
Workgroup: PCE Working Group

Internet-Draft: draft-ietf-pce-state-sync-07

Published: 17 March 2024

Intended Status: Standards Track

Expires: 18 September 2024

Authors: S. Litkowski

Cisco

S. Sivabalan

Ciena Corporation

C. Li

Huawei Technologies

H. Zheng

Huawei Technologies

Inter Stateful Path Computation Element (PCE) Communication Procedures.

Abstract

The Path Computation Element (PCE) Communication Protocol (PCEP)

provides mechanisms for PCEs to perform path computation in response

to a Path Computation Client (PCC) request. The Stateful PCE

extensions allow stateful control of Multi-Protocol Label Switching

(MPLS) Traffic Engineering (TE) Label Switched Paths (LSPs) using

PCEP.

A Path Computation Client (PCC) can synchronize an LSP state

information to a Stateful Path Computation Element (PCE). A PCC can

have multiple PCEP sessions towards multiple PCEs. There are some

use cases, where an inter-PCE stateful communication can bring

additional resiliency in the design, for instance when some PCC-PCE

session fails.

This document describes the procedures to allow a stateful

communication between PCEs for various use-cases and also the

procedures to prevent computations loops.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 September 2024.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction and Problem Statement

1.1. Requirements Language

1.2. Reporting LSP Changes

1.3. Split-Brain

1.4. Applicability to H-PCE

2. Solution

2.1. State-sync Session

2.2. Primary/Secondary Relationship between PCE

3. Procedures and Protocol Extensions

3.1. Opening a state-sync session

3.1.1. Capability Advertisement

3.2. State Synchronization

3.3. Incremental Updates and Report Forwarding Rules

3.4. Maintaining LSP States from Different Sources

3.5. Computation Priority between PCEs and Sub-delegation

3.5.1. Association Group

3.6. Passive Stateful Procedures

3.7. PCE Initiation Procedures

4. Examples

4.1. Example 1 - Successful disjoint paths (requiring reroute)

4.2. Example 2 - Successful disjoint paths (simultaneous turnup)

4.3. Example 3 - Unfeasible disjoint paths (insufficient state-

sync sessions)

5. Using Primary/Secondary Computation and State-sync Sessions to

increase Scaling

6. PCEP-PATH-VECTOR TLV

7. Security Considerations

8. Implementation Status

9. Manageability Considerations

9.1. Control of Function and Policy

9.2. Information and Data Models

9.3. Liveness Detection and Monitoring

¶

¶

https://trustee.ietf.org/license-info

9.4. Verify Correct Operations

9.5. Requirements On Other Protocols

9.6. Impact On Network Operations

10. Acknowledgements

11. IANA Considerations

11.1. PCEP-Error Object

11.2. PCEP TLV Type Indicators

11.3. STATEFUL-PCE-CAPABILITY TLV

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Contributors

Authors' Addresses

1. Introduction and Problem Statement

The Path Computation Element communication Protocol (PCEP) [RFC5440]

provides mechanisms for Path Computation Elements (PCEs) to perform

path computations in response to Path Computation Clients' (PCCs)

requests.

A stateful PCE [RFC8231] is capable of considering, for the purposes

of path computation, not only the network state in terms of links

and nodes (referred to as the Traffic Engineering Database or TED)

but also the status of active services (previously computed paths,

and currently reserved resources, stored in the Label Switched Paths

Database (LSP-DB).

[RFC8051] describes general considerations for a stateful PCE

deployment and examines its applicability and benefits, as well as

its challenges and limitations through a number of use cases.

A PCC can synchronize an LSP state information to a Stateful PCE.

The stateful PCE extension allows a redundancy scenario where a PCC

can have redundant PCEP sessions towards multiple PCEs. In such a

case, a PCC gives control of a LSP to only a single PCE, and only

one PCE is responsible for path computation for this delegated LSP.

There are some use cases, where an inter-PCE stateful communication

can bring additional resiliency in the design, for instance when

some PCC-PCE session fails. The inter-PCE stateful communication may

also provide a faster update of the LSP states when such an event

occurs. Finally, when, in a redundant PCE scenario, there is a need

to compute a set of paths that are part of a group (so there is a

dependency between the paths), there may be some cases where the

computation of all paths in the group is not handled by the same

PCE: this situation is called a split-brain. This split-brain

scenario may lead to computation loops between PCEs or suboptimal

path computation.

¶

¶

¶

¶

¶

In the scope of this document, the term 'computation loop' is used

to describe a behaviour of PCEP message exchange looping between PCC

and PCE or between PCEs, resulting in frequent path calculations,

path reporting and path updates to the network resulting in constant

load on the PCE and oscillation of data plane traffic after each

subsequent path update.

This document describes the procedures to allow a stateful

communication between PCEs for various use-cases and also the

procedures to prevent computations loops.

Further, the examples in this section are for illustrative purpose

to showcase the need for inter-PCE stateful PCEP sessions.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Reporting LSP Changes

When using a stateful PCE ([RFC8231]), a PCC can synchronize an LSP

state information to the stateful PCE. If the PCC grants the control

of the LSP to the PCE (called delegation [RFC8231]), the PCE can

update the LSP parameters at any time.

In a multi PCE deployment (redundancy, loadbalancing...), with the

current specification defined in [RFC8231], when a PCE makes an

update, it is the PCC that is in charge of reporting the LSP status

to all PCEs with LSP parameter change which brings additional hops

and delays in notifying the overall network of the LSP parameter

change.

This delay may affect the reaction time of the other PCEs if they

need to take action after being notified of the LSP parameter

change.

Apart from the synchronization from the PCC, it is also useful if

there is a synchronization mechanism between the stateful PCEs. As

stateful PCE make changes to its delegated LSPs, these changes

(pending LSPs and the sticky resources [RFC7399]) can be

synchronized immediately to the other PCEs.

¶

¶

¶

¶

¶

¶

¶

¶

In the figure above, we consider a load-balanced PCE architecture,

so PCE1 is responsible to compute paths for PCC1 and PCE2 is

responsible to compute paths for PCC2. When PCE1 triggers an LSP

update for LSP1, it sends a PCUpd message to PCC1 containing the new

parameters for LSP1. PCC1 will take the parameters into account and

will send a PCRpt message to PCE1 and PCE2 reflecting the changes.

PCE2 will so be notified of the change only after receiving the

PCRpt message from PCC1.

Let's consider that the LSP1 parameters changed in such a way that

LSP1 will take over resources from LSP2 with a higher priority.

After receiving the report from PCC1, PCE2 will therefore try to

find a new path for LSP2. If we consider that there is a round trip

delay of about 150 milliseconds (ms) between the PCEs and PCC1 and a

round trip delay of 10 ms between the two PCEs if will take more

than 150 ms for PCE2 to be notified of the change.

Adding a PCEP session between PCE1 and PCE2 may allow to reduce the

synchronization time, so PCE2 can react more quickly by taking the

pending LSPs and attached resources into account during path

computation and re-optimization.

