
PANA Working Group V. Fajardo, Ed.
Internet-Draft Y. Ohba
Expires: April 3, 2008 TARI
 R. Lopez
 Univ. of Murcia
 October 1, 2007

State Machines for Protocol for Carrying Authentication for Network
Access (PANA)

draft-ietf-pana-statemachine-06

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 3, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Fajardo, et al. Expires April 3, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft PANA State Machines October 2007

Abstract

 This document defines the conceptual state machines for the Protocol
 for Carrying Authentication for Network Access (PANA). The state
 machines consist of the PANA Client (PaC) state machine and the PANA
 Authentication Agent (PAA) state machine. The two state machines
 show how PANA can interface with the EAP state machines. The state
 machines and associated model are informative only. Implementations
 may achieve the same results using different methods.

Fajardo, et al. Expires April 3, 2008 [Page 2]

Internet-Draft PANA State Machines October 2007

Table of Contents

1. Introduction . 4
2. Interface Between PANA and EAP 5
3. Document Authority . 7
4. Notations . 8
5. Common Rules . 10
5.1. Common Procedures . 10
5.2. Common Variables . 12
5.3. Constants . 14
5.4. Common Message Initialization Rules 14
5.5. Common Retransmition Rules 14
5.6. Common State Transitions 14

6. PaC State Machine . 16
6.1. Interface between PaC and EAP Peer 16
6.1.1. Delivering EAP Messages from PaC to EAP Peer 16
6.1.2. Delivering EAP Messages from EAP Peer to PaC 16
6.1.3. EAP Restart Notification from PaC to EAP Peer 16

 6.1.4. EAP Authentication Result Notification from EAP
 Peer to PaC . 17
 6.1.5. Alternate Failure Notification from PaC to EAP Peer . 17

6.2. Constants . 17
6.3. Variables . 17
6.4. Procedures . 18
6.5. PaC State Transition Table 18

7. PAA State Machine . 24
7.1. Interface between PAA and EAP Authenticator 24

 7.1.1. EAP Restart Notification from PAA to EAP
 Authenticator . 24
 7.1.2. Delivering EAP Responses from PAA to EAP
 Authenticator . 24
 7.1.3. Delivering EAP Messages from EAP Authenticator to
 PAA . 24
 7.1.4. EAP Authentication Result Notification from EAP
 Authenticator to PAA 24

7.2. Variables . 25
7.3. Procedures . 26
7.4. PAA State Transition Table 26

8. Implementation Considerations 31
8.1. PAA and PaC Interface to Service Management Entity 31

9. Security Considerations 32
10. IANA Considerations . 33
11. Acknowledgments . 34
12. References . 35
12.1. Normative References 35
12.2. Informative References 35

 Authors' Addresses . 36
 Intellectual Property and Copyright Statements 37

Fajardo, et al. Expires April 3, 2008 [Page 3]

Internet-Draft PANA State Machines October 2007

1. Introduction

 This document defines the state machines for Protocol Carrying
 Authentication for Network Access (PANA) [I-D.ietf-pana-pana]. There
 are state machines for the PANA client (PaC) and for the PANA
 Authentication Agent (PAA). Each state machine is specified through
 a set of variables, procedures and a state transition table.

 A PANA protocol execution consists of several exchanges to carry
 authentication information. Specifically, EAP PDUs are transported
 inside PANA PDUs between PaC and PAA, that is PANA represents a lower
 layer for EAP protocol. Thus, a PANA state machine bases its
 execution on an EAP state machine execution and vice versa. Thus
 this document also shows for each of PaC and PAA an interface between
 an EAP state machine and a PANA state machine and how this interface
 allows to exchange information between them. Thanks to this
 interface, a PANA state machine can be informed about several events
 generated in an EAP state machine and make its execution conditional
 to its events.

 The details of EAP state machines are out of the scope of this
 document. Additional information can be found in [RFC4137].
 Nevertheless PANA state machines presented here have been coordinated
 with state machines shown by [RFC4137].

 This document, apart from defining PaC and PAA state machines and
 their interfaces to EAP state machines (running on top of PANA),
 provides some implementation considerations, taking into account that
 it is not a specification but an implementation guideline.

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 4]

Internet-Draft PANA State Machines October 2007

2. Interface Between PANA and EAP

 PANA carries EAP messages exchanged between an EAP peer and an EAP
 authenticator (see Figure 1). Thus a PANA state machine interacts
 with an EAP state machine.

 Two state machines are defined in this document : the PaC state
 machine (see Section 6) and the PAA state machine (see Section 7).
 The definition of each state machine consists of a set of variables,
 procedures and a state transition table. A subset of these variables
 and procedures defines the interface between a PANA state machine and
 an EAP state machine and the state transition table defines the PANA
 state machine behavior based on results obtained through them.

 On the one hand, the PaC state machine interacts with an EAP peer
 state machine in order to carry out the PANA protocol on the PaC
 side. On the other hand, the PAA state machine interacts with an EAP
 authenticator state machine to run the PANA protocol on the PAA side.

 Peer |EAP Auth
 EAP <---------|------------> EAP
 ^ | | ^ |
 | | | EAP-Message | | EAP-Message
 EAP-Message | |EAP-Message | | |
 | v |PANA | v
 PaC <---------|------------> PAA

 Figure 1: Interface between PANA and EAP

 Thus two interfaces are needed between PANA state machines and EAP
 state machines, namely:

 o Interface between the PaC state machine and the EAP peer state
 machine

 o Interface between the PAA state machine and the EAP authenticator
 state machine

 In general, the PaC and PAA state machines present EAP messages to
 the EAP peer and authenticator state machines through the interface,
 respectively. The EAP peer and authenticator state machines process
 these messages and sends EAP messages through the PaC and PAA state
 machines that is responsible for actually transmitting this message,
 respectively.

