o If it has already sent an Attach request to but not yet received
 the response from the originating peer of this Attach request, it
 SHOULD apply the following tie-breaker heuristic to determine how
 to handle this Attach request and the incomplete Attach request it
 has sent out:
 * If the peer's own Node-ID is smaller when compared as big-
 endian unsigned integers, it MUST cancel its own incomplete
 Attach request. It MUST then process this Attach request,
 generate an AttachReqAns response, and proceed with the
 corresponding ICE check.
 * If the peer's own Node-ID is larger when compared as big-endian
 unsigned integers, it MUST generate an Error_In_Progress error
 to this Attach request, then proceed to wait for and complete
 the Attach and the corresponding ICE check it has originated.
 o If the peer is overloaded or detects some other kind of error, it
 MAY generate an error instead of an AttachReqAns.

 When a peer receives an Attach response, it SHOULD parse the response
 and begin its own ICE checks.

Jennings, et al. Expires May 9, 2013 [Page 67]

Internet-Draft RELOAD Base November 2012

6.5.1.3. Using ICE With RELOAD

 This section describes the profile of ICE that is used with RELOAD.
 RELOAD implementations MUST implement full ICE.

 In ICE as defined by [RFC5245], SDP is used to carry the ICE
 parameters. In RELOAD, this function is performed by a binary
 encoding in the Attach method. This encoding is more restricted than
 the SDP encoding because the RELOAD environment is simpler:

 o Only a single media stream is supported.
 o In this case, the "stream" refers not to RTP or other types of
 media, but rather to a connection for RELOAD itself or other
 application-layer protocols such as SIP.
 o RELOAD only allows for a single offer/answer exchange. Unlike the
 usage of ICE within SIP, there is never a need to send a
 subsequent offer to update the default candidates to match the
 ones selected by ICE.

 An agent follows the ICE specification as described in [RFC5245] with
 the changes and additional procedures described in the subsections
 below.

6.5.1.4. Collecting STUN Servers

 ICE relies on the node having one or more STUN servers to use. In
 conventional ICE, it is assumed that nodes are configured with one or
 more STUN servers through some out of band mechanism. This is still
 possible in RELOAD but RELOAD also learns STUN servers as it connects
 to other peers. Because all RELOAD peers implement ICE and use STUN
 keepalives, every peer is a capable of responding to STUN Binding
 requests [RFC5389]. Accordingly, any peer that a node knows about
 can be used like a STUN server -- though of course it may be behind a
 NAT.

 A peer on a well-provisioned wide-area overlay will be configured
 with one or more bootstrap nodes. These nodes make an initial list
 of STUN servers. However, as the peer forms connections with
 additional peers, it builds more peers it can use like STUN servers.

https://datatracker.ietf.org/doc/pdf/rfc5245
https://datatracker.ietf.org/doc/pdf/rfc5245
https://datatracker.ietf.org/doc/pdf/rfc5389

 Because complicated NAT topologies are possible, a peer may need more
 than one STUN server. Specifically, a peer that is behind a single
 NAT will typically observe only two IP addresses in its STUN checks:
 its local address and its server reflexive address from a STUN server
 outside its NAT. However, if there are more NATs involved, it may
 learn additional server reflexive addresses (which vary based on
 where in the topology the STUN server is). To maximize the chance of
 achieving a direct connection, a peer SHOULD group other peers by the

Jennings, et al. Expires May 9, 2013 [Page 68]

Internet-Draft RELOAD Base November 2012

 peer-reflexive addresses it discovers through them. It SHOULD then
 select one peer from each group to use as a STUN server for future
 connections.

 Only peers to which the peer currently has connections may be used.
 If the connection to that host is lost, it MUST be removed from the
 list of STUN servers and a new server from the same group MUST be
 selected unless there are no others servers in the group in which
 case some other peer MAY be used.

6.5.1.5. Gathering Candidates

 When a node wishes to establish a connection for the purposes of
 RELOAD signaling or application signaling, it follows the process of
 gathering candidates as described in Section 4 of ICE [RFC5245].
 RELOAD utilizes a single component. Consequently, gathering for
 these "streams" requires a single component. In the case where a
 node has not yet found a TURN server, the agent would not include a
 relayed candidate.

 The ICE specification assumes that an ICE agent is configured with,
 or somehow knows of, TURN and STUN servers. RELOAD provides a way
 for an agent to learn these by querying the overlay, as described in
 Section 6.5.1.4 and Section 9.

 The default candidate selection described in Section 4.1.4 of ICE is
 ignored; defaults are not signaled or utilized by RELOAD.

 An alternative to using the full ICE supported by the Attach request
 is to use No-ICE mechanism by providing candidates with "No-ICE"
 Overlay Link protocols. Configuration for the overlay indicates
 whether or not these Overlay Link protocols can be used. An overlay

https://datatracker.ietf.org/doc/pdf/rfc5245

 MUST be either all ICE or all No-ICE.

 No-ICE will not work in all of the scenarios where ICE would work,
 but in some cases, particularly those with no NATs or firewalls, it
 will work.

6.5.1.6. Prioritizing Candidates

 However, standardization of additional protocols for use with ICE is
 expected, including TCP [RFC6544] and protocols such as SCTP and
 DCCP. UDP encapsulations for SCTP and DCCP would expand the
 available Overlay Link protocols available for RELOAD. When
 additional protocols are available, the following prioritization is
 RECOMMENDED:

Jennings, et al. Expires May 9, 2013 [Page 69]

Internet-Draft RELOAD Base November 2012

 o Highest priority is assigned to protocols that offer well-
 understood congestion and flow control without head of line
 blocking. For example, SCTP without message ordering, DCCP, or
 those protocols encapsulated using UDP.
 o Second highest priority is assigned to protocols that offer well-
 understood congestion and flow control but have head of line
 blocking such as TCP.
 o Lowest priority is assigned to protocols encapsulated over UDP
 that do not implement well-established congestion control
 algorithms. The DTLS/UDP with SR overlay link protocol is an
 example of such a protocol.

 Head of line blocking is undesireable in an Overlay Link protocol
 because the messages carried on a RELOAD link are independent, rather
 than stream-oriented. Therefore, if message N on a link is lost,
 delaying message N+1 on that same link until N is successfully
 retransmitted does nothing other than increase the latency for the
 transaction of message N+1 as they are unrelated to each other.
 Therefore, while the high quality, performance, and availability of
 modern TCP implementations makes them very attractive, their
 performance as an Overlay Link protocol is not optimal.

6.5.1.7. Encoding the Attach Message

Section 4.3 of ICE describes procedures for encoding the SDP for

https://datatracker.ietf.org/doc/pdf/rfc6544

 conveying RELOAD candidates. Instead of actually encoding an SDP
 message, the candidate information (IP address and port and transport
 protocol, priority, foundation, type and related address) is carried
 within the attributes of the Attach request or its response.
 Similarly, the username fragment and password are carried in the
 Attach message or its response. Section 6.5.1 describes the detailed
 attribute encoding for Attach. The Attach request and its response
 do not contain any default candidates or the ice-lite attribute, as
 these features of ICE are not used by RELOAD.

 Since the Attach request contains the candidate information and short
 term credentials, it is considered as an offer for a single media
 stream that happens to be encoded in a format different than SDP, but
 is otherwise considered a valid offer for the purposes of following
 the ICE specification. Similarly, the Attach response is considered
 a valid answer for the purposes of following the ICE specification.

6.5.1.8. Verifying ICE Support

 An agent MUST skip the verification procedures in Section 5.1 and 6.1
 of ICE. Since RELOAD requires full ICE from all agents, this check
 is not required.

Jennings, et al. Expires May 9, 2013 [Page 70]

Internet-Draft RELOAD Base November 2012

6.5.1.9. Role Determination

 The roles of controlling and controlled as described in Section 5.2
 of ICE are still utilized with RELOAD. However, the offerer (the
 entity sending the Attach request) will always be controlling, and
 the answerer (the entity sending the Attach response) will always be
 controlled. The connectivity checks MUST still contain the ICE-
 CONTROLLED and ICE-CONTROLLING attributes, however, even though the
 role reversal capability for which they are defined will never be
 needed with RELOAD. This is to allow for a common codebase between
 ICE for RELOAD and ICE for SDP.

6.5.1.10. Full ICE

 When the overlay uses ICE , connectivity checks and nominations are
 used as in regular ICE.

6.5.1.10.1. Connectivity Checks

 The processes of forming check lists in Section 5.7 of ICE,
 scheduling checks in Section 5.8, and checking connectivity checks in
 Section 7 are used with RELOAD without change.

6.5.1.10.2. Concluding ICE

 The procedures in Section 8 of ICE are followed to conclude ICE, with
 the following exceptions:

 o The controlling agent MUST NOT attempt to send an updated offer
 once the state of its single media stream reaches Completed.
 o Once the state of ICE reaches Completed, the agent can immediately
 free all unused candidates. This is because RELOAD does not have
 the concept of forking, and thus the three second delay in Section
 8.3 of ICE does not apply.

6.5.1.10.3. Media Keepalives

 STUN MUST be utilized for the keepalives described in Section 10 of
 ICE.

6.5.1.11. No-ICE

 No-ICE is selected when either side has provided "no ICE" Overlay
 Link candidates. STUN is not used for connectivity checks when doing
 No-ICE; instead the DTLS or TLS handshake (or similar security layer
 of future overlay link protocols) forms the connectivity check. The
 certificate exchanged during the (D)TLS handshake MUST match the node
 that sent the AttachReqAns and if it does not, the connection MUST be

Jennings, et al. Expires May 9, 2013 [Page 71]

Internet-Draft RELOAD Base November 2012

 closed.

6.5.1.12. Subsequent Offers and Answers

 An agent MUST NOT send a subsequent offer or answer. Thus, the
 procedures in Section 9 of ICE MUST be ignored.

6.5.1.13. Sending Media

 The procedures of Section 11 of ICE apply to RELOAD as well.
 However, in this case, the "media" takes the form of application

 layer protocols (e.g. RELOAD) over TLS or DTLS. Consequently, once
 ICE processing completes, the agent will begin TLS or DTLS procedures
 to establish a secure connection. The node which sent the Attach
 request MUST be the TLS server. The other node MUST be the TLS
 client. The server MUST request TLS client authentication. The
 nodes MUST verify that the certificate presented in the handshake
 matches the identity of the other peer as found in the Attach
 message. Once the TLS or DTLS signaling is complete, the application
 protocol is free to use the connection.

 The concept of a previous selected pair for a component does not
 apply to RELOAD, since ICE restarts are not possible with RELOAD.

6.5.1.14. Receiving Media

 An agent MUST be prepared to receive packets for the application
 protocol (TLS or DTLS carrying RELOAD) at any time. The jitter and
 RTP considerations in Section 11 of ICE do not apply to RELOAD.

6.5.2. AppAttach

 A node sends an AppAttach request when it wishes to establish a
 direct connection to another node for the purposes of sending
 application layer messages. AppAttach is nearly identical to Attach,
 except for the purpose of the connection: it is used to transport
 non-RELOAD "media". A separate request is used to avoid implementor
 confusion between the two methods (this was found to be a real
 problem with initial implementations). The AppAttach request and its
 response contain an application attribute, which indicates what
 protocol is to be run over the connection.

6.5.2.1. Request Definition

 An AppAttachReq message contains the requesting node's ICE connection
 parameters formatted into a binary structure.

Jennings, et al. Expires May 9, 2013 [Page 72]

Internet-Draft RELOAD Base November 2012

 struct {
 opaque ufrag<0..2^8-1>;
 opaque password<0..2^8-1>;
 uint16 application;

 opaque role<0..2^8-1>;
 IceCandidate candidates<0..2^16-1>;
 } AppAttachReq;

 The values contained in AppAttachReq and AppAttachAns are:

 ufrag
 The username fragment (from ICE)

 password
 The ICE password.

 application
 A 16-bit application-id as defined in the Section 14.5. This
 number represents the IANA registered application that is going to
 send data on this connection.

 role
 An active/passive/actpass attribute from RFC 4145 [RFC4145].

 candidates
 One or more ICE candidate values

 The application using connection set up with this request is
 responsible for providing sufficiently frequent keep traffic for NAT
 and Firewall keep alive and for deciding when to close the
 connection.

6.5.2.2. Response Definition

 If a peer receives an AppAttach request, it SHOULD process the
 request and generate its own response with a AppAttachAns. It should
 then begin ICE checks. When a peer receives an AppAttach response,
 it SHOULD parse the response and begin its own ICE checks. If the
 application ID is not supported, the peer MUST reply with an
 Error_Not_Found error.

 struct {
 opaque ufrag<0..2^8-1>;
 opaque password<0..2^8-1>;
 uint16 application;
 opaque role<0..2^8-1>;
 IceCandidate candidates<0..2^16-1>;

Jennings, et al. Expires May 9, 2013 [Page 73]

https://datatracker.ietf.org/doc/pdf/rfc4145
https://datatracker.ietf.org/doc/pdf/rfc4145

Internet-Draft RELOAD Base November 2012

 } AppAttachAns;

 The meaning of the fields is the same as in the AppAttachReq.

6.5.3. Ping

 Ping is used to test connectivity along a path. A ping can be
 addressed to a specific Node-ID, to the peer controlling a given
 location (by using a Resource-ID), or to the broadcast Node-ID
 (2^128-1).

6.5.3.1. Request Definition

 struct {
 opaque<0..2^16-1> padding;
 } PingReq;

 The Ping request is empty of meaningful contents. However, it may
 contain up to 65535 bytes of padding to facilitate the discovery of
 overlay maximum packet sizes.

6.5.3.2. Response Definition

 A successful PingAns response contains the information elements
 requested by the peer.

 struct {
 uint64 response_id;
 uint64 time;
 } PingAns;

 A PingAns message contains the following elements:

 response_id
 A randomly generated 64-bit response ID. This is used to
 distinguish Ping responses.

 time
 The time when the Ping response was created represented in the
 same way as storage_time defined in Section 7.

Jennings, et al. Expires May 9, 2013 [Page 74]

Internet-Draft RELOAD Base November 2012

6.5.4. ConfigUpdate

 The ConfigUpdate method is used to push updated configuration data
 across the overlay. Whenever a node detects that another node has
 old configuration data, it MUST generate a ConfigUpdate request. The
 ConfigUpdate request allows updating of two kinds of data: the
 configuration data (Section 6.3.2.1) and the Kind information
 (Section 7.4.1.1).

6.5.4.1. Request Definition

 enum { reservedConfigUpdate(0), config(1), kind(2), (255) }
 ConfigUpdateType;

 typedef uint32 KindId;
 typedef opaque KindDescription<0..2^16-1>;

 struct {
 ConfigUpdateType type;
 uint32 length;

 select (type) {
 case config:
 opaque config_data<0..2^24-1>;

 case kind:
 KindDescription kinds<0..2^24-1>;

 /* This structure may be extended with new types*/
 };
 } ConfigUpdateReq;

 The ConfigUpdateReq message contains the following elements:

 type
 The type of the contents of the message. This structure allows
 for unknown content types.
 length
 The length of the remainder of the message. This is included to

 preserve backward compatibility and is 32 bits instead of 24 to
 facilitate easy conversion between network and host byte order.
 config_data (type==config)
 The contents of the configuration document.

Jennings, et al. Expires May 9, 2013 [Page 75]

Internet-Draft RELOAD Base November 2012

 kinds (type==kind)
 One or more XML kind-block productions (see Section 11.1). These
 MUST be encoded with UTF-8 and assume a default namespace of
 "urn:ietf:params:xml:ns:p2p:config-base".

6.5.4.2. Response Definition

 struct {
 } ConfigUpdateAns;

 If the ConfigUpdateReq is of type "config" it MUST only be processed
 if all the following are true:
 o The sequence number in the document is greater than the current
 configuration sequence number.
 o The configuration document is correctly digitally signed (see
 Section 11 for details on signatures.
 Otherwise appropriate errors MUST be generated.

 If the ConfigUpdateReq is of type "kind" it MUST only be processed if
 it is correctly digitally signed by an acceptable Kind signer (i.e.,
 one listed in the current configuration file). Details on kind-
 signer field in the configuration file is described in Section 11.1.
 In addition, if the Kind update conflicts with an existing known Kind
 (i.e., it is signed by a different signer), then it should be
 rejected with "Error_Forbidden". This should not happen in correctly
 functioning overlays.

 If the update is acceptable, then the node MUST reconfigure itself to
 match the new information. This may include adding permissions for
 new Kinds, deleting old Kinds, or even, in extreme circumstances,
 exiting and reentering the overlay, if, for instance, the DHT
 algorithm has changed.

 If an implementation receives repeated ConfigUpdates which it cannot
 verify with sequence numbers substantially in advance of its own
 configuration document, it SHOULD contact the configuration server to
 get the latest configuration file in order to avoid permanent
 breakage. The details of this are left up to the implementation.

 The response for ConfigUpdate is empty.

6.6. Overlay Link Layer

 RELOAD can use multiple Overlay Link protocols to send its messages.
 Because ICE is used to establish connections (see Section 6.5.1.3),
 RELOAD nodes are able to detect which Overlay Link protocols are
 offered by other nodes and establish connections between them. Any

Jennings, et al. Expires May 9, 2013 [Page 76]

Internet-Draft RELOAD Base November 2012

 link protocol needs to be able to establish a secure, authenticated
 connection and to provide data origin authentication and message
 integrity for individual data elements. RELOAD currently supports
 three Overlay Link protocols:

 o DTLS [RFC6347] over UDP with Simple Reliability (SR)
 (OverlayLinkType=DTLS-UDP-SR
 o TLS [RFC5246] over TCP with Framing Header, No-ICE
 (OverlayLinkType=TLS-TCP-FH-NO-ICE
 o DTLS [RFC6347] over UDP with SR, No-ICE (OverlayLinkType=DTLS-UDP-
 SR-NO-ICE)

 Note that although UDP does not properly have "connections", both TLS
 and DTLS have a handshake which establishes a similar, stateful
 association, and we simply refer to these as "connections" for the
 purposes of this document.

 If a peer receives a message that is larger than value of max-
 message-size defined in the overlay configuration, the peer SHOULD
 send an Error_Message_Too_Large error and then close the TLS or DTLS
 session from which the message was received. Note that this error
 can be sent and the session closed before receiving the complete
 message. If the forwarding header is larger than the max-message-
 size, the receiver SHOULD close the TLS or DTLS session without
 sending an error.

https://datatracker.ietf.org/doc/pdf/rfc6347
https://datatracker.ietf.org/doc/pdf/rfc5246
https://datatracker.ietf.org/doc/pdf/rfc6347

 The Framing Header (FH) is used to frame messages and provide timing
 when used on a reliable stream-based transport protocol. Simple
 Reliability (SR) makes use of the FH to provide congestion control
 and semi-reliability when using unreliable message-oriented transport
 protocols. We will first define each of these algorithms, then
 define overlay link protocols that use them.

 Note: We expect future Overlay Link protocols to define replacements
 for all components of these protocols, including the framing header.
 These protocols have been chosen for simplicity of implementation and
 reasonable performance.

 Note to implementers: There are inherent tradeoffs in utilizing
 short timeouts to determine when a link has failed. To balance the
 tradeoffs, an implementation SHOULD quickly act to remove entries
 from the routing table when there is reason to suspect the link has
 failed. For example, in a Chord derived overlay algorithm, a closer
 finger table entry could be substituted for an entry in the finger
 table that has experienced a timeout. That entry can be restored if
 it proves to resume functioning, or replaced at some point in the
 future if necessary. End-to-end retransmissions will handle any lost
 messages, but only if the failing entries do not remain in the finger

Jennings, et al. Expires May 9, 2013 [Page 77]

Internet-Draft RELOAD Base November 2012

 table for subsequent retransmissions.

6.6.1. Future Overlay Link Protocols

 It is possible to define new link-layer protocols and apply them to a
 new overlay using the "overlay-link-protocol" configuration directive
 (see Section 11.1.). However, any new protocols MUST meet the
 following requirements.

 Endpoint authentication When a node forms an association with
 another endpoint, it MUST be possible to cryptographically verify
 that the endpoint has a given Node-ID.

 Traffic origin authentication and integrity When a node receives
 traffic from another endpoint, it MUST be possible to
 cryptographically verify that the traffic came from a given
 association and that it has not been modified in transit from the
 other endpoint in the association. The overlay link protocol MUST
 also provide replay prevention/detection.

 Traffic confidentiality When a node sends traffic to another
 endpoint, it MUST NOT be possible for a third party not involved
 in the association to determine the contents of that traffic.

 Any new overlay protocol MUST be defined via RFC 5226 Standards
 Action; see Section 14.11.

6.6.1.1. HIP

 In a Host Identity Protocol Based Overlay Networking Environment (HIP
 BONE) [RFC6079] HIP [RFC5201] provides connection management (e.g.,
 NAT traversal and mobility) and security for the overlay network.
 The P2PSIP Working Group has expressed interest in supporting a HIP-
 based link protocol. Such support would require specifying such
 details as:

 o How to issue certificates which provided identities meaningful to
 the HIP base exchange. We anticipate that this would require a
 mapping between ORCHIDs and NodeIds.
 o How to carry the HIP I1 and I2 messages.
 o How to carry RELOAD messages over HIP.

 [I-D.ietf-hip-reload-instance] documents work in progress on using
 RELOAD with the HIP BONE.

Jennings, et al. Expires May 9, 2013 [Page 78]

Internet-Draft RELOAD Base November 2012

6.6.1.2. ICE-TCP

 The ICE-TCP RFC [RFC6544] allows TCP to be supported as an Overlay
 Link protocol that can be added using ICE.

6.6.1.3. Message-oriented Transports

 Modern message-oriented transports offer high performance, good
 congestion control, and avoid head of line blocking in case of lost
 data. These characteristics make them preferable as underlying
 transport protocols for RELOAD links. SCTP without message ordering
 and DCCP are two examples of such protocols. However, currently they

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc6079
https://datatracker.ietf.org/doc/pdf/rfc5201
https://datatracker.ietf.org/doc/pdf/rfc6544

 are not well-supported by commonly available NATs, and specifications
 for ICE session establishment are not available.

