Congestion and Pre-Congestion Notification Working Group Internet-Draft Intended status: Informational Expires: January 15, 2009

Pre-Congestion Notification Architecture draft-ietf-pcn-architecture-04

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with <u>Section 6 of BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 15, 2009.

Copyright Notice

Copyright (C) The IETF Trust (2008).

Abstract

The purpose of this document is to describe a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established inelastic flows within a single DiffServ domain. Status

Table of Contents

$\underline{1}$. Introduction													
<u>2</u> . Terminology													
<u>3</u> . Benefits													
$\underline{4}$. Deployment scenarios													
5. Assumptions and constraints on scope													
5.1. Assumption 1: Trust and support of PCN - controlled													
environment													
5.2. Assumption 2: Real-time applications													
5.3. Assumption 3: Many flows and additional load													
5.4. Assumption 4: Emergency use out of scope													
<u>6</u> . High-level functional architecture													
<u>6.1</u> . Flow admission													
<u>6.2</u> . Flow termination													
6.3. Flow admission and flow termination when there are													
only two PCN encoding states													
<u>6.4</u> . Information transport													
<u>6.5</u> . PCN-traffic													
<u>6.6</u> . Backwards compatibility													
7. Detailed Functional architecture													
7.1. PCN-interior-node functions													
7.2. PCN-ingress-node functions													
7.3. PCN-egress-node functions													
7.4. Other admission control functions													
7.5. Other flow termination functions													
7.6. Addressing													
7.7. Tunnelling													
$\overline{7.8}$. Fault handling													
<u>8</u> . Design goals and challenges													
9. Operations and Management													
9.1. Configuration OAM													
<u>9.1.1</u> . System options													
<u>9.1.2</u> . Parameters													
<u>9.2</u> . Performance & Provisioning OAM													
<u>9.3</u> . Accounting OAM													
<u>9.4</u> . Fault OAM													
<u>9.5</u> . Security OAM													
<u>10</u> . IANA Considerations													
11. Security considerations													
<u>12</u> . Conclusions													
<u>13</u> . Acknowledgements													
<u>14</u> . Comments Solicited													
15. Changes													
<u>15.1</u> . Changes from -03 to -04													

Eardley (Editor) Expires January 15, 2009 [Page 2]

<u>15.2</u> .	Changes	from	-02	to	-03	•			•	•	•	•	·	•	•	•	•	·	•	•	•	<u>37</u>
<u>15.3</u> .	Changes	from	-01	to	-02																	<u>38</u>
<u>15.4</u> .	Changes	from	-00	to	-01																	<u>39</u>
16. <u>Appendix A</u> : Possible work items beyond the scope of the																						
cur	rent PCN	WG Ch	narte	er		• •																<u>40</u>
<u>17</u> . <u>App</u>	<u>endix B</u> :	Probi	ing			• •																<u>42</u>
<u>17.1</u> .	Introduc	ction				• •																<u>42</u>
<u>17.2</u> .	Probing	funct	tions	5																		<u>43</u>
17.3. Discussion of rationale for probing, its downsides and																						
	open iss	sues																				<u>43</u>
<u>18</u> . Info	ormative	Refer	rence	es																		<u>46</u>
Author's Address												<u>51</u>										
Intellectual Property and Copyright Statements													<u>52</u>									

1. Introduction

The purpose of this document is to describe a general architecture for flow admission and termination based on (pre-) congestion information in order to protect the quality of service of flows within a DiffServ domain [<u>RFC2475</u>]. This document defines an architecture for implementing two mechanisms to protect the quality of service of established inelastic flows within a single DiffServ domain, where all boundary and interior nodes are PCN-enabled and trust each other for correct PCN operation. Flow admission control determines whether a new flow should be admitted, in order to protect the QoS of existing PCN-flows in normal circumstances. However, in abnormal circumstances, for instance a disaster affecting multiple nodes and causing traffic re-routes, then the QoS on existing PCNflows may degrade even though care was exercised when admitting those flows. Therefore we also propose a mechanism for flow termination, which removes enough traffic in order to protect the QoS of the remaining PCN-flows.

As a fundamental building block to enable these two mechanisms, PCNinterior-nodes generate, encode and transport pre-congestion information towards the PCN-egress-nodes. Two rates, a PCNthreshold-rate and a PCN-excess-rate, are associated with each link of the PCN-domain. Each rate is used by a marking behaviour that determines how and when PCN-packets are marked, and how the markings are encoded in packet headers. Overall the aim is to enable PCNnodes to give an "early warning" of potential congestion before there is any significant build-up of PCN-packets in the queue.

PCN-boundary-nodes convert measurements of these PCN-markings into decisions about flow admission and termination. The admission control mechanism limits the PCN-traffic on each link to *roughly* its PCN-threshold-rate and the flow termination mechanism limits the PCN-traffic on each link to *roughly* its PCN-excess-rate.

This document describes the PCN architecture and outlines some benefits, deployment scenarios, assumptions and terminology for PCN. The behaviour of PCN-interior-nodes is standardised in three documents, which are summarised in this

document.[<u>I-D.eardley-pcn-marking-behaviour</u>] standardises the two marking behaviours of PCN-nodes: threshold marking and excess traffic marking. Threshold marking marks all PCN-packets if the PCN traffic rate is greater than a first configured rate, "PCN-threshold-rate". Excess traffic marking marks a proportion of PCN-packets, such that the amount marked equals the traffic rate in excess of a second configured rate, "PCN-excess-rate". PCN encoding uses a combination of the DSCP field and ECN field in the IP header to indicate that a packet is a PCN-packet and whether it is PCN-marked.

Eardley (Editor) Expires January 15, 2009 [Page 4]

[I-D.moncaster-pcn-baseline-encoding] standardises two PCN encoding states (PCN-marked and not PCN-marked) whilst [I-D.moncaster-pcn-3-state-encoding] standardises an extended scheme with three encoding states (threshold-marked, excess-traffic-marked, not PCN-marked) but requires an extra DiffServ codepoint. PCN therefore defines semantics for the ECN field different from the default semantics of [RFC3168]; PCN's encoding has been chosen to meet the guidelines of BCP124, [RFC4774]. The behaviour of PCNboundary-nodes is described in Informational documents. Several possibilities are outlined in this document; detailed descriptions and comparisons are in [I-D.charny-pcn-comparison] and [Menth08].

2. Terminology

- o PCN-domain: a PCN-capable domain; a contiguous set of PCN-enabled nodes that perform DiffServ scheduling; the complete set of PCNnodes whose PCN-marking can in principle influence decisions about flow admission and termination for the PCN-domain, including the PCN-egress-nodes which measure these PCN-marks.
- o PCN-boundary-node: a PCN-node that connects one PCN-domain to a node either in another PCN-domain or in a non PCN-domain.
- o PCN-interior-node: a node in a PCN-domain that is not a PCNboundary-node.
- o PCN-node: a PCN-boundary-node or a PCN-interior-node
- o PCN-egress-node: a PCN-boundary-node in its role in handling traffic as it leaves a PCN-domain.
- o PCN-ingress-node: a PCN-boundary-node in its role in handling traffic as it enters a PCN-domain.
- o PCN-traffic, PCN-packets, PCN-BA: a PCN-domain carries traffic of different DiffServ behaviour aggregates (BAs) [RFC2475]. The PCN-BA uses the PCN mechanisms to carry PCN-traffic and the corresponding packets are PCN-packets. The same network will carry traffic of other DiffServ BAs. The PCN-BA is distinguished by a combination of the DiffServ codepoint (DSCP) and ECN fields; note that a packet that shares the same DSCP as PCN-traffic but its ECN field is 00 (Not ECT) is not part of the PCN-BA.
- o PCN-flow: the unit of PCN-traffic that the PCN-boundary-node admits (or terminates); the unit could be a single microflow (as defined in [<u>RFC2475</u>]) or some identifiable collection of microflows.

- Ingress-egress-aggregate: The collection of PCN-packets from all PCN-flows that travel in one direction between a specific pair of PCN-boundary-nodes.
- o PCN-threshold-rate: a reference rate configured for each link in the PCN-domain, which is lower than the PCN-excess-rate. It is used by a marking behaviour that determines whether a packet should be PCN-marked with a first encoding, "threshold-marked". It's roughly the rate up to which PCN admission control should accept new flows.
- o PCN-excess-rate: a reference rate configured for each link in the PCN-domain, which is higher than the PCN-threshold-rate. It is used by a marking behaviour that determines whether a packet should be PCN-marked with a second encoding, "excess-trafficmarked". It's roughly that rate down to which flow termination should, if necessary, terminate already admitted flows.
- o Threshold-marking: a PCN-marking behaviour with the objective that all PCN-traffic is marked if the PCN-traffic exceeds the PCNthreshold-rate.
- o Excess-traffic-marking: a PCN-marking behaviour with the objective that the amount of PCN-traffic that is PCN-marked is equal to the amount that exceeds the PCN-excess-rate.
- o Pre-congestion: a condition of a link within a PCN-domain in which the PCN-node performs PCN-marking, in order to provide an "early warning" of potential congestion before there is any significant build-up of PCN-packets in the real queue. (Hence, by analogy with ECN we call our mechanism Pre-Congestion Notification.)
- o PCN-marking: the process of setting the header in a PCN-packet based on defined rules, in reaction to pre-congestion; either threshold-marking or excess-traffic-marking.
- o PCN-feedback-information: information signalled by a PCN-egressnode to a PCN-ingress-node or central control node, which is needed for the flow admission and flow termination mechanisms.