1.3. Split-Brain

In a resiliency case, a PCC has redundant PCEP sessions towards

multiple PCEs. In such a case, a PCC gives control on an LSP to a

single PCE only, and only this PCE is responsible for the path

computation for the delegated LSP: the PCC achieves this by setting

the D flag only towards the active PCE [RFC8231] selected for

delegation. The election of the active PCE to delegate an LSP is

controlled by each PCC. The PCC usually elects the active PCE by a

local configured policy (by setting a priority). Upon PCEP session

failure, or active PCE failure, PCC may decide to elect a new active

PCE by sending new PCRpt message with D flag set to this new active

 +----------+

 | PCC1 | LSP1

 +----------+

 / \

 / \

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 \ /

 \ /

 +----------+

 | PCC2 | LSP2

 +----------+

¶

¶

¶

¶

PCE. When the failed PCE or PCEP session comes back online, it will

be up to the implementation to do preemption. Doing preemption may

lead to some disruption on the existing path if path results from

both PCEs are not exactly the same. By considering a network with

multiple PCCs and implementing multiple stateful PCEs for redundancy

purpose, there is no guarantee that at any time all the PCCs

delegate their LSPs to the same PCE.

In the example above, we consider that by configuration, both PCCs

will firstly delegate their LSPs to PCE1. So, PCE1 is responsible

for computing a path for both LSP1 and LSP2. If the PCEP session

between PCC2 and PCE1 fails, PCC2 will delegate LSP2 to PCE2. So

PCE1 becomes responsible only for LSP1 path computation while PCE2

is responsible for the path computation of LSP2. When the PCC2-PCE1

session is back online, PCC2 will keep using PCE2 as active PCE

(consider no preemption in this example). So the result is a

permanent situation where each PCE is responsible for a subset of

path computation.

This situation is called a split-brain scenario, as there are

multiple computation brains running at the same time while a central

computation unit was required in some deployments/use cases.

Further, there are use cases where a particular LSP path computation

is linked to another LSP path computation: the most common use case

is path disjointness (see [RFC8800]) and Bidirectional LSPs (see

[RFC9059]). The set of LSPs that are dependent to each other may

start from a different head-end.

¶

 +----------+

 | PCC1 | LSP1

 +----------+

 / \

 / \

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 \ /

 fail \ /

 +----------+

 | PCC2 | LSP2

 +----------+

¶

¶

¶

¶

In the figure above, the requirement is to create two link-disjoint

LSPs: PCC1->PCC2 and PCC3->PCC4. In the topology, all links cost

metric is set to 1 except for the link 'R1-R2' which has a metric of

10. The PCEs are responsible for the path computation and PCE1 is

the active primary PCE for all PCCs in the nominal case.

The rest of this section lists various scenarios for illustrative

purposes, there are many other cases where the solution defined in

this document is applicable.

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ +------+ |

 | | PCC1 | ----------------------> | PCC2 | |

 | +------+ +------+ |

 | |

 | |

 | +------+ +------+ |

 | | PCC3 | ----------------------> | PCC4 | |

 | +------+ +------+ |

 | |

 \ /

 ___/

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ 10 +------+ |

 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |

 | +------+ | | +------+ |

 | | | |

 | | | |

 | +------+ | | +------+ |

 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |

 | +------+ +------+ |

 | |

 \ /

 ___/

¶

¶

¶

Scenario 1:

In the normal case (PCE1 as active primary PCE), consider that PCC1-

>PCC2 LSP is configured first with the link disjointness constraint,

PCE1 sends a PCUpd message to PCC1 with the ERO: R1->R3->R4->R2-

>PCC2 (shortest path). PCC1 signals and installs the path. When

PCC3->PCC4 is configured, the PCEs already knows the path of PCC1-

>PCC2 and can compute a link-disjoint path: the solution requires to

move PCC1->PCC2 onto a new path to let room for the new LSP. PCE1

sends a PCUpd message to PCC1 with the new ERO: R1->R2->PCC2 and a

PCUpd to PCC3 with the following ERO: R3->R4->PCC4. In the normal

case, there is no issue for PCE1 to compute a link-disjoint path.

Scenario 2:

Consider that PCC1 lost its PCEP session with PCE1 (all other PCEP

sessions are UP). PCC1 delegates its LSP to PCE2.

Consider that the PCC1->PCC2 LSP is configured first with the link

disjointness constraint, PCE2 (which is the new active primary PCE

for PCC1) sends a PCUpd message to PCC1 with the ERO: R1->R3->R4-

>R2->PCC2 (shortest path). When PCC3->PCC4 is configured, PCE1 is

not aware of LSPs from PCC1 any more, so it cannot compute a

disjoint path for PCC3->PCC4 and will send a PCUpd message to PCC3

with the shortest path ERO: R3->R4->PCC4. When PCC3->PCC4 LSP will

be reported to PCE2 by PCC3, PCE2 will ensure disjointness

computation and will correctly move PCC1->PCC2 (as it owns

delegation for this LSP) on the following path: R1->R2->PCC2. With

this sequence of event and these PCEP sessions, disjointness is

ensured.

Scenario 3:

¶

¶

¶

¶

 +----------+

 | PCC1 | LSP: PCC1->PCC2

 +----------+

 \

 \ D=1

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 D=1 \ / D=0

 \ /

 +----------+

 | PCC3 | LSP: PCC3->PCC4

 +----------+

¶

¶

¶

Consider the above PCEP sessions and the PCC1->PCC2 LSP is

configured first with the link disjointness constraint, PCE1

computes the shortest path as it is the only LSP in the disjoint

association group that it is aware of: R1->R3->R4->R2->PCC2

(shortest path). When PCC3->PCC4 is configured, PCE2 must compute a

disjoint path for this LSP. The only solution found is to move PCC1-

>PCC2 LSP on another path, but PCE2 cannot do it as it does not have

delegation for this LSP. In this set-up, PCEs are not able to find a

disjoint path.

Scenario 4:

Consider the above PCEP sessions and that PCEs are configured to

fall-back to the shortest path if disjointness cannot be found as

described in [RFC8800]. The PCC1->PCC2 LSP is configured first, PCE1

computes the shortest path as it is the only LSP in the disjoint

association group that it is aware of: R1->R3->R4->R2->PCC2

(shortest path). When PCC3->PCC4 is configured, PCE2 must compute a

disjoint path for this LSP. The only solution found is to move PCC1-

 +----------+

 | PCC1 | LSP: PCC1->PCC2

 +----------+

 / \

 D=1 / \ D=0

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 / D=1

 /

 +----------+

 | PCC3 | LSP: PCC3->PCC4

 +----------+

¶

¶

¶

 +----------+

 | PCC1 | LSP: PCC1->PCC2

 +----------+

 / \

 D=1 / \ D=0

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 D=0 \ / D=1

 \ /

 +----------+

 | PCC3 | LSP: PCC3->PCC4

 +----------+

¶

>PCC2 LSP on another path, but PCE2 cannot do it as it does not have

delegation for this LSP. PCE2 then provides the shortest path for

PCC3->PCC4: R3->R4->PCC4. When PCC3 receives the ERO, it reports it

back to both PCEs. When PCE1 becomes aware of the PCC3->PCC4 path,

it recomputes the constrained shortest path first (CSPF) algorithm

and provides a new path for PCC1->PCC2: R1->R2->PCC2. The new path

is reported back to all PCEs by PCC1. PCE2 recomputes also CSPF to

take into account the new reported path. The new computation does

not lead to any path update.

