
P2PSIP Working Group J. Maenpaa
Internet-Draft G. Camarillo
Intended status: Standards Track J. Hautakorpi
Expires: July 11, 2011 Ericsson
 January 7, 2011

A Self-tuning Distributed Hash Table (DHT) for REsource LOcation And
Discovery (RELOAD)

draft-ietf-p2psip-self-tuning-03.txt

Abstract

 REsource LOcation And Discovery (RELOAD) is a peer-to-peer (P2P)
 signaling protocol that provides an overlay network service. Peers
 in a RELOAD overlay network collectively run an overlay algorithm to
 organize the overlay, and to store and retrieve data. This document
 describes how the default topology plugin of RELOAD can be extended
 to support self-tuning, that is, to adapt to changing operating
 conditions such as churn and network size.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 11, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Maenpaa, et al. Expires July 11, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Self-tuning DHT for RELOAD January 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Introduction to Stabilization in DHTs 5
3.1. Reactive vs. Periodic Stabilization 5
3.2. Configuring Periodic Stabilization 6
3.3. Adaptive Stabilization 7

4. Introduction to Chord . 7
5. Extending Chord-reload to Support Self-tuning 9
5.1. Update Requests . 9
5.2. Neighbor Stabilization 10
5.3. Finger Stabilization 11
5.4. Adjusting Finger Table Size 11
5.5. Detecting Partitioning 11
5.6. Leaving the Overlay 11

6. Self-tuning Chord Parameters 12
6.1. Estimating Overlay Size 12
6.2. Determining Routing Table Size 13
6.3. Estimating Failure Rate 13
6.3.1. Detecting Failures 14

6.4. Estimating Join Rate 14
6.5. Estimate Sharing . 15
6.6. Calculating the Stabilization Interval 16

7. Overlay Configuration Document Extension 17
8. Security Considerations 17
9. IANA Considerations . 17
9.1. Message Extensions . 17

10. References . 18
10.1. Normative References 18
10.2. Informative References 18

 Authors' Addresses . 20

Maenpaa, et al. Expires July 11, 2011 [Page 2]

Internet-Draft Self-tuning DHT for RELOAD January 2011

1. Introduction

 REsource LOcation And Discovery (RELOAD) [I-D.ietf-p2psip-base] is a
 peer-to-peer signaling protocol that can be used to maintain an
 overlay network, and to store data in and retrieve data from the
 overlay. For interoperability reasons, RELOAD specifies one overlay
 algorithm, called chord-reload, that is mandatory to implement. This
 document extends the chord-reload algorithm by introducing self-
 tuning behavior.

 DHT-based overlay networks are self-organizing, scalable and
 reliable. However, these features come at a cost: peers in the
 overlay network need to consume network bandwidth to maintain routing
 state. Most DHTs use a periodic stabilization routine to counter the
 undesirable effects of churn on routing. To configure the parameters
 of a DHT, some characteristics such as churn rate and network size
 need to be known in advance. These characteristics are then used to
 configure the DHT in a static fashion by using fixed values for
 parameters such as the size of the successor set, size of the routing
 table, and rate of maintenance messages. The problem with this
 approach is that it is not possible to achieve a low failure rate and
 a low communication overhead by using fixed parameters. Instead, a
 better approach is to allow the system to take into account the
 evolution of network conditions and adapt to them. This document
 extends the mandatory-to-implement chord-reload algorithm by making
 it self-tuning. Two main advantages of self-tuning are that users no
 longer need to tune every DHT parameter correctly for a given
 operating environment and that the system adapts to changing
 operating conditions.

 The remainder of this document is structured as follows: Section 2
 provides definitions of terms used in this document. Section 3
 discusses alternative approaches to stabilization operations in DHTs,
 including reactive stabilization, periodic stabilization, and
 adaptive stabilization. Section 4 gives an introduction to the Chord
 DHT algorithm. Section 5 describes how this document extends the
 stabilization routine of the chord-reload algorithm. Section 6
 describes how the stabilization rate and routing table size are
 calculated in an adaptive fashion.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses the terminology and definitions from the Concepts

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Maenpaa, et al. Expires July 11, 2011 [Page 3]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 and Terminology for Peer to Peer SIP [I-D.ietf-p2psip-concepts]
 draft.

 Chord Ring: The Chord DHT orders identifiers on an identifier circle
 of size 2^numBitsInNodeId (numBitsInNodeId is the number of bits
 in node identifiers). This identifier circle is called the Chord
 ring.

 DHT: Distributed Hash Tables (DHTs) are a class of decentralized
 distributed systems that provide a lookup service similar to a
 hash table. Given a key, any participating peer can retrieve the
 value associated with that key. The responsibility for
 maintaining the mapping from keys to values is distributed among
 the peers.