3. Benefits

We believe that the key benefits of the PCN mechanisms described in this document are that they are simple, scalable, and robust because:

 Per flow state is only required at the PCN-ingress-nodes ("stateless core"). This is required for policing purposes (to

prevent non-admitted PCN traffic from entering the PCN-domain) and so on. It is not generally required that other network entities are aware of individual flows (although they may be in particular deployment scenarios).

- o Admission control is resilient: PCN's QoS is decoupled from the routing system; hence in general admitted flows can survive capacity, routing or topology changes without additional signalling, and they don't have to be told (or learn) about such changes. The PCN-threshold-rate on each PCN-node can be chosen small enough that admitted traffic can still be carried after a rerouting in most failure cases [Menth]. This is an important feature as QoS violations in core networks due to link failures are more likely than QoS violations due to increased traffic volume [Iyer].
- o The PCN-marking behaviours only operate on the overall PCN-traffic on the link, not per flow.
- The information of these measurements is signalled to the PCNegress-nodes by the PCN-marks in the packet headers, ie "in-band". No additional signalling protocol is required for transporting the PCN-marks. Therefore no secure binding is required between data packets and separate congestion messages.
- o The PCN-egress-nodes make separate measurements, operating on the aggregate PCN-traffic from each PCN-ingress-node, ie not per flow. Similarly, signalling by the PCN-egress-node of PCN-feedback-information (which is used for flow admission and termination decisions) is at the granularity of the ingress-egress-aggregate. An alternative approach is that the PCN-egress-nodes monitor the PCN-traffic and signal PCN-feedback-information (which is used for flow admission and termination decisions) at the granularity of one (or a few) PCN-marks.
- o The admitted PCN-load is controlled dynamically. Therefore it adapts as the traffic matrix changes, and also if the network topology changes (eg after a link failure). Hence an operator can be less conservative when deploying network capacity, and less accurate in their prediction of the PCN-traffic matrix.
- o The termination mechanism complements admission control. It allows the network to recover from sudden unexpected surges of PCN-traffic on some links, thus restoring QoS to the remaining flows. Such scenarios are expected to be rare but not impossible. They can be caused by large network failures that redirect lots of admitted PCN-traffic to other links, or by malfunction of the measurement-based admission control in the presence of admitted

Eardley (Editor) Expires January 15, 2009 [Page 7]

flows that send for a while with an atypically low rate and then increase their rates in a correlated way.

- o Flow termination can also enable an operator to be less conservative when deploying network capacity. It is an alternative to running links at low utilisation in order to protect against link or node failures. This is especially the case with SRLGs (shared risk link groups, which are links that share a resource, such as a fibre, whose failure affects all those links [RFC4216]. A requirement to fully protect traffic against a single SRLG failure requires low utilisation (~10%) of the link bandwidth on some links before failure [PCN-email-SRLG].
- o The PCN-excess-rate may be set below the maximum rate that PCNtraffic can be transmitted on a link, in order to trigger termination of some PCN-flows before loss (or excessive delay) of PCN-packets occurs, or to keep the maximum PCN-load on a link below a level configured by the operator.
- o Provisioning of the network is decoupled from the process of adding new customers. By contrast, with the DiffServ architecture [RFC2475] operators rely on subscription-time Service Level Agreements that statically define the parameters of the traffic that will be accepted from a customer, and so the operator has to run the provisioning process each time a new customer is added to check that the Service Level Agreement can be fulfilled. A PCNdomain doesn't need such traffic conditioning.

<u>4</u>. Deployment scenarios

Operators of networks will want to use the PCN mechanisms in various arrangements, for instance depending on how they are performing admission control outside the PCN-domain (users after all are concerned about QoS end-to-end), what their particular goals and assumptions are, how many PCN encoding states are available, and so on.

From the perspective of the outside world, a PCN-domain essentially looks like a DiffServ domain. PCN-traffic is either transported across it transparently or policed at the PCN-ingress-node (ie dropped or carried at a lower QoS). A couple of differences are that: PCN-traffic has better QoS guarantees than normal DiffServ traffic (because PCN's mechanisms better protect the QoS of admitted flows); and in rare circumstances (failures), on the one hand some PCN-flows may get terminated, but on the other hand other flows will get their QoS restored. Non PCN-traffic is treated transparently, ie the PCN-domain is a normal DiffServ domain.

Internet-Draft

Document

An operator may choose to deploy either admission control or flow termination or both. Although designed to work together, they are independent mechanisms, and the use of one does not require or prevent the use of the other.

For example, an operator could use just PCN's admission control, solving heavy congestion (caused by re-routing) by 'just waiting' as sessions end, PCN-traffic naturally reduces, and meanwhile the admission control mechanism will prevent admission of new flows that use the affected links. So the PCN-domain will naturally return to normal operation, but with reduced capacity. The drawback of this approach would be that until PCN-traffic naturally departs to relieve the congestion, all PCN-flows as well as lower priority services will be adversely affected.

Another example is that an operator could just rely for admission control on statically provisioned capacity per PCN-ingress-node (regardless of the PCN-egress-node of a flow), as is typical in the hose model of the DiffServ architecture [RFC2475]. Such traffic conditioning agreements can lead to focused overload: many flows happen to focus on a particular link and then all flows through the congested link fail catastrophically. PCN's flow termination mechanism could then be used to counteract such a problem.

The possibility of deploying just one of PCN's flow admission and termination mechanisms is certainly an option when only two PCN encoding states are available (PCN-marked and not PCN-marked), as in [I-D.moncaster-pcn-baseline-encoding]. Another option in this circumstance is to trigger both admission control and flow termination from the single type of PCN-marking; the main downside is that admission control is less accurate.

Within the PCN-domain there is some flexibility about where the decision making functionality is located. For admission control, the most natural place is the PCN-ingress-node. For flow termination, whether the PCN-ingress-node or PCN-egress-node is more natural depends on the mechanism used to convert packet markings into a flow termination decision. These possibilities are outlined more later and also discussed elsewhere, such as in [Menth08]. Another possibility is that the decision making functionality is at some central control node. This is briefly discussed in Appendix A and described in [I-D.tsou-pcn-racf-applic].

The flow admission and termination decisions need to be enforced through per-flow policing by the PCN-ingress-nodes. If there are several PCN-domains on the end-to-end path then each needs to police at its PCN-ingress-nodes. One exception is if the operator runs both the access network (not a PCN-domain) and the core network (a PCN-

Eardley (Editor) Expires January 15, 2009 [Page 9]

domain); per flow policing could be devolved to the access network and not done at the PCN-ingress-node. Note: to aid readability, the rest of this draft assumes that policing is done by the PCN-ingressnodes.

PCN admission control has to fit with the overall approach to admission control. For instance [I-D.briscoe-tsvwg-cl-architecture] describes the case where RSVP signalling runs end-to-end. The PCNdomain is a single RSVP hop, ie only the PCN-boundary-nodes process RSVP messages, with RSVP messages processed on each hop outside the PCN-domain, as in IntServ over DiffServ [RFC2998]. It would also be possible for the RSVP signalling to be originated and/or terminated by proxies, with application-layer signalling between the end user and the proxy (eg SIP signalling with a home hub). A similar example would use NSIS signalling is used instead of RSVP.

It is possible that a user wants its inelastic traffic to use the PCN mechanisms but also react to ECN marking outside the PCN-domain [<u>I-D.sarker-pcn-ecn-pcn-usecases</u>]. Two ways to do this are to tunnel all PCN-packets across the PCN-domain, so that the ECN marks is carried transparently across the PCN-domain, or to use the three state PCN encoding [<u>I-D.moncaster-pcn-3-state-encoding</u>]. This is discussed further in Section <u>Section 7</u>.

Some possible deployment models that are outside the current PCN WG Charter are outlined in <u>Appendix A</u>.