Scenario 5:

Now, consider a new network topology with the same PCEP sessions as

the previous example. Suppose that both LSPs are configured almost

at the same time. PCE1 will compute a path for PCC1->PCC2 while PCE2

will compute a path for PCC3->PCC4. As each PCE is not aware of the

path of the second LSP in the association group (not reported yet),

each PCE is computing the shortest path for the LSP. PCE1 computes

ERO: R1->PCC2 for PCC1->PCC2 and PCE2 computes ERO: R3->R1->PCC2-

>PCC4 for PCC3->PCC4. When these shortest paths will be reported to

each PCE. Each PCE will recompute disjointness. PCE1 will provide a

new path for PCC1->PCC2 with ERO: PCC1->PCC2. PCE2 will provide also

a new path for PCC3->PCC4 with ERO: R3->PCC4. When those new paths

will be reported to both PCEs, this will trigger CSPF again. PCE1

will provide a new more optimal path for PCC1->PCC2 with ERO: R1-

>PCC2 and PCE2 will also provide a more optimal path for PCC3->PCC4

with ERO: R3->R1->PCC2->PCC4. So we come back to the initial state.

¶

¶

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ 100 +------+ |

 | | | -------------------- | | |

 | | PCC1 | ----- R1 ----------- | PCC2 | |

 | +------+ | +------+ |

 | | | | |

 | 6 | | 2 | 2 |

 | | | | |

 | +------+ | +------+ |

 | | PCC3 | ----- R3 ----------- | PCC4 | |

 | +------+ 10 +------+ |

 | |

 \ /

 _____________________________________/

¶

When those paths will be reported to both PCEs, this will trigger

CSPF again. An infinite loop of CSPF computation is then happening

with a permanent flap of paths because of the split-brain situation.

Another common example to note would be two LSPs with link-diverse

paths that share a common node in its path but delegated to

different PCEs. In case of the common node failure, both PCEs would

detect the same and each could independently compute a new path that

might both choose the same new link.

This permanent computation loop comes from the inconsistency between

the state of the LSPs as seen by each PCE due to the split-brain:

each PCE is trying to modify at the same time its delegated path

based on the last received path information which de facto

invalidates this received path information.

Scenario 6: multi-domain

In the example above, suppose that the disjoint LSPs from PCC1 to

PCC2 and from PCC4 to PCC3 are created. All the PCEs have the

knowledge of both domain topologies (e.g. using BGP-LS [RFC9552]).

For operation/management reasons, each domain uses its own group of

redundant PCEs. PCE1/PCE2 in domain 1 have PCEP sessions with PCC1

and PCC3 while PCE3/PCE4 in domain 2 have PCEP sessions with PCC2

and PCC4. As PCE1/2 does not know about LSPs from PCC2/4 and PCE3/4

¶

¶

¶

¶

 Domain/Area 1 Domain/Area 2

 ________________ ________________

 / \ / \

 / +------+ | | +------+ \

 | | PCE1 | | | | PCE3 | |

 | +------+ | | +------+ |

 | | | |

 | +------+ | | +------+ |

 | | PCE2 | | | | PCE4 | |

 | +------+ | | +------+ |

 | | | |

 | +------+ | | +------+ |

 | | PCC1 | | | | PCC2 | |

 | +------+ | | +------+ |

 | | | |

 | | | |

 | +------+ | | +------+ |

 | | PCC3 | | | | PCC4 | |

 | +------+ | | +------+ |

 \ | | |

 _______________/ ________________/

¶

do not know about LSPs from PCC1/3, there is no possibility to

compute the disjointness constraint. This scenario can also be seen

as a split-brain scenario. This multi-domain architecture (with

multiple groups of PCEs) can also be used in a single domain, where

an operator wants to limit the failure domain by creating multiple

groups of PCEs maintaining a subset of PCCs. As for the multi-domain

example, there will be no possibility to compute the disjoint path

starting from head-ends managed by different PCE groups.

In this document, we specify a solution that addresses the

possibility to compute LSP association based constraints (like

disjointness) in split-brain scenarios while preventing computation

loops.

1.4. Applicability to H-PCE

[RFC8751] describes general considerations and use cases for the

deployment of Stateful PCE(s) using the Hierarchical PCE [RFC6805]

architecture. In this architecture, there is a clear need to

communicate between a child stateful PCE and a parent stateful PCE.

The procedures and extensions as described in Section 3 are equally

applicable to the H-PCE scenario.

2. Solution

The solution specified in this document is based on:

The creation of the inter-PCE stateful PCEP session with specific

procedures.

A Primary/Secondary relationship between stateful PCEs.

The solution builds upon the protocol extensions for stateful PCE in

[RFC8231], synchronization optimizations in [RFC8232], and PCE-

initiation in [RFC8281].

2.1. State-sync Session

This document specify a mechanism to set-up a PCEP session between

the stateful PCEs. Creating such a session is already authorized by

multiple scenarios like the one described in [RFC4655] (multiple

PCEs that are handling part of the path computation) and [RFC6805]

(hierarchical PCE) but was only focused on the stateless PCEP

sessions. As stateful PCE brings additional features (LSP state

synchronization, path update, delegation, ...), thus some new

behaviors need to be defined.

This inter-PCE PCEP session will allow the exchange of LSP states

between PCEs that would help some scenarios where PCEP sessions are

¶

¶

¶

¶

*

¶

* ¶

¶

¶

lost between PCC and PCE. This inter-PCE PCEP session is henceforth

called a state-sync session.

For example, in the scenario below, there is no possibility to

compute disjointness as there is no PCE that is aware of both LSPs.

If we add a state-sync session, PCE1 will be able to do state

synchronization via PCRpt messages for its LSP to PCE2 and PCE2 will

do the same. All the PCEs will be aware of all LSPs even if a PCC-

>PCE session is down. PCEs will then be able to compute disjoint

paths.

The procedures associated with this state-sync session are defined

in Section 3.

By just adding this state-sync session, it does not ensure that a

path with LSP association based constraints can always be computed

and does not prevent the computation loop, but it increases

resiliency and ensures that PCEs will have the state information for

all LSPs. Also, this session will allow for a PCE to update the

¶

¶

 +----------+

 | PCC1 | LSP: PCC1->PCC2

 +----------+

 /

 D=1 /

 +---------+ +---------+

 | PCE1 | | PCE2 |

 +---------+ +---------+

 / D=1

 /

 +----------+

 | PCC3 | LSP: PCC3->PCC4

 +----------+

¶

¶

 +----------+

 | PCC1 | LSP : PCC1->PCC2

 +----------+

 /

 D=1 /

 +---------+ PCEP +---------+

 | PCE1 | ----- | PCE2 |

 +---------+ +---------+

 / D=1

 /

 +----------+

 | PCC3 | LSP : PCC3->PCC4

 +----------+

¶

¶

other PCEs providing a faster synchronization mechanism than relying

on PCCs only.

2.2. Primary/Secondary Relationship between PCE

As seen in Section 1, performing a path computation in a split-brain

scenario (multiple PCEs responsible for computation) may provide a

non-optimal LSP placement, no path, or computation loops. To provide

the best efficiency, an LSP association constraint-based computation

requires that a single PCE performs the path computation for all

LSPs in the association group. Note that, it could be all LSPs

belonging to a particular association group, or all LSPs from a

particular PCC, or all LSPs in the network that need to be delegated

to a single PCE based on the deployment scenarios.

