
P2PSIP Working Group J. Maenpaa
Internet-Draft G. Camarillo
Intended status: Standards Track Ericsson
Expires: February 06, 2014 August 05, 2013

Service Discovery Usage for REsource LOcation And Discovery (RELOAD)
draft-ietf-p2psip-service-discovery-09.txt

Abstract

 REsource LOcation and Discovery (RELOAD) does not define a generic
 service discovery mechanism as a part of the base protocol. This
 document defines how the Recursive Distributed Rendezvous (ReDiR)
 service discovery mechanism used in OpenDHT can be applied to RELOAD
 overlays to provide a generic service discovery mechanism.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 06, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Maenpaa & Camarillo Expires February 06, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Service Discovery Usage for RELOAD August 2013

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Introduction to ReDiR . 4
4. Using ReDiR in a RELOAD Overlay Instance 7
4.1. Data Structure . 7
4.2. Selecting the Starting Level 8
4.3. Service Provider Registration 8
4.4. Refreshing Registrations 9
4.5. Service Lookups . 10
4.6. Removing Registrations 11

5. Access Control Rules . 11
6. REDIR Kind Definition . 12
7. Examples . 12
7.1. Service Registration 13
7.2. Service Lookup . 14

8. Overlay Configuration Document Extension 15
9. Security Considerations 15
10. IANA Considerations . 15
10.1. Access Control Policies 15
10.2. Data Kind-ID . 16
10.3. ReDiR Namespaces . 16

11. Acknowledgments . 16
12. References . 17
12.1. Normative References 17
12.2. Informative References 17

 Authors' Addresses . 17

1. Introduction

 REsource LOcation And Discovery (RELOAD) [I-D.ietf-p2psip-base] is a
 peer-to-peer signaling protocol that can be used to maintain an
 overlay network, and to store data in and retrieve data from the
 overlay. Although RELOAD defines a Traversal Using Relays around
 Network Address Translation (TURN) specific service discovery
 mechanism, it does not define a generic service discovery mechanism
 as a part of the base protocol. This document defines how the
 Recursive Distributed Rendezvous (ReDiR) service discovery mechanism
 [Redir] used in OpenDHT can be applied to RELOAD overlays.

 In a Peer-to-Peer (P2P) overlay network such as a RELOAD Overlay
 Instance, the peers forming the overlay share their resources in
 order to provide the service the system has been designed to provide.
 The peers in the overlay both provide services to other peers and
 request services from other peers. Examples of possible services
 peers in a RELOAD Overlay Instance can offer to each other include a
 TURN relay service, a voice mail service, a gateway location service,

Maenpaa & Camarillo Expires February 06, 2014 [Page 2]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 and a transcoding service. Typically, only a small subset of the
 peers participating in the system are providers of a given service.
 A peer that wishes to use a particular service faces the problem of
 finding peers that are providing that service from the Overlay
 Instance.

 A naive way to perform service discovery is to store the Node-IDs of
 all nodes providing a particular service under a well-known key k.
 The limitation of this approach is that it scales linearly with the
 number of nodes that provide the service. The problem is two-fold:
 the node n that is responsible for service s identified by key k may
 end up storing a large number of Node-IDs and most importantly, may
 also become overloaded since all service lookup requests for service
 s will need to be answered by node n. An efficient service discovery
 mechanism does not overload the nodes storing pointers to service
 providers. In addition, the mechanism must ensure that the load of
 providing a given service is distributed evenly among the nodes
 providing the service.

 ReDiR implements service discovery by building a tree structure of
 the service providers that provide a particular service. The tree
 structure is stored into the RELOAD Overlay Instance using RELOAD
 Store and Fetch requests. Each service provided in the Overlay
 Instance has its own tree. The nodes in a ReDiR tree contain
 pointers to service providers. During service discovery, a peer
 wishing to use a given service fetches ReDiR tree nodes one-by-one
 from the RELOAD Overlay Instance until it finds a service provider
 responsible for its Node-ID. It has been proved that ReDiR can find
 a service provider using only a constant number of Fetch operations
 [Redir].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses the terminology and definitions from the Concepts
 and Terminology for Peer to Peer SIP [I-D.ietf-p2psip-concepts]
 draft.