 Finger Table: A data structure with up to numBitsInNodeId entries
 maintained by each peer in a Chord-based overlay. The ith entry
 in the finger table of peer n contains the identity of the first
 peer that succeeds n by at least 2^(numBitsInNodeId-i) on the
 Chord ring. This peer is called the ith finger of peer n. As an
 example, the first entry in the finger table of peer n contains a
 peer half-way around the Chord ring from peer n. The purpose of
 the finger table is to accelerate lookups.

 log2(N): Logarithm of N with base 2.

 n.id: Peer-ID of peer n.

 Neighborhood Set: Consists of successor and predecessor lists.

 numBitsInNodeId: Number of bits in a Node-ID.

 O(g(n)): Informally, saying that some equation f(n) = O(g(n)) means
 that f(n) is less than some constant multiple of g(n).

 Omega(g(n)): Informally, saying that some equation f(n) =
 Omega(g(n)) means that f(n) is more than some constant multiple of
 g(n).

 Predecessor List: A data structure containing the predecessors of a
 peer on the Chord ring.

 Routing Table: The set of peers that a node can use to route overlay
 messages. The routing table consists of the finger table,
 successor list and predecessor list.

Maenpaa, et al. Expires July 11, 2011 [Page 4]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 Successor List: A data structure containing the first r successors
 of a peer on the Chord ring.

3. Introduction to Stabilization in DHTs

 DHTs use stabilization routines to counter the undesirable effects of
 churn on routing. The purpose of stabilization is to keep the
 routing information of each peer in the overlay consistent with the
 constantly changing overlay topology. There are two alternative
 approaches to stabilization: periodic and reactive [rhea2004].
 Periodic stabilization can either use a fixed stabilization rate or
 calculate the stabilization rate in an adaptive fashion.

3.1. Reactive vs. Periodic Stabilization

 In reactive stabilization, a peer reacts to the loss of a peer in its
 neighborhood set or to the appearance of a new peer that should be
 added to its neighborhood set by sending a copy of its neighbor table
 to all peers in the neighborhood set. Periodic recovery, in
 contrast, takes place independently of changes in the neighborhood
 set. In periodic recovery, a peer periodically shares its
 neighborhood set with each or a subset of the members of that set.

 The chord-reload algorithm [I-D.ietf-p2psip-base] supports both
 reactive and periodic stabilization. It has been shown in [rhea2004]
 that reactive stabilization works well for small neighborhood sets
 (i.e., small overlays) and moderate churn. However, in large-scale
 (e.g., 1000 peers or more [rhea2004]) or high-churn overlays,
 reactive stabilization runs the risk of creating a positive feedback
 cycle, which can eventually result in congestion collapse. In
 [rhea2004], it is shown that a 1000-peer overlay under churn uses
 significantly less bandwidth and has lower latencies when periodic
 stabilization is used than when reactive stabilization is used.
 Although in the experiments carried out in [rhea2004], reactive
 stabilization performed well when there was no churn, its bandwidth
 use was observed to jump dramatically under churn. At higher churn
 rates and larger scale overlays, periodic stabilization uses less
 bandwidth and the resulting lower contention for the network leads to
 lower latencies. For this reason, most DHTs such as CAN [CAN], Chord
 [Chord], Pastry [Pastry], Bamboo [rhea2004], etc. use periodic
 stabilization [ghinita2006]. As an example, the first version of
 Bamboo used reactive stabilization, which caused Bamboo to suffer
 from degradation in performance under churn. To fix this problem,
 Bamboo was modified to use periodic stabilization.

Maenpaa, et al. Expires July 11, 2011 [Page 5]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 In Chord, periodic stabilization is typically done both for
 successors and fingers. An alternative strategy is analyzed in
 [krishnamurthy2008]. In this strategy, called the correction-on-
 change maintenance strategy, a peer periodically stabilizes its
 successors but does not do so for its fingers. Instead, finger
 pointers are stabilized in a reactive fashion. The results obtained
 in [krishnamurthy2008] imply that although the correction-on-change
 strategy works well when churn is low, periodic stabilization
 outperforms the correction-on-change strategy when churn is high.

3.2. Configuring Periodic Stabilization

 When periodic stabilization is used, one faces the problem of
 selecting an appropriate execution rate for the stabilization
 procedure. If the execution rate of periodic stabilization is high,
 changes in the system can be quickly detected, but at the
 disadvantage of increased communication overhead. Alternatively, if
 the stabilization rate is low and the churn rate is high, routing
 tables become inaccurate and DHT performance deteriorates. Thus, the
 problem is setting the parameters so that the overlay achieves the
 desired reliability and performance even in challenging conditions,
 such as under heavy churn. This naturally results in high cost
 during periods when the churn level is lower than expected, or
 alternatively, poor performance or even network partitioning in worse
 than expected conditions.