6.6.1.4. Tunneled Transports

 As of the time of this writing, there is significant interest in the
 IETF community in tunneling other transports over UDP, motivated by
 the situation that UDP is well-supported by modern NAT hardware, and
 similar performance can be achieved to native implementation.
 Currently SCTP, DCCP, and a generic tunneling extension are being
 proposed for message-oriented protocols. Once ICE traversal has been
 specified for these tunneled protocols, they should be
 straightforward to support as overlay link protocols.

6.6.2. Framing Header

 In order to support unreliable links and to allow for quick detection
 of link failures when using reliable end-to-end transports, each
 message is wrapped in a very simple framing layer (FramedMessage)
 which is only used for each hop. This layer contains a sequence
 number which can then be used for ACKs. The same header is used for
 both reliable and unreliable transports for simplicity of
 implementation.

 The definition of FramedMessage is:

Jennings, et al. Expires May 9, 2013 [Page 79]

Internet-Draft RELOAD Base November 2012

 enum { data(128), ack(129), (255) } FramedMessageType;

 struct {
 FramedMessageType type;

 select (type) {
 case data:
 uint32 sequence;
 opaque message<0..2^24-1>;

 case ack:
 uint32 ack_sequence;
 uint32 received;
 };
 } FramedMessage;

 The type field of the PDU is set to indicate whether the message is
 data or an acknowledgement.

 If the message is of type "data", then the remainder of the PDU is as
 follows:

 sequence
 the sequence number. This increments by 1 for each framed message
 sent over this transport session.

 message
 the message that is being transmitted.

 Each connection has it own sequence number space. Initially the
 value is zero and it increments by exactly one for each message sent
 over that connection.

 When the receiver receives a message, it SHOULD immediately send an
 ACK message. The receiver MUST keep track of the 32 most recent
 sequence numbers received on this association in order to generate
 the appropriate ack.

 If the PDU is of type "ack", the contents are as follows:

 ack_sequence
 The sequence number of the message being acknowledged.

Jennings, et al. Expires May 9, 2013 [Page 80]

Internet-Draft RELOAD Base November 2012

 received
 A bitmask indicating if each of the previous 32 sequence numbers
 before this packet has been among the 32 packets most recently
 received on this connection. When a packet is received with a
 sequence number N, the receiver looks at the sequence number of
 the previously 32 packets received on this connection. Call the
 previously received packet number M. For each of the previous 32
 packets, if the sequence number M is less than N but greater than
 N-32, the N-M bit of the received bitmask is set to one; otherwise
 it is zero. Note that a bit being set to one indicates positively
 that a particular packet was received, but a bit being set to zero
 means only that it is unknown whether or not the packet has been
 received, because it might have been received before the 32 most
 recently received packets.

 The received field bits in the ACK provide a high degree of
 redundancy so that the sender can figure out which packets the
 receiver has received and can then estimate packet loss rates. If
 the sender also keeps track of the time at which recent sequence
 numbers have been sent, the RTT can be estimated.

 Note that because retransmissions receive new sequence numbers,
 multiple ACKs may be received for the same message. This approach
 provides more information than traditional TCP sequence numbers, but
 care must be taken when applying algorithms designed based on TCP's
 stream-oriented sequence number.

6.6.3. Simple Reliability

 When RELOAD is carried over DTLS or another unreliable link protocol,
 it needs to be used with a reliability and congestion control
 mechanism, which is provided on a hop-by-hop basis. The basic
 principle is that each message, regardless of whether or not it
 carries a request or response, will get an ACK and be reliably
 retransmitted. The receiver's job is very simple, limited to just
 sending ACKs. All the complexity is at the sender side. This allows
 the sending implementation to trade off performance versus
 implementation complexity without affecting the wire protocol.

 Because the receiver's role is limited to providing packet
 acknowledgements, a wide variety of congestion control algorithms can
 be implemented on the sender side while using the same basic wire
 protocol. The sender algorithm used MUST meet the requirements of
 [RFC5405].

https://datatracker.ietf.org/doc/pdf/rfc5405

Jennings, et al. Expires May 9, 2013 [Page 81]

Internet-Draft RELOAD Base November 2012

6.6.3.1. Stop and Wait Sender Algorithm

 This section describes one possible implementation of a sender
 algorithm for Simple Reliability. It is adequate for overlays
 running on underlying networks with low latency and loss (LANs) or
 low-traffic overlays on the Internet.

 A node MUST NOT have more than one unacknowledged message on the DTLS
 connection at a time. Note that because retransmissions of the same
 message are given new sequence numbers, there may be multiple
 unacknowledged sequence numbers in use.

 The RTO ("Retransmission TimeOut") is based on an estimate of the
 round-trip time (RTT). The value for RTO is calculated separately
 for each DTLS session. Implementations can use a static value for
 RTO or a dynamic estimate which will result in better performance.
 For implementations that use a static value, the default value for
 RTO is 500 ms. Nodes MAY use smaller values of RTO if it is known
 that all nodes are within the local network. The default RTO MAY be
 chosen larger, and this is RECOMMENDED if it is known in advance
 (such as on high latency access links) that the round-trip time is
 larger.

 Implementations that use a dynamic estimate to compute the RTO MUST
 use the algorithm described in RFC 6298[RFC6298], with the exception
 that the value of RTO SHOULD NOT be rounded up to the nearest second
 but instead rounded up to the nearest millisecond. The RTT of a
 successful STUN transaction from the ICE stage is used as the initial
 measurement for formula 2.2 of RFC 6298. The sender keeps track of
 the time each message was sent for all recently sent messages. Any
 time an ACK is received, the sender can compute the RTT for that
 message by looking at the time the ACK was received and the time when
 the message was sent. This is used as a subsequent RTT measurement
 for formula 2.3 of RFC 6298 to update the RTO estimate. (Note that
 because retransmissions receive new sequence numbers, all received
 ACKs are used.)

 An initiating node SHOULD retransmit a message if it has not received
 an ACK after an interval of RTO (transit nodes do not retransmit at
 this layer). The node MUST double the time to wait after each
 retransmission. For each retransmission, the sequence number MUST be
 incremented.

https://datatracker.ietf.org/doc/pdf/rfc6298
https://datatracker.ietf.org/doc/pdf/rfc6298
https://datatracker.ietf.org/doc/pdf/rfc6298
https://datatracker.ietf.org/doc/pdf/rfc6298

 Retransmissions continue until a response is received, or until a
 total of 5 requests have been sent or there has been a hard ICMP
 error [RFC1122] or a TLS alert. The sender knows a response was
 received when it receives an ACK with a sequence number that
 indicates it is a response to one of the transmissions of this

Jennings, et al. Expires May 9, 2013 [Page 82]

Internet-Draft RELOAD Base November 2012

 messages. For example, assuming an RTO of 500 ms, requests would be
 sent at times 0 ms, 500 ms, 1500 ms, 3500 ms, and 7500 ms. If all
 retransmissions for a message fail, then the sending node SHOULD
 close the connection routing the message.

 To determine when a link may be failing without waiting for the final
 timeout, observe when no ACKs have been received for an entire RTO
 interval, and then wait for three retransmissions to occur beyond
 that point. If no ACKs have been received by the time the third
 retransmission occurs, it is RECOMMENDED that the link be removed
 from the routing table. The link MAY be restored to the routing
 table if ACKs resume before the connection is closed, as described
 above.

 A sender MUST wait 10ms between receipt of an ACK and transmission of
 the next message.

6.6.4. DTLS/UDP with SR

 This overlay link protocol consists of DTLS over UDP while
 implementing the Simple Reliability protocol. STUN Connectivity
 checks and keepalives are used. Any compliant sender algorithm may
 be used.

6.6.5. TLS/TCP with FH, No-ICE

 This overlay link protocol consists of TLS over TCP with the framing
 header. Because ICE is not used, STUN connectivity checks are not
 used upon establishing the TCP connection, nor are they used for
 keepalives.

 Because the TCP layer's application-level timeout is too slow to be
 useful for overlay routing, the Overlay Link implementation MUST use
 the framing header to measure the RTT of the connection and calculate
 an RTO as specified in Section 2 of [RFC6298]. The resulting RTO is

https://datatracker.ietf.org/doc/pdf/rfc1122
https://datatracker.ietf.org/doc/pdf/rfc6298#section-2

 not used for retransmissions, but as a timeout to indicate when the
 link SHOULD be removed from the routing table. It is RECOMMENDED
 that such a connection be retained for 30s to determine if the
 failure was transient before concluding the link has failed
 permanently.

 When sending candidates for TLS/TCP with FH, No-ICE, a passive
 candidate MUST be provided.

6.6.6. DTLS/UDP with SR, No-ICE

 This overlay link protocol consists of DTLS over UDP while
 implementing the Simple Reliability protocol. Because ICE is not

Jennings, et al. Expires May 9, 2013 [Page 83]

Internet-Draft RELOAD Base November 2012

 used, no STUN connectivity checks or keepalives are used.

6.7. Fragmentation and Reassembly

 In order to allow transmission over datagram protocols such as DTLS,
 RELOAD messages may be fragmented.

 Any node along the path can fragment the message but only the final
 destination reassembles the fragments. When a node takes a packet
 and fragments it, each fragment has a full copy of the Forwarding
 Header but the data after the Forwarding Header is broken up in
 appropriate sized chunks. The size of the payload chunks needs to
 take into account space to allow the via and destination lists to
 grow. Each fragment MUST contain a full copy of the via list,
 destination list, and ForwardingOptions and MUST contain at least 256
 bytes of the message body. If these elements cannot fit within the
 MTU of the underlying datagram protocol, RELOAD fragmentation is not
 performed and IP-layer fragmentation is allowed to occur. When a
 message must be fragmented, it SHOULD be split into equal-sized
 fragments that are no larger than the PMTU of the next overlay link
 minus 32 bytes. This is to allow the via list to grow before further
 fragmentation is required.

 Note that this fragmentation is not optimal for the end-to-end path -
 a message may be refragmented multiple times as it traverses the
 overlay but is only assembled at the final destination. This option
 has been chosen as it is far easier to implement than e2e PMTU
 discovery across an ever-changing overlay, and it effectively

 addresses the reliability issues of relying on IP-layer
 fragmentation. However, Ping can be used to allow e2e PMTU discovery
 to be implemented if desired.

 Upon receipt of a fragmented message by the intended peer, the peer
 holds the fragments in a holding buffer until the entire message has
 been received. The message is then reassembled into a single message
 and processed. In order to mitigate denial of service attacks,
 receivers SHOULD time out incomplete fragments after maximum request
 lifetime (15 seconds). Note this time was derived from looking at
 the end to end retransmission time and saving fragments long enough
 for the full end to end retransmissions to take place. Ideally the
 receiver would have enough buffer space to deal with as many
 fragments as can arrive in the maximum request lifetime. However, if
 the receiver runs out of buffer space to reassemble the messages it
 MUST drop the message.

 The fragment field of the forwarding header is used to encode
 fragmentation information. The offset is the number of bytes between
 the end of the forwarding header and the start of the data. The

Jennings, et al. Expires May 9, 2013 [Page 84]

Internet-Draft RELOAD Base November 2012

 first fragment therefore has an offset of 0. The last fragment
 indicator MUST be appropriately set. If the message is not
 fragmented, it is simply treated as if it is the only fragment: the
 last fragment bit is set and the offset is 0 resulting in a fragment
 value of 0xC0000000.

 Note: the reason for this definition of the fragment field is that
 originally the high bit was defined in part of the specification as
 "is fragmented" and so there was some specification ambiguity about
 how to encode messages with only one fragment. This ambiguity was
 resolved in favor of always encoding as the "last" fragment with
 offset 0, thus simplifying the receiver code path, but resulting in
 the high bit being redundant. Because messages MUST be set with the
 high bit set to 1, implementations SHOULD discard any message with it
 set to 0. Implementations (presumably legacy ones) which choose to
 accept such messages MUST either ignore the remaining bits or ensure
 that they are 0. They MUST NOT try to interpret as fragmented
 messages with the high bit set low.

7. Data Storage Protocol

 RELOAD provides a set of generic mechanisms for storing and
 retrieving data in the Overlay Instance. These mechanisms can be
 used for new applications simply by defining new code points and a
 small set of rules. No new protocol mechanisms are required.

 The basic unit of stored data is a single StoredData structure:

 struct {
 uint32 length;
 uint64 storage_time;
 uint32 lifetime;
 StoredDataValue value;
 Signature signature;
 } StoredData;

 The contents of this structure are as follows:

 length
 The size of the StoredData structure in bytes excluding the size
 of length itself.

Jennings, et al. Expires May 9, 2013 [Page 85]

Internet-Draft RELOAD Base November 2012

 storage_time
 The time when the data was stored represented as the number of
 milliseconds elapsed since midnight Jan 1, 1970 UTC not counting
 leap seconds. This will have the same values for seconds as
 standard UNIX time or POSIX time. More information can be found
 at [UnixTime]. Any attempt to store a data value with a storage
 time before that of a value already stored at this location MUST
 generate a Error_Data_Too_Old error. This prevents rollback
 attacks. The node SHOULD make a best-effort attempt to use a
 correct clock to determine this number, however, the protocol does
 not require synchronized clocks: the receiving peer uses the
 storage time in the previous store, not its own clock. Clock
 values are used so that when clocks are generally synchronized,

 data may be stored in a single transaction, rather than querying
 for the value of a counter before the actual store.
 If a node attempting to store new data in response to a user
 request (rather than as an overlay maintenance operation such as
 occurs during unpartitioning) is rejected with an
 Error_Data_Too_Old error, the node MAY elect to perform its store
 using a storage_time that increments the value used with the
 previous store. This situation may occur when the clocks of nodes
 storing to this location are not properly synchronized.

 lifetime
 The validity period for the data, in seconds, starting from the
 time the peer receives the StoreReq.

 value
 The data value itself, as described in Section 7.2.

 signature
 A signature as defined in Section 7.1.

 Each Resource-ID specifies a single location in the Overlay Instance.
 However, each location may contain multiple StoredData values
 distinguished by Kind-ID. The definition of a Kind describes both
 the data values which may be stored and the data model of the data.
 Some data models allow multiple values to be stored under the same
 Kind-ID. Section 7.2 describes the available data models. Thus, for
 instance, a given Resource-ID might contain a single-value element
 stored under Kind-ID X and an array containing multiple values stored
 under Kind-ID Y.

7.1. Data Signature Computation

 Each StoredData element is individually signed. However, the
 signature also must be self-contained and cover the Kind-ID and

Jennings, et al. Expires May 9, 2013 [Page 86]

Internet-Draft RELOAD Base November 2012

 Resource-ID even though they are not present in the StoredData
 structure. The input to the signature algorithm is:

 resource_id || kind || storage_time || StoredDataValue ||
 SignerIdentity

 Where || indicates concatenation.

 Where these values are:

 resource_id
 The Resource-ID where this data is stored.

 kind
 The Kind-ID for this data.

 storage_time
 The contents of the storage_time data value.

 StoredDataValue
 The contents of the stored data value, as described in the
 previous sections.

 SignerIdentity
 The signer identity as defined in Section 6.3.4.

 Once the signature has been computed, the signature is represented
 using a signature element, as described in Section 6.3.4.

 Note that there is no necessarily relationship between the validity
 window of a certificate and the expiry of the data it is
 authenticating. When signatures are verified, the current time MUST
 be compared to the certificate validity period. However, it is
 permitted to have a value signed which expires after a certificate's
 validity period (though this will likely cause verification failure
 at some future time.)

7.2. Data Models

 The protocol currently defines the following data models:

 o single value
 o array
 o dictionary

 These are represented with the StoredDataValue structure. The actual
 data model is known from the Kind being stored.

Jennings, et al. Expires May 9, 2013 [Page 87]

Internet-Draft RELOAD Base November 2012

 struct {
 Boolean exists;
 opaque value<0..2^32-1>;
 } DataValue;

 struct {
 select (DataModel) {
 case single_value:
 DataValue single_value_entry;

 case array:
 ArrayEntry array_entry;

 case dictionary:
 DictionaryEntry dictionary_entry;

 /* This structure may be extended */
 };
 } StoredDataValue;

 We now discuss the properties of each data model in turn:

7.2.1. Single Value

 A single-value element is a simple sequence of bytes. There may be
 only one single-value element for each Resource-ID, Kind-ID pair.

 A single value element is represented as a DataValue, which contains
 the following two elements:

 exists
 This value indicates whether the value exists at all. If it is
 set to False, it means that no value is present. If it is True,
 that means that a value is present. This gives the protocol a
 mechanism for indicating nonexistence as opposed to emptiness.

 value
 The stored data.

7.2.2. Array

 An array is a set of opaque values addressed by an integer index.
 Arrays are zero based. Note that arrays can be sparse. For
 instance, a Store of "X" at index 2 in an empty array produces an
 array with the values [NA, NA, "X"]. Future attempts to fetch
 elements at index 0 or 1 will return values with "exists" set to
 False.

Jennings, et al. Expires May 9, 2013 [Page 88]

Internet-Draft RELOAD Base November 2012

 A array element is represented as an ArrayEntry:

 struct {
 uint32 index;
 DataValue value;
 } ArrayEntry;

 The contents of this structure are:

 index
 The index of the data element in the array.

 value
 The stored data.

7.2.3. Dictionary

 A dictionary is a set of opaque values indexed by an opaque key with
 one value for each key. A single dictionary entry is represented as
 follows:

 A dictionary element is represented as a DictionaryEntry:

 typedef opaque DictionaryKey<0..2^16-1>;

 struct {
 DictionaryKey key;
 DataValue value;
 } DictionaryEntry;

 The contents of this structure are:

 key
 The dictionary key for this value.

 value
 The stored data.

7.3. Access Control Policies

 Every Kind which is storable in an overlay MUST be associated with an
 access control policy. This policy defines whether a request from a

Jennings, et al. Expires May 9, 2013 [Page 89]

Internet-Draft RELOAD Base November 2012

 given node to operate on a given value should succeed or fail. It is
 anticipated that only a small number of generic access control
 policies are required. To that end, this section describes a small
 set of such policies and Section 14.4 establishes a registry for new
 policies if required. Each policy has a short string identifier
 which is used to reference it in the configuration document.

 In the following policies, the term "signer" refers to the signer of
 the StoredValue object and, in the case of non-replica stores, to the
 signer of the StoreReq message. I.e., in a non-replica store, both
 the signer of the StoredValue and the signer of the StoreReq MUST
 conform to the policy. In the case of a replica store, the signer of
 the StoredValue MUST conform to the policy and the StoreReq itself
 MUST be checked as described in Section 7.4.1.1.

7.3.1. USER-MATCH

 In the USER-MATCH policy, a given value MUST be written (or
 overwritten) if and only if the signer's certificate has a user name
 which hashes (using the hash function for the overlay) to the
 Resource-ID for the resource. Recall that the certificate may,
 depending on the overlay configuration, be self-signed.

7.3.2. NODE-MATCH

 In the NODE-MATCH policy, a given value MUST be written (or
 overwritten) if and only if the signer's certificate has a specified
 Node-ID which hashes (using the hash function for the overlay) to the
 Resource-ID for the resource and that Node-ID is the one indicated in
 the SignerIdentity value cert_hash.

7.3.3. USER-NODE-MATCH

 The USER-NODE-MATCH policy may only be used with dictionary types.
 In the USER-NODE-MATCH policy, a given value MUST be written (or
 overwritten) if and only if the signer's certificate has a user name

 which hashes (using the hash function for the overlay) to the
 Resource-ID for the resource. In addition, the dictionary key MUST
 be equal to the Node-ID in the certificate and that Node-ID MUST be
 the one indicated in the SignerIdentity value cert_hash.

7.3.4. NODE-MULTIPLE

 In the NODE-MULTIPLE policy, a given value MUST be written (or
 overwritten) if and only if signer's certificate contains a Node-ID
 such that H(Node-ID || i) is equal to the Resource-ID for some small
 integer value of i and that Node-ID is the one indicated in the
 SignerIdentity value cert_hash. When this policy is in use, the

Jennings, et al. Expires May 9, 2013 [Page 90]

Internet-Draft RELOAD Base November 2012

 maximum value of i MUST be specified in the Kind definition.

 Note that as i is not carried on the wire, the verifier MUST iterate
 through potential i values up to the maximum value in order to
 determine whether a store is acceptable.

7.4. Data Storage Methods

 RELOAD provides several methods for storing and retrieving data:

 o Store values in the overlay
 o Fetch values from the overlay
 o Stat: get metadata about values in the overlay
 o Find the values stored at an individual peer

 These methods are each described in the following sections.

7.4.1. Store

 The Store method is used to store data in the overlay. The format of
 the Store request depends on the data model which is determined by
 the Kind.

7.4.1.1. Request Definition

 A StoreReq message is a sequence of StoreKindData values, each of
 which represents a sequence of stored values for a given Kind. The
 same Kind-ID MUST NOT be used twice in a given store request. Each
 value is then processed in turn. These operations MUST be atomic.

 If any operation fails, the state MUST be rolled back to before the
 request was received.

 The store request is defined by the StoreReq structure:

 struct {
 KindId kind;
 uint64 generation_counter;
 StoredData values<0..2^32-1>;
 } StoreKindData;

 struct {
 ResourceId resource;
 uint8 replica_number;
 StoreKindData kind_data<0..2^32-1>;
 } StoreReq;

 A single Store request stores data of a number of Kinds to a single

Jennings, et al. Expires May 9, 2013 [Page 91]

Internet-Draft RELOAD Base November 2012

 resource location. The contents of the structure are:

 resource
 The resource to store at.

 replica_number
 The number of this replica. When a storing peer saves replicas to
 other peers each peer is assigned a replica number starting from 1
 and sent in the Store message. This field is set to 0 when a node
 is storing its own data. This allows peers to distinguish replica
 writes from original writes.

 kind_data
 A series of elements, one for each Kind of data to be stored.

 If the replica number is zero, then the peer MUST check that it is
 responsible for the resource and, if not, reject the request. If the
 replica number is nonzero, then the peer MUST check that it expects
 to be a replica for the resource and that the request sender is
 consistent with being the responsible node (i.e., that the receiving
 peer does not know of a better node) and, if not, reject the request.

 Each StoreKindData element represents the data to be stored for a
 single Kind-ID. The contents of the element are:

 kind
 The Kind-ID. Implementations MUST reject requests corresponding
 to unknown Kinds.

 generation_counter
 The expected current state of the generation counter
 (approximately the number of times this object has been written;
 see below for details).

 values
 The value or values to be stored. This may contain one or more
 stored_data values depending on the data model associated with
 each Kind.