 DHT: Distributed Hash Tables (DHTs) are a class of decentralized
 distributed systems that provide a lookup service similar to a
 regular hash table. Given a key, any peer participating in the
 system can retrieve the value associated with that key. The
 responsibility for maintaining the mapping from keys to values is
 distributed among the peers.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Maenpaa & Camarillo Expires February 06, 2014 [Page 3]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 H(x): Refers to a hash function (e.g., SHA-1) calculated over the
 value x.

 I(lvl,k): An interval at level lvl in the ReDiR tree that encloses
 key k. As an example, I(5,10) refers to an interval at level 5 in
 the ReDiR tree within whose range key 10 falls.

 n.id: Refers to the RELOAD Node-ID of node n.

 Namespace: An arbitrary identifier that identifies a service
 provided in the RELOAD Overlay Instance. Examples of potential
 namespaces include "voice-mail" and "turn-relay". The namespace
 is an UTF-8 text string.

 numBitsInNodeId: Refers to the number of bits in a RELOAD Node-ID.
 This value is used in the equations for calculating the ranges of
 intervals that ReDiR tree nodes are responsible for.

 ReDiR tree: A tree structure of the nodes that provide a particular
 service. The nodes embed the ReDiR tree into the RELOAD Overlay
 Instance using RELOAD Store and Fetch requests. Each tree node in
 the ReDiR tree belongs to some level in the tree. The root node
 of the ReDiR tree is located at level 0 of the ReDiR tree. The
 child nodes of the root node are located at level 1. The children
 of the tree nodes at level 1 are located at level 2, and so forth.
 The ReDiR tree has a branching factor b. At every level lvl in the
 ReDiR tree, there is room for a maximum of b^lvl tree nodes. Each
 tree node in the ReDiR tree is uniquely identified by a pair
 (lvl,j), where lvl is a level in the ReDiR tree and j is the
 position of the tree node (from the left) at that level.

 Successor: The successor of identifier k in namespace ns is the node
 belonging to the namespace ns whose identifier most immediately
 follows the identifier k.

3. Introduction to ReDiR

 Recursive Distributed Rendezvous (ReDiR) [Redir] does not require new
 functionality from the RELOAD base protocol. This is possible since
 ReDiR interacts with the RELOAD Overlay Instance by simply storing
 and fetching data, that is, using RELOAD Store and Fetch requests.
 ReDiR creates a tree structure of the service providers of a
 particular service and stores it into the RELOAD Overlay Instance
 using the Store and Fetch requests. ReDiR service lookups require a
 logarithmic number of Fetch operations. Further, if information from
 past service lookups is used to determine the optimal level in the
 ReDiR tree from which to start new service lookups, an average
 service lookup can typically finish after a constant number of Fetch

Maenpaa & Camarillo Expires February 06, 2014 [Page 4]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 operations assuming that Node-IDs are distributed uniformly at
 random.

 In ReDiR, each service provided in the overlay is identified by an
 identifier, called the namespace. All service providers of a given
 service store their information under the namespace of that service.
 Peers wishing to use a service perform lookups within the namespace
 of the service. The result of a ReDiR lookup for an identifier k in
 namespace ns is a RedirServiceProvider structure (see Section 4.1) of
 a service provider that belongs to ns and whose Node-ID is the
 closest successor of identifier k in the namespace.

 Each tree node in the ReDiR tree contains a dictionary of
 RedirServiceProvider entries of peers providing a particular service.
 Each tree node in the ReDiR tree also belongs to some level in the
 tree. The root node of the ReDiR tree is located at level 0. The
 child nodes of the root node are located at level 1 of the ReDiR
 tree. The children of the tree nodes at level 1 are located at level
 2, and so forth. The ReDiR tree has a branching factor, whose value
 is determined by a new element in the RELOAD overlay configuration
 document, called branching-factor. At every level lvl in the ReDiR
 tree, there is room for a maximum of branching-factor^lvl tree nodes.
 As an example, in a tree whose branching-factor is 2, the second
 level can contain up to 4 tree nodes (note that a given level may
 contain less than the maximum number of tree nodes since empty tree
 nodes are not stored). Each tree node in the ReDiR tree is uniquely
 identified by a pair (lvl,j), where lvl is a level in the ReDiR tree
 and j is the position of the tree node (from the left) at that level.
 As an example, the pair (2,3) identifies the 3rd tree node from the
 left at level 2.