This document specify a mechanism to add a priority mechanism

between PCEs to elect a single computing 'primary' PCE. Using this

priority mechanism, PCEs can agree on the PCE that will be

responsible for the computation for a particular association group,

or set of LSPs. The priority could be set per association, per PCC,

or for all LSPs. The rest of the text considers the association

group as an example.

When a single PCE is performing the computation for a particular

association group, no computation loop can happen and an optimal

placement will be provided. The other PCEs will only act as state

collectors and forwarders.

In the scenario described in Section 2.1, PCE1 and PCE2 will decide

that PCE1 will be responsible for the path computation of both LSPs.

If we first configure PCC1->PCC2, PCE1 computes the shortest path at

it is the only LSP in the disjoint-group that it is aware of: R1-

>R3->R4->R2->PCC2 (shortest path). When PCC3->PCC4 is configured,

PCE2 will not perform computation even if it has delegation but

forwards the delegation via PCRpt message to PCE1 through the state-

sync session. PCE1 will then perform disjointness computation and

will move PCC1->PCC2 onto R1->R2->PCC2 and provides an ERO to PCE2

for PCC3->PCC4: R3->R4->PCC4. The PCE2 will further update the PCC3

with the new path.

3. Procedures and Protocol Extensions

3.1. Opening a state-sync session

3.1.1. Capability Advertisement

A PCE indicates its support of state-sync procedures during the PCEP

Initialization phase [RFC5440]. The OPEN object in the Open message

MUST contains the "Stateful PCE Capability" TLV defined in

¶

¶

¶

¶

¶

[RFC8231]. A new P (INTER-PCE-CAPABILITY) flag is introduced to

indicate the support of state-sync.

This document adds a new bit in the Flags field with :

P (INTER-PCE-CAPABILITY - 1 bit - TBD4): If set to 1 by a PCEP

Speaker, the PCEP speaker indicates that the session MUST follow

the state-sync procedures as described in this document. The P

bit MUST be set by both speakers: if a PCEP Speaker receives a

STATEFUL-PCE-CAPABILITY TLV with P=0 while it advertised P=1 or

if both set P flag to 0, the session SHOULD be set-up but the

state-sync procedures MUST NOT be applied on this session.

The U flag [RFC8231] MUST be set when sending the STATEFUL-PCE-

CAPABILITY TLV with the P flag set. In case the U flag is not set

along with the P flag, the state sync capability is not enabled and

it is considered as if the P flag is not set. The S flag MAY be set

if optimized synchronization is required as per [RFC8232].

3.2. State Synchronization

When the state sync capability has been negotiated between stateful

PCEs, each PCEP speaker will behave as a PCE and as a PCC at the

same time regarding the state synchronization as defined in

[RFC8231]. This means that each PCEP Speaker:

MUST send a PCRpt message towards its neighbor with S flag set

for each LSP in its LSP database learned from a PCC. (PCC role)

MUST send the End Of Synchronization Marker towards its neighbor

when all LSPs have been reported. (PCC role)

MUST wait for the LSP synchronization from its neighbor to end

(receiving an End Of Synchronization Marker). (PCE role)

The process of synchronization runs in parallel on each PCE (with no

defined order).

The optimized state synchronization procedures MAY be used, as

defined in [RFC8232].

When a PCEP Speaker sends a PCRpt on a state-sync session, it MUST

add the SPEAKER-ENTITY-ID TLV (defined in [RFC8232]) in the LSP

Object, the value used will refer to the 'owner' PCC of the LSP. If

a PCEP Speaker receives a PCRpt on a state-sync session without this

TLV, it MUST discard the PCRpt message and it MUST reply with a

PCErr message using error-type=6 (Mandatory Object missing) and

error-value=TBD1 (SPEAKER-ENTITY-ID TLV missing).

¶

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

3.3. Incremental Updates and Report Forwarding Rules

During the life of an LSP, its state may change (path, constraints,

operational state...) and a PCC will advertise a new PCRpt to the

PCE for each such change.

When propagating LSP state changes from a PCE to other PCEs, it is

mandatory to ensure that a PCE always uses the freshest state coming

from the PCC.

When a PCE receives a new PCRpt from a PCC with the LSP-DB-VERSION,

the PCE MUST forward the PCRpt to all its state-sync sessions and

MUST add the appropriate SPEAKER-ENTITY-ID TLV in the PCRpt. In

addition, it MUST add a new ORIGINAL-LSP-DB-VERSION TLV (described

below). The ORIGINAL-LSP-DB-VERSION contains the LSP-DB-VERSION

coming from the PCC.

When a PCE receives a new PCRpt from a PCC without the LSP-DB-

VERSION, it SHOULD NOT forward the PCRpt on any state-sync sessions

and log such an event on the first occurrence.

When a PCE receives a new PCRpt from a PCC with the R flag (Remove)

set and an LSP-DB-VERSION TLV, the PCE MUST forward the PCRpt to all

its state-sync sessions keeping the R flag set (Remove) and MUST add

the appropriate SPEAKER-ENTITY-ID TLV and ORIGINAL-LSP-DB-VERSION

TLV in the PCRpt message.

When a PCE receives a PCRpt from a state-sync session, it MUST NOT

forward the PCRpt to other state-sync sessions. This helps to

prevent message loops between PCEs. As a consequence, a full mesh of

PCEP sessions between PCEs are REQUIRED.

When a PCRpt is forwarded, all the original objects and values are

kept. As an example, the PLSP-ID used in the forwarded PCRpt will be

the same as the original one used by the PCC. Thus an implementation

supporting this document MUST consider SPEAKER-ENTITY-ID TLV and

PLSP-ID together to uniquely identify an LSP on the state-sync

session.

The ORIGINAL-LSP-DB-VERSION TLV is encoded as follows and MUST

always contain the LSP-DB-VERSION received from the owner PCC of the

LSP:

¶

¶

¶

¶

¶

¶

¶

¶

Using the ORIGINAL-LSP-DB-VERSION TLV allows a PCE to keep using

optimized synchronization ([RFC8232]) with another PCE. In such a

case, the PCE will send a PCRpt to another PCE with both ORIGINAL-

LSP-DB-VERSION TLV and LSP-DB-VERSION TLV. The ORIGINAL-LSP-DB-

VERSION TLV will contain the version number as allocated by the PCC

while the LSP-DB-VERSION will contain the version number allocated

by the local PCE.

3.4. Maintaining LSP States from Different Sources

When a PCE receives a PCRpt on a state-sync session, it stores the

LSP information into the original PCC address context (as the LSP

belongs to the PCC). A PCE SHOULD maintain a single state for a

particular LSP and SHOULD maintain the list of sources it learned a

particular state from.

A PCEP speaker may receive state information for a particular LSP

from different sources: the PCC that owns the LSP (through a regular

PCEP session) and some PCEs (through PCEP state-sync sessions). A

PCEP speaker MUST always keep the freshest state in its LSP

database, overriding the previously received information.