 The peer MUST perform the following checks:

 o The Kind-ID is known and supported.
 o The signatures over each individual data element (if any) are
 valid. If this check fails, the request MUST be rejected with an
 Error_Forbidden error.
 o Each element is signed by a credential which is authorized to
 write this Kind at this Resource-ID. If this check fails, the
 request MUST be rejected with an Error_Forbidden error.

Jennings, et al. Expires May 9, 2013 [Page 92]

Internet-Draft RELOAD Base November 2012

 o For original (non-replica) stores, the StoreReq is signed by a
 credential which is authorized to write this Kind at this
 Resource-ID. If this check fails, the request MUST be rejected
 with an Error_Forbidden error.
 o For replica stores, the StoreReq is signed by a Node-ID which is a
 plausible node to either have originally stored the value or in
 the replica set. What this means is overlay specific, but in the
 case of the Chord based DHT defined in this specification, replica
 StoreReqs MUST come from nodes which are either in the known
 replica set for a given resource or which are closer than some
 node in the replica set. If this check fails, the request MUST be
 rejected with an Error_Forbidden error.
 o For original (non-replica) stores, the peer MUST check that if the
 generation counter is non-zero, it equals the current value of the
 generation counter for this Kind. This feature allows the

 generation counter to be used in a way similar to the HTTP Etag
 feature.
 o For replica Stores, the peer MUST set the generation counter to
 match the generation counter in the message, and MUST NOT check
 the generation counter against the current value. Replica Stores
 MUST NOT use a generation counter of 0.
 o The storage time values are greater than that of any value which
 would be replaced by this Store.
 o The size and number of the stored values is consistent with the
 limits specified in the overlay configuration.
 o If the data is signed with identity_type set to "none" and/or
 SignatureAndHashAlgorithm values set to {0, 0} ("anonymous" and
 "none"), the StoreReq MUST be rejected with an Error_forbidden
 error. Only synthesized data returned by the storage can use
 these values

 If all these checks succeed, the peer MUST attempt to store the data
 values. For non-replica stores, if the store succeeds and the data
 is changed, then the peer MUST increase the generation counter by at
 least one. If there are multiple stored values in a single
 StoreKindData, it is permissible for the peer to increase the
 generation counter by only 1 for the entire Kind-ID, or by 1 or more
 than one for each value. Accordingly, all stored data values MUST
 have a generation counter of 1 or greater. 0 is used in the Store
 request to indicate that the generation counter should be ignored for
 processing this request; however the responsible peer should increase
 the stored generation counter and should return the correct
 generation counter in the response.

 When a peer stores data previously stored by another node (e.g., for
 replicas or topology shifts) it MUST adjust the lifetime value
 downward to reflect the amount of time the value was stored at the
 peer. The adjustment SHOULD be implemented by an algorithm

Jennings, et al. Expires May 9, 2013 [Page 93]

Internet-Draft RELOAD Base November 2012

 equivalent to the following: at the time the peer initially receives
 the StoreReq it notes the local time T. When it then attempts to do a
 StoreReq to another node it should decrement the lifetime value by
 the difference between the current local time and T.

 Unless otherwise specified by the usage, if a peer attempts to store
 data previously stored by another node (e.g., for replicas or
 topology shifts) and that store fails with either an

 Error_Generation_Counter_Too_Low or an Error_Data_Too_Old error, the
 peer MUST fetch the newer data from the peer generating the error and
 use that to replace its own copy. This rule allows resynchronization
 after partitions heal.

 The properties of stores for each data model are as follows:

 Single-value:
 A store of a new single-value element creates the element if it
 does not exist and overwrites any existing value with the new
 value.

 Array:
 A store of an array entry replaces (or inserts) the given value at
 the location specified by the index. Because arrays are sparse, a
 store past the end of the array extends it with nonexistent values
 (exists = False) as required. A store at index 0xffffffff places
 the new value at the end of the array regardless of the length of
 the array. The resulting StoredData has the correct index value
 when it is subsequently fetched.

 Dictionary:
 A store of a dictionary entry replaces (or inserts) the given
 value at the location specified by the dictionary key.

 The following figure shows the relationship between these structures
 for an example store which stores the following values at resource
 "1234"

 o The value "abc" in the single value location for Kind X
 o The value "foo" at index 0 in the array for Kind Y
 o The value "bar" at index 1 in the array for Kind Y

Jennings, et al. Expires May 9, 2013 [Page 94]

Internet-Draft RELOAD Base November 2012

 Store

 resource=1234
 replica_number = 0
 / \
 / \
 StoreKindData StoreKindData
 kind=X (Single-Value) kind=Y (Array)
 generation_counter = 99 generation_counter = 107
 | /\
 | / \
 StoredData / \
 storage_time = xxxxxxx / \
 lifetime = 86400 / \
 signature = XXXX / \
 | | |
 | StoredData StoredData
 | storage_time = storage_time =
 | yyyyyyyy zzzzzzz
 | lifetime = 86400 lifetime = 33200
 | signature = YYYY signature = ZZZZ
 | | |
 StoredDataValue | |
 value="abc" | |
 | |
 StoredDataValue StoredDataValue
 index=0 index=1
 value="foo" value="bar"

7.4.1.2. Response Definition

 In response to a successful Store request the peer MUST return a
 StoreAns message containing a series of StoreKindResponse elements
 containing the current value of the generation counter for each
 Kind-ID, as well as a list of the peers where the data will be
 replicated by the node processing the request.

 struct {
 KindId kind;
 uint64 generation_counter;
 NodeId replicas<0..2^16-1>;
 } StoreKindResponse;

 struct {
 StoreKindResponse kind_responses<0..2^16-1>;
 } StoreAns;

Jennings, et al. Expires May 9, 2013 [Page 95]

Internet-Draft RELOAD Base November 2012

 The contents of each StoreKindResponse are:

 kind
 The Kind-ID being represented.

 generation_counter
 The current value of the generation counter for that Kind-ID.

 replicas
 The list of other peers at which the data was/will be replicated.
 In overlays and applications where the responsible peer is
 intended to store redundant copies, this allows the storing node
 to independently verify that the replicas have in fact been
 stored. It does this verification by using the Stat method (see
 Section 7.4.3). Note that the storing node is not required to
 perform this verification.

 The response itself is just StoreKindResponse values packed end-to-
 end.

 If any of the generation counters in the request precede the
 corresponding stored generation counter, then the peer MUST fail the
 entire request and respond with an Error_Generation_Counter_Too_Low
 error. The error_info in the ErrorResponse MUST be a StoreAns
 response containing the correct generation counter for each Kind and
 the replica list, which will be empty. For original (non-replica)
 stores, a node which receives such an error SHOULD attempt to fetch
 the data and, if the storage_time value is newer, replace its own
 data with that newer data. This rule improves data consistency in
 the case of partitions and merges.

 If the data being stored is too large for the allowed limit by the
 given usage, then the peer MUST fail the request and generate an
 Error_Data_Too_Large error.

 If any type of request tries to access a data Kind that the peer does
 not know about, an Error_Unknown_Kind MUST be generated. The
 error_info in the Error_Response is:

 KindId unknown_kinds<0..2^8-1>;

 which lists all the Kinds that were unrecognized. A node which
 receives this error MUST generate a ConfigUpdate message which
 contains the appropriate Kind definition (assuming that in fact a
 Kind was used which was defined in the configuration document).

Jennings, et al. Expires May 9, 2013 [Page 96]

Internet-Draft RELOAD Base November 2012

7.4.1.3. Removing Values

 RELOAD does not have an explicit Remove operation. Rather, values
 are Removed by storing "nonexistent" values in their place. Each
 DataValue contains a boolean value called "exists" which indicates
 whether a value is present at that location. In order to effectively
 remove a value, the owner stores a new DataValue with "exists" set to
 False:

 exists = False
 value = {} (0 length)

 The owner SHOULD use a lifetime for the nonexistent value at least as
 long as the remainder of the lifetime of the value it is replacing;
 otherwise it is possible for the original value to be accidentally or
 maliciously re-stored after the storing node has expired it. Note
 that there is still a window of vulnerability for replay attack after
 the original lifetime has expired (as with any store). This attack
 can be mitigated by doing a nonexistent store with a very long
 lifetime.

 Storing nodes MUST treat these nonexistent values the same way they
 treat any other stored value, including overwriting the existing
 value, replicating them, and aging them out as necessary when
 lifetime expires. When a stored nonexistent value's lifetime
 expires, it is simply removed from the storing node like any other
 stored value expiration.

 Note that in the case of arrays and dictionaries, expiration may
 create an implicit, unsigned "nonexistent" value to represent a gap
 in the data structure, as might happen when any value is aged out.
 However, this value isn't persistent nor is it replicated. It is
 simply synthesized by the storing node.

7.4.2. Fetch

 The Fetch request retrieves one or more data elements stored at a
 given Resource-ID. A single Fetch request can retrieve multiple
 different Kinds.

Jennings, et al. Expires May 9, 2013 [Page 97]

Internet-Draft RELOAD Base November 2012

7.4.2.1. Request Definition

 struct {
 int32 first;
 int32 last;
 } ArrayRange;

 struct {
 KindId kind;
 uint64 generation;
 uint16 length;

 select (DataModel) {
 case single_value: ; /* Empty */

 case array:
 ArrayRange indices<0..2^16-1>;

 case dictionary:
 DictionaryKey keys<0..2^16-1>;

 /* This structure may be extended */

 } model_specifer;
 } StoredDataSpecifier;

 struct {
 ResourceId resource;
 StoredDataSpecifier specifiers<0..2^16-1>;
 } FetchReq;

 The contents of the Fetch requests are as follows:

 resource
 The Resource-ID to fetch from.

 specifiers
 A sequence of StoredDataSpecifier values, each specifying some of
 the data values to retrieve.

 Each StoredDataSpecifier specifies a single Kind of data to retrieve
 and (if appropriate) the subset of values that are to be retrieved.
 The contents of the StoredDataSpecifier structure are as follows:

Jennings, et al. Expires May 9, 2013 [Page 98]

Internet-Draft RELOAD Base November 2012

 kind
 The Kind-ID of the data being fetched. Implementations SHOULD
 reject requests corresponding to unknown Kinds unless specifically
 configured otherwise.

 DataModel
 The data model of the data. This is not transmitted on the wire
 but comes from the definition of the Kind.

 generation
 The last generation counter that the requesting node saw. This
 may be used to avoid unnecessary fetches or it may be set to zero.

 length
 The length of the rest of the structure, thus allowing
 extensibility.

 model_specifier
 A reference to the data value being requested within the data
 model specified for the Kind. For instance, if the data model is
 "array", it might specify some subset of the values.

 The model_specifier is as follows:

 o If the data model is single value, the specifier is empty.
 o If the data model is array, the specifier contains a list of
 ArrayRange elements, each of which contains two integers. The
 first integer is the beginning of the range and the second is the
 end of the range. 0 is used to indicate the first element and
 0xffffffff is used to indicate the final element. The first
 integer MUST be less than the second. While multiple ranges MAY
 be specified, they MUST NOT overlap.
 o If the data model is dictionary then the specifier contains a list
 of the dictionary keys being requested. If no keys are specified,
 than this is a wildcard fetch and all key-value pairs are
 returned.

 The generation counter is used to indicate the requester's expected
 state of the storing peer. If the generation counter in the request
 matches the stored counter, then the storing peer returns a response
 with no StoredData values.

 Note that because the certificate for a user is typically stored at
 the same location as any data stored for that user, a requesting node
 that does not already have the user's certificate should request the
 certificate in the Fetch as an optimization.

Jennings, et al. Expires May 9, 2013 [Page 99]

Internet-Draft RELOAD Base November 2012

7.4.2.2. Response Definition

 The response to a successful Fetch request is a FetchAns message
 containing the data requested by the requester.

 struct {
 KindId kind;
 uint64 generation;
 StoredData values<0..2^32-1>;
 } FetchKindResponse;

 struct {
 FetchKindResponse kind_responses<0..2^32-1>;
 } FetchAns;

 The FetchAns structure contains a series of FetchKindResponse
 structures. There MUST be one FetchKindResponse element for each

 Kind-ID in the request.

 The contents of the FetchKindResponse structure are as follows:

 kind
 the Kind that this structure is for.

 generation
 the generation counter for this Kind.

 values
 the relevant values. If the generation counter in the request
 matches the generation counter in the stored data, then no
 StoredData values are returned. Otherwise, all relevant data
 values MUST be returned. A nonexistent value (i.e., one which the
 node has no knowledge of) is represented by a synthetic value with
 "exists" set to False and has an empty signature. Specifically,
 the identity_type is set to "none", the SignatureAndHashAlgorithm
 values are set to {0, 0} ("anonymous" and "none" respectively),
 and the signature value is of zero length. This removes the need
 for the responding node to do signatures for values which do not
 exist. These signatures are unnecessary as the entire response is
 signed by that node. Note that entries which have been removed by
 the procedure of Section 7.4.1.3 and have not yet expired also
 have exists = False but have valid signatures from the node which
 did the store.

 Upon receipt of a FetchAns message, nodes MUST verify the signatures
 on all the received values. Any values with invalid signatures
 (including expired certificates) MUST be discarded. Note that this

Jennings, et al. Expires May 9, 2013 [Page 100]

Internet-Draft RELOAD Base November 2012

 implies that implementations which wish to store data for long
 periods of time must have certificates with appropriate expiry dates
 or re-store periodically. Implementations MAY return the subset of
 values with valid signatures, but in that case SHOULD somehow signal
 to the application that a partial response was received.

 There is one subtle point about signature computation on arrays. If
 the storing node uses the append feature (where the
 index=0xffffffff), then the index in the StoredData that is returned
 will not match that used by the storing node, which would break the
 signature. In order to avoid this issue, the index value in the

 array is set to zero before the signature is computed. This implies
 that malicious storing nodes can reorder array entries without being
 detected.

7.4.3. Stat

 The Stat request is used to get metadata (length, generation counter,
 digest, etc.) for a stored element without retrieving the element
 itself. The name is from the UNIX stat(2) system call which performs
 a similar function for files in a file system. It also allows the
 requesting node to get a list of matching elements without requesting
 the entire element.

7.4.3.1. Request Definition

 The Stat request is identical to the Fetch request. It simply
 specifies the elements to get metadata about.

 struct {
 ResourceId resource;
 StoredDataSpecifier specifiers<0..2^16-1>;
 } StatReq;

7.4.3.2. Response Definition

 The Stat response contains the same sort of entries that a Fetch
 response would contain; however, instead of containing the element
 data it contains metadata.

Jennings, et al. Expires May 9, 2013 [Page 101]

Internet-Draft RELOAD Base November 2012

 struct {
 Boolean exists;
 uint32 value_length;
 HashAlgorithm hash_algorithm;

 opaque hash_value<0..255>;
 } MetaData;

 struct {
 uint32 index;
 MetaData value;
 } ArrayEntryMeta;

 struct {
 DictionaryKey key;
 MetaData value;
 } DictionaryEntryMeta;

 struct {
 select (DataModel) {
 case single_value:
 MetaData single_value_entry;

 case array:
 ArrayEntryMeta array_entry;

 case dictionary:
 DictionaryEntryMeta dictionary_entry;

 /* This structure may be extended */
 };
 } MetaDataValue;

 struct {
 uint32 value_length;
 uint64 storage_time;
 uint32 lifetime;
 MetaDataValue metadata;
 } StoredMetaData;

 struct {
 KindId kind;
 uint64 generation;
 StoredMetaData values<0..2^32-1>;
 } StatKindResponse;

 struct {
 StatKindResponse kind_responses<0..2^32-1>;
 } StatAns;

Jennings, et al. Expires May 9, 2013 [Page 102]

Internet-Draft RELOAD Base November 2012

 The structures used in StatAns parallel those used in FetchAns: a
 response consists of multiple StatKindResponse values, one for each
 Kind that was in the request. The contents of the StatKindResponse
 are the same as those in the FetchKindResponse, except that the
 values list contains StoredMetaData entries instead of StoredData
 entries.

 The contents of the StoredMetaData structure are the same as the
 corresponding fields in StoredData except that there is no signature
 field and the value is a MetaDataValue rather than a StoredDataValue.

 A MetaDataValue is a variant structure, like a StoredDataValue,
 except for the types of each arm, which replace DataValue with
 MetaData.

 The only really new structure is MetaData, which has the following
 contents:

 exists
 Same as in DataValue

 value_length
 The length of the stored value.

 hash_algorithm
 The hash algorithm used to perform the digest of the value.

 hash_value
 A digest using hash_algorithm on the value field of the DataValue
 including its 4 leading length bytes.

7.4.4. Find

 The Find request can be used to explore the Overlay Instance. A Find
 request for a Resource-ID R and a Kind-ID T retrieves the Resource-ID
 (if any) of the resource of kind T known to the target peer which is
 closest to R. This method can be used to walk the Overlay Instance by
 iteratively fetching R_n+1=nearest(1 + R_n).

7.4.4.1. Request Definition

 The FindReq message contains a Resource-ID and a series of Kind-IDs
 identifying the resource the peer is interested in.

 struct {
 ResourceId resource;
 KindId kinds<0..2^8-1>;

 } FindReq;

Jennings, et al. Expires May 9, 2013 [Page 103]

Internet-Draft RELOAD Base November 2012

 The request contains a list of Kind-IDs which the Find is for, as
 indicated below:

 resource
 The desired Resource-ID

 kinds
 The desired Kind-IDs. Each value MUST only appear once, and if
 not the request MUST be rejected with an error.

7.4.4.2. Response Definition

 A response to a successful Find request is a FindAns message
 containing the closest Resource-ID on the peer for each kind
 specified in the request.

 struct {
 KindId kind;
 ResourceId closest;
 } FindKindData;

 struct {
 FindKindData results<0..2^16-1>;
 } FindAns;

 If the processing peer is not responsible for the specified
 Resource-ID, it SHOULD return an Error_Not_Found error code.

 For each Kind-ID in the request the response MUST contain a
 FindKindData indicating the closest Resource-ID for that Kind-ID,
 unless the kind is not allowed to be used with Find in which case a
 FindKindData for that Kind-ID MUST NOT be included in the response.
 If a Kind-ID is not known, then the corresponding Resource-ID MUST be
 0. Note that different Kind-IDs may have different closest Resource-
 IDs.

 The response is simply a series of FindKindData elements, one per
 kind, concatenated end-to-end. The contents of each element are:

 kind
 The Kind-ID.

Jennings, et al. Expires May 9, 2013 [Page 104]

Internet-Draft RELOAD Base November 2012

 closest
 The closest Resource-ID to the specified Resource-ID. This is 0
 if no Resource-ID is known.

 Note that the response does not contain the contents of the data
 stored at these Resource-IDs. If the requester wants this, it must
 retrieve it using Fetch.

7.4.5. Defining New Kinds

 There are two ways to define a new Kind. The first is by writing a
 document and registering the Kind-ID with IANA. This is the
 preferred method for Kinds which may be widely used and reused. The
 second method is to simply define the Kind and its parameters in the
 configuration document using the section of Kind-ID space set aside
 for private use. This method MAY be used to define ad hoc Kinds in
 new overlays.

 However a Kind is defined, the definition MUST include:

 o The meaning of the data to be stored (in some textual form).
 o The Kind-ID.
 o The data model (single value, array, dictionary, etc).
 o The access control model.

 In addition, when Kinds are registered with IANA, each Kind is
 assigned a short string name which is used to refer to it in
 configuration documents.

 While each Kind needs to define what data model is used for its data,
 that does not mean that it must define new data models. Where
 practical, Kinds should use the existing data models. The intention
 is that the basic data model set be sufficient for most applications/

 usages.

8. Certificate Store Usage

 The Certificate Store usage allows a peer to store its certificate in
 the overlay, thus avoiding the need to send a certificate in each
 message.

 A user/peer MUST store its certificate at Resource-IDs derived from
 two Resource Names:

 o The user name in the certificate.

Jennings, et al. Expires May 9, 2013 [Page 105]

Internet-Draft RELOAD Base November 2012

 o The Node-ID in the certificate.

 Note that in the second case the certificate is not stored at the
 peer's Node-ID but rather at a hash of the peer's Node-ID. The
 intention here (as is common throughout RELOAD) is to avoid making a
 peer responsible for its own data.

 A peer MUST ensure that the user's certificates are stored in the
 Overlay Instance. New certificates are stored at the end of the
 list. This structure allows users to store an old and a new
 certificate that both have the same Node-ID, which allows for
 migration of certificates when they are renewed.

 This usage defines the following Kinds:

 Name: CERTIFICATE_BY_NODE

 Data Model: The data model for CERTIFICATE_BY_NODE data is array.

 Access Control: NODE-MATCH.

 Name: CERTIFICATE_BY_USER

 Data Model: The data model for CERTIFICATE_BY_USER data is array.

 Access Control: USER-MATCH.

9. TURN Server Usage

 The TURN server usage allows a RELOAD peer to advertise that it is
 prepared to be a TURN server as defined in [RFC5766]. When a node
 starts up, it joins the overlay network and forms several connections
 in the process. If the ICE stage in any of these connections returns
 a reflexive address that is not the same as the peer's perceived
 address, then the peer is behind a NAT and SHOULD NOT be a candidate
 for a TURN server. Additionally, if the peer's IP address is in the
 private address space range as defined by [RFC1918], then it is also
 SHOULD NOT be a candidate for a TURN server. Otherwise, the peer
 SHOULD assume it is a potential TURN server and follow the procedures
 below.

 If the node is a candidate for a TURN server it will insert some
 pointers in the overlay so that other peers can find it. The overlay
 configuration file specifies a turn-density parameter that indicates
 how many times each TURN server SHOULD record itself in the overlay.

Jennings, et al. Expires May 9, 2013 [Page 106]

Internet-Draft RELOAD Base November 2012

 Typically this should be set to the reciprocal of the estimate of
 what percentage of peers will act as TURN servers. If the turn-
 density is not set to zero, for each value, called d, between 1 and
 turn-density, the peer forms a Resource Name by concatenating its
 Node-ID and the value d. This Resource Name is hashed to form a
 Resource-ID. The address of the peer is stored at that Resource-ID
 using type TURN-SERVICE and the TurnServer object:

 struct {
 uint8 iteration;
 IpAddressPort server_address;
 } TurnServer;

 The contents of this structure are as follows:

 iteration
 the d value

https://datatracker.ietf.org/doc/pdf/rfc5766
https://datatracker.ietf.org/doc/pdf/rfc1918

 server_address
 the address at which the TURN server can be contacted.