 The ReDiR tree is stored into the RELOAD Overlay Instance tree node
 by tree node, by storing the values of tree node (level,j) under a
 key created by taking a hash over the concatenation of the namespace,
 level, and j, that is, as H(namespace,level,j). As an example, the
 root of the tree for a voice mail service is stored at H("voice-
 mail",0,0). Each node (level,j) in the ReDiR tree contains b
 intervals of the DHT's identifier space as follows:

 [2^numBitsInNodeID*b^(-level)*(j+(b'/b)),
 2^numBitsInNodeID*b^(-level)*(j+((b'+1)/b))), for 0<=b'<b,

 where b is the branching-factor.

 Figure 1 shows an example of a ReDiR tree whose branching factor is
 2. In the figure, the size of the identifier space of the overlay is
 16. Each tree node in the ReDiR tree is shown as two horizontal

Maenpaa & Camarillo Expires February 06, 2014 [Page 5]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 lines separated by a vertical bar ('|') in the middle. The
 horizontal lines represent the two intervals each node is responsible
 for. At level 0, there is only one node, (0,0) responsible for two
 intervals that together cover the entire identifier space of the
 RELOAD Overlay Instance. At level 1, there are two nodes, (1,0) and
 (1,1), each of which is responsible for half of the identifier space
 of the RELOAD Overlay Instance. At level 2, there are four nodes.
 Each of them owns one fourth of the identifier space. At level 3,
 there are eight nodes each of which is responsible for one eight of
 the identifier space.

 Level 0 __________________|__________________
 | |
 Level 1 ________|________ ________|________
 | | | |
 Level 2 ___|___ ___|___ ___|___ ___|___
 | | | | | | | |
 Level 3 _|_ _|_ _|_ _|_ _|_ _|_ _|_ _|_

 Figure 1: ReDiR tree

 Figure 2 illustrates how tree nodes are numbered in the ReDiR tree at
 levels 0-2.

 Level 0 ________________(0,0)________________
 | |
 Level 1 ______(1,0)______ ______(1,1)______
 | | | |
 Level 2 _(2,0)_ _(2,1)_ _(2,2)_ _(2,3)_
 | | | | | | | |
 Level 3 _|_ _|_ _|_ _|_ _|_ _|_ _|_ _|_

 Figure 2: ReDiR tree nodes

 Figure 3 illustrates how intervals are assigned to tree nodes in the
 ReDiR tree at levels 0 and 1. As an example, the single tree node
 (0,0) at level 0 is divided into two intervals, each of which covers
 half of the identifier space of the overlay. These two intervals are
 [0,7] and [8,15].

Maenpaa & Camarillo Expires February 06, 2014 [Page 6]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 Level 0 ______[0,7]_______|_______[8,15]_____
 | |
 Level 1 _[0,3]__|__[4,7]_ _[8,11]_|_[12,15]
 | | | |
 Level 2 ___|___ ___|___ ___|___ ___|___
 | | | | | | | |
 Level 3 _|_ _|_ _|_ _|_ _|_ _|_ _|_ _|_

 Figure 3: Intervals in ReDiR tree

 Note that all of the examples above are simplified. In a real ReDiR
 tree, the default ReDiR branching factor is 10, meaning that each
 tree node is split into 10 intervals and that each tree node has 10
 children. In such a tree, level 1 contains 10 nodes and 100
 intervals. Level 2 contains 100 nodes and 1000 intervals, level 3
 1000 nodes and 10000 intervals, etc. Further, the size of the
 identifier space of a real RELOAD Overlay Instance is at the minimum
 2^128.