A PCE, receiving a PCRpt from a PCC, updates the state of the LSP in

its LSP-DB with the newly received information. When receiving a

PCRpt from another PCE, a PCE SHOULD update the LSP state only if

the ORIGINAL-LSP-DB-VERSION present in the PCRpt indicates it is

newer than the current ORIGINAL-LSP-DB-VERSION of the stored LSP

state taking wrap around into account. This ensures that a PCE never

tries to update its stored LSP state with an old information. Each

time a PCE updates an LSP state in its LSP-DB, it SHOULD reset the

source list associated with the LSP state and SHOULD add the source

speaker address in the source list. When a PCE receives a PCRpt

which has an ORIGINAL-LSP-DB-VERSION (if coming from a PCE) or an

LSP-DB-VERSION (if coming from the PCC) equals to the current

ORIGINAL-LSP-DB-VERSION of the stored LSP state, it SHOULD add the

source speaker address in the source list.

When a PCE receives a PCRpt requesting an LSP deletion from a

particular source, it SHOULD remove this particular source from the

list of sources associated with this LSP.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type=TBD2 | Length=8 |

+-+

| LSP State DB Version Number |

| |

+-+

¶

¶

¶

¶

¶

¶

When the list of sources becomes empty for a particular LSP, the LSP

state MUST be removed. This means that all the sources must send a

PCRpt with R=1 for an LSP to make the PCE remove the LSP state.

Note that a PCC uses the Open message exchange during PCEP session

establishment to inform the PCE about its capabilities and

parameters. Currently, there is no mechanism to pass that

information to other PCEs via the state-sync session.

3.5. Computation Priority between PCEs and Sub-delegation

A computation priority is necessary to ensure that a single PCE will

perform the computation for all the LSPs in an association group:

this will allow for a more optimized LSP placement and will prevent

computation loops.

All PCEs in the network that are handling LSPs in a common LSP

association group SHOULD be aware of each other including the

computation priority of each PCE. Note that there is no need for PCC

to be aware of this. The computation priority is a number and the

PCE having the highest priority MUST be responsible for the

computation. If several PCEs have the same priority value, their IP

address MUST be used as a tie-breaker to provide a rank: the highest

IP address has more priority.

The computation priorities could be set through local

configurations. The priority for local and remote PCEs could be set

at global level so the highest priority PCE will handle all path

computations or more granular, so a PCE may have the highest

priority for only a subset of LSPs or association-groups. See

Section 9.1 for more details. In future, PCEs could also advertise

and discover these parameters via PCEP, those details are out of the

scope of this document and left for future specification.

A PCEP Speaker receiving a PCRpt from a PCC with the D flag set that

does not have the highest computation priority, SHOULD forward the

PCRpt on all state-sync sessions (as per Section 3.3) and SHOULD set

D flag on the state-sync session towards the highest priority PCE, D

flag will be unset to all other state-sync sessions. This behavior

is similar to the delegation behavior handled at the PCC side and is

called a sub-delegation (the PCE sub-delegates the control of the

LSP to another PCE). When a PCEP Speaker sub-delegates an LSP to

another PCE, it loose control of the LSP and cannot update it

anymore by its own decision. When a PCE receives a PCRpt with D flag

set on a state-sync session, as a regular PCE, it is granted control

over the LSP.

If the highest priority PCE is failing or if the state-sync session

between the local PCE and the highest priority PCE failed, the local

¶

¶

¶

¶

¶

¶

PCE MAY decide to delegate the LSP to the next highest priority PCE

or to take back control of the LSP. It is a local policy decision.

When a PCE has the delegation for an LSP and needs to update this

LSP, it MUST send a PCUpd message to all state-sync sessions and to

the PCC session on which it received the delegation. The D-Flag

would be unset in the PCUpd for state-sync sessions whereas the D-

Flag would be set for the PCC. In the case of sub-delegation, the

computing PCE will send the PCUpd only to all state-sync sessions

(as it has no direct delegation from a PCC). The D-Flag would be set

for the state-sync session to the PCE that sub-delegated this LSP

and the D-Flag would be unset for other state-sync sessions.

The PCUpd sent over a state-sync session MUST contain the SPEAKER-

ENTITY-ID TLV in the LSP Object (the value used must identify the

target PCC). The PLSP-ID used is the original PLSP-ID generated by

the PCC and learned from the forwarded PCRpt. If a PCE receives a

PCUpd on a state-sync session without the SPEAKER-ENTITY-ID TLV, it

MUST discard the PCUpd and MUST reply with a PCErr message using

error-type=6 (Mandatory Object missing) and error-value=TBD1

(SPEAKER-ENTITY-ID TLV missing).

When a PCE receives a valid PCUpd on a state-sync session, it SHOULD

forward the PCUpd to the appropriate PCC (identified based on the

SPEAKER-ENTITY-ID TLV value) that delegated the LSP originally and

SHOULD remove the SPEAKER-ENTITY-ID TLV from the LSP Object. The

acknowledgment of the PCUpd is done through a cascaded mechanism,

and the PCC is the only responsible for triggering the

acknowledgment: when the PCC receives the PCUpd from the local PCE,

it acknowledges it with a PCRpt as per [RFC8231]. When receiving the

new PCRpt from the PCC, the local PCE uses the defined forwarding

rules on the state-sync session so the acknowledgment is relayed to

the computing PCE.

3.5.1. Association Group

All LSPs belonging to the same association group SHOULD have the

same computation priorities for the PCEs. A PCE SHOULD NOT compute a

path using an association-group constraint if it has delegation for

only a subset of LSPs in the association-group. In this case, an

implementation MAY use a local policy on PCE to decide if PCE does

not compute path at all for this set of LSP or if it can compute a

path by relaxing the association-group constraint.

3.6. Passive Stateful Procedures

In the passive stateful PCE architecture, the PCC is responsible for

triggering a path computation request using a PCReq message to its

PCE. Similarly to PCRpt Message, which remains unchanged for passive

¶

¶

¶

¶

¶

mode, if a PCE receives a PCReq for an LSP and if this PCE finds

that it does not have the highest computation priority of this LSP,

or groups, it MUST forward the PCReq message to the highest priority

PCE over the state-sync session. When the highest priority PCE

receives the PCReq, it computes the path and generates a PCRep

message towards the PCE that made the request. This PCE will then

forward the PCRep to the requesting PCC. The handling of LSP object

and the SPEAKER-ENTITY-ID TLV in PCReq and PCRep is similar to

PCRpt/PCUpd messages.

3.7. PCE Initiation Procedures

It is possible that a PCE does not have a PCEP session with the

headend to initiate a LSP as per [RFC8281]. A PCE could send the

PCInitiate message on the state-sync sessions to other PCE to

request it to create a PCE-Initiated LSP on its behalf. If the PCE

is able to initiate the LSP it would report it on the state-sync

session via PCRpt message. If the PCE does not have a session to the

headend, it MUST send a PCErr message with Error-type=24 (PCE

instantiation error) and Error-value=TBD5 (No PCEP session with the

headend). PCE could try to initiate via another state-sync PCE if

available.

4. Examples

The examples in this section are for illustrative purpose only, to

show how the behavior of the state sync inter-PCE session works.