 Note: Correct functioning of this algorithm depends on having turn-
 density be an reasonable estimate of the reciprocal of the
 proportion of nodes in the overlay that can act as TURN servers.
 If the turn-density value in the configuration file is too low,
 then the process of finding TURN servers becomes more expensive as
 multiple candidate Resource-IDs must be probed to find a TURN
 server.

 Peers that provide this service need to support the TURN extensions
 to STUN for media relay as defined in [RFC5766].

 This usage defines the following Kind to indicate that a peer is
 willing to act as a TURN server:

 Name TURN-SERVICE
 Data Model The TURN-SERVICE Kind stores a single value for each
 Resource-ID.
 Access Control NODE-MULTIPLE, with maximum iteration counter 20.

 Peers MAY find other servers by selecting a random Resource-ID and
 then doing a Find request for the appropriate Kind-ID with that
 Resource-ID. The Find request gets routed to a random peer based on
 the Resource-ID. If that peer knows of any servers, they will be
 returned. The returned response may be empty if the peer does not
 know of any servers, in which case the process gets repeated with
 some other random Resource-ID. As long as the ratio of servers

Jennings, et al. Expires May 9, 2013 [Page 107]

Internet-Draft RELOAD Base November 2012

 relative to peers is not too low, this approach will result in
 finding a server relatively quickly.

 NOTE TO IMPLEMENTERS: As the access control for this usage is not
 CERTIFICATE_BY_NODE or CERTIFICATE_BY_USER, the certificates used by
 TurnServer entries need to be retained as described in Section 6.3.4.

10. Chord Algorithm

 This algorithm is assigned the name CHORD-RELOAD to indicate it is an
 adaptation of the basic Chord based DHT algorithm.

https://datatracker.ietf.org/doc/pdf/rfc5766

 This algorithm differs from the originally presented Chord algorithm
 [Chord]. It has been updated based on more recent research results
 and implementation experiences, and to adapt it to the RELOAD
 protocol. A short list of differences:

 o The original Chord algorithm specified that a single predecessor
 and a successor list be stored. The CHORD-RELOAD algorithm
 attempts to have more than one predecessor and successor. The
 predecessor sets help other neighbors learn their successor list.
 o The original Chord specification and analysis called for iterative
 routing. RELOAD specifies recursive routing. In addition to the
 performance implications, the cost of NAT traversal dictates
 recursive routing.
 o Finger table entries are indexed in opposite order. Original
 Chord specifies finger[0] as the immediate successor of the peer.
 CHORD-RELOAD specifies finger[0] as the peer 180 degrees around
 the ring from the peer. This change was made to simplify
 discussion and implementation of variable sized finger tables.
 However, with either approach no more than O(log N) entries should
 typically be stored in a finger table.
 o The stabilize() and fix_fingers() algorithms in the original Chord
 algorithm are merged into a single periodic process.
 Stabilization is implemented slightly differently because of the
 larger neighborhood, and fix_fingers is not as aggressive to
 reduce load, nor does it search for optimal matches of the finger
 table entries.
 o RELOAD allows for a 128 bit hash instead of a 160 bit hash, as
 RELOAD is not designed to be used in networks with close to or
 more than 2^128 nodes or objects (and it is hard to see how one
 would assemble such a network).
 o RELOAD uses randomized finger entries as described in
 Section 10.7.4.2.
 o This algorithm allows the use of either reactive or periodic
 recovery. The original Chord paper used periodic recovery.
 Reactive recovery provides better performance in small overlays,

Jennings, et al. Expires May 9, 2013 [Page 108]

Internet-Draft RELOAD Base November 2012

 but is believed to be unstable in large (>1000) overlays with high
 levels of churn [handling-churn-usenix04]. The overlay
 configuration file specifies a "chord-reactive" element that
 indicates whether reactive recovery should be used.

10.1. Overview

 The algorithm described here is a modified version of the Chord
 algorithm. In Chord (and in the algorithm described here), nodes are
 arranged in a ring with node n being adjacent to nodes n-1 and n+1,
 with all arithmetic being done modulo 2^{k}, where k is the length of
 the Node-ID in bits, so that node 2^{k} - 1 is directly before node
 0.

 Each peer keeps track of a finger table and a neighbor table. The
 neighbor table contains at least the three peers before and after
 this peer in the DHT ring. There may not be three entries in all
 cases such as small rings or while the ring topology is changing.
 The first entry in the finger table contains the peer half-way around
 the ring from this peer; the second entry contains the peer that is
 1/4 of the way around; the third entry contains the peer that is
 1/8th of the way around, and so on. Fundamentally, the chord DHT can
 be thought of a doubly-linked list formed by knowing the successors
 and predecessor peers in the neighbor table, sorted by the Node-ID.
 As long as the successor peers are correct, the DHT will return the
 correct result. The pointers to the prior peers are kept to enable
 the insertion of new peers into the list structure. Keeping multiple
 predecessor and successor pointers makes it possible to maintain the
 integrity of the data structure even when consecutive peers
 simultaneously fail. The finger table forms a skip list, so that
 entries in the linked list can be found in O(log(N)) time instead of
 the typical O(N) time that a linked list would provide where N
 represents the number of nodes in the DHT.

 The neighbor and finger table entries contain logical Node-IDs as
 values but the actual mapping of an IP level addressing information
 to reach that Node-ID is kept in the connection table.

 A peer, x, is responsible for a particular Resource-ID k if k is less
 than or equal to x and k is greater than p, where p is the Node-ID of
 the previous peer in the neighbor table. Care must be taken when
 computing to note that all math is modulo 2^128.

10.2. Hash Function

 For this Chord based topology plugin, the size of the Resource-ID is
 128 bits. The hash of a Resource-ID MUST be computed using SHA-1
 [RFC3174] then truncating the SHA-1 result to the most significant

Jennings, et al. Expires May 9, 2013 [Page 109]

Internet-Draft RELOAD Base November 2012

https://datatracker.ietf.org/doc/pdf/rfc3174

 128 bits.

10.3. Routing

 The routing table is conceptually the union of the neighbor table and
 the finger table.

 If a peer is not responsible for a Resource-ID k, but is directly
 connected to a node with Node-ID k, then it MUST route the message to
 that node. Otherwise, it MUST route the request to the peer in the
 routing table that has the largest Node-ID that is in the interval
 between the peer and k. If no such node is found, it finds the
 smallest Node-ID that is greater than k and MUST route the message to
 that node.

10.4. Redundancy

 When a peer receives a Store request for Resource-ID k, and it is
 responsible for Resource-ID k, it MUST store the data and returns a
 success response. It MUST then send a Store request to its successor
 in the neighbor table and to that peer's successor. Note that these
 Store requests are addressed to those specific peers, even though the
 Resource-ID they are being asked to store is outside the range that
 they are responsible for. The peers receiving these SHOULD check
 they came from an appropriate predecessor in their neighbor table and
 that they are in a range that this predecessor is responsible for,
 and then they MUST store the data. They do not themselves perform
 further Stores because they can determine that they are not
 responsible for the Resource-ID.

 Managing replicas as the overlay changes is described in
 Section 10.7.3.

 The sequential replicas used in this overlay algorithm protect
 against peer failure but not against malicious peers. Additional
 replication from the Usage is required to protect resources from such
 attacks, as discussed in Section 13.5.4.

10.5. Joining

 The join process for a joining party (JP) with Node-ID n is as
 follows.

 1. JP MUST connect to its chosen bootstrap node.
 2. JP SHOULD send an Attach request to the admitting peer (AP) for
 Node-ID n. The "send_update" flag can be used to acquire the
 routing table for AP.

Jennings, et al. Expires May 9, 2013 [Page 110]

Internet-Draft RELOAD Base November 2012

 3. JP SHOULD send Attach requests to initiate connections to each of
 the peers in the neighbor table as well as to the desired finger
 table entries. Note that this does not populate their routing
 tables, but only their connection tables, so JP will not get
 messages that it is expected to route to other nodes.
 4. JP MUST enter all the peers it has successfully contacted into
 its routing table.
 5. JP MUST send a Join to AP. The AP sends the response to the
 Join.
 6. AP MUST do a series of Store requests to JP to store the data
 that JP will be responsible for.
 7. AP MUST send JP an Update explicitly labeling JP as its
 predecessor. At this point, JP is part of the ring and
 responsible for a section of the overlay. AP MAY now forget any
 data which is assigned to JP and not AP. AP SHOULD not forget
 any data where AP is the replica set for the data.
 8. The AP MUST send an Update to all of its neighbors with the new
 values of its neighbor set (including JP).
 9. The JP MUST send Updates to all the peers in its neighbor table.

 If JP sends an Attach to AP with send_update, it immediately knows
 most of its expected neighbors from AP's routing table update and can
 directly connect to them. This is the RECOMMENDED procedure.

 If for some reason JP does not get AP's routing table, it can still
 populate its neighbor table incrementally. It sends a Ping directed
 at Resource-ID n+1 (directly after its own Resource-ID). This allows
 it to discover its own successor. Call that node p0. It then sends
 a ping to p0+1 to discover its successor (p1). This process can be
 repeated to discover as many successors as desired. The values for
 the two peers before p will be found at a later stage when n receives
 an Update. An alternate procedure is to send Attaches to those nodes
 rather than pings, which forms the connections immediately but may be
 slower if the nodes need to collect ICE candidates, thus reducing
 parallelism.

 In order to set up its i'th finger table entry, JP simply sends an
 Attach to peer n+2^(128-i). This will be routed to a peer in
 approximately the right location around the ring. (Note the first
 entry in the finger table has i=1 and not i=0 in this formulation).

 The joining peer MUST NOT send any Update message placing itself in

 the overlay until it has successfully completed an Attach with each
 peer that should be in its neighbor table.

Jennings, et al. Expires May 9, 2013 [Page 111]

Internet-Draft RELOAD Base November 2012

10.6. Routing Attaches

 When a peer needs to Attach to a new peer in its neighbor table, it
 MUST source-route the Attach request through the peer from which it
 learned the new peer's Node-ID. Source-routing these requests allows
 the overlay to recover from instability.

 All other Attach requests, such as those for new finger table
 entries, are routed conventionally through the overlay.

10.7. Updates

 An Update for this DHT is defined as

 enum { reserved(0),
 peer_ready(1), neighbors(2), full(3), (255) }
 ChordUpdateType;

 struct {
 uint32 uptime;
 ChordUpdateType type;
 select (type){
 case peer_ready: /* Empty */
 ;

 case neighbors:
 NodeId predecessors<0..2^16-1>;
 NodeId successors<0..2^16-1>;

 case full:
 NodeId predecessors<0..2^16-1>;
 NodeId successors<0..2^16-1>;
 NodeId fingers<0..2^16-1>;
 };

 } ChordUpdate;

 The "uptime" field contains the time this peer has been up in
 seconds.

 The "type" field contains the type of the update, which depends on
 the reason the update was sent.

Jennings, et al. Expires May 9, 2013 [Page 112]

Internet-Draft RELOAD Base November 2012

 peer_ready: this peer is ready to receive messages. This message
 is used to indicate that a node which has Attached is a peer and
 can be routed through. It is also used as a connectivity check to
 non-neighbor peers.

 neighbors: this version is sent to members of the Chord neighbor
 table.

 full: this version is sent to peers which request an Update with a
 RouteQueryReq.

 If the message is of type "neighbors", then the contents of the
 message will be:

 predecessors
 The predecessor set of the Updating peer.

 successors
 The successor set of the Updating peer.

 If the message is of type "full", then the contents of the message
 will be:

 predecessors
 The predecessor set of the Updating peer.

 successors
 The successor set of the Updating peer.

 fingers
 The finger table of the Updating peer, in numerically ascending
 order.

 A peer MUST maintain an association (via Attach) to every member of
 its neighbor set. A peer MUST attempt to maintain at least three
 predecessors and three successors, even though this will not be
 possible if the ring is very small. It is RECOMMENDED that O(log(N))
 predecessors and successors be maintained in the neighbor set.

10.7.1. Handling Neighbor Failures

 Every time a connection to a peer in the neighbor table is lost (as
 determined by connectivity pings or the failure of some request), the
 peer MUST remove the entry from its neighbor table and replace it
 with the best match it has from the other peers in its routing table.
 If using reactive recovery, it then sends an immediate Update to all

Jennings, et al. Expires May 9, 2013 [Page 113]

Internet-Draft RELOAD Base November 2012

 nodes in its Neighbor Table. The update will contain all the Node-
 IDs of the current entries of the table (after the failed one has
 been removed). Note that when replacing a successor the peer SHOULD
 delay the creation of new replicas for successor replacement hold-
 down time (30 seconds) after removing the failed entry from its
 neighbor table in order to allow a triggered update to inform it of a
 better match for its neighbor table.

 If the neighbor failure affects the peer's range of responsible IDs,
 then the Update MUST be sent to all nodes in its Connection Table.

 A peer MAY attempt to reestablish connectivity with a lost neighbor
 either by waiting additional time to see if connectivity returns or
 by actively routing a new Attach to the lost peer. Details for these
 procedures are beyond the scope of this document. In no event does
 an attempt to reestablish connectivity with a lost neighbor allow the
 peer to remain in the neighbor table. Such a peer is returned to the
 neighbor table once connectivity is reestablished.

 If connectivity is lost to all successor peers in the neighbor table,
 then this peer should behave as if it is joining the network and use

 Pings to find a peer and send it a Join. If connectivity is lost to
 all the peers in the finger table, this peer should assume that it
 has been disconnected from the rest of the network, and it should
 periodically try to join the DHT.

10.7.2. Handling Finger Table Entry Failure

 If a finger table entry is found to have failed, all references to
 the failed peer are removed from the finger table and replaced with
 the closest preceding peer from the finger table or neighbor table.

 If using reactive recovery, the peer initiates a search for a new
 finger table entry as described below.

10.7.3. Receiving Updates

 When a peer, x, receives an Update request, it examines the Node-IDs
 in the UpdateReq and at its neighbor table and decides if this
 UpdateReq would change its neighbor table. This is done by taking
 the set of peers currently in the neighbor table and comparing them
 to the peers in the update request. There are two major cases:

 o The UpdateReq contains peers that match x's neighbor table, so no
 change is needed to the neighbor set.
 o The UpdateReq contains peers x does not know about that should be
 in x's neighbor table, i.e. they are closer than entries in the
 neighbor table.

Jennings, et al. Expires May 9, 2013 [Page 114]

Internet-Draft RELOAD Base November 2012

 In the first case, no change is needed.

 In the second case, x MUST attempt to Attach to the new peers and if
 it is successful it MUST adjust its neighbor set accordingly. Note
 that it can maintain the now inferior peers as neighbors, but it MUST
 remember the closer ones.

 After any Pings and Attaches are done, if the neighbor table changes
 and the peer is using reactive recovery, the peer sends an Update
 request to each member of its Connection Table. These Update
 requests are what end up filling in the predecessor/successor tables
 of peers that this peer is a neighbor to. A peer MUST NOT enter
 itself in its successor or predecessor table and instead should leave
 the entries empty.

 If peer x is responsible for a Resource-ID R, and x discovers that
 the replica set for R (the next two nodes in its successor set) has
 changed, it MUST send a Store for any data associated with R to any
 new node in the replica set. It SHOULD NOT delete data from peers
 which have left the replica set.

 When a peer x detects that it is no longer in the replica set for a
 resource R (i.e., there are three predecessors between x and R), it
 SHOULD delete all data associated with R from its local store.

 When a peer discovers that its range of responsible IDs have changed,
 it MUST send an Update to all entries in its connection table.

10.7.4. Stabilization

 There are four components to stabilization:
 1. exchange Updates with all peers in its neighbor table to exchange
 state.
 2. search for better peers to place in its finger table.
 3. search to determine if the current finger table size is
 sufficiently large.
 4. search to determine if the overlay has partitioned and needs to
 recover.

10.7.4.1. Updating neighbor table

 A peer MUST periodically send an Update request to every peer in its
 Neighbor Table. The purpose of this is to keep the predecessor and
 successor lists up to date and to detect failed peers. The default
 time is about every ten minutes, but the configuration server SHOULD
 set this in the configuration document using the "chord-update-
 interval" element (denominated in seconds.) A peer SHOULD randomly
 offset these Update requests so they do not occur all at once.

Jennings, et al. Expires May 9, 2013 [Page 115]

Internet-Draft RELOAD Base November 2012

10.7.4.2. Refreshing finger table

 A peer MUST periodically search for new peers to replace invalid
 entries in the finger table. For peer x, the i'th finger table entry
 is valid if it is in the range [x+2^(128-i), x+2^(128-(i-1))-1
]. Invalid entries occur in the finger table when a previous finger
 table entry has failed or when no peer has been found in that range.

 A peer SHOULD NOT send Ping requests looking for new finger table
 entries more often than the configuration element "chord-ping-
 interval", which defaults to 3600 seconds (one per hour).

 Two possible methods for searching for new peers for the finger table
 entries are presented:

 Alternative 1: A peer selects one entry in the finger table from
 among the invalid entries. It pings for a new peer for that finger
 table entry. The selection SHOULD be exponentially weighted to
 attempt to replace earlier (lower i) entries in the finger table. A
 simple way to implement this selection is to search through the
 finger table entries from i=1 and each time an invalid entry is
 encountered, send a Ping to replace that entry with probability 0.5.

 Alternative 2: A peer monitors the Update messages received from its
 connections to observe when an Update indicates a peer that would be
 used to replace in invalid finger table entry, i, and flags that
 entry in the finger table. Every "chord-ping-interval" seconds, the
 peer selects from among those flagged candidates using an
 exponentially weighted probability as above.

 When searching for a better entry, the peer SHOULD send the Ping to a
 Node-ID selected randomly from that range. Random selection is
 preferred over a search for strictly spaced entries to minimize the
 effect of churn on overlay routing [minimizing-churn-sigcomm06]. An
 implementation or subsequent specification MAY choose a method for
 selecting finger table entries other than choosing randomly within
 the range. Any such alternate methods SHOULD be employed only on
 finger table stabilization and not for the selection of initial
 finger table entries unless the alternative method is faster and
 imposes less overhead on the overlay.

 A peer MAY choose to keep connections to multiple peers that can act
 for a given finger table entry.

10.7.4.3. Adjusting finger table size

 If the finger table has less than 16 entries, the node SHOULD attempt
 to discover more fingers to grow the size of the table to 16. The

Jennings, et al. Expires May 9, 2013 [Page 116]

Internet-Draft RELOAD Base November 2012

 value 16 was chosen to ensure high odds of a node maintaining
 connectivity to the overlay even with strange network partitions.

 For many overlays, 16 finger table entries will be enough, but as an
 overlay grows very large, more than 16 entries may be required in the
 finger table for efficient routing. An implementation SHOULD be
 capable of increasing the number of entries in the finger table to
 128 entries.

 Note to implementers: Although log(N) entries are all that are
 required for optimal performance, careful implementation of
 stabilization will result in no additional traffic being generated
 when maintaining a finger table larger than log(N) entries.
 Implementers are encouraged to make use of RouteQuery and algorithms
 for determining where new finger table entries may be found.
 Complete details of possible implementations are outside the scope of
 this specification.

 A simple approach to sizing the finger table is to ensure the finger
 table is large enough to contain at least the final successor in the
 peer's neighbor table.

10.7.4.4. Detecting partitioning

 To detect that a partitioning has occurred and to heal the overlay, a
 peer P MUST periodically repeat the discovery process used in the
 initial join for the overlay to locate an appropriate bootstrap node,
 B. P should then send a Ping for its own Node-ID routed through B. If
 a response is received from a peer S', which is not P's successor,
 then the overlay is partitioned and P should send an Attach to S'
 routed through B, followed by an Update sent to S'. (Note that S'
 may not be in P's neighbor table once the overlay is healed, but the
 connection will allow S' to discover appropriate neighbor entries for
 itself via its own stabilization.)

 Future specifications may describe alternative mechanisms for
 determining when to repeat the discovery process.

10.8. Route query

 For this topology plugin, the RouteQueryReq contains no additional
 information. The RouteQueryAns contains the single Node-ID of the
 next peer to which the responding peer would have routed the request
 message in recursive routing:

 struct {
 NodeId next_peer;

Jennings, et al. Expires May 9, 2013 [Page 117]

Internet-Draft RELOAD Base November 2012

 } ChordRouteQueryAns;

 The contents of this structure are as follows:

 next_peer
 The peer to which the responding peer would route the message in
 order to deliver it to the destination listed in the request.

 If the requester has set the send_update flag, the responder SHOULD
 initiate an Update immediately after sending the RouteQueryAns.

10.9. Leaving

 To support extensions, such as [I-D.ietf-p2psip-self-tuning], Peers
 SHOULD send a Leave request to all members of their neighbor table
 prior to exiting the Overlay Instance. The overlay_specific_data
 field MUST contain the ChordLeaveData structure defined below:

 enum { reserved(0),
 from_succ(1), from_pred(2), (255) }
 ChordLeaveType;

 struct {
 ChordLeaveType type;

 select (type) {
 case from_succ:
 NodeId successors<0..2^16-1>;

 case from_pred:
 NodeId predecessors<0..2^16-1>;
 };
 } ChordLeaveData;

Jennings, et al. Expires May 9, 2013 [Page 118]

Internet-Draft RELOAD Base November 2012

 The 'type' field indicates whether the Leave request was sent by a
 predecessor or a successor of the recipient:

 from_succ
 The Leave request was sent by a successor.

 from_pred
 The Leave request was sent by a predecessor.

 If the type of the request is 'from_succ', the contents will be:

 successors
 The sender's successor list.

 If the type of the request is 'from_pred', the contents will be:

 predecessors
 The sender's predecessor list.

 Any peer which receives a Leave for a peer n in its neighbor set
 follows procedures as if it had detected a peer failure as described
 in Section 10.7.1.

11. Enrollment and Bootstrap

 The section defines the format of the configuration data as well the
 process to join a new overlay.

11.1. Overlay Configuration

 This specification defines a new content type "application/
 p2p-overlay+xml" for an MIME entity that contains overlay
 information. An example document is shown below.