5. Assumptions and constraints on scope

The scope of PCN is, at least initially (see <u>Appendix A</u>), restricted by the following assumptions:

- these components are deployed in a single DiffServ domain, within which all PCN-nodes are PCN-enabled and trust each other for truthful PCN-marking and transport
- all flows handled by these mechanisms are inelastic and constrained to a known peak rate through policing or shaping
- 3. the number of PCN-flows across any potential bottleneck link is sufficiently large that stateless, statistical mechanisms can be effective. To put it another way, the aggregate bit rate of PCNtraffic across any potential bottleneck link needs to be sufficiently large relative to the maximum additional bit rate added by one flow. This is the basic assumption of measurementbased admission control.

 PCN-flows may have different precedence, but the applicability of the PCN mechanisms for emergency use (911, GETS, WPS, MLPP, etc.) is out of scope.

5.1. Assumption 1: Trust and support of PCN - controlled environment

We assume that the PCN-domain is a controlled environment, ie all the nodes in a PCN-domain run PCN and trust each other. There are several reasons for proposing this assumption:

- The PCN-domain has to be encircled by a ring of PCN-boundarynodes, otherwise traffic could enter a PCN BA without being subject to admission control, which would potentially degrade the QoS of existing PCN-flows.
- o Similarly, a PCN-boundary-node has to trust that all the PCN-nodes mark PCN-traffic consistently. A node not doing PCN-marking wouldn't be able to alert when it suffered pre-congestion, which potentially would lead to too many PCN-flows being admitted (or too few being terminated). Worse, a rogue node could perform various attacks, as discussed in the Security Considerations section.

One way of assuring the above two points is that the entire PCNdomain is run by a single operator. Another possibility is that there are several operators but they trust each other to a sufficient level, in their handling of PCN-traffic.

Note: All PCN-nodes need to be trustworthy. However if it's known that an interface cannot become pre-congested then it's not strictly necessary for it to be capable of PCN-marking. But this must be known even in unusual circumstances, eg after the failure of some links.

5.2. Assumption 2: Real-time applications

We assume that any variation of source bit rate is independent of the level of pre-congestion. We assume that PCN-packets come from real time applications generating inelastic traffic, ie it sends packets at the rate the codec produces them, regardless of the availability of capacity [RFC4594]. For example, voice and video requiring low delay, jitter and packet loss, the Controlled Load Service, [RFC2211], and the Telephony service class, [RFC4594]. This assumption is to help focus the effort where it looks like PCN would be most useful, ie the sorts of applications where per flow QoS is a known requirement. In other words we focus on PCN providing a benefit to inelastic traffic (PCN may or may not provide a benefit to other types of traffic). For instance, the impact of this assumption

would be to guide simulations work.

As a consequence, it is assumed that PCN-marking is being applied to traffic scheduled with the expedited forwarding per-hop behaviour, [<u>RFC3246</u>], or traffic with similar characteristics.

<u>5.3</u>. Assumption 3: Many flows and additional load

We assume that there are many PCN-flows on any bottleneck link in the PCN-domain (or, to put it another way, the aggregate bit rate of PCNtraffic across any potential bottleneck link is sufficiently large relative to the maximum additional bit rate added by one PCN-flow). Measurement-based admission control assumes that the present is a reasonable prediction of the future: the network conditions are measured at the time of a new flow request, however the actual network performance must be OK during the call some time later. 0ne issue is that if there are only a few variable rate flows, then the aggregate traffic level may vary a lot, perhaps enough to cause some packets to get dropped. If there are many flows then the aggregate traffic level should be statistically smoothed. How many flows is enough depends on a number of things such as the variation in each flow's rate, the total rate of PCN-traffic, and the size of the "safety margin" between the traffic level at which we start admission-marking and at which packets are dropped or significantly delayed.

We do not make explicit assumptions on how many PCN-flows are in each ingress-egress-aggregate. Performance evaluation work may clarify whether it is necessary to make any additional assumption on aggregation at the ingress-egress-aggregate level.

5.4. Assumption 4: Emergency use out of scope

PCN-flows may have different precedence, but the applicability of the PCN mechanisms for emergency use (911, GETS, WPS, MLPP, etc) is out of scope for consideration by the PCN WG.

<u>6</u>. High-level functional architecture

The high-level approach is to split functionality between:

 PCN-interior-nodes 'inside' the PCN-domain, which monitor their own state of pre-congestion and mark PCN-packets if appropriate. They are not flow-aware, nor aware of ingress-egress-aggregates. The functionality is also done by PCN-ingress-nodes for their outgoing interfaces (ie those 'inside' the PCN-domain).

o PCN-boundary-nodes at the edge of the PCN-domain, which control admission of new PCN-flows and termination of existing PCN-flows, based on information from PCN-interior-nodes. This information is in the form of the PCN-marked data packets (which are intercepted by the PCN-egress-nodes) and not signalling messages. Generally PCN-ingress-nodes are flow-aware.

The aim of this split is to keep the bulk of the network simple, scalable and robust, whilst confining policy, application-level and security interactions to the edge of the PCN-domain. For example the lack of flow awareness means that the PCN-interior-nodes don't care about the flow information associated with the PCN-packets that they carry, nor do the PCN-boundary-nodes care about which PCN-interiornodes its flows traverse. The objective is to standardise PCNmarking behaviour, but potentially produce more than one (informational) RFC describing how PCN-boundary-nodes react to PCNmarks.

In order to generate information about the current state of the PCNdomain, each PCN-node PCN-marks packets if it is "pre-congested". Exactly when a PCN-node decides if it is "pre-congested" (the algorithm) and exactly how packets are "PCN-marked" (the encoding) are defined in separate standards-track documents, but at a high level it is as follows:

- o the algorithms: a PCN-node meters the amount of PCN-traffic on each one of its outgoing (or incoming) links. The measurement is made as an aggregate of all PCN-packets, and not per flow. There are two algorithms, one for threshold-marking and one for excesstraffic-marking.
- o the encoding(s): a PCN-node PCN-marks a PCN-packet by setting the ECN field to 11 and potentially altering the DSCP.

The PCN-boundary-nodes monitor the PCN-marked packets in order to extract information about the current state of the PCN-domain. Based on this monitoring, a decision is made about whether to admit a prospective new flow or whether to terminate existing flow(s).

PCN-marking needs to be configured on all links in the PCN-domain to ensure that the PCN mechanisms protect all links. The actual functionality can be configured on the outgoing or incoming interfaces of PCN-nodes - or one algorithm could be configured on the outgoing interface and the other on the incoming interface. The important thing is that a consistent choice is made across the PCNdomain to ensure that the PCN mechanisms protect all links. See [I-D.eardley-pcn-marking-behaviour] for further discussion.

The objective of the threshold-marking algorithm is to threshold-mark all PCN-packets whenever the rate of PCN-packets is greater than some configured rate, the PCN-threshold-rate. The objective of the excess-traffic-marking algorithm is to excess-traffic-mark PCNpackets at a rate equal to the difference between the bit rate of PCN-packets and some configured rate, the PCN-excess-rate. Note that this description reflects the overall intent of the algorithm rather than its instantaneous behaviour, since the rate measured at a particular moment depends on the detailed algorithm, its implementation and the traffic's variance as well as its rate (eg marking may well continue after a recent overload even after the instantaneous rate has dropped). The algorithms are specified in [I-D.eardley-pcn-marking-behaviour].

In a PCN-domain the operator may have two or three encoding states available. In both cases the ECN field is set to 11 to indicate PCNmarking. In the former case, one DSCP is used. In the latter case a second DSCP is used, which allows distinct threshold-marks and excess-traffic-marks. The encoding is specified in [I-D.moncaster-pcn-baseline-encoding] and [I-D.moncaster-pcn-3-state-encoding].

All the various admission and termination approaches are detailed and compared in [<u>I-D.charny-pcn-comparison</u>] and [<u>Menth08</u>]. The discussion below is just a brief summary. It initially assumes there are three encoding states available.

6.1. Flow admission

The objective of PCN's flow admission control mechanism is to limit the PCN-traffic on each link in the PCN-domain to *roughly* its PCNthreshold-rate, by admitting or blocking prospective new flows, in order to protect the QoS of existing PCN-flows. The PCN-thresholdrate is a parameter that can be configured by the operator and will be set lower than the traffic rate at which the link becomes congested and the node drops packets.