¶

¶

¶

4.1. Example 1 - Successful disjoint paths (requiring reroute)

Consider the PCEP sessions as shown above, where computation

priority is global for all the LSPs and a link disjoint path between

LSPs PCC1->PCC2 and PCC3->PCC4 is required.

Consider the PCC1->PCC2 is configured first and PCC1 delegates the

LSP to PCE1, but as PCE1 does not have the highest computation

priority, it sub-delegates the LSP to PCE2 by sending a PCRpt with

D=1 and including the SPEAKER-ENTITY-ID TLV over the state-sync

session. PCE2 receives the PCRpt and as it has delegation for this

LSP, it computes the shortest path: R1->R3->R4->R2->PCC2. It then

sends a PCUpd to PCE1 (including the SPEAKER-ENTITY-ID TLV) with the

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ 10 +------+ |

 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |

 | +------+ | | +------+ |

 | | | |

 | | | |

 | +------+ | | +------+ |

 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |

 | +------+ +------+ |

 | |

 \ /

 ___/

 +----------+

 | PCC1 | LSP : PCC1->PCC2

 +----------+

 /

 D=1 /

 +---------+ +---------+

 | PCE1 |----| PCE2 |

 +---------+ +---------+

 / D=1

 /

 +----------+

 | PCC3 | LSP : PCC3->PCC4

 +----------+

PCE1 computation priority 100

PCE2 computation priority 200

¶

¶

computed ERO. PCE1 forwards the PCUpd to PCC1 (removing the SPEAKER-

ENTITY-ID TLV). PCC1 acknowledges the PCUpd by a PCRpt to PCE1. PCE1

forwards the PCRpt to PCE2.

When PCC3->PCC4 is configured, PCC3 delegates the LSP to PCE2, PCE2

can compute a disjoint path as it has knowledge of both LSPs and has

delegation also for both. The only solution found is to move PCC1-

>PCC2 LSP on another path, PCE2 can move PCC1->PCC2 as it has sub-

delegation for it. It creates a new PCUpd with a new ERO: R1->R2-

PCC2 towards PCE1 which forwards to PCC1. PCE2 sends a PCUpd to PCC3

with the path: R3->R4->PCC4.

In this set-up, PCEs are able to find a disjoint path while without

state-sync and computation priority they could not.

¶

¶

¶

4.2. Example 2 - Successful disjoint paths (simultaneous turnup)

In this example, suppose both LSPs are configured almost at the same

time. PCE1 sub-delegates PCC1->PCC2 to PCE2 while PCE2 keeps

delegation for PCC3->PCC4, PCE2 computes a path for PCC1->PCC2 and

PCC3->PCC4 and can achieve disjointness computation easily. No

computation loop happens in this case.

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ 100 +------+ |

 | | | -------------------- | | |

 | | PCC1 | ----- R1 ----------- | PCC2 | |

 | +------+ | +------+ |

 | | | | |

 | 6 | | 2 | 2 |

 | | | | |

 | +------+ | +------+ |

 | | PCC3 | ----- R3 ----------- | PCC4 | |

 | +------+ 10 +------+ |

 | |

 \ /

 _____________________________________/

 +----------+

 | PCC1 | LSP : PCC1->PCC2

 +----------+

 / \

 D=1 / \ D=0

 +---------+ +---------+

 | PCE1 |----| PCE2 |

 +---------+ +---------+

 D=0 \ / D=1

 \ /

 +----------+

 | PCC3 | LSP : PCC3->PCC4

 +----------+

PCE1 computation priority 200

PCE2 computation priority 100

¶

¶

4.3. Example 3 - Unfeasible disjoint paths (insufficient state-sync

sessions)

With the PCEP sessions as shown above, consider the need to have

link disjoint LSPs PCC1->PCC2 and PCC3->PCC4.

Suppose PCC1->PCC2 is configured first, PCC1 delegates the LSP to

PCE1, but as PCE1 does not have the highest computation priority, it

will sub-delegate the LSP to PCE2 (as it not aware of PCE3 and has

no way to reach it). PCE2 cannot compute a path for PCC1->PCC2 as it

does not have the highest priority and is not allowed to sub-

delegate the LSP again towards PCE3 as per Section 3.

 / \

 / +------+ +------+ \

 | | PCE1 | | PCE2 | |

 | +------+ +------+ |

 | |

 | +------+ 10 +------+ |

 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |

 | +------+ | | +------+ |

 | | | |

 | | | |

 | +------+ | | +------+ |

 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |

 | +------+ +------+ |

 | |

 \ /

 ___/

 +----------+

 | PCC1 | LSP : PCC1->PCC2

 +----------+

 /

 D=1 /

 +---------+ +---------+ +---------+

 | PCE1 |----| PCE2 |----| PCE3 |

 +---------+ +---------+ +---------+

 / D=1

 /

 +----------+

 | PCC3 | LSP : PCC3->PCC4

 +----------+

PCE1 computation priority 100

PCE2 computation priority 200

PCE3 computation priority 300

¶

¶

¶

When PCC3->PCC4 is configured, PCC3 delegates the LSP to PCE2 that

performs sub-delegation to PCE3. As PCE3 will have knowledge of only

one LSP in the group, it cannot compute disjointness and can decide

to fall-back to a less constrained computation to provide a path for

PCC3->PCC4. In this case, it will send a PCUpd to PCE2 that will be

forwarded to PCC3.

Disjointness cannot be achieved in this scenario because of lack of

state-sync session between PCE1 and PCE3, but no computation loop

happens. Thus it is required for all PCEs that support state-sync to

have a full mesh sessions between each other.

5. Using Primary/Secondary Computation and State-sync Sessions to

increase Scaling

The Primary/Secondary computation and state-sync sessions

architecture can be used to increase the scaling of the PCE

architecture. If the number of PCCs is really high, it may be too

resource consuming for a single PCE instance to maintain all the

PCEP sessions while at the same time performing all path

computations. Using primary/secondary computation and state-sync

sessions may allow to create groups of PCEs that manage a subset of

the PCCs and perform some or no path computations. Decoupling PCEP

session maintenance and computation will allow increasing scaling of

the PCE architecture.

¶

¶

¶

In the figure above, two groups of PCEs are created: PCE1/2 maintain

PCEP sessions with PCC1 up to PCC500, while PCE3/4 maintain PCEP

sessions with PCC501 up to PCC1000. A granular primary/secondary

policy is set-up as follows to load-share computation between PCEs:

PCE1 has priority 200 for association ID 1 up to 300, association

source 0.0.0.0. All other PCEs have a decreasing priority for

those associations.

PCE3 has priority 200 for association ID 301 up to 500,

association source 0.0.0.0. All other PCEs have a decreasing

priority for those associations.

If some PCCs delegate LSPs with association ID 1 up to 300 and

association source 0.0.0.0, the receiving PCE (if not PCE1) will

sub-delegate the LSPs to PCE1. PCE1 becomes responsible for the

computation of these LSP associations while PCE3 is responsible for

the computation of another set of associations.

The procedures described in this document could help greatly in

load-sharing between a group of stateful PCEs.