 For example, [RFC4137] specifies four interfaces to lower layers: (i)
 an interface between the EAP peer state machine and a lower layer,
 (ii) an interface between the EAP standalone authenticator state

https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 5]

Internet-Draft PANA State Machines October 2007

 machine and a lower layer, (iii) an interface between the EAP full
 authenticator state machine and a lower layer and (iv) an interface
 between the EAP backend authenticator state machine and a lower
 layer. In this document, the PANA protocol is the lower layer of EAP
 and only the first three interfaces are of interest to PANA. The
 second and third interfaces are the same. In this regard, the EAP
 standalone authenticator or the EAP full authenticator and its state
 machine in [RFC4137] are referred to as the EAP authenticator and the
 EAP authenticator state machine, respectively, in this document. If
 an EAP peer and an EAP authenticator follow the state machines
 defined in [RFC4137], the interfaces between PANA and EAP could be
 based on that document. Detailed definition of interfaces between
 PANA and EAP are described in the subsequent sections.

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 6]

Internet-Draft PANA State Machines October 2007

3. Document Authority

 When a discrepancy occurs between any part of this document and any
 of the related documents ([I-D.ietf-pana-pana],
 [I-D.ietf-pana-mobopts], [RFC4137] the latter (the other documents)
 are considered authoritative and takes precedence.

Fajardo, et al. Expires April 3, 2008 [Page 7]

https://datatracker.ietf.org/doc/html/rfc4137

Internet-Draft PANA State Machines October 2007

4. Notations

 The following state transition tables are completed mostly based on
 the conventions specified in [RFC4137]. The complete text is
 described below.

 State transition tables are used to represent the operation of the
 protocol by a number of cooperating state machines each comprising a
 group of connected, mutually exclusive states. Only one state of
 each machine can be active at any given time.

 All permissible transitions from a given state to other states and
 associated actions performed when the transitions occur are
 represented by using triplets of (exit condition, exit action, exit
 state). All conditions are expressions that evaluate to TRUE or
 FALSE; if a condition evaluates to TRUE, then the condition is met.
 A state "ANY" is a wildcard state that matches the current state in
 each state machine. The exit conditions of a wildcard state are
 evaluated after all other exit conditions of specific to the current
 state are met.

 On exit from a state, the exit actions defined for the state and the
 exit condition are executed exactly once, in the order that they
 appear on the page. (Note that the procedures defined in [RFC4137]
 are executed on entry to a state, which is one major difference from
 this document.) Each exit action is deemed to be atomic; i.e.,
 execution of an exit action completes before the next sequential exit
 action starts to execute. No exit action execute outside of a state
 block. The exit actions in only one state block execute at a time
 even if the conditions for execution of state blocks in different
 state machines are satisfied. All exit actions in an executing state
 block complete execution before the transition to and execution of
 any other state blocks. The execution of any state block appears to
 be atomic with respect to the execution of any other state block and
 the transition condition to that state from the previous state is
 TRUE when execution commences. The order of execution of state
 blocks in different state machines is undefined except as constrained
 by their transition conditions. A variable that is set to a
 particular value in a state block retains this value until a
 subsequent state block executes an exit action that modifies the
 value.

 On completion of the transition from the previous state to the
 current state, all exit conditions occurring during the current state
 (including exit conditions defined for the wildcard state) are
 evaluated until an exit condition for that state is met.

 Any event variable is set to TRUE when the corresponding event occurs

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 8]

Internet-Draft PANA State Machines October 2007

 and set to FALSE immediately after completion of the action
 associated with the current state and the event.

 The interpretation of the special symbols and operators used is
 defined in [RFC4137].

Fajardo, et al. Expires April 3, 2008 [Page 9]

https://datatracker.ietf.org/doc/html/rfc4137

Internet-Draft PANA State Machines October 2007

5. Common Rules

 There are following procedures, variables, message initializing rules
 and state transitions that are common to both the PaC and PAA state
 machines.

 Throughout this document, the character string "PANA_MESSAGE_NAME"
 matches any one of the abbreviated PANA message names, i.e., "PCI",
 "PAR", "PAN", "PTR", "PTA", "PNR", "PNA".

5.1. Common Procedures

 void None()

 A null procedure, i.e., nothing is done.

 void Disconnect()

 A procedure to delete the PANA session as well as the
 corresponding EAP session and authorization state.

 boolean Authorize()

 A procedure to create or modify authorization state. It returns
 TRUE if authorization is successful. Otherwise, it returns FALSE.
 It is assumed that Authorize() procedure of PaC state machine
 always returns TRUE. In the case that a non-key-generating EAP
 method is used but a PANA SA is required after successful
 authentication (generate_pana_sa() returns TRUE), Authorize()
 procedure must return FALSE.

 void Tx:PANA_MESSAGE_NAME[flag](AVPs)

 A procedure to send a PANA message to its peering PANA entity.
 The "flag" argment contains a flag (e.g., Tx:PAR[C]) to be set to
 the message, except for 'R' (Request) flag. The "AVPs" contains a
 list of names of optional AVPs to be inserted in the message,
 except for AUTH AVP.