Exactly how the admission control decision is made will be defined separately in informational documents. At a high level two approaches are proposed:

o the PCN-egress-node measures (possibly as a moving average) the fraction of the PCN-traffic that is threshold-marked. The fraction is measured for a specific ingress-egress-aggregate. If the fraction is below a threshold value then the new flow is admitted, and if the fraction is above the threshold value then it is blocked. In [<u>I-D.eardley-pcn-architecture</u>] the fraction is measured as an EWMA (exponentially weighted moving average) and

Eardley (Editor) Expires January 15, 2009 [Page 14]

termed the "congestion level estimate".

 the PCN-egress-node monitors PCN-traffic and if it receives one (or several) threshold-marked packets, then the new flow is blocked, otherwise it is admitted. One possibility is to react to the marking state of an initial flow set-up packet (eg RSVP PATH). Another is that after one (or several) threshold-marks then all flows are blocked until after a specific period of no congestion.

Note that the admission control decision is made for a particular pair of PCN-boundary-nodes. So it is quite possible for a new flow to be admitted between one pair of PCN-boundary-nodes, whilst at the same time another admission request is blocked between a different pair of PCN-boundary-nodes.

<u>6.2</u>. Flow termination

The objective of PCN's flow termination mechanism is to limit the PCN-traffic on each link to *roughly* its PCN-excess-rate, by terminating some existing PCN-flows, in order to protect the QoS of the remaining PCN-flows. The PCN-excess-rate is a parameter that can be configured by the operator and may be set lower than the traffic rate at which the link becomes congested and the node drops packets.

Exactly how the flow termination decision is made will be defined separately in informational documents. At a high level several approaches are proposed:

- o In one approach the PCN-egress-node measures the rate of PCNtraffic that is not excess-traffic-marked, which is the amount of PCN-traffic that can actually be supported. Also the PCN-ingressnode measures the rate of PCN-traffic that is destined for this specific PCN-egress-node, and hence it can calculate the excess amount that should be terminated.
- Another approach instead measures the rate of excess-trafficmarked traffic and terminates this amount of traffic. This terminates more traffic than the previous bullet if some nodes are dropping PCN-traffic.
- o Another approach monitors PCN-packets and terminates any PCN-flow with an excess-traffic-marked packet. Compared with the approaches above, PCN-marking needs to be done at a reduced rate (every "s" bytes of excess traffic) otherwise far too much traffic would be terminated.

Since flow termination is designed for "abnormal" circumstances, it is quite likely that some PCN-nodes are congested and hence packets

are being dropped and/or significantly queued. The flow termination mechanism must bear this in mind.

Note also that the termination control decision is made for a particular pair of PCN-boundary-nodes. So it is quite possible for PCN-flows to be terminated between one pair of PCN-boundary-nodes, whilst at the same time none are terminated between a different pair of PCN-boundary-nodes.

<u>6.3</u>. Flow admission and flow termination when there are only two PCN encoding states

If a PCN-domain has only two encoding states available (PCN-marked and not PCN-marked), ie it's using the baseline encoding [<u>I-D.moncaster-pcn-baseline-encoding</u>], then an operator has three options:

- admission control only: PCN-marking means threshold-marking, ie only the threshold-marking algorithm writes PCN-marks. Only PCN admission control is available.
- o flow termination only: PCN-marking means excess-traffic-marking, ie only the excess-traffic-marking algorithm writes PCN-marks.
 Only PCN termination control is available.
- both admission control and flow termination: only the excesstraffic-marking algorithm writes PCN-marks, however the configured rate (PCN-excess-rate) is set at the rate the admission control mechanism needs to limit PCN-traffic to.
 [I-D.charny-pcn-single-marking] describes how both admission control and flow termination can be triggered in this case and also gives some of the pros and cons of this approach. The main downside is that admission control is less accurate.

<u>6.4</u>. Information transport

The transport of pre-congestion information from a PCN-node to a PCNegress-node is through PCN-markings in data packet headers, ie "inband": no signalling protocol messaging is needed. Signalling is needed to transport PCN-feedback-information between the PCNboundary-nodes, for example to convey the fraction of PCN-marked traffic from a PCN-egress-node to the relevant PCN-ingress-node. Exactly what information needs to be transported will be described in the future PCN WG document(s) about the boundary mechanisms. The signalling could be done by an extension of RSVP or NSIS, for instance; protocol work will be done by the relevant WG, but for example [I-D.lefaucheur-rsvp-ecn] describes the extensions needed for RSVP.

6.5. PCN-traffic

The following are some high-level points about how PCN works:

- o There needs to be a way for a PCN-node to distinguish PCN-traffic from other traffic. This is through a combination of the DSCP field and/or ECN field.
- The PCN mechanisms may be applied to more than one behaviour aggregate which are distinguished by DSCP. However the current PCN encodings, [I-D.moncaster-pcn-baseline-encoding] and [I-D.moncaster-pcn-3-state-encoding], only allow one PCN-BA.
- o There may be traffic that is more important than PCN, perhaps a particular application or an operator's control messages. A PCNnode may dedicate capacity to such traffic or priority schedule it over PCN. In the latter case its traffic needs to contribute to the PCN meters (ie be metered by the threshold-marking and excesstraffic-marking algorithms).
- o There may be other traffic that uses the same DSCP as PCN-traffic but with the ECN field is 00 (Not ECT), and so not subject to PCNmarking, nor PCN's admission control and flow termination mechanisms.. To quote [I-D.moncaster-pcn-baseline-encoding]: "To conserve DSCPs, DiffServ Codepoints SHOULD be chosen that are already defined for use with admission controlled traffic, such as the Voice-Admit codepoint defined in [voice-admit]." Since scheduling behaviour is coupled with the DSCP only, therefore the same scheduling and buffer management rules are applied to non-PCN-traffic and PCN-traffic using the same PCN-enabled DSCP. There may be no "non-PCN-traffic", but if there is it needs to contribute to the PCN meters.
- There will be traffic less important than PCN. For instance best effort or assured forwarding traffic. It will be scheduled at lower priority than PCN, and use a separate queue or queues. However, a PCN-node should dedicate some capacity to lower priority traffic so that it isn't starved. Such traffic doesn't contribute to the PCN meters.

<u>6.6</u>. Backwards compatibility

PCN specifies semantics for the ECN field that differ from the default semantics of [RFC3168]. BCP124 [RFC4774] gives guidelines for specifying alternative semantics for the ECN field. These are discussed in the baseline encoding [I-D.moncaster-pcn-baseline-encoding] and extended encoding [I-D.moncaster-pcn-3-state-encoding] documents. In summary, PCN

meets these guidelines by:

- o using a DSCP (or two DSCPs in the extended encoding) to allow PCNnodes to distinguish PCN-traffic that uses the alternative ECN semantics;
- defining these semantics for use within a controlled region, the PCN-domain;
- o taking appropriate action if ECN capable, non-PCN traffic arrives at a PCN-ingress-node with the DSCP used by PCN.

The 'appropriate action' can differ in the case of baseline encoding and extended encoding. In the former, ECN-capable traffic that uses the same DSCP as PCN is blocked from entering the PCN-domain directly. Blocking means it is dropped or downgraded to a lower priority behaviour aggregate, or alternatively such traffic may be tunnelled through the PCN-domain. The reason that blocking is needed is that the PCN-egress-node clears the ECN field to 00. The extended encoding adds support for end-to-end ECN, since the value of the ECN field is preserved across the PCN-domain. However, PCN-packets that get PCN-marked emerge from the PCN-domain with the ECN field set to 11 (CE). It may make sense to expose such marks to a rate adaptive endpoint. However, it could violate [RFC4774] if the endpoint doesn't understand ECN, and therefore the PCN-domain first needs to ensure that the end-to-end transport is ECN capable (probably through signalling).

7. Detailed Functional architecture

This section is intended to provide a systematic summary of the new functional architecture in the PCN-domain. First it describes functions needed at the three specific types of PCN-node; these are data plane functions and are in addition to their normal router functions. Then it describes further functionality needed for both flow admission control and flow termination; these are signalling and decision-making functions, and there are various possibilities for where the functions are physically located. The section is split into:

- 1. functions needed at PCN-interior-nodes
- 2. functions needed at PCN-ingress-nodes
- 3. functions needed at PCN-egress-nodes

- 4. other functions needed for flow admission control
- 5. other functions needed for flow termination control

Note: Probing is covered in <u>Appendix B</u>.

The section then discusses some other detailed topics:

- 1. addressing
- 2. tunnelling
- 3. fault handling

7.1. PCN-interior-node functions

Each link of the PCN-domain is configured with the following functionality:

- Packet classify decide whether an incoming packet is a PCNpacket or not.
- Packet condition if the level if traffic is sufficiently high to overload the PCN_BA, ie cause real congestion, then drop or downgrade PCN-packets.
- o Meter measure the 'amount of PCN-traffic'. The measurement is made as an aggregate of all PCN-packets, and not per flow.
- Mark algorithms determine whether to PCN-mark PCN-packets and what packet encoding is used.