 In addition to selecting an appropriate stabilization interval,
 regardless of whether periodic stabilization is used or not, an
 appropriate size needs to be selected for the neighborhood set and
 for the finger table.

 The current approach is to configure overlays statically. This works
 in situations where perfect information about the future is
 available. In situations where the operating conditions of the
 network are known in advance and remain static throughout the
 lifetime of the system, it is possible to choose fixed optimal values
 for parameters such as stabilization rate, neighborhood set size and
 routing table size. However, if the operating conditions (e.g., the
 size of the overlay and its churn rate) do not remain static but
 evolve with time, it is not possible to achieve both a low lookup
 failure rate and a low communication overhead by using fixed
 parameters [ghinita2006].

 As an example, to configure the Chord DHT algorithm, one needs to
 select values for the following parameters: size of successor list,
 stabilization interval, and size of the finger table. To select an
 appropriate value for the stabilization interval, one needs to know
 the expected churn rate and overlay size. According to

Maenpaa, et al. Expires July 11, 2011 [Page 6]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 [liben-nowell2002], a Chord network in a ring-like state remains in a
 ring-like state as long as peers send Omega(log2^2(N)) messages
 before N new peers join or N/2 peers fail. Thus, in a 500-peer
 overlay churning at a rate such that one peer joins and one peer
 leaves the network every 30 seconds, an appropriate stabilization
 interval would be on the order of 93s. According to [Chord], the
 size of the successor list and finger table should be on the order of
 log2(N). Having a successor list of size O(log2(N)) makes it
 unlikely that a peer will lose all of its successors, which would
 cause the Chord ring to become disconnected. Thus, in a 500-peer
 network each peer should maintain on the order of nine successors and
 fingers. However, if the churn rate doubles and the network size
 remains unchanged, the stabilization rate should double as well.
 That is, the appropriate maintenance interval would now be on the
 order of 46s. On the other hand, if the churn rate becomes e.g. six-
 fold and the size of the network grows to 2000 peers, on the order of
 eleven fingers and successors should be maintained and the
 stabilization interval should be on the order of 42s. If one
 continued using the old values, this could result in inaccurate
 routing tables, network partitioning, and deteriorating performance.

3.3. Adaptive Stabilization

 A self-tuning DHT takes into consideration the continuous evolution
 of network conditions and adapts to them. In a self-tuning DHT, each
 peer collects statistical data about the network and dynamically
 adjusts its stabilization rate, neighborhood set size, and finger
 table size based on the analysis of the data [ghinita2006].
 Reference [mahajan2003] shows that by using self-tuning, it is
 possible to achieve high reliability and performance even in adverse
 conditions with low maintenance cost. Adaptive stabilization has
 been shown to outperform periodic stabilization in terms of both
 lookup failures and communication overhead [ghinita2006].

4. Introduction to Chord

 Chord [Chord] is a structured P2P algorithm that uses consistent
 hashing to build a DHT out of several independent peers. Consistent
 hashing assigns each peer and resource a fixed-length identifier.
 Peers use SHA-1 as the base hash fuction to generate the identifiers.
 As specified in RELOAD base, the length of the identifiers is
 numBitsInNodeId=128 bits. The identifiers are ordered on an
 identifier circle of size 2^numBitsInNodeId. On the identifier
 circle, key k is assigned to the first peer whose identifier equals
 or follows the identifier of k in the identifier space. The
 identifier circle is called the Chord ring.

Maenpaa, et al. Expires July 11, 2011 [Page 7]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 Different DHTs differ significantly in performance when bandwidth is
 limited. It has been shown that when compared to other DHTs, the
 advantages of Chord include that it uses bandwidth efficiently and
 can achieve low lookup latencies at little cost [li2004].

 A simple lookup mechanism could be implemented on a Chord ring by
 requiring each peer to only know how to contact its current successor
 on the identifier circle. Queries for a given identifier could then
 be passed around the circle via the successor pointers until they
 encounter the first peer whose identifier is equal to or larger than
 the desired identifier. Such a lookup scheme uses a number of
 messages that grows linearly with the number of peers. To reduce the
 cost of lookups, Chord maintains also additional routing information;
 each peer n maintains a data structure with up to numBitsInNodeId
 entries, called the finger table. The first entry in the finger
 table of peer n contains the peer half-way around the ring from peer
 n. The second entry contains the peer that is 1/4th of the way
 around, the third entry the peer that is 1/8th of the way around,
 etc. In other words, the ith entry in the finger table at peer n
 contains the identity of the first peer s that succeeds n by at least
 2^(numBitsInNodeId-i) on the Chord ring. This peer is called the ith
 finger of peer n. The interval between two consecutive fingers is
 called a finger interval. The ith finger interval of peer n covers
 the range [n.id + 2^(numBitsInNodeId-i), n.id +
 2^(numBitsInNodeId-i+1)) on the Chord ring. In an N-peer network,
 each peer maintains information about O(log2(N)) other peers in its
 finger table. As an example, if N=100000, it is sufficient to
 maintain 17 fingers.