 <?xml version="1.0" encoding="UTF-8"?>
 <overlay xmlns="urn:ietf:params:xml:ns:p2p:config-base"
 xmlns:ext="urn:ietf:params:xml:ns:p2p:config-ext1"
 xmlns:chord="urn:ietf:params:xml:ns:p2p:config-chord">
 <configuration instance-name="overlay.example.org" sequence="22"
 expiration="2002-10-10T07:00:00Z" ext:ext-example="stuff" >
 <topology-plugin> CHORD-RELOAD </topology-plugin>
 <node-id-length>16</node-id-length>
 <root-cert>
 MIIDJDCCAo2gAwIBAgIBADANBgkqhkiG9w0BAQUFADBwMQswCQYDVQQGEwJVUzET
 MBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoT

Jennings, et al. Expires May 9, 2013 [Page 119]

Internet-Draft RELOAD Base November 2012

 BXNpcGl0MSkwJwYDVQQLEyBTaXBpdCBUZXN0IENlcnRpZmljYXRlIEF1dGhvcml0
 eTAeFw0wMzA3MTgxMjIxNTJaFw0xMzA3MTUxMjIxNTJaMHAxCzAJBgNVBAYTAlVT
 MRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UE
 ChMFc2lwaXQxKTAnBgNVBAsTIFNpcGl0IFRlc3QgQ2VydGlmaWNhdGUgQXV0aG9y
 aXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDDIh6DkcUDLDyK9BEUxkud
 +nJ4xrCVGKfgjHm6XaSuHiEtnfELHM+9WymzkBNzZpJu30yzsxwfKoIKugdNUrD4
 N3viCicwcN35LgP/KnbN34cavXHr4ZlqxH+OdKB3hQTpQa38A7YXdaoz6goW2ft5
 Mi74z03GNKP/G9BoKOGd5QIDAQABo4HNMIHKMB0GA1UdDgQWBBRrRhcU6pR2JYBU
 bhNU2qHjVBShtjCBmgYDVR0jBIGSMIGPgBRrRhcU6pR2JYBUbhNU2qHjVBShtqF0
 pHIwcDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcT
 CFNhbiBKb3NlMQ4wDAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBD
 ZXJ0aWZpY2F0ZSBBdXRob3JpdHmCAQAwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0B
 AQUFAAOBgQCWbRvv1ZGTRXxbH8/EqkdSCzSoUPrs+rQqR0xdQac9wNY/nlZbkR3O
 qAezG6Sfmklvf+DOg5RxQq/+Y6I03LRepc7KeVDpaplMFGnpfKsibETMipwzayNQ
 QgUf4cKBiF+65Ue7hZuDJa2EMv8qW4twEhGDYclpFU9YozyS1OhvUg==
 </root-cert>
 <root-cert> YmFkIGNlcnQK </root-cert>
 <enrollment-server>https://example.org</enrollment-server>
 <enrollment-server>https://example.net</enrollment-server>
 <self-signed-permitted
 digest="sha1">false</self-signed-permitted>
 <bootstrap-node address="192.0.0.1" port="6084" />
 <bootstrap-node address="192.0.2.2" port="6084" />
 <bootstrap-node address="2001:DB8::1" port="6084" />
 <turn-density> 20 </turn-density>
 <multicast-bootstrap address="192.0.0.1" />
 <multicast-bootstrap address="233.252.0.1" port="6084" />
 <clients-permitted> false </clients-permitted>
 <no-ice> false </no-ice>

 <chord:chord-update-interval>
 400</chord:chord-update-interval>
 <chord:chord-ping-interval>30</chord:chord-ping-interval>
 <chord:chord-reactive> true </chord:chord-reactive>
 <shared-secret> password </shared-secret>
 <max-message-size>4000</max-message-size>
 <initial-ttl> 30 </initial-ttl>
 <overlay-reliability-timer> 3000 </overlay-reliability-timer>
 <overlay-link-protocol>TLS</overlay-link-protocol>
 <configuration-signer>47112162e84c69ba</configuration-signer>
 <kind-signer> 47112162e84c69ba </kind-signer>
 <kind-signer> 6eba45d31a900c06 </kind-signer>
 <bad-node> 6ebc45d31a900c06 </bad-node>
 <bad-node> 6ebc45d31a900ca6 </bad-node>

 <ext:example-extension> foo </ext:example-extension>

 <mandatory-extension>
 urn:ietf:params:xml:ns:p2p:config-ext1

Jennings, et al. Expires May 9, 2013 [Page 120]

Internet-Draft RELOAD Base November 2012

 </mandatory-extension>

 <required-kinds>
 <kind-block>
 <kind name="SIP-REGISTRATION">
 <data-model>SINGLE</data-model>
 <access-control>USER-MATCH</access-control>
 <max-count>1</max-count>
 <max-size>100</max-size>
 </kind>
 <kind-signature>
 VGhpcyBpcyBub3QgcmlnaHQhCg==
 </kind-signature>
 </kind-block>
 <kind-block>
 <kind id="2000">
 <data-model>ARRAY</data-model>
 <access-control>NODE-MULTIPLE</access-control>
 <max-node-multiple>3</max-node-multiple>
 <max-count>22</max-count>
 <max-size>4</max-size>
 <ext:example-kind-extension> 1

 </ext:example-kind-extension>
 </kind>
 <kind-signature>
 VGhpcyBpcyBub3QgcmlnaHQhCg==
 </kind-signature>
 </kind-block>
 </required-kinds>
 </configuration>
 <signature> VGhpcyBpcyBub3QgcmlnaHQhCg== </signature>

 <configuration instance-name="other.example.net">
 </configuration>
 <signature> VGhpcyBpcyBub3QgcmlnaHQhCg== </signature>

 </overlay>

 The file MUST be a well formed XML document and it SHOULD contain an
 encoding declaration in the XML declaration. The file MUST use the
 UTF-8 character encoding. The namespace for the elements defined in
 this specification is urn:ietf:params:xml:ns:p2p:config-base and
 urn:ietf:params:xml:ns:p2p:config-chord".

 The file can contain multiple "configuration" elements where each one
 contains the configuration information for a different overlay. Each
 configuration element may be followed by signature elements that

Jennings, et al. Expires May 9, 2013 [Page 121]

Internet-Draft RELOAD Base November 2012

 provides a signature over the preceding configuration element. Each
 configuration element has the following attributes:

 instance-name: name of the overlay
 expiration: time in the future at which this overlay configuration
 is no longer valid. The node SHOULD retrieve a new copy of the
 configuration at a randomly selected time that is before the
 expiration time. Note that if the certificates expire before a
 new configuration is retried, the node will not be able to
 validate the configuration file. All times MUST be in UTC.
 sequence: a monotonically increasing sequence number between 0 and
 2^16-2

 Inside each overlay element, the following elements can occur:

 topology-plugin This element defines the overlay algorithm being
 used. If missing the default is "CHORD-RELOAD".
 node-id-length This element contains the length of a NodeId
 (NodeIdLength) in bytes. This value MUST be between 16 (128 bits)
 and 20 (160 bits). If this element is not present, the default of
 16 is used.
 root-cert This element contains a base-64 encoded X.509v3
 certificate that is a root trust anchor used to sign all
 certificates in this overlay. There can be more than one root-
 cert element.
 enrollment-server This element contains the URL at which the
 enrollment server can be reached in a "url" element. This URL
 MUST be of type "https:". More than one enrollment-server element
 may be present. Note that there is no necessary relationship
 between the overlay name/configuration server name and the
 enrollment server name.
 self-signed-permitted This element indicates whether self-signed
 certificates are permitted. If it is set to "true", then self-
 signed certificates are allowed, in which case the enrollment-
 server and root-cert elements may be absent. Otherwise, it SHOULD
 be absent, but MAY be set to "false". This element also contains
 an attribute "digest" which indicates the digest to be used to
 compute the Node-ID. Valid values for this parameter are "sha1"
 and "sha256" representing SHA-1 [RFC3174] and SHA-256 [RFC6234]
 respectively. Implementations MUST support both of these
 algorithms.
 bootstrap-node This element represents the address of one of the
 bootstrap nodes. It has an attribute called "address" that
 represents the IP address (either IPv4 or IPv6, since they can be
 distinguished) and an optional attribute called "port" that
 represents the port and defaults to 6084. The IPv6 address is in
 typical hexadecimal form using standard period and colon
 separators as specified in [RFC5952]. More than one bootstrap-

Jennings, et al. Expires May 9, 2013 [Page 122]

Internet-Draft RELOAD Base November 2012

 peer element may be present.
 turn-density This element is a positive integer that represents the
 approximate reciprocal of density of nodes that can act as TURN
 servers. For example, if 5% of the nodes can act as TURN servers,
 this would be set to 20. If it is not present, the default value
 is 1. If there are no TURN servers in the overlay, it is set to
 zero.
 multicast-bootstrap This element represents the address of a

https://datatracker.ietf.org/doc/pdf/rfc3174
https://datatracker.ietf.org/doc/pdf/rfc6234
https://datatracker.ietf.org/doc/pdf/rfc5952

 multicast, broadcast, or anycast address and port that may be used
 for bootstrap. Nodes SHOULD listen on the address. It has an
 attribute called "address" that represents the IP address and an
 optional attribute called "port" that represents the port and
 defaults to 6084. More than one "multicast-bootstrap" element may
 be present.
 clients-permitted This element represents whether clients are
 permitted or whether all nodes must be peers. If it is set to
 "true" or absent, this indicates that clients are permitted. If
 it is set to "false" then nodes are not allowed to remain clients
 after the initial join. There is currently no way for the overlay
 to enforce this.
 no-ice This element represents whether nodes are required to use
 the "No-ICE" Overlay Link protocols in this overlay. If it is
 absent, it is treated as if it were set to "false".
 chord-update-interval The update frequency for the Chord-reload
 topology plugin (see Section 10).
 chord-ping-interval The ping frequency for the Chord-reload
 topology plugin (see Section 10).
 chord-reactive Whether reactive recovery should be used for this
 overlay. Set to "true" or "false". Default if missing is "true".
 (see Section 10).
 shared-secret If shared secret mode is used, this contains the
 shared secret. The security guarantee here is that any agent
 which is able to access the configuration document (presumably
 protected by some sort of HTTP access control or network topology)
 is able to recover the shared secret and hence join the overlay.
 max-message-size Maximum size in bytes of any message in the
 overlay. If this value is not present, the default is 5000.
 initial-ttl Initial default TTL (time to live, see Section 6.3.2)
 for messages. If this value is not present, the default is 100.
 overlay-reliability-timer Default value for the end-to-end
 retransmission timer for messages, in milliseconds. If not
 present, the default value is 3000.
 overlay-link-protocol Indicates a permissible overlay link protocol
 (see Section 6.6.1 for requirements for such protocols). An
 arbitrary number of these elements may appear. If none appear,
 then this implies the default value, "TLS", which refers to the
 use of TLS and DTLS. If one or more elements appear, then no
 default value applies.

Jennings, et al. Expires May 9, 2013 [Page 123]

Internet-Draft RELOAD Base November 2012

 kind-signer This contains a single Node-ID in hexadecimal and

 indicates that the certificate with this Node-ID is allowed to
 sign Kinds. Identifying kind-signer by Node-ID instead of
 certificate allows the use of short lived certificates without
 constantly having to provide an updated configuration file.
 configuration-signer This contains a single Node-ID in hexadecimal
 and indicates that the certificate with this Node-ID is allowed to
 sign configurations for this instance-name. Identifying the
 signer by Node-ID instead of certificate allows the use of short
 lived certificates without constantly having to provide an updated
 configuration file.
 bad-node This contains a single Node-ID in hexadecimal and
 indicates that the certificate with this Node-ID MUST NOT be
 considered valid. This allows certificate revocation. An
 arbitrary number of these elements can be provided. Note that
 because certificates may expire, bad-node entries need only be
 present for the lifetime of the certificate. Technically
 speaking, bad Node-IDs may be reused once their certificates have
 expired, the requirement for Node-IDs to be pseudo randomly
 generated gives this event a vanishing probability.
 mandatory-extension This element contains the name of an XML
 namespace that a node joining the overlay MUST support. The
 presence of a mandatory-extension element does not require the
 extension to be used in the current configuration file, but can
 indicate that it may be used in the future. Note that the
 namespace is case-sensitive, as specified in [w3c-xml-namespaces]
 Section 2.3. More than one mandatory-extension element may be
 present.

 Inside each configuration element, the required-kinds element can
 also occur. This element indicates the Kinds that members must
 support and contains multiple kind-block elements that each define a
 single Kind that MUST be supported by nodes in the overlay. Each
 kind-block consists of a single kind element and a kind-signature.
 The kind element defines the Kind. The kind-signature is the
 signature computed over the kind element.

 Each kind has either an id attribute or a name attribute. The name
 attribute is a string representing the Kind (the name registered to
 IANA) while the id is an integer Kind-ID allocated out of private
 space.

 In addition, the kind element contains the following elements:
 max-count: the maximum number of values which members of the overlay
 must support.

Jennings, et al. Expires May 9, 2013 [Page 124]

Internet-Draft RELOAD Base November 2012

 data-model: the data model to be used.
 max-size: the maximum size of individual values.
 access-control: the access control model to be used.
 max-node-multiple: This is optional and only used when the access
 control is NODE-MULTIPLE. This indicates the maximum value for
 the i counter. This is an integer greater than 0.

 All of the non optional values MUST be provided. If the Kind is
 registered with IANA, the data-model and access-control elements MUST
 match those in the Kind registration, and clients MUST ignore them in
 favor of the IANA versions. Multiple kind-block elements MAY be
 present.

 The kind-block element also MUST contain a "kind-signature" element.
 This signature is computed across the kind from the beginning of the
 first < of the kind to the end of the last > of the kind in the same
 way as the signature element described later in this section.

 The configuration element needs to be treated as a binary blob that
 cannot be changed - including any whitespace changes - or the
 signature will break. The signature is computed by taking each
 configuration element and starting from, and including, the first <
 at the start of <configuration> up to and including the > in
 </configuration> and treating this as a binary blob that is signed
 using the standard SecurityBlock defined in Section 6.3.4. The
 SecurityBlock is base 64 encoded using the base64 alphabet from
 [RFC4648] and put in the signature element following the
 configuration object in the configuration file. Any configuration
 file MUST be signed by one of the configuration-signer elements from
 the previous extant configuration. Recipients MUST verify the
 signature prior to accepting the configuration file.

 When a node receives a new configuration file, it MUST change its
 configuration to meet the new requirements. This may require the
 node to exit the DHT and re-join. If a node is not capable of
 supporting the new requirements, it MUST exit the overlay. If some
 information about a particular Kind changes from what the node
 previously knew about the Kind (for example the max size), the new
 information in the configuration files overrides any previously
 learned information. If any Kind data was signed by a node that is
 no longer allowed to sign kinds, that Kind MUST be discarded along
 with any stored information of that Kind. Note that forcing an
 avalanche restart of the overlay with a configuration change that
 requires re-joining the overlay may result in serious performance
 problems, including total collapse of the network if configuration
 parameters are not properly considered. Such an event may be

https://datatracker.ietf.org/doc/pdf/rfc4648

 necessary in case of a compromised CA or similar problem, but for
 large overlays should be avoided in almost all circumstances.

Jennings, et al. Expires May 9, 2013 [Page 125]

Internet-Draft RELOAD Base November 2012

11.1.1. Relax NG Grammar

 The grammar for the configuration data is:

 namespace chord = "urn:ietf:params:xml:ns:p2p:config-chord"
 namespace local = ""
 default namespace p2pcf = "urn:ietf:params:xml:ns:p2p:config-base"
 namespace rng = "http://relaxng.org/ns/structure/1.0"

 anything =
 (element * { anything }
 | attribute * { text }
 | text)*

 foreign-elements = element * - (p2pcf:* | local:* | chord:*)
 { anything }*
 foreign-attributes = attribute * - (p2pcf:*|local:*|chord:*)
 { text }*
 foreign-nodes = (foreign-attributes | foreign-elements)*

 start = element p2pcf:overlay {
 overlay-element
 }

 overlay-element &= element configuration {
 attribute instance-name { xsd:string },
 attribute expiration { xsd:dateTime }?,
 attribute sequence { xsd:long }?,
 foreign-attributes*,
 parameter
 }+
 overlay-element &= element signature {
 attribute algorithm { signature-algorithm-type }?,
 xsd:base64Binary
 }*

 signature-algorithm-type |= "rsa-sha1"
 signature-algorithm-type |= xsd:string # signature alg extensions

 parameter &= element topology-plugin { topology-plugin-type }?
 topology-plugin-type |= xsd:string # topo plugin extensions
 parameter &= element max-message-size { xsd:unsignedInt }?
 parameter &= element initial-ttl { xsd:int }?
 parameter &= element root-cert { xsd:base64Binary }*
 parameter &= element required-kinds { kind-block* }?
 parameter &= element enrollment-server { xsd:anyURI }*
 parameter &= element kind-signer { xsd:string }*
 parameter &= element configuration-signer { xsd:string }*

Jennings, et al. Expires May 9, 2013 [Page 126]

Internet-Draft RELOAD Base November 2012

 parameter &= element bad-node { xsd:string }*
 parameter &= element no-ice { xsd:boolean }?
 parameter &= element shared-secret { xsd:string }?
 parameter &= element overlay-link-protocol { xsd:string }*
 parameter &= element clients-permitted { xsd:boolean }?
 parameter &= element turn-density { xsd:unsignedByte }?
 parameter &= element node-id-length { xsd:int }?
 parameter &= element mandatory-extension { xsd:string }*
 parameter &= foreign-elements*

 parameter &=
 element self-signed-permitted {
 attribute digest { self-signed-digest-type },
 xsd:boolean
 }?
 self-signed-digest-type |= "sha1"
 self-signed-digest-type |= xsd:string # signature digest extensions

 parameter &= element bootstrap-node {
 attribute address { xsd:string },
 attribute port { xsd:int }?
 }*

 parameter &= element multicast-bootstrap {
 attribute address { xsd:string },
 attribute port { xsd:int }?
 }*

 kind-block = element kind-block {
 element kind {
 (attribute name { kind-names }
 | attribute id { xsd:unsignedInt }),

 kind-parameter
 } &
 element kind-signature {
 attribute algorithm { signature-algorithm-type }?,
 xsd:base64Binary
 }?
 }

 kind-parameter &= element max-count { xsd:int }
 kind-parameter &= element max-size { xsd:int }
 kind-parameter &= element max-node-multiple { xsd:int }?

 kind-parameter &= element data-model { data-model-type }
 data-model-type |= "SINGLE"
 data-model-type |= "ARRAY"
 data-model-type |= "DICTIONARY"

Jennings, et al. Expires May 9, 2013 [Page 127]

Internet-Draft RELOAD Base November 2012

 data-model-type |= xsd:string # data model extensions

 kind-parameter &= element access-control { access-control-type }
 access-control-type |= "USER-MATCH"
 access-control-type |= "NODE-MATCH"
 access-control-type |= "USER-NODE-MATCH"
 access-control-type |= "NODE-MULTIPLE"
 access-control-type |= xsd:string # access control extensions

 kind-parameter &= foreign-elements*

 kind-names |= "TURN-SERVICE"
 kind-names |= "CERTIFICATE_BY_NODE"
 kind-names |= "CERTIFICATE_BY_USER"
 kind-names |= xsd:string # kind extensions

 # Chord specific parameters
 topology-plugin-type |= "CHORD-RELOAD"
 parameter &= element chord:chord-ping-interval { xsd:int }?
 parameter &= element chord:chord-update-interval { xsd:int }?
 parameter &= element chord:chord-reactive { xsd:boolean }?

11.2. Discovery Through Configuration Server

 When a node first enrolls in a new overlay, it starts with a
 discovery process to find a configuration server.

 The node MAY start by determining the overlay name. This value is
 provided by the user or some other out of band provisioning
 mechanism. The out of band mechanisms MAY also provide an optional
 URL for the configuration server. If a URL for the configuration
 server is not provided, the node MUST do a DNS SRV query using a
 Service name of "reload-config" and a protocol of TCP to find a
 configuration server and form the URL by appending a path of "/.well-
 known/reload-config" to the overlay name. This uses the "well known
 URI" framework defined in [RFC5785]. For example, if the overlay
 name was example.com, the URL would be
 "https://example.com/.well-known/reload-config".

 Once an address and URL for the configuration server is determined,
 the peer MUST form an HTTPS connection to that IP address. The
 certificate MUST match the overlay name as described in [RFC2818].
 Then the node MUST fetch a new copy of the configuration file. To do
 this, the peer performs a GET to the URL. The result of the HTTP GET
 is an XML configuration file described above, which MUST replace any
 previously learned configuration file for this overlay.

Jennings, et al. Expires May 9, 2013 [Page 128]

Internet-Draft RELOAD Base November 2012

 For overlays that do not use a configuration server, nodes need to
 obtain the configuration information needed to join the overlay
 through some out of band approach such an XML configuration file sent
 over email.

11.3. Credentials

 If the configuration document contains a enrollment-server element,
 credentials are required to join the Overlay Instance. A peer which
 does not yet have credentials MUST contact the enrollment server to
 acquire them.

 RELOAD defines its own trivial certificate request protocol. We
 would have liked to have used an existing protocol but were concerned
 about the implementation burden of even the simplest of those
 protocols, such as [RFC5272] and [RFC5273]. The objective was to
 have a protocol which could be easily implemented in a Web server
 which the operator did not control (e.g., in a hosted service) and

https://datatracker.ietf.org/doc/pdf/rfc5785
https://datatracker.ietf.org/doc/pdf/rfc2818
https://datatracker.ietf.org/doc/pdf/rfc5272
https://datatracker.ietf.org/doc/pdf/rfc5273

 was compatible with the existing certificate handling tooling as used
 with the Web certificate infrastructure. This means accepting bare
 PKCS#10 requests and returning a single bare X.509 certificate.
 Although the MIME types for these objects are defined, none of the
 existing protocols support exactly this model.

 The certificate request protocol is performed over HTTPS. The
 request is an HTTP POST with the parameters encoded as described in
 [RFC2388] and the following properties:

 o If authentication is required, there is an form parameter of
 "password" and "username" containing the user's name and password
 in the clear (hence the need for HTTPS)
 o If more than one Node-ID is required, there is an form parameter
 of "nodeids" containing the number of Node-IDs required.
 o There MUST be a form parameter of "csr" with a content type of
 "application/pkcs10", as defined in [RFC2311].
 o The Accept header MUST contain the type "application/pkix-cert",
 indicating the type that is expected in the response.