The functions are specified in [<u>I-D.eardley-pcn-marking-behaviour</u>] and the encodings in [<u>I-D.moncaster-pcn-baseline-encoding</u>] and [<u>I-D.moncaster-pcn-3-state-encoding</u>].

7.2. PCN-ingress-node functions

Each ingress link of the PCN-domain is configured with the following functionality:

- Packet classify decide whether an incoming packet is part of a previously admitted flow, by using a filter spec (eg DSCP, source and destination addresses and port numbers).
- o Police police, by dropping or downgrading, any packets received with a DSCP demanding PCN transport that do not belong to an admitted flow. Similarly, police packets that are part of a

previously admitted flow, to check that the flow keeps to the agreed rate or flowspec (eg <u>RFC1633</u> [RFC1633] for a microflow and its NSIS equivalent).

- o Packet colour set the DSCP and ECN fields appropriately, see
 [I-D.moncaster-pcn-baseline-encoding] or
 [I-D.moncaster-pcn-3-state-encoding] as appropriate for the PCNdomain.
- Meter some approaches to flow termination require the PCNingress-node to measure the (aggregate) rate of PCN-traffic towards a particular PCN-egress-node.

The first two are policing functions, needed to make sure that PCNpackets admitted into the PCN-domain belong to a flow that's been admitted and to ensure that the flow keeps to the flowspec agreed (eg doesn't go at a faster rate and is inelastic traffic). Installing the filter spec will typically be done by the signalling protocol, as will re-installing the filter, for example after a re-route that changes the PCN-ingress-node (see [I-D.briscoe-tsvwg-cl-architecture] for an example using RSVP). Packet colouring allows the rest of the PCN-domain to recognise PCN-packets.

7.3. PCN-egress-node functions

Each egress link of the PCN-domain is configured with the following functionality:

- Packet classify determine which PCN-ingress-node a PCN-packet has come from.
- o Meter "measure PCN-traffic" or "monitor PCN-marks".
- o Packet colour for PCN-packets, set the DSCP and ECN fields to the appropriate values for use outside the PCN-domain.

The metering functionality of course depends on whether it is targeted at admission control or flow termination. Alternative proposals involve the PCN-egress-node "measuring" as an aggregate (ie not per flow) all PCN-packets from a particular PCN-ingress-node, or "monitoring" the PCN-traffic and reacting to one (or several) PCNmarked packets.

7.4. Other admission control functions

As well as the functions covered above, other specific admission control functions can be performed at a PCN-boundary-node (PCNingress-node or PCN-egress-node) or at a centralised node, but not at

normal PCN-interior-nodes. The functions are:

- o Make decision about admission based on the output of the PCN-egress-node's PCN meter function. In the case where it "measures PCN-traffic", the measured traffic on the ingress-egress-aggregate is compared with some reference level. In the case where it "monitors PCN-marks", then the decision is based on whether one (or several) packets is (are) PCN-marked or not. In either case, the admission decision also takes account of policy and application layer requirements.
- Communicate decision about admission signal the decision to the node making the admission control request (which may be outside the PCN-domain), and to the policer (PCN-ingress-node function) for enforcement of the decision.

There are various possibilities for how the functionality can be distributed (we assume the operator would configure which is used):

- o The decision is made at the PCN-egress-node and the decision (admit or block) is signalled to the PCN-ingress-node. This seems most natural.
- o The decision is made at the PCN-ingress-node, which requires that the PCN-egress-node signals PCN-feedback-information to the PCNingress-node. For example, it could signal the current fraction of PCN-traffic that is PCN-marked.
- o The decision is made at a centralised node (see Appendix A).

7.5. Other flow termination functions

Specific termination control functions can be performed at a PCNboundary-node (PCN-ingress-node or PCN-egress-node) or at a centralised node, but not at normal PCN-interior-nodes. There are various possibilities for how the functionality can be distributed, similar to those discussed above in the Admission control section; the flow termination decision could be made at the PCN-ingress-node, the PCN-egress-node or at some centralised node. The functions are:

- o PCN-meter at PCN-egress-node similarly to flow admission, there are two types of proposals: to "measure PCN-traffic" on the ingress-egress-aggregate, and to "monitor PCN-marks" and react to one (or several) PCN-marks.
- o (if required) PCN-meter at PCN-ingress-node make "measurements of PCN-traffic" being sent towards a particular PCN-egress-node; again, this is done for the ingress-egress-aggregate and not per

flow.

- o (if required) Communicate PCN-feedback-information to the node that makes the flow termination decision. For example, as in [<u>I-D.briscoe-tsvwg-cl-architecture</u>], communicate the PCN-egressnode's measurements to the PCN-ingress-node.
- Make decision about flow termination use the information from the PCN-meter(s) to decide which PCN-flow or PCN-flows to terminate. The decision takes account of policy and application layer requirements.
- o Communicate decision about flow termination signal the decision to the node that is able to terminate the flow (which may be outside the PCN-domain), and to the policer (PCN-ingress-node function) for enforcement of the decision.

7.6. Addressing

PCN-nodes may need to know the address of other PCN-nodes. Note: in all cases PCN-interior-nodes don't need to know the address of any other PCN-nodes (except as normal their next hop neighbours, for routing purposes).

The PCN-egress-node needs to know the address of the PCN-ingress-node associated with a flow, at a minimum so that the PCN-ingress-node can be informed to enforce the admission decision (and any flow termination decision) through policing. There are various possibilities for how the PCN-egress-node can do this, ie associate the received packet to the correct ingress-egress-aggregate. It is not the intention of this document to mandate a particular mechanism.

- The addressing information can be gathered from signalling. For example, regular processing of an RSVP Path message, as the PCN-ingress-node is the previous RSVP hop (PHOP) ([<u>I-D.lefaucheur-rsvp-ecn</u>]). Or the PCN-ingress-node could signal its address to the PCN-egress-node.
- o Always tunnel PCN-traffic across the PCN-domain. Then the PCNingress-node's address is simply the source address of the outer packet header. The PCN-ingress-node needs to learn the address of the PCN-egress-node, either by manual configuration or by one of the automated tunnel endpoint discovery mechanisms (such as signalling or probing over the data route, interrogating routing or using a centralised broker).

<u>7.7</u>. Tunnelling

Tunnels may originate and/or terminate within a PCN-domain. It is important that the PCN-marking of any packet can potentially influence PCN's flow admission control and termination - it shouldn't matter whether the packet happens to be tunnelled at the PCN-node that PCN-marks the packet, or indeed whether it's decapsulated or encapsulated by a subsequent PCN-node. This suggests that the "uniform conceptual model" described in [RFC2983] should be reapplied in the PCN context. In line with this and the approach of [RFC4303] and [I-D.briscoe-tsvwg-ecn-tunnel], the following rule is applied if encapsulation is done within the PCN-domain:

o any PCN-marking is copied into the outer header

Similarly, in line with the "uniform conceptual model" of [<u>RFC2983</u>] and the "full-functionality option" of [<u>RFC3168</u>], the following rule is applied if decapsulation is done within the PCN-domain:

- o if the outer header's marking state is more severe then it is copied onto the inner header
- o Note: the order of increasing severity is: not PCN-marked; threshold-marking; excess-traffic-marking.

An operator may wish to tunnel PCN-traffic from PCN-ingress-nodes to PCN-egress-nodes. The PCN-marks shouldn't be visible outside the PCN-domain, which can be achieved by the PCN-egress-node doing the packet colouring function (Section 7.3) after all the other (PCN and tunnelling) functions. The potential reasons for doing such tunnelling are: the PCN-egress-node then automatically knows the address of the relevant PCN-ingress-node for a flow; even if ECMP is running, all PCN-packets on a particular ingress-egress-aggregate follow the same path. But it also has drawbacks, for example the additional overhead in terms of bandwidth and processing, and the cost of setting up a mesh of tunnels between PCN-boundary-nodes (there is an N^2 scaling issue).

Potential issues arise for a "partially PCN-capable tunnel", ie where only one tunnel endpoint is in the PCN domain:

 The tunnel starts outside a PCN-domain and finishes inside it. If the packet arrives at the tunnel ingress with the same encoding as used within the PCN-domain to indicate PCN-marking, then this could lead the PCN-egress-node to falsely measure precongestion.

2. The tunnel starts inside a PCN-domain and finishes outside it. If the packet arrives at the tunnel ingress already PCN-marked, then it will still have the same encoding when it's decapsulated which could potentially confuse nodes beyond the tunnel egress.

In line with the solution for partially capable DiffServ tunnels in [<u>RFC2983</u>], the following rules are applied:

- o For case (1), the tunnel egress node clears any PCN-marking on the inner header. This rule is applied before the 'copy on decapsulation' rule above.
- o For case (2), the tunnel ingress node clears any PCN-marking on the inner header. This rule is applied after the 'copy on encapsulation' rule above.