4. Using ReDiR in a RELOAD Overlay Instance

4.1. Data Structure

 ReDiR tree nodes are stored using the dictionary data model defined
 in RELOAD base [I-D.ietf-p2psip-base]. The data stored is a
 RedirServiceProvider Resource Record:

 enum { none(0), (255) }
 RedirServiceProviderExtType;

 struct {
 RedirServiceProviderExtType type;
 Destination destination_list<0..2^16-1>;
 opaque namespace<0..2^16-1>;
 uint16 level;
 uint16 node;
 uint16 length;

 select (type) {
 /* This type may be extended */
 } extension;

 } RedirServiceProvider;

Maenpaa & Camarillo Expires February 06, 2014 [Page 7]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 The contents of the RedirServiceProvider Resource Record are as
 follows:

 The type of an extension to the RedirServiceProvider Resource
 Record. Unknown types are allowed.

 A list of IDs through which a message is to be routed to reach the
 service provider. The destination list consists of a sequence of
 Destination values. The contents of the Destination structure are
 as defined in RELOAD base [I-D.ietf-p2psip-base].

 An opaque UTF-8 encoded string containing the namespace.

 The level in the ReDiR tree.

 The position of the node storing this RedirServiceProvider record
 at the current level in the ReDiR tree.

 The length of the rest of the Resource Record.

 An extension value. The RedirServiceProvider Resource Record can
 be extended to include for instance service or service provider
 specific information.

4.2. Selecting the Starting Level

 Before registering as a service provider or performing a service
 lookup, a peer needs to determine the starting level Lstart for the
 registration or lookup operation in the ReDiR tree. It is
 RECOMMENDED that Lstart is set to 2. In subsequent registrations,
 Lstart MAY, as an optimization, be set to the lowest level at which a
 registration operation has last completed.

 In the case of subsequent service lookups, nodes MAY, as an
 optimization, record the levels at which the last 16 service lookups
 completed and take Lstart to be the mode of those depths.

4.3. Service Provider Registration

 A node MUST use the following procedure to register as a service
 provider in the RELOAD Overlay Instance:

 1. A node n with Node-ID n.id wishing to register as a service
 provider starts from a starting level Lstart (see Section 4.2 for
 the details on selecting the starting level). Therefore, node n
 sets the current level to level=Lstart.

Maenpaa & Camarillo Expires February 06, 2014 [Page 8]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 2. Node n MUST send a RELOAD Fetch request to fetch the contents of
 the tree node responsible for I(level,n.id). An interval I(l,k)
 is the interval at level l in the ReDiR tree that includes key k.
 The fetch MUST be a wildcard fetch.

 3. Node n MUST send a RELOAD Store request to add its
 RedirServiceProvider entry to the dictionary stored in the tree
 node responsible for I(level,n.id). Note that node n always
 stores its RedirServiceProvider entry, regardless of the contents
 of the dictionary.

 4. If node n's Node-ID (n.id) is the lowest or highest Node-ID
 stored in the tree node responsible for I(Lstart,n.id), node n
 MUST reduce the current level by one (i.e., set level=level-1)
 and continue up the ReDiR tree towards the root level (level 0),
 repeating the steps 2 and 3 above. Node n MUST continue in this
 way until it reaches either the root of the tree or a level at
 which n.id is not the lowest or highest Node-ID in the interval
 I(level,n.id).

 5. Node n MUST also perform a downward walk in the ReDiR tree,
 during which it goes through the tree nodes responsible for
 intervals I(Lstart,n.id), I(Lstart+1,n.id), I(Lstart+2,n.id),
 etc. At each step, node n MUST fetch the responsible tree node,
 and store its RedirServiceProvider record in that tree node if
 n.id is the lowest or highest Node-ID in its interval. Node n
 MUST end this downward walk as soon as it reaches a level l at
 which it is the only service provider in its interval I(l,n.id).

 Note that above, when we refer to 'the tree node responsible for
 I(l,k)', we mean the entire tree node (that is, all the intervals
 within the tree node) responsible for interval I(l,k). In contrast,
 I(l,k) refers to a specific interval within a tree node.