 Chord needs all peers' successor pointers to be up to date in order
 to ensure that lookups produce correct results as the set of
 participating peers changes. To achieve this, peers run a
 stabilization protocol periodically in the background. The
 stabilization protocol of the original Chord algorithm uses two
 operations: successor stabilization and finger stabilization.
 However, the Chord algorithm of RELOAD base defines two additional
 stabilization components, as will be discussed below.

 To increase robustness in the event of peer failures, each Chord peer
 maintains a successor list of size r, containing the peer's first r
 successors. The benefit of successor lists is that if each peer
 fails independently with probability p, the probability that all r
 successors fail simultaneously is only p^r.

 The original Chord algorithm maintains only a single predecessor
 pointer. However, multiple predecessor pointers (i.e., a predecessor
 list) can be maintained to speed up recovery from predecessor
 failures. The routing table of a peer consists of the successor

Maenpaa, et al. Expires July 11, 2011 [Page 8]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 list, finger table, and predecessor list.

5. Extending Chord-reload to Support Self-tuning

 This section describes how the mandatory-to-implement chord-reload
 algorithm defined in RELOAD base [I-D.ietf-p2psip-base] can be
 extended to support self-tuning.

 The chord-reload algorithm supports both reactive and periodic
 recovery strategies. When the self-tuning mechanisms defined in this
 document are used, the periodic recovery strategy MUST be used.
 Further, chord-reload specifies that at least three predecessors and
 three successors need to be maintained. When the self-tuning
 mechanisms are used, the appropriate sizes of the successor list and
 predecessor list are determined in an adaptive fashion based on the
 estimated network size, as will be described in Section 6.

 As specified in RELOAD base, each peer MUST maintain a stabilization
 timer. When the stabilization timer fires, the peer MUST restart the
 timer and carry out the overlay stabilization routine. Overlay
 stabilization has four components in chord-reload:

 1. Update the neighbor table. We refer to this as neighbor
 stabilization.
 2. Refreshing the finger table. We refer to this as finger
 stabilization.
 3. Adjusting finger table size.
 4. Detecting partitioning. We refer to this as strong
 stabilization.

 As specified in RELOAD base [I-D.ietf-p2psip-base], a peer sends
 periodic messages as part of the neighbor stabilization, finger
 stabilization, and strong stabilization routines. In neighbor
 stabilization, a peer periodically sends an Update request to every
 peer in its Connection Table. The default time is every ten minutes.
 In finger stabilization, a peer periodically searches for new peers
 to include in its finger table. This time defaults to one hour.
 This document specifies how the neighbor stabilization and finger
 stabilization intervals can be determined in an adaptive fashion
 based on the operating conditions of the overlay. The subsections
 below describe how this document extends the four components of
 stabilization.

5.1. Update Requests

 As described in RELOAD base [I-D.ietf-p2psip-base], the neighbor and
 finger stabilization procedures are implemented using Update

Maenpaa, et al. Expires July 11, 2011 [Page 9]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 requests. RELOAD base defines three types of Update requests:
 'peer_ready', 'neighbors', and 'full'. Regardless of the type, all
 Update requests include an 'uptime' field. Since the self-tuning
 extensions require information on the uptimes of peers in the routing
 table, the sender of an Update request MUST include its current
 uptime in seconds in the 'uptime' field.

 When self-tuning is used, each peer decides independently the
 appropriate size for the successor list, predecessor list and finger
 table. Thus, the 'predecessors', 'successors', and 'fingers' fields
 included in RELOAD Update requests are of variable length. As
 specified in RELOAD [I-D.ietf-p2psip-base], variable length fields
 are on the wire preceded by length bytes. In the case of the
 successor list, predecessor list, and finger table, there are two
 length bytes (allowing lengths up to 2^16-1). The number of NodeId
 structures included in each field can be calculated based on the
 length bytes since the size of a single NodeId structure is 16 bytes.
 If a peer receives more entries than fit into its successor list,
 predecessor list or finger table, the peer MUST ignore the extra
 entries. If a peer receives less entries than it currently has in
 its own data structure, the peer MUST NOT drop the extra entries from
 its data structure.