 This procedure includes the following action before actual
 transmission:

Fajardo, et al. Expires April 3, 2008 [Page 10]

Internet-Draft PANA State Machines October 2007

 if (flag==S)
 PANA_MESSAGE_NAME.S_flag=Set;
 if (flag==C)
 PANA_MESSAGE_NAME.C_flag=Set;
 if (flag==A)
 PANA_MESSAGE_NAME.A_flag=Set;
 if (flag==P)
 PANA_MESSAGE_NAME.P_flag=Set;
 PANA_MESSAGE_NAME.insert_avp(AVPs);
 if (key_availble())
 PANA_MESSAGE_NANE.insert_avp("AUTH");

 void TxEAP()

 A procedure to send an EAP message to the EAP state machine it
 interfaces to.

 void RtxTimerStart()

 A procedure to start the retransmission timer, reset RTX_COUNTER
 variable to zero and set an appropriate value to RTX_MAX_NUM
 variable.

 void RtxTimerStop()

 A procedure to stop the retransmission timer.

 void SessionTimerReStart(TIMEOUT)

 A procedure to (re)start PANA session timer. TIMEOUT specifies
 the expiration time associated of the session timer. Expiration
 of TIMEOUT will trigger a SESS_TIMEOUT event.

 void SessionTimerStop()

 A procedure to stop the current PANA session timer.

 void Retransmit()

 A procedure to retransmit a PANA message and increment RTX_COUNTER
 by one(1).

 void EAP_Restart()

 A procedure to (re)start an EAP conversation resulting in the re-
 initialization of an existing EAP session.

Fajardo, et al. Expires April 3, 2008 [Page 11]

Internet-Draft PANA State Machines October 2007

 void PANA_MESSAGE_NAME.insert_avp("AVP_NAME1", "AVP_NAME2",...)

 A procedure to insert AVPs for each specified AVP name in the list
 of AVP names in the PANA message. When an AVP name ends with "*",
 zero, one or more AVPs are inserted, otherwise one AVP is
 inserted.

 boolean PANA_MESSAGE_NAME.exist_avp("AVP_NAME")

 A procedure that checks whether an AVP of the specified AVP name
 exists in the specified PANA message and returns TRUE if the
 specified AVP is found, otherwise returns FALSE.

 boolean generate_pana_sa()

 A procedure to check whether the EAP method being used generates
 keys and that a PANA SA will be established on successful
 authentication. For the PaC, the procedure is also used to check
 and match the PRF and Integrity algorithm AVPs advertised by the
 PAA in PAR[S] message. For the PAA, it is used to indicate
 whether a PRF and Integrity algorithm AVPs will be sent in the
 PAR[S]. This procedure will return true if a PANA SA will be
 generated. Otherwise, it returns FALSE.

 boolean key_available()

 A procedure to check whether the PANA session has a PANA_AUTH_KEY.
 If the state machine already has a PANA_AUTH_KEY, it returns TRUE.
 If the state machine does not have a PANA_AUTH_KEY, it tries to
 retrieve a AAA-Key from the EAP entity. If a AAA-Key is
 retrieved, it computes a PANA_AUTH_KEY from the AAA-Key and
 returns TRUE. Otherwise, it returns FALSE.

5.2. Common Variables

 PAR.RESULT_CODE

 This variable contains the Result-Code AVP value in the PANA-Auth-
 Request message in process. When this variable carries
 PANA_SUCCESS it is assumed that the PAR message always contains an
 EAP-Payload AVP which carries an EAP-Success message.

 NONCE_SENT

 This variable is set to TRUE to indicate that a Nonce-AVP has
 already been sent. Otherwise it is set to FALSE.

Fajardo, et al. Expires April 3, 2008 [Page 12]

Internet-Draft PANA State Machines October 2007

 RTX_COUNTER

 This variable contains the current number of retransmissions of
 the outstanding PANA message.

 Rx:PANA_MESSAGE_NAME[flag]

 This event variable is set to TRUE when the specified PANA message
 is received from its peering PANA entity. The "flag" contains a
 flag (e.g., Rx:PAR[C]), except for 'R' (Request) flag.

 RTX_TIMEOUT

 This event variable is set to TRUE when the retransmission timer
 is expired.

 REAUTH

 This event variable is set to TRUE when an initiation of re-
 authentication phase is triggered.

 TERMINATE

 This event variable is set to TRUE when initiation of PANA session
 termination is triggered.

 PANA_PING

 This event variable is set to TRUE when initiation of liveness
 test based on PANA-Notification exchange is triggered.

 SESS_TIMEOUT

 This event is variable is set to TRUE when the session timer has
 expired.

 LIFETIME_SESS_TIMEOUT

 Configurable value used by the PaC and PAA to close or disconnect
 an established session in the access phase. This variable
 indicates the expiration of the session and is set to the value of
 Session-Lifetime AVP if present in the last PANA-Auth-Request
 message in the case of the PaC. Otherwise, it is assumed that the
 value is infinite and therefore has no expiration. Expiration of
 LIFETIME_SESS_TIMEOUT will cause the event variable SESS_TIMEOUT
 to be set.

Fajardo, et al. Expires April 3, 2008 [Page 13]

Internet-Draft PANA State Machines October 2007

 ANY

 This event variable is set to TRUE when any event occurs.

5.3. Constants

 RTX_MAX_NUM

 Configurable maximum for how many retransmissions should be
 attempted before aborting.

5.4. Common Message Initialization Rules

 When a message is prepared for sending, it is initialized as follows:

 o For a request message, R-flag of the header is set. Otherwise,
 R-flag is not set.

 o Other message header flags are not set. They are set explicitly
 by specific state machine actions.

 o AVPs that are mandatory included in a message are inserted with
 appropriate values set.