 The enrollment server MUST authenticate the request using the
 provided user name and password. The reason for using the RFC 2388
 "multipart/form-data" encoding is so that the password parameter will
 not be encoded in the URL to reduce the chance of accidental leakage
 of the password. If the authentication succeeds and the requested
 user name is acceptable, the server generates and returns a
 certificate for the certificate signing request in the "csr"
 parameter of the request. The SubjectAltName field in the
 certificate contains the following values:

Jennings, et al. Expires May 9, 2013 [Page 129]

Internet-Draft RELOAD Base November 2012

 o One or more Node-IDs which MUST be cryptographically random
 [RFC4086]. Each MUST be chosen by the enrollment server in such a
 way that they are unpredictable to the requesting user. E.g., the
 user MUST NOT be informed of potential (random) Node-IDs prior to
 authenticating. Each is placed in the subjectAltName using the
 uniformResourceIdentifier type and MUST contain RELOAD URIs as
 described in Section 14.15 and MUST contain a Destination list
 with a single entry of type "node_id". The enrollment server
 SHOULD maintain a mapping of users to Node-IDs and if the same
 user returns (e.g., to have their certificate re-issued) return
 the same Node-IDs, thus avoiding the need for implementations to

https://datatracker.ietf.org/doc/pdf/rfc2388
https://datatracker.ietf.org/doc/pdf/rfc2311
https://datatracker.ietf.org/doc/pdf/rfc2388
https://datatracker.ietf.org/doc/pdf/rfc4086

 re-store all their data when their certificates expire.
 o A single name this user is allowed to use in the overlay, using
 type rfc822Name. Enrollment servers SHOULD take care to only
 allow legal characters in the name (e.g., no embedded NULs),
 rather than simply accepting any name provided by the user.

 The certificate is returned as type "application/pkix-cert" as
 defined in [RFC2585], with an HTTP status code of 200 OK.

 Certificate processing errors should result in a HTTP return code of
 403 "Forbidden" along with a body of type "text/plain" and body that
 consists of one of the tokens defined in the following list:

 failed_authentication The user name and password combination was not
 correct.

 username_not_available The requested userName for the certificate
 was not acceptable.

 Node-IDs_not_available The number of Node-IDs requested was not
 acceptable.

 bad_CSR There was a problem with the CSR.

 If the client receives an unknown token in the body, it SHOULD treat
 it as a failure for an unknown reason.

 The client MUST check that the certificate returned chains back to
 one of the certificates received in the "root-cert" list of the
 overlay configuration data (including PKIX BasicConstraints checks.)
 The node then reads the certificate to find the Node-ID it can use.

11.3.1. Self-Generated Credentials

 If the "self-signed-permitted" element is present in the
 configuration and set to "true", then a node MUST generate its own
 self-signed certificate to join the overlay. The self-signed

Jennings, et al. Expires May 9, 2013 [Page 130]

Internet-Draft RELOAD Base November 2012

 certificate MAY contain any user name of the users choice.

 For self-signed certificate containing only one Node-ID, the Node-ID
 MUST be computed by applying the digest specified in the self-signed-

https://datatracker.ietf.org/doc/pdf/rfc2585

 permitted element to the DER representation of the user's public key
 (more specifically the subjectPublicKeyInfo) and taking the high
 order bits. For self-signed certficates containing multiple Node-
 IDs, the index of the Node-ID (from 1 to the number of Node-IDs
 needed) must be prepended as a 4 bytes big endian integer to the DER
 representation of the user's public key and taking the high order
 bits. When accepting a self-signed certificate, nodes MUST check
 that the Node-ID and public keys match. This prevents Node-ID theft.

 Once the node has constructed a self-signed certificate, it MAY join
 the overlay. Before storing its certificate in the overlay
 (Section 8) it SHOULD look to see if the user name is already taken
 and if so choose another user name. Note that this only provides
 protection against accidental name collisions. Name theft is still
 possible. If protection against name theft is desired, then the
 enrollment service must be used.

11.4. Searching for a Bootstrap Node

 If no cached bootstrap nodes are available and the configuration file
 has an multicast-bootstrap element, then the node SHOULD send a Ping
 request over UDP to the address and port found to each multicast-
 bootstrap element found in the configuration document. This MAY be a
 multicast, broadcast, or anycast address. The Ping should use the
 wildcard Node-ID as the destination Node-ID.

 The responder node that receives the Ping request SHOULD check that
 the overlay name is correct and that the requester peer sending the
 request has appropriate credentials for the overlay before responding
 to the Ping request even if the response is only an error.

11.5. Contacting a Bootstrap Node

 In order to join the overlay, the joining node MUST contact a node in
 the overlay. Typically this means contacting the bootstrap nodes,
 since they are reachable by the local peer or have public IP
 addresses. If the joining node has cached a list of peers it has
 previously been connected with in this overlay, as an optimization it
 MAY attempt to use one or more of them as bootstrap nodes before
 falling back to the bootstrap nodes listed in the configuration file.

 When contacting a bootstrap node, the joining node MUST first form
 the DTLS or TLS connection to the bootstrap node and then sends an
 Attach request over this connection with the destination Node-ID set

Jennings, et al. Expires May 9, 2013 [Page 131]

Internet-Draft RELOAD Base November 2012

 to the joining node's Node-ID.

 When the requester node finally does receive a response from some
 responding node, it can note the Node-ID in the response and use this
 Node-ID to start sending requests to join the Overlay Instance as
 described in Section 6.4.

 After a node has successfully joined the overlay network, it will
 have direct connections to several peers. Some MAY be added to the
 cached bootstrap nodes list and used in future boots. Peers that are
 not directly connected MUST NOT be cached. The suggested number of
 peers to cache is 10. Algorithms for determining which peers to
 cache are beyond the scope of this specification.

12. Message Flow Example

 The following abbreviations are used in the message flow diagrams:
 JP = joining peer, AP = admitting peer, NP = next peer after the AP,
 NNP = next next peer which is the peer after NP, PP = previous peer
 before the AP, PPP = previous previous peer which is the peer before
 the PP, BP = bootstrap peer.

 In the following example, we assume that JP has formed a connection
 to one of the bootstrap nodes. JP then sends an Attach through that
 peer to a resource ID of itself (JP). It gets routed to the
 admitting peer (AP) because JP is not yet part of the overlay. When
 AP responds, JP and AP use ICE to set up a connection and then set up
 DTLS. Once AP has connected to JP, AP sends to JP an Update to
 populate its Routing Table. The following example shows the Update
 happening after the DTLS connection is formed but it could also
 happen before in which case the Update would often be routed through
 other nodes.

Jennings, et al. Expires May 9, 2013 [Page 132]

Internet-Draft RELOAD Base November 2012

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach Dest=JP | | | | |
 |-->|
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=JP | | |
 | | |<--------------------------------------|
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=JP | | |
 | | |-------->| | | |
 | | | | | | |
 | | | | | | |
 | | |AttachAns | | |
 | | |<--------| | | |
 | | | | | | |
 | | | | | | |
 | | |AttachAns | | |
 | | |-------------------------------------->|
 | | | | | | |
 | | | | | | |
 |AttachAns | | | | |
 |<--|
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |.............................| | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Update | | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |---------------------------->| | | |
 | | | | | | |

 | | | | | | |
 | | | | | | |

 The JP then forms connections to the appropriate neighbors, such as
 NP, by sending an Attach which gets routed via other nodes. When NP
 responds, JP and NP use ICE and DTLS to set up a connection.

Jennings, et al. Expires May 9, 2013 [Page 133]

Internet-Draft RELOAD Base November 2012

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach NP | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | | |Attach NP| | |
 | | | |-------->| | |
 | | | | | | |
 | | | | | | |
 | | | |AttachAns| | |
 | | | |<--------| | |
 | | | | | | |
 | | | | | | |
 |AttachAns | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |Attach | | | | | |
 |-------------------------------------->| | |
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |.......................................| | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |

 JP also needs to populate its finger table (for the Chord based DHT).

 It issues an Attach to a variety of locations around the overlay.
 The diagram below shows it sending an Attach halfway around the Chord
 ring to the JP + 2^127.

Jennings, et al. Expires May 9, 2013 [Page 134]

Internet-Draft RELOAD Base November 2012

 JP NP XX TP
 | | | |
 | | | |
 | | | |
 |Attach JP+2<<126 | |
 |-------->| | |
 | | | |
 | | | |
 | |Attach JP+2<<126 |
 | |-------->| |
 | | | |
 | | | |
 | | |Attach JP+2<<126
 | | |-------->|
 | | | |
 | | | |
 | | |AttachAns|
 | | |<--------|
 | | | |
 | | | |
 | |AttachAns| |
 | |<--------| |
 | | | |
 | | | |
 |AttachAns| | |
 |<--------| | |

 | | | |
 | | | |
 |TLS | | |
 |.............................|
 | | | |
 | | | |
 | | | |
 | | | |

 Once JP has a reasonable set of connections, it is ready to take its
 place in the DHT. It does this by sending a Join to AP. AP does a
 series of Store requests to JP to store the data that JP will be
 responsible for. AP then sends JP an Update explicitly labeling JP
 as its predecessor. At this point, JP is part of the ring and
 responsible for a section of the overlay. AP can now forget any data
 which is assigned to JP and not AP.

Jennings, et al. Expires May 9, 2013 [Page 135]

Internet-Draft RELOAD Base November 2012

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |JoinReq | | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |JoinAns | | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreReq Data A | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreAns | | | | | |
 |---------------------------->| | | |
 | | | | | | |

 | | | | | | |
 |StoreReq Data B | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |StoreAns | | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |

 In Chord, JP's neighbor table needs to contain its own predecessors.
 It couldn't connect to them previously because it did not yet know
 their addresses. However, now that it has received an Update from
 AP, it has AP's predecessors, which are also its own, so it sends
 Attaches to them. Below it is shown connecting to AP's closest
 predecessor, PP.

Jennings, et al. Expires May 9, 2013 [Page 136]

Internet-Draft RELOAD Base November 2012

 JP PPP PP AP NP NNP BP
 | | | | | | |
 | | | | | | |
 | | | | | | |
 |Attach Dest=PP | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 | | |Attach Dest=PP | | |
 | | |<--------| | | |
 | | | | | | |
 | | | | | | |

 | | |AttachAns| | | |
 | | |-------->| | | |
 | | | | | | |
 | | | | | | |
 |AttachAns| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |TLS | | | | | |
 |...................| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |------------------>| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<------------------| | | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |---------------------------->| | | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<----------------------------| | | |
 | | | | | | |
 | | | | | | |
 |UpdateReq| | | | | |
 |-------------------------------------->| | |
 | | | | | | |
 | | | | | | |
 |UpdateAns| | | | | |
 |<--------------------------------------| | |
 | | | | | | |
 | | | | | | |

Jennings, et al. Expires May 9, 2013 [Page 137]

Internet-Draft RELOAD Base November 2012

 Finally, now that JP has a copy of all the data and is ready to route
 messages and receive requests, it sends Updates to everyone in its
 Routing Table to tell them it is ready to go. Below, it is shown
 sending such an update to TP.

 JP NP XX TP
 | | | |
 | | | |
 | | | |
 |Update | | |
 |---------------------------->|
 | | | |
 | | | |
 |UpdateAns| | |
 |<----------------------------|
 | | | |
 | | | |
 | | | |
 | | | |

13. Security Considerations

13.1. Overview

 RELOAD provides a generic storage service, albeit one designed to be
 useful for P2PSIP. In this section we discuss security issues that
 are likely to be relevant to any usage of RELOAD. More background
 information can be found in [RFC5765].

 In any Overlay Instance, any given user depends on a number of peers
 with which they have no well-defined relationship except that they
 are fellow members of the Overlay Instance. In practice, these other
 nodes may be friendly, lazy, curious, or outright malicious. No
 security system can provide complete protection in an environment
 where most nodes are malicious. The goal of security in RELOAD is to
 provide strong security guarantees of some properties even in the
 face of a large number of malicious nodes and to allow the overlay to
 function correctly in the face of a modest number of malicious nodes.

 P2PSIP deployments require the ability to authenticate both peers and
 resources (users) without the active presence of a trusted entity in
 the system. We describe two mechanisms. The first mechanism is
 based on public key certificates and is suitable for general
 deployments. The second is an admission control mechanism based on
 an overlay-wide shared symmetric key.

Jennings, et al. Expires May 9, 2013 [Page 138]

Internet-Draft RELOAD Base November 2012

https://datatracker.ietf.org/doc/pdf/rfc5765

13.2. Attacks on P2P Overlays

 The two basic functions provided by overlay nodes are storage and
 routing: some peer is responsible for storing a node's data and for
 allowing a third node to fetch this stored data. Other peers are
 responsible for routing messages to and from the storing nodes. Each
 of these issues is covered in the following sections.

 P2P overlays are subject to attacks by subversive nodes that may
 attempt to disrupt routing, corrupt or remove user registrations, or
 eavesdrop on signaling. The certificate-based security algorithms we
 describe in this specification are intended to protect overlay
 routing and user registration information in RELOAD messages.

 To protect the signaling from attackers pretending to be valid nodes
 (or nodes other than themselves), the first requirement is to ensure
 that all messages are received from authorized members of the
 overlay. For this reason, RELOAD transports all messages over a
 secure channel (TLS and DTLS are defined in this document) which
 provides message integrity and authentication of the directly
 communicating peer. In addition, messages and data are digitally
 signed with the sender's private key, providing end-to-end security
 for communications.

13.3. Certificate-based Security

 This specification stores users' registrations and possibly other
 data in an overlay network. This requires a solution to securing
 this data as well as securing, as well as possible, the routing in
 the overlay. Both types of security are based on requiring that
 every entity in the system (whether user or peer) authenticate
 cryptographically using an asymmetric key pair tied to a certificate.

 When a user enrolls in the Overlay Instance, they request or are
 assigned a unique name, such as "alice@dht.example.net". These names
 are unique and are meant to be chosen and used by humans much like a
 SIP Address of Record (AOR) or an email address. The user is also
 assigned one or more Node-IDs by the central enrollment authority.
 Both the name and the Node-IDs are placed in the certificate, along
 with the user's public key.

 Each certificate enables an entity to act in two sorts of roles:

 o As a user, storing data at specific Resource-IDs in the Overlay
 Instance corresponding to the user name.
 o As a overlay peer with the Node-ID(s) listed in the certificate.

 Note that since only users of this Overlay Instance need to validate

Jennings, et al. Expires May 9, 2013 [Page 139]

Internet-Draft RELOAD Base November 2012

 a certificate, this usage does not require a global PKI. Instead,
 certificates are signed by a central enrollment authority which acts
 as the certificate authority for the Overlay Instance. This
 authority signs each node's certificate. Because each node possesses
 the CA's certificate (which they receive on enrollment) they can
 verify the certificates of the other entities in the overlay without
 further communication. Because the certificates contain the user/
 node's public key, communications from the user/node can be verified
 in turn.

 If self-signed certificates are used, then the security provided is
 significantly decreased, since attackers can mount Sybil attacks. In
 addition, attackers cannot trust the user names in certificates
 (though they can trust the Node-IDs because they are
 cryptographically verifiable). This scheme may be appropriate for
 some small deployments, such as a small office or an ad hoc overlay
 set up among participants in a meeting where all hosts on the network
 are trusted. Some additional security can be provided by using the
 shared secret admission control scheme as well.

 Because all stored data is signed by the owner of the data the
 storing node can verify that the storer is authorized to perform a
 store at that Resource-ID and also allow any consumer of the data to
 verify the provenance and integrity of the data when it retrieves it.

 Note that RELOAD does not itself provide a revocation/status
 mechanism (though certificates may of course include OCSP responder
 information). Thus, certificate lifetimes should be chosen to
 balance the compromise window versus the cost of certificate renewal.
 Because RELOAD is already designed to operate in the face of some
 fraction of malicious nodes, this form of compromise is not fatal.

 All implementations MUST implement certificate-based security.

13.4. Shared-Secret Security

 RELOAD also supports a shared secret admission control scheme that
 relies on a single key that is shared among all members of the
 overlay. It is appropriate for small groups that wish to form a
 private network without complexity. In shared secret mode, all the
 peers share a single symmetric key which is used to key TLS-PSK
 [RFC4279] or TLS-SRP [RFC5054] mode. A peer which does not know the

https://datatracker.ietf.org/doc/pdf/rfc4279
https://datatracker.ietf.org/doc/pdf/rfc5054

 key cannot form TLS connections with any other peer and therefore
 cannot join the overlay.

 One natural approach to a shared-secret scheme is to use a user-
 entered password as the key. The difficulty with this is that in
 TLS-PSK mode, such keys are very susceptible to dictionary attacks.

Jennings, et al. Expires May 9, 2013 [Page 140]

Internet-Draft RELOAD Base November 2012

 If passwords are used as the source of shared-keys, then TLS-SRP is a
 superior choice because it is not subject to dictionary attacks.

13.5. Storage Security

 When certificate-based security is used in RELOAD, any given
 Resource-ID/Kind-ID pair is bound to some small set of certificates.
 In order to write data, the writer must prove possession of the
 private key for one of those certificates. Moreover, all data is
 stored, signed with the same private key that was used to authorize
 the storage. This set of rules makes questions of authorization and
 data integrity - which have historically been thorny for overlays -
 relatively simple.

13.5.1. Authorization

 When a node wants to store some value, it first digitally signs the
 value with its own private key. It then sends a Store request that
 contains both the value and the signature towards the storing peer
 (which is defined by the Resource Name construction algorithm for
 that particular Kind of value).

 When the storing peer receives the request, it must determine whether
 the storing node is authorized to store at this Resource-ID/Kind-ID
 pair. Determining this requires comparing the user's identity to the
 requirements of the access control model (see Section 7.3). If it
 satisfies those requirements the user is authorized to write, pending
 quota checks as described in the next section.

 For example, consider the certificate with the following properties:

 User name: alice@dht.example.com
 Node-ID: 013456789abcdef
 Serial: 1234

 If Alice wishes to Store a value of the "SIP Location" Kind, the
 Resource Name will be the SIP AOR "sip:alice@dht.example.com". The
 Resource-ID will be determined by hashing the Resource Name. Because
 SIP Location uses the USER-NODE-MATCH policy, it first verifies that
 the user name in the certificate hashes to the requested Resource-ID.
 It then verifies that the Node-ID in the certificate matches the
 dictionary key being used for the store. If both of these checks
 succeed, the Store is authorized. Note that because the access
 control model is different for different Kinds, the exact set of
 checks will vary.

Jennings, et al. Expires May 9, 2013 [Page 141]

Internet-Draft RELOAD Base November 2012

13.5.2. Distributed Quota

 Being a peer in an Overlay Instance carries with it the
 responsibility to store data for a given region of the Overlay
 Instance. However, allowing nodes to store unlimited amounts of data
 would create unacceptable burdens on peers and would also enable
 trivial denial of service attacks. RELOAD addresses this issue by
 requiring configurations to define maximum sizes for each Kind of
 stored data. Attempts to store values exceeding this size MUST be
 rejected (if peers are inconsistent about this, then strange
 artifacts will happen when the zone of responsibility shifts and a
 different peer becomes responsible for overlarge data). Because each
 Resource-ID/Kind-ID pair is bound to a small set of certificates,
 these size restrictions also create a distributed quota mechanism,
 with the quotas administered by the central configuration server.

 Allowing different Kinds of data to have different size restrictions
 allows new usages the flexibility to define limits that fit their
 needs without requiring all usages to have expansive limits.

13.5.3. Correctness

 Because each stored value is signed, it is trivial for any retrieving
 node to verify the integrity of the stored value. Some more care
 needs to be taken to prevent version rollback attacks. Rollback
 attacks on storage are prevented by the use of store times and
 lifetime values in each store. A lifetime represents the latest time
 at which the data is valid and thus limits (though does not

 completely prevent) the ability of the storing node to perform a
 rollback attack on retrievers. In order to prevent a rollback attack
 at the time of the Store request, we require that storage times be
 monotonically increasing. Storing peers MUST reject Store requests
 with storage times smaller than or equal to those they are currently
 storing. In addition, a fetching node which receives a data value
 with a storage time older than the result of the previous fetch knows
 a rollback has occurred.

13.5.4. Residual Attacks

 The mechanisms described here provides a high degree of security, but
 some attacks remain possible. Most simply, it is possible for
 storing peers to refuse to store a value (i.e., reject any request).
 In addition, a storing peer can deny knowledge of values which it has
 previously accepted. To some extent these attacks can be ameliorated
 by attempting to store to/retrieve from replicas, but a retrieving
 node does not know whether it should try this or not, since there is
 a cost to doing so.

Jennings, et al. Expires May 9, 2013 [Page 142]

Internet-Draft RELOAD Base November 2012

 The certificate-based authentication scheme prevents a single peer
 from being able to forge data owned by other peers. Furthermore,
 although a subversive peer can refuse to return data resources for
 which it is responsible, it cannot return forged data because it
 cannot provide authentication for such registrations. Therefore
 parallel searches for redundant registrations can mitigate most of
 the effects of a compromised peer. The ultimate reliability of such
 an overlay is a statistical question based on the replication factor
 and the percentage of compromised peers.

 In addition, when a Kind is multivalued (e.g., an array data model),
 the storing peer can return only some subset of the values, thus
 biasing its responses. This can be countered by using single values
 rather than sets, but that makes coordination between multiple
 storing agents much more difficult. This is a trade off that must be
 made when designing any usage.

13.6. Routing Security

 Because the storage security system guarantees (within limits) the
 integrity of the stored data, routing security focuses on stopping

 the attacker from performing a DOS attack that misroutes requests in
 the overlay. There are a few obvious observations to make about
 this. First, it is easy to ensure that an attacker is at least a
 valid node in the Overlay Instance. Second, this is a DOS attack
 only. Third, if a large percentage of the nodes on the Overlay
 Instance are controlled by the attacker, it is probably impossible to
 perfectly secure against this.

13.6.1. Background

 In general, attacks on DHT routing are mounted by the attacker
 arranging to route traffic through one or two nodes it controls. In
 the Eclipse attack [Eclipse] the attacker tampers with messages to
 and from nodes for which it is on-path with respect to a given victim
 node. This allows it to pretend to be all the nodes that are
 reachable through it. In the Sybil attack [Sybil], the attacker
 registers a large number of nodes and is therefore able to capture a
 large amount of the traffic through the DHT.