5.2. Neighbor Stabilization

 In the neighbor stabilization operation of chord-reload, a peer
 periodically sends an Update request to every peer in its Connection
 Table. In a small, low-churn overlay, the amount of traffic this
 process generates is typically acceptable. However, in a large-scale
 overlay churning at a moderate or high churn rate, the traffic load
 may no longer be acceptable since the size of the connection table is
 large and the stabilization interval relatively short. The self-
 tuning mechanisms described in this document are especially designed
 for overlays of the latter type. Therefore, when the self-tuning
 mechanisms are used, each peer MUST send a periodic Update request
 only to its first predecessor and first successor on the Chord ring.

 The neighbor stabilization routine MUST be executed when the
 stabilization timer fires. To begin the neighbor stabilization
 routine, a peer MUST send an Update request to its first successor
 and its first predecessor. The type of the Update request MUST be
 'neighbors'. The Update request MUST include the successor and
 predecessor lists of the sender. If a peer receiving such an Update
 request learns from the predecessor and successor lists included in
 the request that new peers can be included in its neighborhood set,
 it MUST send Attach requests to the new peers.

 After a new peer has been added to the predecessor or successor list,

Maenpaa, et al. Expires July 11, 2011 [Page 10]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 an Update request of type 'peer_ready' MUST be sent to the new peer.
 This allows the new peer to insert the sender into its neighborhood
 set.

5.3. Finger Stabilization

 Chord-reload specifies two alternative methods for searching for new
 peers to the finger table. Both of the alternatives can be used with
 the self-tuning extensions defined in this document.

 Immediately after a new peer has been added to the finger table, a
 Probe request MUST be sent to the new peer to fetch its uptime. The
 requested_info field of the Probe request MUST be set to contain the
 ProbeInformationType 'uptime' defined in RELOAD base
 [I-D.ietf-p2psip-base].

5.4. Adjusting Finger Table Size

 The chord-reload algorithm defines how a peer can make sure that the
 finger table is appropriately sized to allow for efficient routing.
 Since the self-tuning mechanisms specified in this document produce a
 network size estimate, this estimate can be directly used to
 calculate the optimal size for the finger table. This mechanism MUST
 be used instead of the one specified by chord-reload. A peer MUST
 use the network size estimate to determine whether it needs to adjust
 the size of its finger table each time when the stabilization timer
 fires. The way this is done is explained in Section 6.2.

5.5. Detecting Partitioning

 This document does not require any changes to the mechanism chord-
 reload uses to detect network partitioning.

5.6. Leaving the Overlay

 As specified in RELOAD base [I-D.ietf-p2psip-base], a leaving peer
 SHOULD send a Leave request to all members of its neighbor table
 prior to leaving the overlay. The overlay_specific_data field MUST
 contain the ChordLeaveData structure. The Leave requests that are
 sent to successors MUST contain the predecessor list of the leaving
 peer. The Leave requests that are sent to the predecessors MUST
 contain the successor list of the leaving peer. If a given successor
 can identify better predecessors than are already included in its
 predecessor lists by investigating the predecessor list it receives
 from the leaving peer, it MUST send Attach requests to them.
 Similarly, if a given predecessor identifies better successors by
 investigating the successor list it receives from the leaving peer,
 it MUST send Attach requests to them.

Maenpaa, et al. Expires July 11, 2011 [Page 11]

Internet-Draft Self-tuning DHT for RELOAD January 2011

6. Self-tuning Chord Parameters

 This section specifies how to determine an appropriate stabilization
 rate and routing table size in an adaptive fashion. The proposed
 mechanism is based on [mahajan2003], [liben-nowell2002], and
 [ghinita2006]. To calculate an appropriate stabilization rate, the
 values of three parameters MUST be estimated: overlay size N, failure
 rate U, and join rate L. To calculate an appropriate routing table
 size, the estimated network size N can be used. Peers in the overlay
 MUST re-calculate the values of the parameters to self-tune the
 chord-reload algorithm at the end of each stabilization period before
 re-starting the stabilization timer.

6.1. Estimating Overlay Size

 Techniques for estimating the size of an overlay network have been
 proposed for instance in [mahajan2003], [horowitz2003],
 [kostoulas2005], [binzenhofer2006], and [ghinita2006]. In Chord, the
 density of peer identifiers in the neighborhood set can be used to
 produce an estimate of the size of the overlay, N [mahajan2003].
 Since peer identifiers are picked randomly with uniform probability
 from the numBitsInNodeId-bit identifier space, the average distance
 between peer identifiers in the successor set is
 (2^numBitsInNodeId)/N.