5.5. Common Retransmition Rules

 The state machines defined in this document assumes that the PaC and
 the PAA caches the last transmitted answer message. This scheme is
 described in Sec 5.2 of [I-D.ietf-pana-pana]. When the PaC or PAA
 receives a re-transmitted or duplicate request, it would be able to
 re-send the corresponding answer without any aid from the EAP layer.
 However, to simplify the state machine description, this caching
 scheme is omitted in the state machines below. In the case that
 there is not corresponding answer to a re-transmitted request, the
 request will be handled by the corresponding statemachine.

5.6. Common State Transitions

 The following transitions can occur at any state with exemptions
 explicitly noted.

Fajardo, et al. Expires April 3, 2008 [Page 14]

Internet-Draft PANA State Machines October 2007

 State: ANY

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (Re-transmissions)- - - - - - - - - -
 RTX_TIMEOUT && Retransmit(); (no change)
 RTX_COUNTER<
 RTX_MAX_NUM
 -
 - - - - - - - (Reach maximum number of transmissions)- - - - - -
 (RTX_TIMEOUT && Disconnect(); CLOSED
 RTX_COUNTER>=
 RTX_MAX_NUM) ||
 SESS_TIMEOUT
 -

 State: ANY except INITIAL

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (liveness test initiated by peer)- - - - - -
 Rx:PNR[P] Tx:PNA[P](); (no change)

 The following transitions can occur on any exit condition within the
 specified state.

 State: CLOSED

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - -(Catch all event on closed state) - - - - - - - -
 ANY None(); CLOSED
 -

Fajardo, et al. Expires April 3, 2008 [Page 15]

Internet-Draft PANA State Machines October 2007

6. PaC State Machine

6.1. Interface between PaC and EAP Peer

 This interface defines the interactions between a PaC and an EAP
 peer. The interface serves as a mechanism to deliver EAP messages
 for the EAP peer. It allows the EAP peer to receive EAP requests and
 send EAP responses via the PaC. It also provides a mechanism to
 notify the EAP peer of PaC events and a mechanism to receive
 notification of EAP peer events. The EAP message delivery mechanism
 as well as the event notification mechanism in this interface have
 direct correlation with the PaC state transition table entries.
 These message delivery and event notifications mechanisms occur only
 within the context of their associated states or exit actions.

6.1.1. Delivering EAP Messages from PaC to EAP Peer

 TxEAP() procedure in the PaC state machine serves as the mechanism to
 deliver EAP messages contained in PANA-Auth-Request messages to the
 EAP peer. This procedure is enabled only after an EAP restart event
 is notified to the EAP peer and before any event resulting in a
 termination of the EAP peer session. In the case where the EAP peer
 follows the EAP peer state machine defined in [RFC4137], TxEAP()
 procedure sets eapReq variable of the EAP peer state machine and puts
 the EAP request in eapReqData variable of the EAP peer state machine.

6.1.2. Delivering EAP Messages from EAP Peer to PaC

 An EAP message is delivered from the EAP peer to the PaC via
 EAP_RESPONSE event variable. The event variable is set when the EAP
 peer passes the EAP message to its lower-layer. In the case where
 the EAP peer follows the EAP peer state machine defined in [RFC4137],
 EAP_RESPONSE event variable refers to eapResp variable of the EAP
 peer state machine and the EAP message is contained in eapRespData
 variable of the EAP peer state machine.

6.1.3. EAP Restart Notification from PaC to EAP Peer

 The EAP peer state machine defined in [RFC4137] has an initialization
 procedure before receiving an EAP message. To initialize the EAP
 state machine, the PaC state machine defines an event notification
 mechanism to send an EAP (re)start event to the EAP peer. The event
 notification is done via EAP_Restart() procedure in the
 initialization action of the PaC state machine.

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 16]

Internet-Draft PANA State Machines October 2007

6.1.4. EAP Authentication Result Notification from EAP Peer to PaC

 In order for the EAP peer to notify the PaC of an EAP authentication
 result, EAP_SUCCESS and EAP_FAILURE event variables are defined. In
 the case where the EAP peer follows the EAP peer state machine
 defined in [RFC4137], EAP_SUCCESS and EAP_FAILURE event variables
 refer to eapSuccess and eapFail variables of the EAP peer state
 machine, respectively. In this case, if EAP_SUCCESS event variable
 is set to TRUE and a AAA-Key is generated by the EAP authentication
 method in use, eapKeyAvailable variable is set to TRUE and eapKeyData
 variable contains the AAA-Key. Note that EAP_SUCCESS and EAP_FAILURE
 event variables may be set to TRUE even before the PaC receives a PAR
 with a 'Complete' flag set from the PAA.

6.1.5. Alternate Failure Notification from PaC to EAP Peer

 alt_reject() procedure in the PaC state machine serves as the
 mechanism to deliver an authentication failure event to the EAP peer
 without accompanying an EAP message. In the case where the EAP peer
 follows the EAP peer state machine defined in [RFC4137], alt_reject()
 procedure sets altReject variable of the EAP peer state machine.
 Note that the EAP peer state machine in [RFC4137] also defines
 altAccept variable, however, it is never used in PANA in which EAP-
 Success messages are reliably delivered by the last PANA-Auth
 exchange.

6.2. Constants

 FAILED_SESS_TIMEOUT

 Configurable value that allows the PaC to determine whether a PaC
 authentication and authorization phase has stalled without an
 explicit EAP success or failure notification.

6.3. Variables

 AUTH_USER

 This event variable is set to TRUE when initiation of EAP-based
 (re-)authentication is triggered by the application.

 EAP_SUCCESS

 This event variable is set to TRUE when the EAP peer determines
 that EAP conversation completes with success.

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 17]

Internet-Draft PANA State Machines October 2007

 EAP_FAILURE

 This event variable is set to TRUE when the EAP peer determines
 that EAP conversation completes with failure.