 Both the Eclipse and Sybil attacks require the attacker to be able to
 exercise control over her Node-IDs. The Sybil attack requires the
 creation of a large number of peers. The Eclipse attack requires
 that the attacker be able to impersonate specific peers. In both
 cases, these attacks are limited by the use of centralized,
 certificate-based admission control.

Jennings, et al. Expires May 9, 2013 [Page 143]

Internet-Draft RELOAD Base November 2012

13.6.2. Admissions Control

 Admission to a RELOAD Overlay Instance is controlled by requiring
 that each peer have a certificate containing its Node-ID. The
 requirement to have a certificate is enforced by using certificate-
 based mutual authentication on each connection. (Note: the
 following only applies when self-signed certificates are not used.)
 Whenever a peer connects to another peer, each side automatically
 checks that the other has a suitable certificate. These Node-IDs are
 randomly assigned by the central enrollment server. This has two
 benefits:

 o It allows the enrollment server to limit the number of Node-IDs
 issued to any individual user.

 o It prevents the attacker from choosing specific Node-IDs.

 The first property allows protection against Sybil attacks (provided
 the enrollment server uses strict rate limiting policies). The
 second property deters but does not completely prevent Eclipse
 attacks. Because an Eclipse attacker must impersonate peers on the
 other side of the attacker, he must have a certificate for suitable
 Node-IDs, which requires him to repeatedly query the enrollment
 server for new certificates, which will match only by chance. From
 the attacker's perspective, the difficulty is that if he only has a
 small number of certificates, the region of the Overlay Instance he
 is impersonating appears to be very sparsely populated by comparison
 to the victim's local region.

13.6.3. Peer Identification and Authentication

 In general, whenever a peer engages in overlay activity that might
 affect the routing table it must establish its identity. This
 happens in two ways. First, whenever a peer establishes a direct
 connection to another peer it authenticates via certificate-based
 mutual authentication. All messages between peers are sent over this
 protected channel and therefore the peers can verify the data origin
 of the last hop peer for requests and responses without further
 cryptography.

 In some situations, however, it is desirable to be able to establish
 the identity of a peer with whom one is not directly connected. The
 most natural case is when a peer Updates its state. At this point,
 other peers may need to update their view of the overlay structure,
 but they need to verify that the Update message came from the actual
 peer rather than from an attacker. To prevent this, all overlay
 routing messages are signed by the peer that generated them.

 Replay is typically prevented for messages that impact the topology

Jennings, et al. Expires May 9, 2013 [Page 144]

Internet-Draft RELOAD Base November 2012

 of the overlay by having the information come directly, or be
 verified by, the nodes that claimed to have generated the update.
 Data storage replay detection is done by signing time of the node
 that generated the signature on the store request thus providing a
 time based replay protection but the time synchronization is only
 needed between peers that can write to the same location.

13.6.4. Protecting the Signaling

 The goal here is to stop an attacker from knowing who is signaling
 what to whom. An attacker is unlikely to be able to observe the
 activities of a specific individual given the randomization of IDs
 and routing based on the present peers discussed above. Furthermore,
 because messages can be routed using only the header information, the
 actual body of the RELOAD message can be encrypted during
 transmission.

 There are two lines of defense here. The first is the use of TLS or
 DTLS for each communications link between peers. This provides
 protection against attackers who are not members of the overlay. The
 second line of defense is to digitally sign each message. This
 prevents adversarial peers from modifying messages in flight, even if
 they are on the routing path.

13.6.5. Routing Loops and Dos Attacks

 Source routing mechanisms are known to create the possibility for DoS
 amplification, especially by the induction of routing loops
 [RFC5095]. In order to limit amplification, the initial-ttl value in
 the configuration file SHOULD be set to a value slightly larger than
 the longest expected path through the network. For Chord, experience
 has shown that log(2) of the number of nodes in the network + 5 is a
 safe bound. Because nodes are required to enforce the initial-ttl as
 the maximum value, an attacker cannot achieve an amplification factor
 greater than initial-ttl, thus limiting the additional capabilities
 provided by source routing.

 In order to prevent the use of loops for targeted implementation
 attacks, implementations SHOULD check the destination list for
 duplicate entries and discard such records with an
 "Error_Invalid_Message" error. This does not completely prevent
 loops but does require that at least one attacker node be part of the
 loop.

13.6.6. Residual Attacks

 The routing security mechanisms in RELOAD are designed to contain
 rather than eliminate attacks on routing. It is still possible for

Jennings, et al. Expires May 9, 2013 [Page 145]

Internet-Draft RELOAD Base November 2012

https://datatracker.ietf.org/doc/pdf/rfc5095

 an attacker to mount a variety of attacks. In particular, if an
 attacker is able to take up a position on the overlay routing between
 A and B it can make it appear as if B does not exist or is
 disconnected. It can also advertise false network metrics in an
 attempt to reroute traffic. However, these are primarily DOS
 attacks.

 The certificate-based security scheme secures the namespace, but if
 an individual peer is compromised or if an attacker obtains a
 certificate from the CA, then a number of subversive peers can still
 appear in the overlay. While these peers cannot falsify responses to
 resource queries, they can respond with error messages, effecting a
 DoS attack on the resource registration. They can also subvert
 routing to other compromised peers. To defend against such attacks,
 a resource search must still consist of parallel searches for
 replicated registrations.

14. IANA Considerations

 This section contains the new code points registered by this
 document. [NOTE TO IANA/RFC-EDITOR: Please replace RFC-AAAA with
 the RFC number for this specification in the following list.]

14.1. Well-Known URI Registration

 IANA SHALL make the following "Well Known URI" registration as
 described in [RFC5785]:

 [[Note to RFC Editor - this paragraph can be removed before
 publication.]] A review request was sent to
 wellknown-uri-review@ietf.org on October 12, 2010.

 +----------------------------+----------------------+
 | URI suffix: | reload-config |
 | Change controller: | IETF <iesg@ietf.org> |
 | Specification document(s): | [RFC-AAAA] |
 | Related information: | None |
 +----------------------------+----------------------+

14.2. Port Registrations

 [[Note to RFC Editor - this paragraph can be removed before
 publication.]] IANA has already allocated a TCP port for the main
 peer to peer protocol. This port has the name p2psip-enroll and the
 port number of 6084. IANA needs to update this registration to
 change the service name to reload-config and to define it for UDP as
 well as TCP.

https://datatracker.ietf.org/doc/pdf/rfc5785

Jennings, et al. Expires May 9, 2013 [Page 146]

Internet-Draft RELOAD Base November 2012

 IANA SHALL make the following port registration:

 +-----------------------------+-------------------------------------+
Registration Technical	Cullen Jennings <fluffy@cisco.com>
Contact	
Registration Owner	IETF <iesg@ietf.org>
Transport Protocol	TCP & UDP
Port Number	6084
Service Name	reload-config
Description	Peer to Peer Infrastructure
	Configuration
 +-----------------------------+-------------------------------------+

14.3. Overlay Algorithm Types

 IANA SHALL create a "RELOAD Overlay Algorithm Type" Registry.
 Entries in this registry are strings denoting the names of overlay
 algorithms. The registration policy for this registry is RFC 5226
 IETF Review. The initial contents of this registry are:

 +----------------+----------+
 | Algorithm Name | RFC |
 +----------------+----------+
 | CHORD-RELOAD | RFC-AAAA |
 | EXP-OVERLAY | RFC-AAAA |
 +----------------+----------+

 The value EXP-OVERLAY has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.4. Access Control Policies

 IANA SHALL create a "RELOAD Access Control Policy" Registry. Entries
 in this registry are strings denoting access control policies, as
 described in Section 7.3. New entries in this registry SHALL be
 registered via RFC 5226 Standards Action. The initial contents of
 this registry are:

 +-----------------+----------+
 | Access Policy | RFC |
 +-----------------+----------+
 | USER-MATCH | RFC-AAAA |

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226

 | NODE-MATCH | RFC-AAAA |
 | USER-NODE-MATCH | RFC-AAAA |
 | NODE-MULTIPLE | RFC-AAAA |
 | EXP-MATCH | RFC-AAAA |
 +-----------------+----------+

Jennings, et al. Expires May 9, 2013 [Page 147]

Internet-Draft RELOAD Base November 2012

 The value EXP-MATCH has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.5. Application-ID

 IANA SHALL create a "RELOAD Application-ID" Registry. Entries in
 this registry are 16-bit integers denoting application Kinds. Code
 points in the range 0x0001 to 0x7fff SHALL be registered via RFC 5226
 Standards Action. Code points in the range 0x8000 to 0xf000 SHALL be
 registered via RFC 5226 Expert Review. Code points in the range
 0xf001 to 0xfffe are reserved for private use. The initial contents
 of this registry are:

 +-------------+----------------+-------------------------------+
 | Application | Application-ID | Specification |
 +-------------+----------------+-------------------------------+
 | INVALID | 0 | RFC-AAAA |
 | SIP | 5060 | Reserved for use by SIP Usage |
 | SIP | 5061 | Reserved for use by SIP Usage |
 | Reserved | 0xffff | RFC-AAAA |
 +-------------+----------------+-------------------------------+

14.6. Data Kind-ID

 IANA SHALL create a "RELOAD Data Kind-ID" Registry. Entries in this
 registry are 32-bit integers denoting data Kinds, as described in
 Section 5.2. Code points in the range 0x00000001 to 0x7fffffff SHALL
 be registered via RFC 5226 Standards Action. Code points in the
 range 0x8000000 to 0xf0000000 SHALL be registered via RFC 5226 Expert
 Review. Code points in the range 0xf0000001 to 0xfffffffe are
 reserved for private use via the Kind description mechanism described
 in Section 11. The initial contents of this registry are:

 +---------------------+------------+----------+
 | Kind | Kind-ID | RFC |

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226

 +---------------------+------------+----------+
 | INVALID | 0 | RFC-AAAA |
 | TURN-SERVICE | 2 | RFC-AAAA |
 | CERTIFICATE_BY_NODE | 3 | RFC-AAAA |
 | CERTIFICATE_BY_USER | 16 | RFC-AAAA |
 | Reserved | 0x7fffffff | RFC-AAAA |
 | Reserved | 0xfffffffe | RFC-AAAA |
 +---------------------+------------+----------+

Jennings, et al. Expires May 9, 2013 [Page 148]

Internet-Draft RELOAD Base November 2012

14.7. Data Model

 IANA SHALL create a "RELOAD Data Model" Registry. Entries in this
 registry denoting data models, as described in Section 7.2. Code
 points in this registry SHALL be registered via RFC 5226 Standards
 Action. The initial contents of this registry are:

 +------------+----------+
 | Data Model | RFC |
 +------------+----------+
 | INVALID | RFC-AAAA |
 | SINGLE | RFC-AAAA |
 | ARRAY | RFC-AAAA |
 | DICTIONARY | RFC-AAAA |
 | EXP-DATA | RFC-AAAA |
 | RESERVED | RFC-AAAA |
 +------------+----------+

 The value EXP-DATA has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.8. Message Codes

 IANA SHALL create a "RELOAD Message Code" Registry. Entries in this
 registry are 16-bit integers denoting method codes as described in
 Section 6.3.3. These codes SHALL be registered via RFC 5226
 Standards Action. The initial contents of this registry are:

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226

Jennings, et al. Expires May 9, 2013 [Page 149]

Internet-Draft RELOAD Base November 2012

 +---------------------------------+----------------+----------+
 | Message Code Name | Code Value | RFC |
 +---------------------------------+----------------+----------+
 | invalid | 0 | RFC-AAAA |
 | probe_req | 1 | RFC-AAAA |
 | probe_ans | 2 | RFC-AAAA |
 | attach_req | 3 | RFC-AAAA |
 | attach_ans | 4 | RFC-AAAA |
 | unused | 5 | |
 | unused | 6 | |
 | store_req | 7 | RFC-AAAA |
 | store_ans | 8 | RFC-AAAA |
 | fetch_req | 9 | RFC-AAAA |
 | fetch_ans | 10 | RFC-AAAA |
 | unused (was remove_req) | 11 | RFC-AAAA |
 | unused (was remove_ans) | 12 | RFC-AAAA |
 | find_req | 13 | RFC-AAAA |
 | find_ans | 14 | RFC-AAAA |
 | join_req | 15 | RFC-AAAA |
 | join_ans | 16 | RFC-AAAA |
 | leave_req | 17 | RFC-AAAA |
 | leave_ans | 18 | RFC-AAAA |

 | update_req | 19 | RFC-AAAA |
 | update_ans | 20 | RFC-AAAA |
 | route_query_req | 21 | RFC-AAAA |
 | route_query_ans | 22 | RFC-AAAA |
 | ping_req | 23 | RFC-AAAA |
 | ping_ans | 24 | RFC-AAAA |
 | stat_req | 25 | RFC-AAAA |
 | stat_ans | 26 | RFC-AAAA |
 | unused (was attachlite_req) | 27 | RFC-AAAA |
 | unused (was attachlite_ans) | 28 | RFC-AAAA |
 | app_attach_req | 29 | RFC-AAAA |
 | app_attach_ans | 30 | RFC-AAAA |
 | unused (was app_attachlite_req) | 31 | RFC-AAAA |
 | unused (was app_attachlite_ans) | 32 | RFC-AAAA |
 | config_update_req | 33 | RFC-AAAA |
 | config_update_ans | 34 | RFC-AAAA |
 | exp_a_req | 35 | RFC-AAAA |
 | exp_a_ans | 36 | RFC-AAAA |
 | exp_b_req | 37 | RFC-AAAA |
 | exp_b_ans | 38 | RFC-AAAA |
 | reserved | 0x8000..0xfffe | RFC-AAAA |
 | error | 0xffff | RFC-AAAA |
 +---------------------------------+----------------+----------+

 The values exp_a_req, exp_a_ans, exp_b_req, and exp_b_ans have been
 made available for the purposes of experimentation. These values are

Jennings, et al. Expires May 9, 2013 [Page 150]

Internet-Draft RELOAD Base November 2012

 not meant for vendor specific use of any sort and MUST NOT be used
 for operational deployments.

14.9. Error Codes

 IANA SHALL create a "RELOAD Error Code" Registry. Entries in this
 registry are 16-bit integers denoting error codes. New entries SHALL
 be defined via RFC 5226 Standards Action. The initial contents of
 this registry are:

 +-------------------------------------+----------------+----------+
 | Error Code Name | Code Value | RFC |
 +-------------------------------------+----------------+----------+
 | invalid | 0 | RFC-AAAA |
 | Unused | 1 | RFC-AAAA |

https://datatracker.ietf.org/doc/pdf/rfc5226

 | Error_Forbidden | 2 | RFC-AAAA |
 | Error_Not_Found | 3 | RFC-AAAA |
 | Error_Request_Timeout | 4 | RFC-AAAA |
 | Error_Generation_Counter_Too_Low | 5 | RFC-AAAA |
 | Error_Incompatible_with_Overlay | 6 | RFC-AAAA |
 | Error_Unsupported_Forwarding_Option | 7 | RFC-AAAA |
 | Error_Data_Too_Large | 8 | RFC-AAAA |
 | Error_Data_Too_Old | 9 | RFC-AAAA |
 | Error_TTL_Exceeded | 10 | RFC-AAAA |
 | Error_Message_Too_Large | 11 | RFC-AAAA |
 | Error_Unknown_Kind | 12 | RFC-AAAA |
 | Error_Unknown_Extension | 13 | RFC-AAAA |
 | Error_Response_Too_Large | 14 | RFC-AAAA |
 | Error_Config_Too_Old | 15 | RFC-AAAA |
 | Error_Config_Too_New | 16 | RFC-AAAA |
 | Error_In_Progress | 17 | RFC-AAAA |
 | Error_Exp_A | 18 | RFC-AAAA |
 | Error_Exp_B | 19 | RFC-AAAA |
 | Error_Invalid_Message | 20 | RFC-AAAA |
 | reserved | 0x8000..0xfffe | RFC-AAAA |
 +-------------------------------------+----------------+----------+

 The values Error_Exp_A and Error_Exp_B have been made available for
 the purposes of experimentation. These values are not meant for
 vendor specific use of any sort and MUST NOT be used for operational
 deployments.

14.10. Overlay Link Types

 IANA SHALL create a "RELOAD Overlay Link Registry". For more
 information on the link types defeind here, see Section 6.6. New
 entries SHALL be defined via RFC 5226 Standards Action. This
 registry SHALL be initially populated with the following values:

Jennings, et al. Expires May 9, 2013 [Page 151]

Internet-Draft RELOAD Base November 2012

 +--------------------+------+---------------+
 | Protocol | Code | Specification |
 +--------------------+------+---------------+
 | reserved | 0 | RFC-AAAA |
 | DTLS-UDP-SR | 1 | RFC-AAAA |
 | DTLS-UDP-SR-NO-ICE | 3 | RFC-AAAA |
 | TLS-TCP-FH-NO-ICE | 4 | RFC-AAAA |
 | EXP-LINK | 5 | RFC-AAAA |

https://datatracker.ietf.org/doc/pdf/rfc5226

 | reserved | 255 | RFC-AAAA |
 +--------------------+------+---------------+

 The value EXP-LINK has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.11. Overlay Link Protocols

 IANA SHALL create an "Overlay Link Protocol Registry". Entries in
 this registry SHALL be defined via RFC 5226 Standards Action. This
 registry SHALL be initially populated with the following valuse:

 +---------------+---------------+
 | Link Protocol | Specification |
 +---------------+---------------+
 | TLS | RFC-AAAA |
 | EXP-PROTOCOL | RFC-AAAA |
 +---------------+---------------+

 The value EXP-PROTOCOL has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.12. Forwarding Options

 IANA SHALL create a "Forwarding Option Registry". Entries in this
 registry between 1 and 127 SHALL be defined via RFC 5226 Standards
 Action. Entries in this registry between 128 and 254 SHALL be
 defined via RFC 5226 Specification Required. This registry SHALL be
 initially populated with the following values:

 +-------------------+------+---------------+
 | Forwarding Option | Code | Specification |
 +-------------------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | exp-forward | 1 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +-------------------+------+---------------+

Jennings, et al. Expires May 9, 2013 [Page 152]

Internet-Draft RELOAD Base November 2012

 The value exp-forward has been made available for the purposes of

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226

 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.13. Probe Information Types

 IANA SHALL create a "RELOAD Probe Information Type Registry".
 Entries in this registry SHALL be defined via RFC 5226 Standards
 Action. This registry SHALL be initially populated with the
 following values:

 +-----------------+------+---------------+
 | Probe Option | Code | Specification |
 +-----------------+------+---------------+
 | invalid | 0 | RFC-AAAA |
 | responsible_set | 1 | RFC-AAAA |
 | num_resources | 2 | RFC-AAAA |
 | uptime | 3 | RFC-AAAA |
 | exp-probe | 4 | RFC-AAAA |
 | reserved | 255 | RFC-AAAA |
 +-----------------+------+---------------+

 The value exp-probe has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.14. Message Extensions

 IANA SHALL create a "RELOAD Extensions Registry". Entries in this
 registry SHALL be defined via RFC 5226 Specification Required. This
 registry SHALL be initially populated with the following values:

 +-----------------+--------+---------------+
 | Extensions Name | Code | Specification |
 +-----------------+--------+---------------+
 | invalid | 0 | RFC-AAAA |
 | exp-ext | 1 | RFC-AAAA |
 | reserved | 0xFFFF | RFC-AAAA |
 +-----------------+--------+---------------+

 The value exp-ext has been made available for the purposes of
 experimentation. This value is not meant for vendor specific use of
 any sort and it MUST NOT be used for operational deployments.

14.15. reload URI Scheme

 This section describes the scheme for a reload URI, which can be used
 to refer to either:

Jennings, et al. Expires May 9, 2013 [Page 153]

https://datatracker.ietf.org/doc/pdf/rfc5226
https://datatracker.ietf.org/doc/pdf/rfc5226

Internet-Draft RELOAD Base November 2012

 o A peer.
 o A resource inside a peer.

 The reload URI is defined using a subset of the URI schema specified
 in Appendix A of RFC 3986 [RFC3986] and the associated URI Guidelines
 [RFC4395] per the following ABNF syntax:

 RELOAD-URI = "reload://" destination "@" overlay "/"
 [specifier]

 destination = 1 * HEXDIG
 overlay = reg-name
 specifier = 1*HEXDIG

 The definitions of these productions are as follows:

 destination: a hex-encoded Destination List object (i.e., multiple
 concatenated Destination objects with no length prefix prior to
 the object as a whole.)

 overlay: the name of the overlay.

 specifier : a hex-encoded StoredDataSpecifier indicating the data
 element.

 If no specifier is present then this URI addresses the peer which can
 be reached via the indicated destination list at the indicated
 overlay name. If a specifier is present, then the URI addresses the
 data value.

14.15.1. URI Registration

 [[Note to RFC Editor - please remove this paragraph before
 publication.]] A review request was sent to uri-review@ietf.org on
 Oct 7, 2010.

 The following summarizes the information necessary to register the
 reload URI.

 URI Scheme Name: reload
 Status: permanent
 URI Scheme Syntax: see Section 14.15 of RFC-AAAA
 URI Scheme Semantics: The reload URI is intended to be used as a
 reference to a RELOAD peer or resource.

https://datatracker.ietf.org/doc/pdf/rfc3986#appendix-A
https://datatracker.ietf.org/doc/pdf/rfc3986
https://datatracker.ietf.org/doc/pdf/rfc4395

Jennings, et al. Expires May 9, 2013 [Page 154]

Internet-Draft RELOAD Base November 2012

 Encoding Considerations: The reload URI is not intended to be human-
 readable text, so it is encoded entirely in US-ASCII.
 Applications/protocols that use this URI scheme: The RELOAD protocol
 described in RFC-AAAA.
 Interoperability considerations: See RFC-AAAA.
 Security considerations: See RFC-AAAA
 Contact: Cullen Jennings <fluffy@cisco.com>
 Author/Change controller: IESG
 References: RFC-AAAA

14.16. Media Type Registration

 [[Note to RFC Editor - please remove this paragraph before
 publication.]] A review request was sent to ietf-types@iana.org on
 May 27, 2011.

 Type name: application

 Subtype name: p2p-overlay+xml

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Must be binary encoded.