 +----------+

 | PCC500 |

 +----------+-+

 | PCC1 |

 +----------+

 / \

 / \

 +---------+ +---------+

 | PCE1 |---| PCE2 |

 +---------+ +---------+

 | \ / |

 | \/ |

 | /\ |

 | / \ |

 +---------+ +---------+

 | PCE3 |---| PCE4 |

 +---------+ +---------+

 \ /

 \ /

 +----------+

 | PCC501 |

 +----------+-+

 | PCC1000 |

 +----------+

¶

¶

*

¶

*

¶

¶

¶

6. PCEP-PATH-VECTOR TLV

This specification allows PCEP messages to be propagated among PCEP

speaker. It may be useful to track information about the propagation

of the messages. One of the use cases is a message loop detection

mechanism, but other use cases like hop by hop information recording

may also be implemented in future.

This document introduces the PCEP-PATH-VECTOR TLV (type TBD3) to be

encoded in the LSP Object with the following format:

The TLV format and padding rules are as per [RFC5440].

The PCEP-SPEAKER-INFORMATION field has the following format:

Length: defines the total length of the PCEP-SPEAKER-INFORMATION

field.

ID Length: defines the length of the Speaker identity actual

field (non-padded).

Speaker Entity identity: same possible values as the SPEAKER-

IDENTIFIER-TLV. Padded with trailing zeros to a 4-byte boundary.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type=TBD3 | Length |

+-+

| PCEP-SPEAKER-INFORMATION#1 |

+-+

| ... |

+-+

| ... |

+-+

| PCEP-SPEAKER-INFORMATION#n |

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Length | ID Length |

+-+

// Speaker Entity identity (variable) //

+-+

// Sub-TLVs (optional) //

+-+

¶

*

¶

*

¶

*

¶

The PCEP-SPEAKER-INFORMATION may also carry some optional sub-

TLVs so each PCEP speaker can add local information that could be

recorded. This document does not define any sub-TLV.

The PCEP-PATH-VECTOR TLV MAY be carried in the LSP Object. Its usage

is purely optional.

If a PCEP speaker receives a message with PCEP-PATH-VECTOR TLV and

finds its speaker information already present in the PCEP-PATH-

VECTOR TLV, it MUST ignore the PCEP message and SHOULD log it as an

error.

The list of speakers within the PCEP-PATH-VECTOR TLV MUST be

ordered. When sending a PCEP message (PCRpt, PCUpd, or PCInitiate),

a PCEP Speaker MAY add the PCEP-PATH-VECTOR TLV with a PCEP-SPEAKER-

INFORMATION containing its own information. If the PCEP message sent

is the result of a previously received PCEP message, and if the

PCEP-PATH-VECTOR TLV was already present in the initial message, the

PCEP speaker MAY append a new PCEP-SPEAKER-INFORMATION containing

its own information.

7. Security Considerations

The security considerations described in [RFC8231] and [RFC5440]

apply to the extensions described in this document as well.

Additional considerations related to state synchronization and sub-

delegation between stateful PCEs are introduced, as it could be

spoofed and could be used as an attack vector. An attacker could

attempt to create too much state in an attempt to load the PCEP

peer. The PCEP peer could respond with a PCErr message as described

in [RFC8231]. An attacker could impact LSP operations by creating

bogus state. Further, state synchronization between stateful PCEs

could provide an adversary with the opportunity to eavesdrop on the

network. Thus, securing the PCEP session using Transport Layer

Security (TLS) [RFC8253], as per the recommendations and best

current practices in [RFC9325], is RECOMMENDED.

8. Implementation Status

[Note to the RFC Editor - remove this section before publication, as

well as remove the reference to RFC 7942.]

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

*

¶

¶

¶

¶

¶

¶

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

At the time of posting the -06 version of this document, there are

no known implementations of this mechanism. It is believed that some

vendors are considering implementations, but these plans are too

vague to make any further assertions.

9. Manageability Considerations

9.1. Control of Function and Policy

An operator MUST be allowed to configure the capability to support

state-sync procedures for a inter-PCE session. They MUST allow

configuration of a computation priority of the local and remote PCEs

at the global level. They MAY also allow configuration of

computation priority of the local and remote PCEs per association

(or a range of them). Further, they MAY also allow configuration of

computation priority per PCC (or range of them). An implementation

MAY support other such configuration levels for computation priority

of the local and remote PCEs.

9.2. Information and Data Models

An implementation SHOULD allow the operator to view the capability

defined in this document. To serve this purpose, the PCEP YANG

module [I-D.ietf-pce-pcep-yang] could be extended in the future.

9.3. Liveness Detection and Monitoring

Mechanisms defined in this document do not imply any new liveness

detection and monitoring requirements in addition to those already

listed in [RFC5440].

9.4. Verify Correct Operations

Mechanisms defined in this document do not imply any new operation

verification requirements in addition to those already listed in

[RFC5440].

¶

¶

¶

¶

¶

¶

¶

9.5. Requirements On Other Protocols

Mechanisms defined in this document do not imply any new

requirements on other protocols.

9.6. Impact On Network Operations

Mechanisms defined in this document improves the network operations

by alleviating the problems described in Section 1.

10. Acknowledgements

Thanks to [I-D.knodel-terminology] urging for better use of terms.

11. IANA Considerations

This document requests IANA actions to allocate code points for the

protocol elements defined in this document.

11.1. PCEP-Error Object

IANA is requested to allocate a new Error Value for the Error Type 6

and 24.

Error-

Type
Meaning Reference

6 Mandatory Object Missing [RFC5440]

Error-value=TBD1: SPEAKER-ENTITY-ID TLV

missing

This

document

24 LSP instantiation error [RFC8281]

Error-value=TBD5: No PCEP session with

the headend

This

document

Table 1

11.2. PCEP TLV Type Indicators

IANA is requested to allocate new TLV Type Indicator values within

the "PCEP TLV Type Indicators" sub-registry of the PCEP Numbers

registry, as follows:

Value Meaning Reference

TBD2 ORIGINAL-LSP-DB-VERSION TLV This document

TBD3 PCEP-PATH-VECTOR TLV This document

Table 2

11.3. STATEFUL-PCE-CAPABILITY TLV

IANA is requested to allocate a new bit value in the STATEFUL-PCE-

CAPABILITY TLV Flag Field sub-registry.

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC5440]

[RFC8174]

[RFC8231]

[RFC8232]

[RFC8253]

[I-D.ietf-pce-pcep-yang]

Bit Description Reference

TBD4 INTER-PCE-CAPABILITY This document

Table 3

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation

Element (PCE) Communication Protocol (PCEP)", RFC 5440,

DOI 10.17487/RFC5440, March 2009, <https://www.rfc-

editor.org/info/rfc5440>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path

Computation Element Communication Protocol (PCEP)

Extensions for Stateful PCE", RFC 8231, DOI 10.17487/

RFC8231, September 2017, <https://www.rfc-editor.org/

info/rfc8231>.

Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X.,

and D. Dhody, "Optimizations of Label Switched Path State

Synchronization Procedures for a Stateful PCE", RFC 8232,

DOI 10.17487/RFC8232, September 2017, <https://www.rfc-

editor.org/info/rfc8232>.

Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,

"PCEPS: Usage of TLS to Provide a Secure Transport for

the Path Computation Element Communication Protocol

(PCEP)", RFC 8253, DOI 10.17487/RFC8253, October 2017,

<https://www.rfc-editor.org/info/rfc8253>.