4.4. Refreshing Registrations

 All state in the ReDiR tree is soft. Therefore, a service provider
 needs to periodically repeat the registration process to refresh its
 RedirServiceProvider Resource Record. If a record expires, it MUST
 be dropped from the dictionary by the peer storing the tree node.
 Deciding an appropriate lifetime for the RedirServiceProvider
 Resource Records is up to each service provider. Every service
 provider MUST repeat the entire registration process periodically
 until it leaves the RELOAD Overlay Instance.

Maenpaa & Camarillo Expires February 06, 2014 [Page 9]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 Note that no new mechanisms are needed to keep track of the remaining
 lifetime of RedirServiceProvider records. The 'storage_time' and
 'lifetime' fields of RELOAD's StoredData structure can be used for
 this purpose in the usual way.

4.5. Service Lookups

 The purpose of a service lookup for identifier k in namespace ns is
 to find the node that is a part of ns and whose identifier most
 immediately follows (i.e., is the closest successor of) the
 identifier k.

 A service lookup operation resembles the service registration
 operation described in Section 4.3. Service lookups start from a
 given starting level level=Lstart in the ReDiR tree (see Section 4.2
 for the details on selecting the starting level). At each step, a
 node n wishing to discover a service provider MUST fetch the tree
 node responsible for the interval I(level,n.id) that encloses the
 search key n.id at the current level using a RELOAD Fetch request.
 Having fetched the tree node, node n MUST determine the next action
 to carry out as follows:

 1. If there is no successor of node n present in the just fetched
 ReDiR tree node (note: within the entire tree and not only within
 the current interval) responsible for I(level,n.id), then the
 successor of node n must be present in a larger segment of the
 identifier space (i.e., further up in the ReDiR tree where each
 interval and tree node covers a larger range of the identifier
 space). Therefore, node n MUST reduce the current level by one
 to level=level-1 and carry out a new Fetch operation for the tree
 node responsible for n.id at that level. The fetched tree node
 is then analyzed and the next action determined by checking
 conditions 1-3.

 2. If n.id is neither the lowest nor the highest Node-ID within the
 interval (note: within the interval, not within the entire tree
 node) I(level,n.id), n MUST next check the tree node responsible
 for n.id at the next level down the tree. Thus, node n MUST
 increase the level by one to level=level+1 and carry out a new
 Fetch operation at that level. The fetched tree node is then
 analyzed and the next action determined by checking conditions
 1-3.

 3. If neither of the conditions above holds, meaning that there is a
 successor s of n.id present in the just fetched ReDiR tree node
 and n.id is the highest or lowest Node-ID in its interval, the
 service lookup has finished successfully and s must be the
 closest successor of n.id in the ReDiR tree.

Maenpaa & Camarillo Expires February 06, 2014 [Page 10]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 Note that above, when we refer to 'the tree node responsible for
 interval I(l,k)', we mean the entire tree node (that is, all the
 intervals within the tree node) responsible for interval I(l,k). In
 contrast, I(l,k) refers to a specific interval within a tree node.

 Note also that there may be some cases in which no successor can be
 found from the ReDiR tree. An example is a situation in which all of
 the service providers stored in the ReDiR tree have a Node-ID smaller
 than identifier k. In this case, the upward walk of the service
 lookup will reach the root of the tree without encountering a
 successor. An appropriate strategy in this case is to pick one of
 the RedirServiceProvider entries stored in the dictionary of the root
 node at random.

 Since RedirServiceProvider records are expiring and registrations are
 being refreshed periodically, there can be certain rare situations in
 which a service lookup may fail even if there is a valid successor
 present in the ReDiR tree. An example is a case in which a ReDiR
 tree node is fetched just after a RedirServiceProvider entry of the
 only successor of k present in the tree node has expired and just
 before a Store request that has been sent to refresh the entry
 reaches the peer storing the tree node. In this rather unlikely
 scenario, the successor that should have been present in the tree
 node is temporarily missing. Thus, the service lookup will fail and
 needs to be carried out again.