Note that the above implies that one has to know, or figure out, the characteristics of the other end of the tunnel as part of setting it up.

Tunnelling constraints were a major factor in the choice of encoding, as explained in [<u>I-D.moncaster-pcn-baseline-encoding</u>] and [<u>I-D.moncaster-pcn-3-state-encoding</u>]. A lengthy discussion of all the issues associated with layered encapsulation of congestion notification (for ECN as well as PCN) is in [<u>I-D.briscoe-tsvwg-ecn-tunnel</u>].

7.8. Fault handling

If a PCN-interior-node fails (or one of its links), then lower layer protection mechanisms or the regular IP routing protocol will eventually re-route round it. If the new route can carry all the admitted traffic, flows will gracefully continue. If instead this causes early warning of pre-congestion on the new route, then admission control based on pre-congestion notification will ensure new flows will not be admitted until enough existing flows have departed. Re-routing may result in heavy (pre-)congestion, when the flow termination mechanism will kick in.

If a PCN-boundary-node fails then we would like the regular QoS signalling protocol to take care of things. As an example [<u>I-D.briscoe-tsvwg-cl-architecture</u>] considers what happens if RSVP is the QoS signalling protocol.

8. Design goals and challenges

Prior work on PCN and similar mechanisms has thrown up a number of

considerations about PCN's design goals (things PCN should be good at) and some issues that have been hard to solve in a fully satisfactory manner. Taken as a whole it represents a list of tradeoffs (it's unlikely that they can all be 100% achieved) and perhaps as evaluation criteria to help an operator (or the IETF) decide between options.

The following are key design goals for PCN (based on [<u>I-D.chan-pcn-problem-statement</u>]):

- The PCN-enabled packet forwarding network should be simple, scalable and robust
- o Compatibility with other traffic (ie a proposed solution should work well when non-PCN traffic is also present in the network)
- Support of different types of real-time traffic (eg should work well with CBR and VBR voice and video sources treated together)
- o Reaction time of the mechanisms should be commensurate with the desired application-level requirements (eg a termination mechanism needs to terminate flows before significant QoS issues are experienced by real-time traffic, and before most users hang up).
- Compatibility with different precedence levels of real-time applications (eg preferential treatment of higher precedence calls over lower precedence calls, [ITU-MLPP]).

The following are open issues. They are mainly taken from [<u>I-D.briscoe-tsvwg-cl-architecture</u>] which also describes some possible solutions. Note that some may be considered unimportant in general or in specific deployment scenarios or by some operators.

NOTE: Potential solutions are out of scope for this document.

- o ECMP (Equal Cost Multi-Path) Routing: The level of pre-congestion is measured on a specific ingress-egress-aggregate. However, if the PCN-domain runs ECMP, then traffic on this ingress-egressaggregate may follow several different paths - some of the paths could be pre-congested whilst others are not. There are three potential problems:
 - over-admission: a new flow is admitted (because the precongestion level measured by the PCN-egress-node is sufficiently diluted by unmarked packets from non-congested paths that a new flow is admitted), but its packets travel through a pre-congested PCN-node

- under-admission: a new flow is blocked (because the precongestion level measured by the PCN-egress-node is sufficiently increased by PCN-marked packets from precongested paths that a new flow is blocked), but its packets travel along an uncongested path
- 3. ineffective termination: flows are terminated, however their path doesn't travel through the (pre-)congested router(s). Since flow termination is a 'last resort' that protects the network should over-admission occur, this problem is probably more important to solve than the other two.
- o ECMP and signalling: It is possible that, in a PCN-domain running ECMP, the signalling packets (eg RSVP, NSIS) follow a different path than the data packets, which could matter if the signalling packets are used as probes. Whether this is an issue depends on which fields the ECMP algorithm uses; if the ECMP algorithm is restricted to the source and destination IP addresses, then it won't be. ECMP and signalling interactions are a specific instance of a general issue for non-traditional routing combined with resource management along a path [Hancock].
- o Tunnelling: There are scenarios where tunnelling makes it hard to determine the path in the PCN-domain. The problem, its impact and the potential solutions are similar to those for ECMP.
- o Scenarios with only one tunnel endpoint in the PCN domain may make it harder for the PCN-egress-node to gather from the signalling messages (eg RSVP, NSIS) the identity of the PCN-ingress-node.
- Bi-Directional Sessions: Many applications have bi-directional sessions hence there are two flows that should be admitted (or terminated) as a pair for instance a bi-directional voice call only makes sense if flows in both directions are admitted.
 However, PCN's mechanisms concern admission and termination of a single flow, and coordination of the decision for both flows is a matter for the signalling protocol and out of scope of PCN. One possible example would use SIP pre-conditions; there are others.
- o Global Coordination: PCN makes its admission decision based on PCN-markings on a particular ingress-egress-aggregate. Decisions about flows through a different ingress-egress-aggregate are made independently. However, one can imagine network topologies and traffic matrices where, from a global perspective, it would be better to make a coordinated decision across all the ingressegress-aggregates for the whole PCN-domain. For example, to block (or even terminate) flows on one ingress-egress-aggregate so that more important flows through a different ingress-egress-aggregate

Eardley (Editor) Expires January 15, 2009 [Page 26]

could be admitted. The problem may well be second order.

- o Aggregate Traffic Characteristics: Even when the number of flows is stable, the traffic level through the PCN-domain will vary because the sources vary their traffic rates. PCN works best when there's not too much variability in the total traffic level at a PCN-node's interface (ie in the aggregate traffic from all sources). Too much variation means that a node may (at one moment) not be doing any PCN-marking and then (at another moment) drop packets because it's overloaded. This makes it hard to tune the admission control scheme to stop admitting new flows at the right time. Therefore the problem is more likely with fewer, burstier flows.
- o Flash crowds and Speed of Reaction: PCN is a measurement-based mechanism and so there is an inherent delay between packet marking by PCN-interior-nodes and any admission control reaction at PCNboundary-nodes. For example, potentially if a big burst of admission requests occurs in a very short space of time (eg prompted by a televote), they could all get admitted before enough PCN-marks are seen to block new flows. In other words, any additional load offered within the reaction time of the mechanism mustn't move the PCN-domain directly from no congestion to overload. This 'vulnerability period' may impact at the signalling level, for instance QoS requests should be rate limited to bound the number of requests able to arrive within the vulnerability period.
- Silent at start: after a successful admission request the source may wait some time before sending data (eg waiting for the called party to answer). Then the risk is that, in some circumstances, PCN's measurements underestimate what the pre-congestion level will be when the source does start sending data.

9. Operations and Management

This Section considers operations and management issues, under the FCAPS headings: OAM of Faults, Configuration, Accounting, Performance and Security. Provisioning is discussed with performance.

<u>9.1</u>. Configuration OAM

This architecture document predates the detailed standards actions of the PCN WG. Here we assume that only inter-operable PCN-marking behaviours will be standardised, otherwise we would have to consider how to avoid interactions between non inter-operable marking behaviours. However, more diversity in PCN-boundary-node behaviours

Internet-Draft

Document

is expected, in order to interface with diverse industry architectures. It may be possible to have different PCN-boundarynode behaviours for different ingress-egress-aggregates within the same PCN-domain.

PCN functionality is configured on either the egress or the ingress interfaces of PCN-nodes. A consistent choice must be made across the PCN-domain to ensure that the PCN mechanisms protect all links.

PCN configuration control variables fall into the following categories:

o system options (enabling or disabling behaviours)

o parameters (setting levels, addresses etc)

One possibility is that all configurable variables sit within an SNMP management framework [<u>RFC3411</u>], being structured within a defined management information base (MIB) on each node, and being remotely readable and settable via a suitably secure management protocol (SNMPv3).

Some configuration options and parameters have to be set once to 'globally' control the whole PCN-domain. Where possible, these are identified below. This may affect operational complexity and the chances of interoperability problems between kit from different vendors.

It may be possible for an operator to configure some PCN-interiornodes so they don't run the PCN mechanisms, if it knows that these links will never become (pre-)congested.

9.1.1. System options

On PCN-interior-nodes there will be very few system options:

o Whether two PCN-markings (threshold-marked and excess-trafficmarked) are enabled or only one. Typically all nodes throughout a PCN-domain will be configured the same in this respect. However, exceptions could be made. For example, if most PCN-nodes used both markings, but some legacy hardware was incapable of running two algorithms, an operator might be willing to configure these legacy nodes solely for excess-traffic-marking to enable flow termination as a back-stop. It would be sensible to place such nodes where they could be provisioned with a greater leeway over expected traffic levels.

o what marking algorithm to use, if an equipment vendor provides a choice.