 To estimate the overlay network size, a peer MUST compute the average
 inter-peer distance d between the successive peers starting from the
 most distant predecessor and ending to the most distant successor in
 the successor list. The estimated network size MUST be calculated
 as:

 2^numBitsInNodeId
 N = -------------------
 d

 This estimate has been found to be accurate within 15% of the real
 network size [ghinita2006]. Of course, the size of the neighborhood
 set affects the accuracy of the estimate.

 During the join process, a joining peer fills its routing table by
 sending a series of Ping and Attach requests, as specified in RELOAD
 base [I-D.ietf-p2psip-base]. Thus, a joining peer immediately has
 enough information at its disposal to calculate an estimate of the
 network size.

Maenpaa, et al. Expires July 11, 2011 [Page 12]

Internet-Draft Self-tuning DHT for RELOAD January 2011

6.2. Determining Routing Table Size

 As specified in RELOAD base, the finger table must contain at least
 16 entries. When the self-tuning mechanisms are used, the size of
 the finger table MUST be set to max(log2(N), 16) using the estimated
 network size N.

 The size of the successor list MUST be set to log2(N). An
 implementation MAY place a lower limit on the size of the successor
 list. As an example, the implementation might require the size of
 the successor list to be always at least three.

 A peer MAY choose to maintain a fixed-size predecessor list with only
 three entries as specified in RELOAD base. However, it is
 RECOMMENDED that a peer maintains log2(N) predecessors.

6.3. Estimating Failure Rate

 A typical approach is to assume that peers join the overlay according
 to a Poisson process with rate L and leave according to a Poisson
 process with rate parameter U [mahajan2003]. The value of U can be
 estimated using peer failures in the finger table and neighborhood
 set [mahajan2003]. If peers fail with rate U, a peer with M unique
 peer identifiers in its routing table should observe K failures in
 time K/(M*U). Every peer in the overlay MUST maintain a history of
 the last K failures. The current time MUST be inserted into the
 history when the peer joins the overlay. The estimate of U MUST be
 calculated as:

 k
 U = --------,
 M * Tk

 where M is the number of unique peer identifiers in the routing
 table, Tk is the time between the first and the last failure in the
 history, and k is the number of failures in the history. If k is
 smaller than K, the estimate MUST be computed as if there was a
 failure at the current time. It has been shown that an estimate
 calculated in a similar manner is accurate within 17% of the real
 value of U [ghinita2006].

 The size of the failure history K affects the accuracy of the
 estimate of U. One can increase the accuracy by increasing K.
 However, this has the side effect of decreasing responsiveness to
 changes in the failure rate. On the other hand, a small history size
 may cause a peer to overreact each time a new failure occurs. In
 [ghinita2006], K is set 25% of the routing table size. Use of this
 approach is RECOMMENDED.

Maenpaa, et al. Expires July 11, 2011 [Page 13]

Internet-Draft Self-tuning DHT for RELOAD January 2011

6.3.1. Detecting Failures

 A new failure MUST be inserted to the failure history in the
 following cases:

 1. A Leave request is received from a neigbhor.
 2. A peer fails to reply to a Ping request sent in the situation
 explained below. If no packets have been received on a
 connection during the past 2*Tr seconds (where Tr is the
 inactivity timer defined by ICE [I-D.ietf-mmusic-ice]), a RELOAD
 Ping request MUST be sent to the remote peer. RELOAD mandates
 the use of STUN [RFC5389] for keepalives. STUN keepalives take
 the form of STUN Binding Indication transactions. As specified
 in ICE [I-D.ietf-mmusic-ice], a peer sends a STUN Binding
 Indication if there has been no packet sent on a connection for
 Tr seconds. Tr is configurable and has a default of 15 seconds.
 Although STUN Binding Indications do not generate a response, the
 fact that a peer has failed can be learned from the lack of
 packets (Binding Indications or application protocol packets)
 received from the peer. If the remote peer fails to reply to the
 Ping request, the sender MUST consider the remote peer to have
 failed.

 As an alternative to relying on STUN keepalives to detect peer
 failure, a peer could send additional, frequent RELOAD messages to
 every peer in its Connection Table. These messages could be Update
 requests, in which case they would serve two purposes: detecting peer
 failure and stabilization. However, as the cost of this approach can
 be very high in terms of bandwidth consumption and traffic load,
 especially in large-scale overlays experiencing churn, its use is NOT
 RECOMMENDED.