 To recover from the kinds of situations described above, a ReDiR
 implementation MAY choose to use the optimization described next.
 The ReDiR implementation MAY implement a local temporary cache that
 is maintained for the duration of a service lookup operation in a
 RELOAD node. The temporary cache is used to store all
 RedirServiceProvider entries that have been fetched during the upward
 and downward walks of a service lookup operation. Should it happen
 that a service lookup operation fails due to the downward walk
 reaching a level that does not contain a successor, the cache is
 searched for successors of the search key. If there are successors
 present in the cache, the closest one of them is selected as the
 service provider.

4.6. Removing Registrations

 Before leaving the RELOAD Overlay Instance, a service provider MUST
 remove the RedirServiceProvider records it has stored by storing
 exists=False values in their place, as described in
 [I-D.ietf-p2psip-base].

5. Access Control Rules

Maenpaa & Camarillo Expires February 06, 2014 [Page 11]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 As specified in RELOAD base [I-D.ietf-p2psip-base], every kind which
 is storable in an overlay must be associated with an access control
 policy. This policy defines whether a request from a given node to
 operate on a given value should succeed or fail. Usages can define
 any access control rules they choose, including publicly writable
 values.

 ReDiR requires an access control policy that allows multiple nodes in
 the overlay read and write access to the ReDiR tree nodes stored in
 the overlay. Therefore, none of the access control policies
 specified in RELOAD base [I-D.ietf-p2psip-base] is sufficient.

 This document defines a new access control policy, called NODE-ID-
 MATCH. In this policy, a given value MUST be written and overwritten
 only if the the request is signed with a key associated with a
 certificate whose Node-ID is equal to the dictionary key. In
 addition, provided that exists=TRUE, the Node-ID MUST belong to one
 of the intervals associated with the tree node (the number of
 intervals each tree node has is determined by the branching-factor
 parameter). Finally, provided that exists=TRUE,
 H(namespace,level,node), where namespace, level, and node are taken
 from the RedirServiceProvider structure being stored, MUST be equal
 to the Resource-ID for the resource. The NODE-ID-MATCH policy may
 only be used with dictionary types.

6. REDIR Kind Definition

 This section defines the REDIR kind.

 REDIR

 The Resource Name for the REDIR Kind-ID is created by
 concatenating three pieces of information: namespace, level, and
 node number. Namespace is an opaque UTF-8 encoded string
 identifying a service, such as "turn-server". Level is an integer
 specifying a level in the ReDiR tree. Node number is an integer
 identifying a ReDiR tree node at a specific level. The data
 stored is a RedirServiceProvider structure that was defined in

Section 4.1.

 The data model for the REDIR Kind-ID is dictionary. The
 dictionary key is the Node-ID of the service provider.

 The access control policy for the REDIR kind is the NODE-ID-MATCH
 policy that was defined in Section 5.

7. Examples

Maenpaa & Camarillo Expires February 06, 2014 [Page 12]

Internet-Draft Service Discovery Usage for RELOAD August 2013

7.1. Service Registration

 Figure 4 shows an example of a ReDiR tree containing information
 about four different service providers whose Node-IDs are 2, 3, 4,
 and 7. In the example, numBitsInNodeID=4. Initially, the ReDiR tree
 is empty; Figure 4 shows the state of the tree at the point when all
 the service providers have registered.

 Level 0 ____2_3___4_____7_|__________________
 | |
 Level 1 ____2_3_|_4_____7 ________|________
 | | | |
 Level 2 ___|2_3 4__|__7 ___|___ ___|___
 | | | | | | | |
 Level 3 _|_ _|3 _|_ _|_ _|_ _|_ _|_ _|_