PCN-boundary-nodes (ingress and egress) will have more system options:

- o Which of admission and flow termination are enabled. If any PCNinterior-node is configured to generate a marking, all PCNboundary-nodes must be able to handle that marking. Therefore all PCN-boundary-nodes must be configured the same in this respect.
- o Where flow admission and termination decisions are made: at the PCN-ingress-node, PCN-egress-node or at a centralised node (see <u>Section 7</u>). Theoretically, this configuration choice could be negotiated for each pair of PCN-boundary-nodes, but we cannot imagine why such complexity would be required, except perhaps in future inter-domain scenarios.

PCN-egress-nodes will have further system options:

- o How the mapping should be established between each packet and its aggregate, eg by MPLS label, by IP packet filterspec; and how to take account of ECMP.
- o If an equipment vendor provides a choice, there may be options to select which smoothing algorithm to use for measurements.

<u>9.1.2</u>. Parameters

Like any DiffServ domain, every node within a PCN-domain will need to be configured with the DSCP(s) used to identify PCN-packets. On each interior link the main configuration parameters are the PCNthreshold-rate and PCN-excess-rate. A larger PCN-threshold-rate enables more PCN-traffic to be admitted on a link, hence improving capacity utilisation. A PCN-excess-rate set further above the PCNthreshold-rate allows greater increases in traffic (whether due to natural fluctuations or some unexpected event) before any flows are terminated, ie minimises the chances of unnecessarily triggering the termination mechanism. For instance an operator may want to design their network so that it can cope with a failure of any single PCNnode without terminating any flows.

Setting these rates on first deployment of PCN will be very similar to the traditional process for sizing an admission controlled network, depending on: the operator's requirements for minimising flow blocking (grade of service), the expected PCN traffic load on each link and its statistical characteristics (the traffic matrix), contingency for re-routing the PCN traffic matrix in the event of

Internet-Draft

Document

single or multiple failures and the expected load from other classes relative to link capacities [Menth]. But once a domain is up and running, a PCN design goal is to be able to determine growth in these configured rates much more simply, by monitoring PCN-marking rates from actual rather than expected traffic (see Section 9.2 on Performance & Provisioning).

Operators may also wish to configure a rate greater than the PCNexcess-rate that is the absolute maximum rate that a link allows for PCN-traffic. This may simply be the physical link rate, but some operators may wish to configure a logical limit to prevent starvation of other traffic classes during any brief period after PCN-traffic exceeds the PCN-excess-rate but before flow termination brings it back below this rate.

Specific marking algorithms will also depend on further configuration parameters. For instance, threshold-marking will require a threshold queue depth and excess-traffic-marking may require a scaling parameter. It will be preferable for each marking algorithm to have rules to set defaults for these parameters relative to the reference marking rate, but then allow operators to change them, for instance if average traffic characteristics change over time. The PCN-egressnode may allow configuration of the following:

o how it smooths metering of PCN-markings (eg EWMA parameters)

Whichever node makes admission and flow termination decisions will contain algorithms for converting PCN-marking levels into admission or flow termination decisions. These will also require configurable parameters, for instance:

- o any admission control algorithm will at least require a marking threshold setting above which it denies admission to new flows;
- o flow termination algorithms will probably require a parameter to delay termination of any flows until it is more certain that an anomalous event is not transient;
- o a parameter to control the trade-off between how quickly excess flows are terminated and over-termination.

One particular proposal, [<u>I-D.charny-pcn-single-marking</u>] would require a global parameter to be defined on all PCN-nodes, but only needs one PCN marking rate to be configured on each link. The global parameter is a scaling factor between admission and termination, for example the amount by which the PCN-excess-rate is implicitly assumed to be above the PCN-threshold-rate. [<u>I-D.charny-pcn-single-marking</u>] discusses in full the impact of this particular proposal on the

operation of PCN.

<u>9.2</u>. Performance & Provisioning OAM

Monitoring of performance factors measurable from *outside* the PCN domain will be no different with PCN than with any other packet-based flow admission control system, both at the flow level (blocking probability etc) and the packet level (jitter [RFC3393], [Y.1541], loss rate [RFC4656], mean opinion score [P.800], etc). The difference is that PCN is intentionally designed to indicate *internally* which exact resource(s) are the cause of performance problems and by how much.

Even better, PCN indicates which resources will probably cause problems if they are not upgraded soon. This can be achieved by the management system monitoring the total amount (in bytes) of PCNmarking generated by each queue over a period. Given possible long provisioning lead times, pre-congestion volume is the best metric to reveal whether sufficient persistent demand has mounted up to warrant an upgrade. Because, even before utilisation becomes problematic, the statistical variability of traffic will cause occasional bursts of pre-congestion. This 'early warning system' decouples the process of adding customers from the provisioning process. This should cut the time to add a customer when compared against admission control provided over native DiffServ [RFC2998], because it saves having to re-run the capacity planning process before adding each customer.

Alternatively, before triggering an upgrade, the long term precongestion volume on each link can be used to balance traffic load across the PCN-domain by adjusting the link weights of the routing system. When an upgrade to a link's configured PCN-rates is required, it may also be necessary to upgrade the physical capacity available to other classes. But usually there will be sufficient physical capacity for the upgrade to go ahead as a simple configuration change. Alternatively, [Songhurst] has proposed an adaptive rather than preconfigured system, where the configured PCNthreshold-rate is replaced with a high and low water mark and the marking algorithm automatically optimises how physical capacity is shared using the relative loads from PCN and other traffic classes.

All the above processes require just three extra counters associated with each PCN queue: threshold-markings, excess-traffic-markings and drop. Every time a PCN packet is marked or dropped its size in bytes should be added to the appropriate counter. Then the management system can read the counters at any time and subtract a previous reading to establish the incremental volume of each type of (pre-)congestion. Readings should be taken frequently, so that anomalous events (eg re-routes) can be separated from regular

Eardley (Editor) Expires January 15, 2009 [Page 31]

fluctuating demand if required.

9.3. Accounting OAM

Accounting is only done at trust boundaries so it is out of scope of the initial Charter of the PCN WG which is confined to intra-domain issues. Use of PCN internal to a domain makes no difference to the flow signalling events crossing trust boundaries outside the PCNdomain, which are typically used for accounting.

9.4. Fault OAM

Fault OAM is about preventing faults, telling the management system (or manual operator) that the system has recovered (or not) from a failure, and about maintaining information to aid fault diagnosis.

Admission blocking and particularly flow termination mechanisms should rarely be needed in practice. It would be unfortunate if they didn't work after an option had been accidentally disabled. Therefore it will be necessary to regularly test that the live system works as intended (devising a meaningful test is left as an exercise for the operator).

<u>Section 7</u> describes how the PCN architecture has been designed to ensure admitted flows continue gracefully after recovering automatically from link or node failures. The need to record and monitor re-routing events affecting signalling is unchanged by the addition of PCN to a DiffServ domain. Similarly, re-routing events within the PCN-domain will be recorded and monitored just as they would be without PCN.

PCN-marking does make it possible to record 'near-misses'. For instance, at the PCN-egress-node a 'reporting threshold' could be set to monitor how often - and for how long - the system comes close to triggering flow blocking without actually doing so. Similarly, bursts of flow termination marking could be recorded even if they are not sufficiently sustained to trigger flow termination. Such statistics could be correlated with per-queue counts of marking volume (Section 9.2) to upgrade resources in danger of causing service degradation, or to trigger manual tracing of intermittent incipient errors that would otherwise have gone unnoticed.

Finally, of course, many faults are caused by failings in the management process ('human error'): a wrongly configured address in a node, a wrong address given in a signalling protocol, a wrongly configured parameter in a queueing algorithm, a node set into a different mode from other nodes, and so on. Generally, a clean design with few configurable options ensures this class of faults can

be traced more easily and prevented more often. Sound management practice at run-time also helps. For instance: a management system should be used that constrains configuration changes within system rules (eg preventing an option setting inconsistent with other nodes); configuration options should also be recorded in an offline database; and regular automatic consistency checks between live systems and the database. PCN adds nothing specific to this class of problems. By the time standards are in place, we expect that the PCN WG will have ruthlessly removed gratuitous configuration choices. However, at the time of writing, the WG is yet to choose between multiple competing proposals, so the range of possible options in <u>Section 9.1</u> does seem rather wide compared to the original near-zero configuration intent of the architecture.