 EAP_RESPONSE

 This event variable is set to TRUE when the EAP peer delivers an
 EAP message to the PaC. This event accompanies an EAP message
 received from the EAP peer.

 EAP_RESP_TIMEOUT

 This event variable is set to TRUE when the PaC that has passed an
 EAP message to the EAP-layer does not receive a subsequent EAP
 message from the the EAP-layer in a given period. This provides a
 time limit for certain EAP methods where user interaction maybe
 required.

6.4. Procedures

 boolean eap_piggyback()

 This procedures returns TRUE to indicate whether the next EAP
 response will be carried in the pending PAN message for
 optimization.

 void alt_reject()

 This procedure informs the EAP peer of an authentication failure
 event without accompanying an EAP message.

 void EAP_RespTimerStart()

 A procedure to start a timer to receive an EAP-Response from the
 EAP peer.

 void EAP_RespTimerStop()

 A procedure to stop a timer to receive an EAP-Response from the
 EAP peer.

6.5. PaC State Transition Table

 State: INITIAL (Initial State)

Fajardo, et al. Expires April 3, 2008 [Page 18]

Internet-Draft PANA State Machines October 2007

 Initialization Action:

 NONCE_SENT=Unset;
 RTX_COUNTER=0;
 RtxTimerStop();

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+-----------
 - - - - - - - - - - (PaC-initiated Handshake) - - - - - - - - -
 AUTH_USER Tx:PCI[](); INITIAL
 RtxTimerStart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -

 - - - - - - -(PAA-initiated Handshake, not optimized) - - - - -
 Rx:PAR[S] && EAP_Restart(); WAIT_PAA
 !PAR.exist_avp SessionTimerReStart
 ("EAP-Payload") (FAILED_SESS_TIMEOUT);
 if (generate_pana_sa())
 Tx:PAN[S]("PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]();
 -

 - - - - - - - -(PAA-initiated Handshake, optimized) - - - - - -
 Rx:PAR[S] && EAP_Restart(); INITIAL
 PAR.exist_avp TxEAP();
 ("EAP-Payload") && SessionTimerReStart
 eap_piggyback() (FAILED_SESS_TIMEOUT);

 Rx:PAR[S] && EAP_Restart(); WAIT_EAP_MSG
 PAR.exist_avp TxEAP();
 ("EAP-Payload") && SessionTimerReStart
 !eap_piggyback() (FAILED_SESS_TIMEOUT);
 if (generate_pana_sa())
 Tx:PAN[S]("PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]();

 EAP_RESPONSE if (generate_pana_sa()) WAIT_PAA
 Tx:PAN[S]("EAP-Payload",
 "PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]("EAP-Payload");

Fajardo, et al. Expires April 3, 2008 [Page 19]

Internet-Draft PANA State Machines October 2007

 -

 State: WAIT_PAA

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - - -(PAR-PAN exchange) - - - - - - - -
 Rx:PAR[] && RtxTimerStop(); WAIT_EAP_MSG
 !eap_piggyback() TxEAP();
 EAP_RespTimerStart();
 if (NONCE_SENT==Unset) {
 NONCE_SENT=Set;
 Tx:PAN[]("Nonce");
 }
 else
 Tx:PAN[]();

 Rx:PAR[] && RtxTimerStop(); WAIT_EAP_MSG
 eap_piggyback() TxEAP();
 EAP_RespTimerStart();

 Rx:PAN[] RtxTimerStop(); WAIT_PAA

 -
 - - - - - - - - - - - - - - -(PANA result) - - - - - - - - - -
 Rx:PAR[C] && TxEAP(); WAIT_EAP_RESULT
 PAR.RESULT_CODE==
 PANA_SUCCESS

 Rx:PAR[C] && if (PAR.exist_avp WAIT_EAP_RESULT_
 PAR.RESULT_CODE!= ("EAP-Payload")) CLOSE
 PANA_SUCCESS TxEAP();
 else
 alt_reject();
 -

 State: WAIT_EAP_MSG

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (Return PAN/PAR from EAP) - - - - - - - - -
 EAP_RESPONSE && EAP_RespTimerStop() WAIT_PAA
 eap_piggyback() if (NONCE_SENT==Unset) {
 Tx:PAN[]("EAP-Payload",

Fajardo, et al. Expires April 3, 2008 [Page 20]

Internet-Draft PANA State Machines October 2007

 "Nonce");
 NONCE_SENT=Set;
 }
 else
 Tx:PAN[]("EAP-Payload");

 EAP_RESPONSE && EAP_RespTimerStop() WAIT_PAA
 !eap_piggyback() Tx:PAR[]("EAP-Payload");
 RtxTimerStart();

 EAP_RESP_TIMEOUT && Tx:PAN[](); WAIT_PAA
 eap_piggyback()

 EAP_FAILURE SessionTimerStop(); CLOSED
 Disconnect();
 -

 State: WAIT_EAP_RESULT

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (EAP Result) - - - - - - - - - - - - -
 EAP_SUCCESS if (PAR.exist_avp OPEN
 ("Key-Id"))
 Tx:PAN[C]("Key-Id");
 else
 Tx:PAN[C]();
 Authorize();
 SessionTimerReStart
 (LIFETIME_SESS_TIMEOUT);

 EAP_FAILURE Tx:PAN[C](); CLOSED
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_EAP_RESULT_CLOSE

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (EAP Result) - - - - - - - - - - - - -
 EAP_SUCCESS || if (EAP_SUCCESS && CLOSED
 EAP_FAILURE PAR.exist_avp("Key-Id"))
 Tx:PAN[C]("Key-Id");