 Figure 4: Example of a ReDiR tree

 First, peer 2 whose Node-ID is 2 joins the namespace. Since this is
 the first registration peer 2 performs, peer 2 sets the starting
 level Lstart to 2, as was described in Section 4.2. Also all other
 peers in this example will start from level 2. First, peer 2 fetches
 the contents of the tree node associated with interval I(2,2) from
 the RELOAD Overlay Instance. This tree node is the first tree node
 from the left at Level 2 since key 2 is associated with the second
 interval of the first tree node. Peer 2 also stores its
 RedirServiceProvider record in that tree node. Since peer 2's Node-
 ID is the only Node-ID stored in the tree node (i.e., peer 2's Node-
 ID fulfills the condition in Section 4.3 that it is the numerically
 lowest or highest among the keys stored in the node), peer 2
 continues up the tree. In fact, peer 2 continues up in the tree all
 the way to the root inserting its own Node-ID in all levels since the
 tree is empty (which means that peer 2's Node-ID always fulfills the
 condition that it is the numerically lowest or highest Node-ID in the
 interval I(level, 2) during the upward walk). As described in

Section 4.3, peer 2 also walks down the tree. The downward walk peer
 2 does ends at level 2 since peer 2 is the only node in its interval
 at that level.

 The next peer to join the namespace is peer 3, whose Node-ID is 3.
 Peer 3 starts from level 2. At that level, peer 3 stores its
 RedirServiceProvider entry in the same interval I(2,3) that already
 contains the RedirServiceProvider entry of peer 2. Interval I(2,3),
 that is, the interval at Level 2 enclosing key 3, is associated with
 the right hand side interval of the first tree node. Since peer 3
 has the numerically highest Node-ID in the tree node associated with
 I(2,3), peer 3 continues up the tree. Peer 3 stores its

Maenpaa & Camarillo Expires February 06, 2014 [Page 13]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 RedirServiceProvider record also at levels 1 and 0 since its Node-ID
 is numerically highest among the Node-IDs stored in the intervals to
 which its own Node-ID belongs. Peer 3 also does a downward walk
 which starts from level 2 (i.e., the starting level). Since peer 3
 is not the only node in interval I(2,3), it continues down the tree
 to level 3. The downward walk ends at this level since peer 3 is the
 only service provider in the interval I(3,3).

 The third peer to join the namespace is peer 7, whose Node-ID is 7.
 Like the two earlier peers, also peer 7 starts from level 2 because
 this is the first registration it performs. Peer 7 stores its
 RedirServiceProvider record at level 2. At level 1, peer 7 has the
 numerically highest (and lowest) Node-ID in its interval I(1,7)
 (because it is the only node in interval I(1,7); peers 2 and 3 are
 stored in the same tree node but in a different interval) and
 therefore it stores its Node-ID in the tree node associated with that
 interval. Peer 7 also has the numerically highest Node-ID in the
 interval I(0,7) associated with its Node-ID at level 0. Finally,
 peer 7 performs a downward walk, which ends at level 2 because peer 7
 is the only node in its interval at that level.

 The final peer to join the ReDiR tree is peer 4, whose Node-ID is 4.
 Peer 4 starts by storing its RedirServiceProvider record at level 2.
 Since it has the numerically lowest Node-ID in the tree node
 associated with interval I(2,4), it continues up in the tree to level
 1. At level 1, peer 4 stores its record in the tree node associated
 with interval I(1,4) because it has the numerically lowest Node-ID in
 that interval. Next, peer 4 continues to the root level, at which it
 stores its RedirServiceProvider record and finishes the upward walk
 since the root level was reached. Peer 4 also does a downward walk
 starting from level 2. The downward walk stops at level 2 because
 peer 4 is the only peer in the interval I(2,4).

7.2. Service Lookup

 This subsection gives an example of peer 5 whose Node-ID is 5
 performing a service lookup operation in the ReDiR tree shown in
 Figure 4. This is the first service lookup peer 5 carries out and
 thus the service lookup starts from the default starting level 2. As
 the first action, peer 5 fetches the tree node corresponding to the
 interval I(2,5) from the starting level. This interval maps to the
 second tree node from the left at level 2 since that tree node is
 responsible for the interval (third interval from left) to which
 Node-ID 5 falls at level 2. Having fetched the tree node, peer 5
 checks its contents. First, there is a successor, peer 7, present in
 the tree node. Therefore, condition 1 of Section 4.5 is false and
 there is no need to perform an upward walk. Second, Node-ID 5 is the
 highest Node-ID in its interval, so condition 2 of Section 4.5 is

Maenpaa & Camarillo Expires February 06, 2014 [Page 14]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 also false and there is no need to perform a downward walk. Thus,
 the service lookup finishes at level 2 since Node-ID 7 is the closest
 successor of peer 5.