6.4. Estimating Join Rate

 Reference [ghinita2006] proposes that a peer can estimate the join
 rate based on the uptime of the peers in its routing table. An
 increase in peer join rate will be reflected by a decrease in the
 average age of peers in the routing table. Thus, each peer MUST
 maintain an array of the ages of the peers in its routing table
 sorted in increasing order. Using this information, an estimate of
 the global peer join rate L MUST be calculated as:

 N 1
 L = --- * ---------------,
 4 Ages[rsize/4]

 where Ages is an array containing the ages of the peers in the
 routing table sorted in increasing order and rsize is the size of the

https://datatracker.ietf.org/doc/html/rfc5389

Maenpaa, et al. Expires July 11, 2011 [Page 14]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 routing table. It is RECOMMENDED that only the ages of the 25% of
 the youngest peers in the routing table (i.e., the 25th percentile)
 are used to reduce the bias that a small number of peers with very
 old ages can cause [ghinita2006]. It has been shown that the
 estimate obtained by using this method is accurate within 22% of the
 real join rate [ghinita2006]. Of course, the size of the routing
 table affects the accuracy.

 In order for this mechanism to work, peers need to exchange
 information about the time they have been present in the overlay.
 Peers receive the uptimes of their successors and predecessors during
 the stabilization operations since all Update requests carry uptime
 values. A joining peer learns the uptime of the admitting peer since
 it receives an Update from the admitting peer during the join
 procedure. Peers learn the uptimes of new fingers since they can
 fetch the uptime using a Probe request after having attached to the
 new finger.

6.5. Estimate Sharing

 To improve the accuracy of network size, join rate, and leave rate
 estimates, peers MUST share their estimates. When the stabilization
 timer fires, a peer MUST select number-of-peers-to-probe random peers
 from its finger table and send each of them a Probe request. The
 targets of Probe requests are selected from the finger table rather
 than from the neighbor table since neighbors are likely to make
 similar errors when calculating their estimates. number-of-peers-to-
 probe is a new element in the overlay configuration document. It is
 defined in Section 7 and has a default value of 4. Both the Probe
 request and the answer returned by the target peer MUST contain a new
 message extension whose MessageExtensionType is 'self_tuning_data'.
 This extension type is defined in Section 9.1. The
 extension_contents field of the MessageExtension structure MUST
 contain a SelfTuningData structure:

 struct {
 uint32 network_size;
 uint32 join_rate;
 uint32 leave_rate;
 } SelfTuningData;

 The contents of the SelfTuningData structure are as follows:

Maenpaa, et al. Expires July 11, 2011 [Page 15]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 network_size
 The latest network size estimate calculated by the sender.

 join_rate
 The latest join rate estimate calculated by the sender.

 leave_rate
 The latest leave rate estimate calculated by the sender.

 The join and leave rates are expressed as joins or failures per 24
 hours. As an example, if the global join rate estimate a peer has
 calculated is 0.123 peers/s, it would include in the join_rate field
 the value 10627 (24*60*60*0.123 = 10627.2).

 The 'type' field of the MessageExtension structure MUST be set to
 contain the value 'self_tuning_data'. The 'critical' field of the
 structure MUST be set to False.

 A peer MUST store all estimates it receives in Probe requests and
 answers during a stabilization interval. When the stabilization
 timer fires, the peer MUST calculate the estimates to be used during
 the next stabilization interval by taking the 75th percentile of a
 data set containing its own estimate and the received estimates.

6.6. Calculating the Stabilization Interval

 According to [liben-nowell2002], a Chord network in a ring-like state
 remains in a ring-like state as long as peers send Omega(log2^2(N))
 messages before N new peers join or N/2 peers fail. We can use the
 estimate of peer failure rate, U, to calculate the time Tf in which
 N/2 peers fail:

 1
 Tf = ------
 2*U

 Based on this estimate, a stabilization interval Tstab-1 MUST be
 calculated as:

 Tf
 Tstab-1 = -----------
 log2^2(N)

 On the other hand, the estimated join rate L can be used to calculate
 the time in which N new peers join the overlay. Based on the
 estimate of L, a stabilization interval Tstab-2 MUST be calculated
 as:

Maenpaa, et al. Expires July 11, 2011 [Page 16]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 N
 Tstab-2 = ---------------
 L * log2^2(N)

 Finally, the actual stabilization interval Tstab that MUST be used
 can be obtained by taking the minimum of Tstab-1 and Tstab-2.

 The results obtained in [maenpaa2009] indicate that making the
 stabilization interval too small has the effect of making the overlay
 less stable (e.g., in terms of detected loops and path failures).
 Thus, a lower limit should be used for the stabilization period.
 Based on the results in [maenpaa2009], a lower limit of 15s is
 RECOMMENDED, since using a stabilization period smaller than this
 will with a high probability cause too much traffic in the overlay.

7. Overlay Configuration Document Extension

 This document extends the RELOAD overlay configuration document by
 adding one new element, "number-of-peers-to-probe", inside each
 "configuration" element.

 number-of-peers-to-probe: The number of fingers to which Probe
 requests are sent to obtain their network size, join rate, and
 leave rate estimates. The default value is 4.