Fajardo, et al. Expires April 3, 2008 [Page 21]

Internet-Draft PANA State Machines October 2007

 else
 Tx:PAN[C]();
 SessionTimerStop();
 Disconnect();
 -

 State: OPEN

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (liveness test initiated by PaC)- - - - - -
 PANA_PING Tx:PNR[P](); WAIT_PNA
 RtxTimerStart();
 -
 - - - - - - - - - (re-authentication initiated by PaC)- - - - - -
 REAUTH NONCE_SENT=Unset; WAIT_PNA
 Tx:PNR[A]();
 RtxTimerStart();
 -
 - - - - - - - - - (re-authentication initiated by PAA)- - - - - -
 Rx:PAR[] EAP_RespTimerStart(); WAIT_EAP_MSG
 TxEAP();
 if (!eap_piggyback())
 Tx:PAN[]("Nonce");
 else
 NONCE_SENT=Unset;
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -
 - - - - - - - -(Session termination initiated by PAA) - - - - - -
 Rx:PTR[] Tx:PTA[](); CLOSED
 SessionTimerStop();
 Disconnect();
 -
 - - - - - - - -(Session termination initiated by PaC) - - - - - -
 TERMINATE Tx:PTR[](); SESS_TERM
 RtxTimerStart();
 SessionTimerStop();
 -

 State: WAIT_PNA

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------

Fajardo, et al. Expires April 3, 2008 [Page 22]

Internet-Draft PANA State Machines October 2007

 - - - - - - - - -(re-authentication initiated by PaC) - - - - -
 Rx:PNA[A] RtxTimerStop(); WAIT_PAA
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -
 - - - - - - - - -(liveness test initiated by PaC) - - - - - - -
 Rx:PNA[P] RtxTimerStop(); OPEN
 -

 State: SESS_TERM

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - -(Session termination initiated by PaC) - - - - -
 Rx:PTA[] Disconnect(); CLOSED
 -

Fajardo, et al. Expires April 3, 2008 [Page 23]

Internet-Draft PANA State Machines October 2007

7. PAA State Machine

7.1. Interface between PAA and EAP Authenticator

 The interface between a PAA and an EAP authenticator provides a
 mechanism to deliver EAP messages for the EAP authenticator as well
 as a mechanism to notify the EAP authenticator of PAA events and to
 receive notification of EAP authenticator events. These message
 delivery and event notification mechanisms occur only within context
 of their associated states or exit actions.

7.1.1. EAP Restart Notification from PAA to EAP Authenticator

 An EAP authenticator state machine defined in [RFC4137] has an
 initialization procedure before sending the first EAP request. To
 initialize the EAP state machine, the PAA state machine defines an
 event notification mechanism to send an EAP (re)start event to the
 EAP peer. The event notification is done via EAP_Restart() procedure
 in the initialization action of the PAA state machine.

7.1.2. Delivering EAP Responses from PAA to EAP Authenticator

 TxEAP() procedure in the PAA state machine serves as the mechanism to
 deliver EAP-Responses contained in PANA-Auth-Answer messages to the
 EAP authenticator. This procedure is enabled only after an EAP
 restart event is notified to the EAP authenticator and before any
 event resulting in a termination of the EAP authenticator session.
 In the case where the EAP authenticator follows the EAP authenticator
 state machines defined in [RFC4137], TxEAP() procedure sets eapResp
 variable of the EAP authenticator state machine and puts the EAP
 response in eapRespData variable of the EAP authenticator state
 machine.

7.1.3. Delivering EAP Messages from EAP Authenticator to PAA

 An EAP request is delivered from the EAP authenticator to the PAA via
 EAP_REQUEST event variable. The event variable is set when the EAP
 authenticator passes the EAP request to its lower-layer. In the case
 where the EAP authenticator follows the EAP authenticator state
 machines defined in [RFC4137], EAP_REQUEST event variable refers to
 eapReq variable of the EAP authenticator state machine and the EAP
 request is contained in eapReqData variable of the EAP authenticator
 state machine.

7.1.4. EAP Authentication Result Notification from EAP Authenticator to
 PAA

 In order for the EAP authenticator to notify the PAA of the EAP

https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 24]

Internet-Draft PANA State Machines October 2007

 authentication result, EAP_SUCCESS, EAP_FAILURE and EAP_TIMEOUT event
 variables are defined. In the case where the EAP authenticator
 follows the EAP authenticator state machines defined in [RFC4137],
 EAP_SUCCESS, EAP_FAILURE and EAP_TIMEOUT event variables refer to
 eapSuccess, eapFail and eapTimeout variables of the EAP authenticator
 state machine, respectively. In this case, if EAP_SUCCESS event
 variable is set to TRUE, an EAP-Success message is contained in
 eapReqData variable of the EAP authenticator state machine, and
 additionally, eapKeyAvailable variable is set to TRUE and eapKeyData
 variable contains a AAA-Key if the AAA-Key is generated as a result
 of successful authentication by the EAP authentication method in use.
 Similarly, if EAP_FAILURE event variable is set to TRUE, an EAP-
 Failure message is contained in eapReqData variable of the EAP
 authenticator state machine. The PAA uses EAP_SUCCESS, EAP_FAILURE
 and EAP_TIMEOUT event variables as a trigger to send a PAR message to
 the PaC.

7.2. Variables

 OPTIMIZED_INIT

 This variable indicates whether the PAA is able to piggyback an
 EAP-Request in the initial PANA-Auth-Request. Otherwise it is set
 to FALSE.

 PAC_FOUND

 This variable is set to TRUE as a result of a PAA initiated
 handshake.