12.2. Informative References

Dhody, D., Beeram, V. P., Hardwick, J.,

and J. Tantsura, "A YANG Data Model for Path Computation

Element Communications Protocol (PCEP)", Work in

Progress, Internet-Draft, draft-ietf-pce-pcep-yang-22, 11

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5440
https://www.rfc-editor.org/info/rfc5440
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8231
https://www.rfc-editor.org/info/rfc8231
https://www.rfc-editor.org/info/rfc8232
https://www.rfc-editor.org/info/rfc8232
https://www.rfc-editor.org/info/rfc8253

[I-D.knodel-terminology]

[RFC4655]

[RFC6805]

[RFC7399]

[RFC7942]

[RFC8051]

[RFC8281]

[RFC8751]

[RFC8800]

September 2023, <https://datatracker.ietf.org/doc/html/

draft-ietf-pce-pcep-yang-22>.

Knodel, M. and N. ten Oever, "Terminology,

Power, and Inclusive Language in Internet-Drafts and

RFCs", Work in Progress, Internet-Draft, draft-knodel-

terminology-14, 24 August 2023, <https://

datatracker.ietf.org/doc/html/draft-knodel-

terminology-14>.

Farrel, A., Vasseur, J.-P., and J. Ash, "A Path

Computation Element (PCE)-Based Architecture", RFC 4655,

DOI 10.17487/RFC4655, August 2006, <https://www.rfc-

editor.org/info/rfc4655>.

King, D., Ed. and A. Farrel, Ed., "The Application of the

Path Computation Element Architecture to the

Determination of a Sequence of Domains in MPLS and

GMPLS", RFC 6805, DOI 10.17487/RFC6805, November 2012,

<https://www.rfc-editor.org/info/rfc6805>.

Farrel, A. and D. King, "Unanswered Questions in the Path

Computation Element Architecture", RFC 7399, DOI

10.17487/RFC7399, October 2014, <https://www.rfc-

editor.org/info/rfc7399>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Zhang, X., Ed. and I. Minei, Ed., "Applicability of a

Stateful Path Computation Element (PCE)", RFC 8051, DOI

10.17487/RFC8051, January 2017, <https://www.rfc-

editor.org/info/rfc8051>.

Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path

Computation Element Communication Protocol (PCEP)

Extensions for PCE-Initiated LSP Setup in a Stateful PCE

Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,

<https://www.rfc-editor.org/info/rfc8281>.

Dhody, D., Lee, Y., Ceccarelli, D., Shin, J., and D.

King, "Hierarchical Stateful Path Computation Element

(PCE)", RFC 8751, DOI 10.17487/RFC8751, March 2020,

<https://www.rfc-editor.org/info/rfc8751>.

Litkowski, S., Sivabalan, S., Barth, C., and M. Negi,

"Path Computation Element Communication Protocol (PCEP)

Extension for Label Switched Path (LSP) Diversity

https://datatracker.ietf.org/doc/html/draft-ietf-pce-pcep-yang-22
https://datatracker.ietf.org/doc/html/draft-ietf-pce-pcep-yang-22
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-14
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-14
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-14
https://www.rfc-editor.org/info/rfc4655
https://www.rfc-editor.org/info/rfc4655
https://www.rfc-editor.org/info/rfc6805
https://www.rfc-editor.org/info/rfc7399
https://www.rfc-editor.org/info/rfc7399
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8051
https://www.rfc-editor.org/info/rfc8051
https://www.rfc-editor.org/info/rfc8281
https://www.rfc-editor.org/info/rfc8751

[RFC9059]

[RFC9325]

[RFC9552]

Constraint Signaling", RFC 8800, DOI 10.17487/RFC8800,

July 2020, <https://www.rfc-editor.org/info/rfc8800>.

Gandhi, R., Ed., Barth, C., and B. Wen, "Path Computation

Element Communication Protocol (PCEP) Extensions for

Associated Bidirectional Label Switched Paths (LSPs)",

RFC 9059, DOI 10.17487/RFC9059, June 2021, <https://

www.rfc-editor.org/info/rfc9059>.

Sheffer, Y., Saint-Andre, P., and T. Fossati,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325,

November 2022, <https://www.rfc-editor.org/info/rfc9325>.

Talaulikar, K., Ed., "Distribution of Link-State and

Traffic Engineering Information Using BGP", RFC 9552, DOI

10.17487/RFC9552, December 2023, <https://www.rfc-

editor.org/info/rfc9552>.

Appendix A. Contributors

Authors' Addresses

Stephane Litkowski

Cisco

Email: slitkows.ietf@gmail.com

Siva Sivabalan

Ciena Corporation

Email: msiva282@gmail.com

Cheng Li

Huawei Technologies

Huawei Campus, No. 156 Beiqing Rd.

Beijing

100095

China

Email: c.l@huawei.com

Haomian Zheng

Dhruv Dhody

Huawei

India

Email: dhruv.ietf@gmail.com

¶

https://www.rfc-editor.org/info/rfc8800
https://www.rfc-editor.org/info/rfc9059
https://www.rfc-editor.org/info/rfc9059
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9552
https://www.rfc-editor.org/info/rfc9552
mailto:slitkows.ietf@gmail.com
mailto:msiva282@gmail.com
mailto:c.l@huawei.com

Huawei Technologies

H1, Huawei Xiliu Beipo Village, Songshan Lake

Dongguan

Guangdong, 523808

China

Email: zhenghaomian@huawei.com

mailto:zhenghaomian@huawei.com

	Inter Stateful Path Computation Element (PCE) Communication Procedures.
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Problem Statement
	1.1. Requirements Language
	1.2. Reporting LSP Changes
	1.3. Split-Brain
	1.4. Applicability to H-PCE

	2. Solution
	2.1. State-sync Session
	2.2. Primary/Secondary Relationship between PCE

	3. Procedures and Protocol Extensions
	3.1. Opening a state-sync session
	3.1.1. Capability Advertisement

	3.2. State Synchronization
	3.3. Incremental Updates and Report Forwarding Rules
	3.4. Maintaining LSP States from Different Sources
	3.5. Computation Priority between PCEs and Sub-delegation
	3.5.1. Association Group

	3.6. Passive Stateful Procedures
	3.7. PCE Initiation Procedures

	4. Examples
	4.1. Example 1 - Successful disjoint paths (requiring reroute)
	4.2. Example 2 - Successful disjoint paths (simultaneous turnup)
	4.3. Example 3 - Unfeasible disjoint paths (insufficient state-sync sessions)

	5. Using Primary/Secondary Computation and State-sync Sessions to increase Scaling
	6. PCEP-PATH-VECTOR TLV
	7. Security Considerations
	8. Implementation Status
	9. Manageability Considerations
	9.1. Control of Function and Policy
	9.2. Information and Data Models
	9.3. Liveness Detection and Monitoring
	9.4. Verify Correct Operations
	9.5. Requirements On Other Protocols
	9.6. Impact On Network Operations

	10. Acknowledgements
	11. IANA Considerations
	11.1. PCEP-Error Object
	11.2. PCEP TLV Type Indicators
	11.3. STATEFUL-PCE-CAPABILITY TLV

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Contributors
	Authors' Addresses