8. Security Considerations

 There are no new security considerations introduced in this document.
 The security considerations of RELOAD [I-D.ietf-p2psip-base] apply.

9. IANA Considerations

9.1. Message Extensions

 This document introduces one additional extension to the "RELOAD
 Extensions" Registry:

 +------------------+-------+---------------+
 | Extension Name | Code | Specification |
 +------------------+-------+---------------+
 | self_tuning_data | 1 | RFC-AAAA |
 +------------------+-------+---------------+

 The contents of the extension are defined in Section 6.5.

Maenpaa, et al. Expires July 11, 2011 [Page 17]

Internet-Draft Self-tuning DHT for RELOAD January 2011

10. References

10.1. Normative References

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [I-D.ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-12 (work in
 progress), November 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

10.2. Informative References

 [CAN] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and S.
 Schenker, "A scalable content-addressable network", In
 Proc. of the 2001 Conference on Applications,
 Technologies, Architectures and Protocols for Computer
 Communications 2001, pp. 161.172.

 [Chord] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,
 Kaashoek, M., Dabek, F., and H. Balakrishnan, "Chord: A
 Scalable Peer-to-peer Lookup Service for Internet
 Applications", IEEE/ACM Transactions on Networking Volume
 11, Issue 1, 17-32, Feb 2003.

 [I-D.ietf-p2psip-concepts]
 Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",

draft-ietf-p2psip-concepts-03 (work in progress),
 October 2010.

 [Pastry] Rowstron, A. and P. Druschel, "Pastry: Scalable,
 Decentralized Object Location and Routing for Large-Scale
 Peer-to-Peer Systems", In Proc. of the IFIP/ACM
 International Conference on Distribued Systems
 Platforms Nov. 2001, pp. 329-350.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-concepts-03

Maenpaa, et al. Expires July 11, 2011 [Page 18]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 [binzenhofer2006]
 Binzenhofer, A., Kunzmann, G., and R. Henjes, "A scalable
 algorithm to monitor chord-based P2P systems at runtime",
 20th International Parallel and Distributed Processing
 Symposium April 2006.

 [ghinita2006]
 Ghinita, G. and Y. Teo, "An adaptive stabilization
 framework for distributed hash tables", 20th International
 Parallel and Distributed Processing Symposium April 2006.

 [horowitz2003]
 Horowitz, K. and D. Malkhi, "Estimating network size from
 local information", Information Processing Letters Dec.
 2003, Volume 88, Issue 5, pp. 237-243.

 [kostoulas2005]
 Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., and
 A. Demers, "Decentralized schemes for size estimation in
 large and dynamic groups", Fourth IEEE International
 Symposium on Network Computing and Applications July 2005,
 pp. 41-48.

 [krishnamurthy2008]
 Krishnamurthy, S., El-Ansary, S., Aurell, E., and S.
 Haridi, "Comparing maintenance strategies for overlays",
 In Proc. of 16th Euromicro Conference on Parallel,
 Distributed and Network-Based Processing Feb. 2008, pp.
 473-482.

 [li2004] Li, J., Strinbling, J., Gil, T., and M. Kaashoek,
 "Comparing the performance of distributed hash tables
 under churn", In Proc. of the 3rd International Workshop
 on Peer-to-Peer Systems 2004.

 [liben-nowell2002]
 Liben-Nowell, D., Balakrishnan, H., and D. Karger,
 "Observations on the dynamic evolution of peer-to-peer
 networks", In Proc. of the First International Workshop on
 Peer-to-Peer Systems March 2002.

 [maenpaa2009]
 Maenpaa, J. and G. Camarillo, "A study on maintenance
 operations in a Chord-based Peer-to-Peer Session
 Initiation Protocol overlay network", In Proc. of IPDPS
 2009 May 2009.

 [mahajan2003]

Maenpaa, et al. Expires July 11, 2011 [Page 19]

Internet-Draft Self-tuning DHT for RELOAD January 2011

 Mahajan, R., Castro, M., and A. Rowstron, "Controlling the
 cost of reliability in peer-to-peer overlays", In
 Proceedings of the 2nd International Workshop on Peer-to-
 Peer Systems Feb. 2003.

 [rhea2004]
 Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz,
 "Handling churn in a DHT", In Proc. of the USENIX Annual
 Techincal Conference June 2004.

Authors' Addresses

 Jouni Maenpaa
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: Jouni.Maenpaa@ericsson.com

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: Gonzalo.Camarillo@ericsson.com

 Jani Hautakorpi
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: Jani.Hautakorpi@ericsson.com

Maenpaa, et al. Expires July 11, 2011 [Page 20]