 Note that the service lookup procedure would be slightly different if
 peer 5 used level 3 as the starting level. Peer 5 might use this
 starting level for instance if it has already carried out service
 lookups in the past and follows the heuristic in Section 4.2 to
 select the starting level. In this case, peer 5's first action is to
 fetch the tree node at level 3 that is responsible for I(3,5). Thus,
 peer 5 fetches the third tree node from the left. Since this tree
 node is empty, peer 5 decreases the current level by one to 2 and
 thus continues up in the tree. The next action peer 5 performs is
 identical to the single action in the previous example of fetching
 the node associated with I(2,5) from level 2. Thus, the service
 lookup finishes at level 2.

8. Overlay Configuration Document Extension

 This document extends the RELOAD overlay configuration document by
 adding a new element "branching-factor" inside the new "REDIR" kind
 element:

 redir:branching-factor: The branching factor of the ReDir tree. The
 default value is 10.

 This new element is formally defined as follows:

 namespace redir = "urn:ietf:params:xml:ns:p2p:service-discovery"

 parameter &= element redir:branching-factor { xsd:unsignedInt }

 The 'redir' namespace is added into the <mandatory-extension> element
 in the overlay configuration file.

9. Security Considerations

 There are no new security considerations introduced in this document.
 The security considerations of RELOAD [I-D.ietf-p2psip-base] apply.

10. IANA Considerations

10.1. Access Control Policies

 This document introduces one additional access control policy to the
 "RELOAD Access Control Policy" Registry:

Maenpaa & Camarillo Expires February 06, 2014 [Page 15]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 NODE-ID-MATCH

 This access control policy was described in Section 5.

10.2. Data Kind-ID

 This document introduces one additional data Kind-ID to the "RELOAD
 Data Kind-ID" Registry:

 +--------------+------------+----------+
 | Kind | Kind-ID | RFC |
 +--------------+------------+----------+
 | REDIR | 104 | RFC-AAAA |
 +--------------+------------+----------+

 This Kind-ID was defined in Section 6.

 Note to RFC Editor: please replace AAAA with the RFC number for this
 specification.

10.3. ReDiR Namespaces

 IANA SHALL create a "ReDiR Namespaces" Registry. Entries in this
 registry are strings denoting ReDiR namespace values. The initial
 contents of this registry are:

 +----------------+----------+
 | Namespace | RFC |
 +----------------+----------+
 | turn-server | RFC-AAAA |
 +----------------+----------+

 The namespace 'turn-server' is used by nodes that wish to register as
 providers of a TURN relay service in the RELOAD overlay and by nodes
 that wish to discover providers of a TURN relay service from the
 RELOAD overlay.

 Note to RFC Editor: please replace AAAA with the RFC number for this
 specification.

11. Acknowledgments

Maenpaa & Camarillo Expires February 06, 2014 [Page 16]

Internet-Draft Service Discovery Usage for RELOAD August 2013

 The authors would like to thank Marc Petit-Huguenin and Joscha
 Schneider for their comments on the draft.

12. References

12.1. Normative References

 [I-D.ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-26 (work in
 progress), February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels ", BCP 14, RFC 2119, March 1997.

12.2. Informative References

 [I-D.ietf-p2psip-concepts]
 Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",

draft-ietf-p2psip-concepts-05 (work in progress), July
 2013.

 [Redir] Rhea, S., Godfrey, P., Karp, B., Kubiatowicz, J.,
 Ratnasamy, S., Shenker, S., Stoica, I., and H. Yu, "Open
 DHT: A Public DHT Service and Its Uses", October 2005.

Authors' Addresses

 Jouni Maenpaa
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: Jouni.Maenpaa@ericsson.com

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: Gonzalo.Camarillo@ericsson.com

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-26
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-concepts-05

Maenpaa & Camarillo Expires February 06, 2014 [Page 17]