 REAUTH_TIMEOUT

 This event variable is set to TRUE to indicate that the PAA
 initiates a re-authentication with the PaC. The re-authentication
 timeout should be set to a value less than the session timeout
 carried in the Session-Lifetime AVP if present.

 EAP_SUCCESS

 This event variable is set to TRUE when EAP conversation completes
 with success. This event accompanies an EAP- Success message
 passed from the EAP authenticator.

 EAP_FAILURE

 This event variable is set to TRUE when EAP conversation completes
 with failure. This event accompanies an EAP- Failure message
 passed from the EAP authenticator.

https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 25]

Internet-Draft PANA State Machines October 2007

 EAP_REQUEST

 This event variable is set to TRUE when the EAP authenticator
 delivers an EAP Request to the PAA. This event accompanies an
 EAP-Request message received from the EAP authenticator.

 EAP_TIMEOUT

 This event variable is set to TRUE when EAP conversation times out
 without generating an EAP-Success or an EAP-Failure message. This
 event does not accompany any EAP message.

7.3. Procedures

 boolean new_key_available()

 A procedure to check whether the PANA session has a new
 PANA_AUTH_KEY. If the state machine already have a PANA_AUTH_KEY,
 it returns FALSE. If the state machine does not have a
 PANA_AUTH_KEY, it tries to retrieve a AAA-Key from the EAP entity.
 If a AAA-Key has been retrieved, it computes a PANA_AUTH_KEY from
 the AAA-Key and returns TRUE. Otherwise, it returns FALSE.

7.4. PAA State Transition Table

 State: INITIAL (Initial State)

 Initialization Action:

 OPTIMIZED_INIT=Set|Unset;
 NONCE_SENT=Unset;
 RTX_COUNTER=0;
 RtxTimerStop();

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - (PCI and PAA initiated PANA) - - - - - - - - -
 (Rx:PCI[] || if (OPTIMIZED_INIT == INITIAL
 PAC_FOUND) Set) {
 EAP_Restart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 }
 else {
 if (generate_pana_sa())
 Tx:PAR[S]("PRF-Algorithm",

Fajardo, et al. Expires April 3, 2008 [Page 26]

Internet-Draft PANA State Machines October 2007

 "Integrity-Algorithm");
 else
 Tx:PAR[S]();
 }

 EAP_REQUEST if (generate_pana_sa()) INITIAL
 Tx:PAR[S]("EAP-Payload",
 "PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAR[S]("EAP-Payload");
 RtxTimerStart();
 -

 - - - - - - - - - - - - - - (PAN Handling) - - - - - - - - - -
 Rx:PAN[S] && if (PAN.exist_avp WAIT_EAP_MSG
 ((OPTIMIZED_INIT == ("EAP-Payload"))
 Unset) || TxEAP();
 PAN.exist_avp else {
 ("EAP-Payload")) EAP_Restart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 }

 Rx:PAN[S] && None(); WAIT_PAN_OR_PAR
 (OPTIMIZED_INIT ==
 Set) &&
 ! PAN.exist_avp
 ("EAP-Payload")

 -

 State: WAIT_EAP_MSG

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - -(Receiving EAP-Request)- - - - - - - - -
 EAP_REQUEST if (NONCE_SENT==Unset) { WAIT_PAN_OR_PAR
 Tx:PAR[]("Nonce",
 "EAP-Payload");
 NONCE_SENT=Set;
 }
 else
 Tx:PAR[]("EAP-Payload");
 RtxTimerStart();
 -

Fajardo, et al. Expires April 3, 2008 [Page 27]

Internet-Draft PANA State Machines October 2007

 - - - - - - - - - - -(Receiving EAP-Success/Failure) - - - - -
 EAP_FAILURE PAR.RESULT_CODE = WAIT_FAIL_PAN
 PANA_AUTHENTICATION_
 REJECTED;
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();
 SessionTimerStop();

 EAP_SUCCESS && PAR.RESULT_CODE = WAIT_SUCC_PAN
 Authorize() PANA_SUCCESS;
 if (new_key_available())
 Tx:PAR[C]("EAP-Payload",
 "Key-Id");
 else
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();

 EAP_SUCCESS && PAR.RESULT_CODE = WAIT_FAIL_PAN
 !Authorize() PANA_AUTHORIZATION_
 REJECTED;
 if (new_key_available())
 Tx:PAR[C]("EAP-Payload",
 "Key-Id");
 else
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();
 -
 - - - - - (Receiving EAP-Timeout or invalid message) - - - - -
 EAP_TIMEOUT SessionTimerStop(); CLOSED
 Disconnect();
 -

 State: WAIT_SUCC_PAN

 Event/Condition Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (PAN Processing)- - - - - - - - - - -
 Rx:PAN[C] RtxTimerStop(); OPEN
 SessionTimerReStart
 (LIFETIME_SESS_TIMEOUT);
 -

 State: WAIT_FAIL_PAN

Fajardo, et al. Expires April 3, 2008 [Page 28]

Internet-Draft PANA State Machines October 2007

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - - (PAN Processing)- - - - - - - - - -
 Rx:PAN[C] RtxTimerStop(); CLOSED
 Disconnect();
 -

 State: OPEN

 Event/Condition Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - (re-authentication initiated by PaC) - - - - - -
 Rx:PNR[A] NONCE_SENT=Unset; WAIT_EAP_MSG
 EAP_Restart();
 Tx:PNA[A]();
 -
 - - - - - - - - (re-authentication initiated by PAA)- - - - - -
 REAUTH || NONCE_SENT=Unset; WAIT_EAP_MSG
 REAUTH_TIMEOUT EAP_Restart();