 Security considerations: This media type is typically not used to
 transport information that needs to be kept confidential, however
 there are cases where it is integrity of the information is
 important. For these cases using a digital signature is RECOMMENDED.
 One way of doing this is specified in RFC-AAAA. In the case when the
 media includes a "shared-secret" element, then the contents of the
 file MUST be kept confidential or else anyone that can see the
 shared-secret and effect the RELOAD overlay network.

 Interoperability considerations: No known interoperability
 consideration beyond those identified for application/xml in
 [RFC3023].

https://datatracker.ietf.org/doc/pdf/rfc3023

 Published specification: RFC-AAAA

 Applications that use this media type: The type is used to configure
 the peer to peer overlay networks defined in RFC-AAAA.

 Additional information: The syntax for this media type is specified
 in Section 11.1 of RFC-AAAA. The contents MUST be valid XML
 compliant with the relax NG grammar specified in RFC-AAAA and use the
 UTF-8[RFC3629] character encoding.

Jennings, et al. Expires May 9, 2013 [Page 155]

Internet-Draft RELOAD Base November 2012

 Magic number(s): none

 File extension(s): relo

 Macintosh file type code(s): none

 Person & email address to contact for further information: Cullen
 Jennings <c.jennings@ieee.org>

 Intended usage: COMMON

 Restrictions on usage: None

 Author: Cullen Jennings <c.jennings@ieee.org>

 Change controller: IESG

14.17. XML Name Space Registration

 This document registers two URIs for the config and config-chord XML
 namespaces in the IETF XML registry defined in [RFC3688].

14.17.1. Config URL

 URI: urn:ietf:params:xml:ns:p2p:config-base

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces

14.17.2. Config Chord URL

https://datatracker.ietf.org/doc/pdf/rfc3688

 URI: urn:ietf:params:xml:ns:p2p:config-chord

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces

15. Acknowledgments

 This specification is a merge of the "REsource LOcation And Discovery
 (RELOAD)" draft by David A. Bryan, Marcia Zangrilli and Bruce B.
 Lowekamp, the "Address Settlement by Peer to Peer" draft by Cullen
 Jennings, Jonathan Rosenberg, and Eric Rescorla, the "Security
 Extensions for RELOAD" draft by Bruce B. Lowekamp and James Deverick,
 the "A Chord-based DHT for Resource Lookup in P2PSIP" by Marcia
 Zangrilli and David A. Bryan, and the Peer-to-Peer Protocol (P2PP)

Jennings, et al. Expires May 9, 2013 [Page 156]

Internet-Draft RELOAD Base November 2012

 draft by Salman A. Baset, Henning Schulzrinne, and Marcin
 Matuszewski. Thanks to the authors of RFC 5389 for text included
 from that. Vidya Narayanan provided many comments and improvements.

 The ideas and text for the Chord specific extension data to the Leave
 mechanisms was provided by Jouni Maenpaa, Gonzalo Camarillo, and Jani
 Hautakorpi.

 Thanks to the many people who contributed including Ted Hardie,
 Michael Chen, Dan York, Das Saumitra, Lyndsay Campbell, Brian Rosen,
 David Bryan, Dave Craig, and Julian Cain. Extensive last call
 comments were provided by: Jouni Maenpaa, Roni Even, Gonzalo
 Camarillo, Ari Keranen, John Buford, Michael Chen, Frederic-Philippe
 Met, Mary Barnes, Roland Bless, and David Bryan. Special thanks to
 Marc Petit-Huguenin who provided an amazing amount of detailed
 review.

16. References

16.1. Normative References

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

https://datatracker.ietf.org/doc/pdf/rfc5389
https://datatracker.ietf.org/doc/pdf/bcp5
https://datatracker.ietf.org/doc/pdf/rfc1918

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2388] Masinter, L., "Returning Values from Forms: multipart/
 form-data", RFC 2388, August 1998.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP",
 RFC 2585, May 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

Jennings, et al. Expires May 9, 2013 [Page 157]

Internet-Draft RELOAD Base November 2012

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35,
 RFC 4395, February 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2388
https://datatracker.ietf.org/doc/pdf/rfc2585
https://datatracker.ietf.org/doc/pdf/rfc2818
https://datatracker.ietf.org/doc/pdf/rfc3023
https://datatracker.ietf.org/doc/pdf/rfc3174
https://datatracker.ietf.org/doc/pdf/rfc3447
https://datatracker.ietf.org/doc/pdf/rfc3629
https://datatracker.ietf.org/doc/pdf/rfc3986
https://datatracker.ietf.org/doc/pdf/rfc4279
https://datatracker.ietf.org/doc/pdf/bcp35
https://datatracker.ietf.org/doc/pdf/rfc4395
https://datatracker.ietf.org/doc/pdf/rfc4648

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

 [RFC5273] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC): Transport Protocols", RFC 5273, June 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405,
 November 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC6091] Mavrogiannopoulos, N. and D. Gillmor, "Using OpenPGP Keys

Jennings, et al. Expires May 9, 2013 [Page 158]

Internet-Draft RELOAD Base November 2012

 for Transport Layer Security (TLS) Authentication",
 RFC 6091, February 2011.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

https://datatracker.ietf.org/doc/pdf/rfc5245
https://datatracker.ietf.org/doc/pdf/rfc5246
https://datatracker.ietf.org/doc/pdf/rfc5272
https://datatracker.ietf.org/doc/pdf/rfc5273
https://datatracker.ietf.org/doc/pdf/rfc5389
https://datatracker.ietf.org/doc/pdf/bcp145
https://datatracker.ietf.org/doc/pdf/rfc5405
https://datatracker.ietf.org/doc/pdf/rfc5766
https://datatracker.ietf.org/doc/pdf/rfc5952
https://datatracker.ietf.org/doc/pdf/rfc6091
https://datatracker.ietf.org/doc/pdf/rfc6234
https://datatracker.ietf.org/doc/pdf/rfc6298

 Security Version 1.2", RFC 6347, January 2012.

 [w3c-xml-namespaces]
 Bray, T., Hollander, D., Layman, A., Tobin, R., and Henry
 S. , "Namespaces in XML 1.0 (Third Edition)".

16.2. Informative References

 [Chord] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,
 Kaashoek, M., Dabek, F., and H. Balakrishnan, "Chord: A
 Scalable Peer-to-peer Lookup Protocol for Internet
 Applications", IEEE/ACM Transactions on Networking Volume
 11, Issue 1, 17-32, Feb 2003.

 [Eclipse] Singh, A., Ngan, T., Druschel, T., and D. Wallach,
 "Eclipse Attacks on Overlay Networks: Threats and
 Defenses", INFOCOM 2006, April 2006.

 [I-D.ietf-hip-reload-instance]
 Keranen, A., Camarillo, G., and J. Maenpaa, "Host Identity
 Protocol-Based Overlay Networking Environment (HIP BONE)
 Instance Specification for REsource LOcation And Discovery
 (RELOAD)", draft-ietf-hip-reload-instance-05 (work in
 progress), April 2012.

 [I-D.ietf-p2psip-diagnostics]
 Song, H., Jiang, X., Even, R., and D. Bryan, "P2PSIP
 Overlay Diagnostics", draft-ietf-p2psip-diagnostics-09
 (work in progress), August 2012.

 [I-D.ietf-p2psip-rpr]
 Zong, N., Jiang, X., Even, R., and Y. Zhang, "An extension
 to RELOAD to support Relay Peer Routing",
 draft-ietf-p2psip-rpr-03 (work in progress), October 2012.

 [I-D.ietf-p2psip-self-tuning]
 Maenpaa, J., Camarillo, G., and J. Hautakorpi, "A Self-

Jennings, et al. Expires May 9, 2013 [Page 159]

Internet-Draft RELOAD Base November 2012

 tuning Distributed Hash Table (DHT) for REsource LOcation
 And Discovery (RELOAD)", draft-ietf-p2psip-self-tuning-06
 (work in progress), July 2012.

https://datatracker.ietf.org/doc/pdf/rfc6347
https://datatracker.ietf.org/doc/pdf/draft-ietf-hip-reload-instance-05
https://datatracker.ietf.org/doc/pdf/draft-ietf-p2psip-diagnostics-09
https://datatracker.ietf.org/doc/pdf/draft-ietf-p2psip-rpr-03
https://datatracker.ietf.org/doc/pdf/draft-ietf-p2psip-self-tuning-06

 [I-D.ietf-p2psip-service-discovery]
 Maenpaa, J. and G. Camarillo, "Service Discovery Usage for
 REsource LOcation And Discovery (RELOAD)",
 draft-ietf-p2psip-service-discovery-06 (work in progress),
 October 2012.

 [I-D.ietf-p2psip-sip]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "A SIP Usage for RELOAD",
 draft-ietf-p2psip-sip-07 (work in progress), January 2012.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2311] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., and
 L. Repka, "S/MIME Version 2 Message Specification",
 RFC 2311, March 1998.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,
 RFC 4787, January 2007.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054, November 2007.

 [RFC5095] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation
 of Type 0 Routing Headers in IPv6", RFC 5095,
 December 2007.

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
 "Host Identity Protocol", RFC 5201, April 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Jennings, et al. Expires May 9, 2013 [Page 160]

https://datatracker.ietf.org/doc/pdf/draft-ietf-p2psip-service-discovery-06
https://datatracker.ietf.org/doc/pdf/draft-ietf-p2psip-sip-07
https://datatracker.ietf.org/doc/pdf/rfc1122
https://datatracker.ietf.org/doc/pdf/rfc2311
https://datatracker.ietf.org/doc/pdf/bcp81
https://datatracker.ietf.org/doc/pdf/rfc3688
https://datatracker.ietf.org/doc/pdf/bcp106
https://datatracker.ietf.org/doc/pdf/rfc4086
https://datatracker.ietf.org/doc/pdf/rfc4145
https://datatracker.ietf.org/doc/pdf/bcp127
https://datatracker.ietf.org/doc/pdf/rfc4787
https://datatracker.ietf.org/doc/pdf/rfc5054
https://datatracker.ietf.org/doc/pdf/rfc5095
https://datatracker.ietf.org/doc/pdf/rfc5201

Internet-Draft RELOAD Base November 2012

 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5694] Camarillo, G. and IAB, "Peer-to-Peer (P2P) Architecture:
 Definition, Taxonomies, Examples, and Applicability",
 RFC 5694, November 2009.

 [RFC5765] Schulzrinne, H., Marocco, E., and E. Ivov, "Security
 Issues and Solutions in Peer-to-Peer Systems for Realtime
 Communications", RFC 5765, February 2010.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC6079] Camarillo, G., Nikander, P., Hautakorpi, J., Keranen, A.,
 and A. Johnston, "HIP BONE: Host Identity Protocol (HIP)
 Based Overlay Networking Environment (BONE)", RFC 6079,
 January 2011.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, March 2012.

 [Sybil] Douceur, J., "The Sybil Attack", IPTPS 02, March 2002.

 [UnixTime]
 Wikipedia, "Unix Time", <http:/wikipedia.org/wiki/
 Unix_time>.

 [bryan-design-hotp2p08]
 Bryan, D., Lowekamp, B., and M. Zangrilli, "The Design of
 a Versatile, Secure P2PSIP Communications Architecture for
 the Public Internet", Hot-P2P'08.

 [handling-churn-usenix04]
 Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz,
 "Handling Churn in a DHT", In Proc. of the USENIX Annual
 Technical Conference June 2004 USENIX 2004.

 [lookups-churn-p2p06]
 Wu, D., Tian, Y., and K. Ng, "Analytical Study on
 Improving DHT Lookup Performance under Churn", IEEE
 P2P'06.

 [minimizing-churn-sigcomm06]

https://datatracker.ietf.org/doc/pdf/rfc5280
https://datatracker.ietf.org/doc/pdf/rfc5694
https://datatracker.ietf.org/doc/pdf/rfc5765
https://datatracker.ietf.org/doc/pdf/rfc5785
https://datatracker.ietf.org/doc/pdf/rfc6079
https://datatracker.ietf.org/doc/pdf/rfc6544

 Godfrey, P., Shenker, S., and I. Stoica, "Minimizing Churn

Jennings, et al. Expires May 9, 2013 [Page 161]

Internet-Draft RELOAD Base November 2012

 in Distributed Systems", SIGCOMM 2006.

 [non-transitive-dhts-worlds05]
 Freedman, M., Lakshminarayanan, K., Rhea, S., and I.
 Stoica, "Non-Transitive Connectivity and DHTs",
 WORLDS'05.

 [opendht-sigcomm05]
 Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J.,
 Ratnasamy, S., Shenker, S., Stoica, I., and H. Yu,
 "OpenDHT: A Public DHT and its Uses", SIGCOMM'05.

 [vulnerabilities-acsac04]
 Srivatsa, M. and L. Liu, "Vulnerabilities and Security
 Threats in Structured Peer-to-Peer Systems: A Quantitative
 Analysis", ACSAC 2004.

 [wikiChord]
 Wikipedia, "Chord (peer-to-peer)",
 <http://en.wikipedia.org/wiki/Chord_(peer-to-peer)>.

Appendix A. Routing Alternatives

 Significant discussion has been focused on the selection of a routing
 algorithm for P2PSIP. This section discusses the motivations for
 selecting symmetric recursive routing for RELOAD and describes the
 extensions that would be required to support additional routing
 algorithms.

A.1. Iterative vs Recursive

 Iterative routing has a number of advantages. It is easier to debug,
 consumes fewer resources on intermediate peers, and allows the
 querying peer to identify and route around misbehaving peers
 [non-transitive-dhts-worlds05]. However, in the presence of NATs,
 iterative routing is intolerably expensive because a new connection
 must be established for each hop (using ICE) [bryan-design-hotp2p08].

 Iterative routing is supported through the RouteQuery mechanism and

http://en.wikipedia

 is primarily intended for debugging. It also allows the querying
 peer to evaluate the routing decisions made by the peers at each hop,
 consider alternatives, and perhaps detect at what point the
 forwarding path fails.

Jennings, et al. Expires May 9, 2013 [Page 162]

Internet-Draft RELOAD Base November 2012

A.2. Symmetric vs Forward response

 An alternative to the symmetric recursive routing method used by
 RELOAD is Forward-Only routing, where the response is routed to the
 requester as if it were a new message initiated by the responder (in
 the previous example, Z sends the response to A as if it were sending
 a request). Forward-only routing requires no state in either the
 message or intermediate peers.

 The drawback of forward-only routing is that it does not work when
 the overlay is unstable. For example, if A is in the process of
 joining the overlay and is sending a Join request to Z, it is not yet
 reachable via forward routing. Even if it is established in the
 overlay, if network failures produce temporary instability, A may not
 be reachable (and may be trying to stabilize its network connectivity
 via Attach messages).

 Furthermore, forward-only responses are less likely to reach the
 querying peer than symmetric recursive ones are, because the forward
 path is more likely to have a failed peer than is the request path
 (which was just tested to route the request)
 [non-transitive-dhts-worlds05].

 An extension to RELOAD that supports forward-only routing but relies
 on symmetric responses as a fallback would be possible, but due to
 the complexities of determining when to use forward-only and when to
 fallback to symmetric, we have chosen not to include it as an option
 at this point.

A.3. Direct Response

 Another routing option is Direct Response routing, in which the
 response is returned directly to the querying node. In the previous

 example, if A encodes its IP address in the request, then Z can
 simply deliver the response directly to A. In the absence of NATs or
 other connectivity issues, this is the optimal routing technique.

 The challenge of implementing direct response is the presence of
 NATs. There are a number of complexities that must be addressed. In
 this discussion, we will continue our assumption that A issued the
 request and Z is generating the response.

 o The IP address listed by A may be unreachable, either due to NAT
 or firewall rules. Therefore, a direct response technique must
 fallback to symmetric response [non-transitive-dhts-worlds05].
 The hop-by-hop ACKs used by RELOAD allow Z to determine when A has
 received the message (and the TLS negotiation will provide earlier
 confirmation that A is reachable), but this fallback requires a

Jennings, et al. Expires May 9, 2013 [Page 163]

Internet-Draft RELOAD Base November 2012

 timeout that will increase the response latency whenever A is not
 reachable from Z.
 o Whenever A is behind a NAT it will have multiple candidate IP
 addresses, each of which must be advertised to ensure
 connectivity; therefore Z will need to attempt multiple
 connections to deliver the response.
 o One (or all) of A's candidate addresses may route from Z to a
 different device on the Internet. In the worst case these nodes
 may actually be running RELOAD on the same port. Therefore, it is
 absolutely necessary to establish a secure connection to
 authenticate A before delivering the response. This step
 diminishes the efficiency of direct response because multiple
 roundtrips are required before the message can be delivered.
 o If A is behind a NAT and does not have a connection already
 established with Z, there are only two ways the direct response
 will work. The first is that A and Z both be behind the same NAT,
 in which case the NAT is not involved. In the more common case,
 when Z is outside A's NAT, the response will only be received if
 A's NAT implements endpoint-independent filtering. As the choice
 of filtering mode conflates application transparency with security
 [RFC4787], and no clear recommendation is available, the
 prevalence of this feature in future devices remains unclear.

 An extension to RELOAD that supports direct response routing but
 relies on symmetric responses as a fallback would be possible, but
 due to the complexities of determining when to use direct response

https://datatracker.ietf.org/doc/pdf/rfc4787

 and when to fallback to symmetric, and the reduced performance for
 responses to peers behind restrictive NATs, we have chosen not to
 include it as an option at this point.

A.4. Relay Peers

 [I-D.ietf-p2psip-rpr] has proposed implementing a form of direct
 response by having A identify a peer, Q, that will be directly
 reachable by any other peer. A uses Attach to establish a connection
 with Q and advertises Q's IP address in the request sent to Z. Z
 sends the response to Q, which relays it to A. This then reduces the
 latency to two hops, plus Z negotiating a secure connection to Q.

 This technique relies on the relative population of nodes such as A
 that require relay peers and peers such as Q that are capable of
 serving as a relay peer. It also requires nodes to be able to
 identify which category they are in. This identification problem has
 turned out to be hard to solve and is still an open area of
 exploration.

 An extension to RELOAD that supports relay peers is possible, but due
 to the complexities of implementing such an alternative, we have not

Jennings, et al. Expires May 9, 2013 [Page 164]

Internet-Draft RELOAD Base November 2012

 added such a feature to RELOAD at this point.

 A concept similar to relay peers, essentially choosing a relay peer
 at random, has previously been suggested to solve problems of
 pairwise non-transitivity [non-transitive-dhts-worlds05], but
 deterministic filtering provided by NATs makes random relay peers no
 more likely to work than the responding peer.

A.5. Symmetric Route Stability

 A common concern about symmetric recursive routing has been that one
 or more peers along the request path may fail before the response is
 received. The significance of this problem essentially depends on
 the response latency of the overlay. An overlay that produces slow
 responses will be vulnerable to churn, whereas responses that are
 delivered very quickly are vulnerable only to failures that occur
 over that small interval.

 The other aspect of this issue is whether the request itself can be

 successfully delivered. Assuming typical connection maintenance
 intervals, the time period between the last maintenance and the
 request being sent will be orders of magnitude greater than the delay
 between the request being forwarded and the response being received.
 Therefore, if the path was stable enough to be available to route the
 request, it is almost certainly going to remain available to route
 the response.

 An overlay that is unstable enough to suffer this type of failure
 frequently is unlikely to be able to support reliable functionality
 regardless of the routing mechanism. However, regardless of the
 stability of the return path, studies show that in the event of high
 churn, iterative routing is a better solution to ensure request
 completion [lookups-churn-p2p06] [non-transitive-dhts-worlds05]

 Finally, because RELOAD retries the end-to-end request, that retry
 will address the issues of churn that remain.

Appendix B. Why Clients?

 There are a wide variety of reasons a node may act as a client rather
 than as a peer. This section outlines some of those scenarios and
 how the client's behavior changes based on its capabilities.

B.1. Why Not Only Peers?

 For a number of reasons, a particular node may be forced to act as a
 client even though it is willing to act as a peer. These include:

Jennings, et al. Expires May 9, 2013 [Page 165]

Internet-Draft RELOAD Base November 2012

 o The node does not have appropriate network connectivity, typically
 because it has a low-bandwidth network connection.
 o The node may not have sufficient resources, such as computing
 power, storage space, or battery power.
 o The overlay algorithm may dictate specific requirements for peer
 selection. These may include participating in the overlay to
 determine trustworthiness; controlling the number of peers in the
 overlay to reduce overly-long routing paths; or ensuring minimum
 application uptime before a node can join as a peer.

 The ultimate criteria for a node to become a peer are determined by
 the overlay algorithm and specific deployment. A node acting as a

 client that has a full implementation of RELOAD and the appropriate
 overlay algorithm is capable of locating its responsible peer in the
 overlay and using Attach to establish a direct connection to that
 peer. In that way, it may elect to be reachable under either of the
 routing approaches listed above. Particularly for overlay algorithms
 that elect nodes to serve as peers based on trustworthiness or
 population, the overlay algorithm may require such a client to locate
 itself at a particular place in the overlay.

B.2. Clients as Application-Level Agents

 SIP defines an extensive protocol for registration and security
 between a client and its registrar/proxy server(s). Any SIP device
 can act as a client of a RELOAD-based P2PSIP overlay if it contacts a
 peer that implements the server-side functionality required by the
 SIP protocol. In this case, the peer would be acting as if it were
 the user's peer, and would need the appropriate credentials for that
 user.

 Application-level support for clients is defined by a usage. A usage
 offering support for application-level clients should specify how the
 security of the system is maintained when the data is moved between
 the application and RELOAD layers.

Jennings, et al. Expires May 9, 2013 [Page 166]

Internet-Draft RELOAD Base November 2012

Authors' Addresses

 Cullen Jennings
 Cisco
 170 West Tasman Drive

 MS: SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 421-9990
 Email: fluffy@cisco.com

 Bruce B. Lowekamp (editor)
 Skype
 Palo Alto, CA
 USA

 Email: bbl@lowekamp.net

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

 Salman A. Baset
 Columbia University
 1214 Amsterdam Avenue
 New York, NY
 USA

 Email: salman@cs.columbia.edu

 Henning Schulzrinne
 Columbia University
 1214 Amsterdam Avenue
 New York, NY
 USA

 Email: hgs@cs.columbia.edu

Jennings, et al. Expires May 9, 2013 [Page 167]