 -
 - - (liveness test based on PNR-PNA exchange initiated by PAA)-
 PANA_PING Tx:PNR[P](); WAIT_PNA_PING
 RtxTimerStart();
 -
 - - - - - - - - (Session termination initated from PAA) - - - -
 TERMINATE Tx:PTR[](); SESS_TERM
 SessionTimerStop();
 RtxTimerStart();
 -
 - - - - - - - - (Session termination initated from PaC) - - - -
 Rx:PTR[] Tx:PTA[](); CLOSED
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_PNA_PING

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - -(PNA processing) - - - - - - - - - -
 Rx:PNA[P] RtxTimerStop(); OPEN
 -

Fajardo, et al. Expires April 3, 2008 [Page 29]

Internet-Draft PANA State Machines October 2007

 State: WAIT_PAN_OR_PAR

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (PAR Processing)- - - - - - - - - - -
 Rx:PAR[] TxEAP(); WAIT_EAP_MSG
 RtxTimerStop();
 Tx:PAN[]();
 -
 - - - - - - (Pass EAP Response to the EAP authenticator)- - - -
 Rx:PAN[] && TxEAP(); WAIT_EAP_MSG
 PAN.exist_avp RtxTimerStop();
 ("EAP-Payload")
 -
 - - - - - - - - - - (PAN without an EAP response) - - - - - - -
 Rx:PAN[] && RtxTimerStop(); WAIT_PAN_OR_PAR
 !PAN.exist_avp
 ("EAP-Payload")
 -
 - - - - - - - - - - - -(EAP retransmission) - - - - - - - - - -
 EAP_REQUEST RtxTimerStop(); WAIT_PAN_OR_PAR
 Tx:PAR[]("EAP-Payload");
 RtxTimerStart();
 -
 - - - - - - - (EAP authentication timeout or failure)- - - - -
 EAP_FAILURE || RtxTimerStop(); CLOSED
 EAP_TIMEOUT SessionTimerStop();
 Disconnect();
 -

 State: SESS_TERM

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - -(PTA processing) - - - - - - - - - -
 Rx:PTA[] RtxTimerStop(); CLOSED
 Disconnect();
 -

Fajardo, et al. Expires April 3, 2008 [Page 30]

Internet-Draft PANA State Machines October 2007

8. Implementation Considerations

8.1. PAA and PaC Interface to Service Management Entity

 In general, it is assumed in each device that has a PANA protocol
 stack that there is a Service Management Entity (SME) that manages
 the PANA protocol stack. It is recommended that a generic interface
 (i.e., the SME-PANA interface) between the SME and the PANA protocol
 stack be provided by the implementation. Especially, common
 procedures such as startup, shutdown, re-authenticate signals and
 provisions for extracting keying material should be provided by such
 an interface. The SME-PANA interface in a PAA device should also
 provide a method for communicating filtering parameters to the EP(s).
 When cryptographic filtering is used, the filtering parameters
 include keying material used for bootstrapping per-packet ciphering.
 When a PAA device interacts with the backend authentication server
 using a AAA protocol, its SME may also have an interface to the AAA
 protocol to obtain authorization parameters such as the authorization
 lifetime and additional filtering parameters.

Fajardo, et al. Expires April 3, 2008 [Page 31]

Internet-Draft PANA State Machines October 2007

9. Security Considerations

 This document's intent is to describe the PANA state machines fully.
 To this end, any security concerns with this document are likely a
 reflection of security concerns with PANA itself.

Fajardo, et al. Expires April 3, 2008 [Page 32]

Internet-Draft PANA State Machines October 2007

10. IANA Considerations

 This document has no actions for IANA.

Fajardo, et al. Expires April 3, 2008 [Page 33]

Internet-Draft PANA State Machines October 2007

11. Acknowledgments

 This work was started from state machines originally made by Dan
 Forsberg.

Fajardo, et al. Expires April 3, 2008 [Page 34]

Internet-Draft PANA State Machines October 2007

12. References

12.1. Normative References

 [I-D.ietf-pana-pana]
 Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and A.
 Yegin, "Protocol for Carrying Authentication for Network
 Access (PANA)", draft-ietf-pana-pana-18 (work in
 progress), September 2007.

 [I-D.ietf-pana-mobopts]
 Forsberg, D., "PANA Mobility Optimizations",

draft-ietf-pana-mobopts-01 (work in progress),
 October 2005.

12.2. Informative References

 [RFC4137] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137, August 2005.

https://datatracker.ietf.org/doc/html/draft-ietf-pana-pana-18
https://datatracker.ietf.org/doc/html/draft-ietf-pana-mobopts-01
https://datatracker.ietf.org/doc/html/rfc4137

Fajardo, et al. Expires April 3, 2008 [Page 35]

Internet-Draft PANA State Machines October 2007

Authors' Addresses

 Victor Fajardo (editor)
 Toshiba America Research, Inc.
 1 Telcordia Drive
 Piscataway, NJ 08854
 USA

 Phone: +1 732 699 5368
 Email: vfajardo@tari.toshiba.com

 Yoshihiro Ohba
 Toshiba America Research, Inc.
 1 Telcordia Drive
 Piscataway, NJ 08854
 USA

 Phone: +1 732 699 5305
 Email: yohba@tari.toshiba.com

 Rafa Marin Lopez
 University of Murcia
 30071 Murcia
 Spain

 Email: rafa@dif.um.es

Fajardo, et al. Expires April 3, 2008 [Page 36]

Internet-Draft PANA State Machines October 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Fajardo, et al. Expires April 3, 2008 [Page 37]