9.5. Security OAM

Security OAM is about using secure operational practices as well as being able to track security breaches or near-misses at run-time. PCN adds few specifics to the general good practice required in this field [RFC4778], other than those below. The correct functions of the system should be monitored (Section 9.2) in multiple independent ways and correlated to detect possible security breaches. Persistent (pre-)congestion marking should raise an alarm (both on the node doing the marking and on the PCN-egress-node metering it). Similarly, persistently poor external QoS metrics such as jitter or MOS should raise an alarm. The following are examples of symptoms that may be the result of innocent faults, rather than attacks, but until diagnosed they should be logged and trigger a security alarm:

- o Anomalous patterns of non-conforming incoming signals and packets rejected at the PCN-ingress-nodes (eg packets already marked PCNcapable, or traffic persistently starving token bucket policers).
- PCN-capable packets arriving at a PCN-egress-node with no associated state for mapping them to a valid ingress-egressaggregate.
- o A PCN-ingress-node receiving feedback signals about the precongestion level on a non-existent aggregate, or that are inconsistent with other signals (eg unexpected sequence numbers, inconsistent addressing, conflicting reports of the pre-congestion level, etc).
- Pre-congestion marking arriving at an PCN-egress-node with (pre-)congestion markings focused on particular flows, rather than randomly distributed throughout the aggregate.

10. IANA Considerations

This memo includes no request to IANA.

<u>11</u>. Security considerations

Security considerations essentially come from the Trust Assumption (<u>Section 5.1</u>), ie that all PCN-nodes are PCN-enabled and trust each other for truthful PCN-marking and transport. PCN splits functionality between PCN-interior-nodes and PCN-boundary-nodes, and the security considerations are somewhat different for each, mainly because PCN-boundary-nodes are flow-aware and PCN-interior-nodes are not.

- o Because the PCN-boundary-nodes are flow-aware, they are trusted to use that awareness correctly. The degree of trust required depends on the kinds of decisions they have to make and the kinds of information they need to make them. For example when the PCNboundary-node needs to know the contents of the sessions for making the admission and termination decisions, or when the contents are highly classified, then the security requirements for the PCN-boundary-nodes involved will also need to be high.
- o the PCN-ingress-nodes police packets to ensure a PCN-flow sticks within its agreed limit, and to ensure that only PCN-flows which have been admitted contribute PCN-traffic into the PCN-domain. The policer must drop (or perhaps downgrade to a different DSCP) any PCN-packets received that are outside this remit. This is similar to the existing IntServ behaviour. Between them the PCNboundary-nodes must encircle the PCN-domain, otherwise PCN-packets could enter the PCN-domain without being subject to admission control, which would potentially destroy the QoS of existing flows.
- PCN-interior-nodes aren't flow-aware. This prevents some security attacks where an attacker targets specific flows in the data plane
 for instance for DoS or eavesdropping.
- o PCN-marking by the PCN-interior-nodes along the packet forwarding path needs to be trusted, because the PCN-boundary-nodes rely on this information. For instance a rogue PCN-interior-node could PCN-mark all packets so that no flows were admitted. Another possibility is that it doesn't PCN-mark any packets, even when it's pre-congested. More subtly, the rogue PCN-interior-node could perform these attacks selectively on particular flows, or it could PCN-mark the correct fraction overall, but carefully choose which flows it marked.

- o the PCN-boundary-nodes should be able to deal with DoS attacks and state exhaustion attacks based on fast changes in per flow signalling.
- o the signalling between the PCN-boundary-nodes (and possibly a central control node) must be protected from attacks. For example the recipient needs to validate that the message is indeed from the node that claims to have sent it. Possible measures include digest authentication and protection against replay and man-in-the-middle attacks. For the specific protocol RSVP, hop-by-hop authentication is in [RFC2747], and [I-D.behringer-tsvwg-rsvp-security-groupkeying] may also be useful; for a generic signalling protocol the PCN WG document on "Requirements for signalling" will describe the requirements in more detail.

Operational security advice is given in <u>Section 9.5</u>.

12. Conclusions

The document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established inelastic flows within a single DiffServ domain. The main topic is the functional architecture. It also mentions other topics like the assumptions and open issues.

<u>13</u>. Acknowledgements

This document is a revised version of [<u>I-D.eardley-pcn-architecture</u>]. Its authors were: P. Eardley, J. Babiarz, K. Chan, A. Charny, R. Geib, G. Karagiannis, M. Menth, T. Tsou. They are therefore contributors to this document.

Thanks to those who've made comments on

[I-D.eardley-pcn-architecture] and on earlier versions of this draft: Lachlan Andrew, Joe Babiarz, Fred Baker, David Black, Steven Blake, Bob Briscoe, Jason Canon, Ken Carlberg, Anna Charny, Joachim Charzinski, Andras Csaszar, Lars Eggert, Ruediger Geib, Wei Gengyu, Robert Hancock, Ingemar Johansson, Georgios Karagiannis, Michael Menth, Toby Moncaster, Ben Strulo, Tom Taylor, Hannes Tschofenig, Tina Tsou, Lars Westberg, Magnus Westerlund, Delei Yu. Thanks to Bob Briscoe who extensively revised the Operations and Management section.

This document is the result of discussions in the PCN WG and forerunner activity in the TSVWG. A number of previous drafts were

presented to TSVWG: [I-D.chan-pcn-problem-statement], [I-D.briscoe-tsvwg-cl-architecture], [I-D.briscoe-tsvwg-cl-phb], [I-D.charny-pcn-single-marking], [I-D.babiarz-pcn-sip-cap], [I-D.lefaucheur-rsvp-ecn], [I-D.westberg-pcn-load-control]. The authors of them were: B, Briscoe, P. Eardley, D. Songhurst, F. Le Faucheur, A. Charny, J. Babiarz, K. Chan, S. Dudley, G. Karagiannis, A. Bader, L. Westberg, J. Zhang, V. Liatsos, X-G. Liu, A. Bhargava.

<u>14</u>. Comments Solicited

Comments and questions are encouraged and very welcome. They can be addressed to the IETF PCN working group mailing list <prn@ietf.org>.

15. Changes

<u>15.1</u>. Changes from -03 to -04

- o Minor changes throughout to reflect the consenus call about PCNmarking (as reflected in [I-D.eardley-pcn-marking-behaviour]).
- o Minor changes throughout to reflect the current decisions about encoding (as reflected in [<u>I-D.moncaster-pcn-baseline-encoding</u>]and [<u>I-D.moncaster-pcn-3-state-encoding</u>]).
- Introduction: re-structured to create new sections on Benefits, Deployment scenarios and Assumptions.
- o Introduction: Added pointers to other PCN documents.
- Terminology: changed PCN-lower-rate to PCN-threshold-rate and PCNupper-rate to PCN-excess-rate; excess-rate-marking to excesstraffic-marking.
- o Benefits: added bullet about SRLGs.
- o Deployment scenarios: new section combining material from various places within the document.
- o S6 (high level functional architecture): re-structured and edited to improve clarity, and reflect the latest PCN-marking and encoding drafts.
- o S6.4: added claim that the most natural place to make an admission decision is a PCN-egress-node.

- o S6.5: updated the bullet about non-PCN-traffic that uses the same DSCP as PCN-traffic.
- S6.6: added a section about backwards compatibility with respect to [<u>RFC4774</u>].
- o <u>Appendix A</u>: added bullet about end-to-end PCN.
- o Probing: moved to <u>Appendix B</u>.
- o Other minor clarifications, typos etc.

<u>15.2</u>. Changes from -02 to -03

- Abstract: Clarified by removing the term 'aggregated'. Follow-up clarifications later in draft: S1: expanded PCN-egress-nodes bullet to mention case where the PCN-feedback-information is about one (or a few) PCN-marks, rather than aggregated information; S3 clarified PCN-meter; S5 minor changes; conclusion.
- o S1: added a paragraph about how the PCN-domain looks to the outside world (essentially it looks like a DiffServ domain).
- o S2: tweaked the PCN-traffic terminology bullet: changed PCN traffic classes to PCN behaviour aggregates, to be more in line with traditional DiffServ jargon (-> follow-up changes later in draft); included a definition of PCN-flows (and corrected a couple of 'PCN microflows' to 'PCN-flows' later in draft)
- S3.5: added possibility of downgrading to best effort, where PCNpackets arrive at PCN-ingress-node already ECN marked (CE or ECN nonce)
- o S4: added note about whether talk about PCN operating on an interface or on a link. In S8.1 (OAM) mentioned that PCN functionality needs to be configured consistently on either the ingress or the egress interface of PCN-nodes in a PCN-domain.
- S5.2: clarified that signalling protocol installs flow filter spec at PCN-ingress-node (& updates after possible re-route)
- o S5.6: addressing: clarified
- o S5.7: added tunnelling issue of N^2 scaling if you set up a mesh of tunnels between PCN-boundary-nodes
- o S7.3: Clarified the "third viewpoint" of probing (always probe).

- o S8.1: clarified that SNMP is only an example; added note that an operator may be able to not run PCN on some PCN-interior-nodes, if it knows that these links will never become (pre-)congested; added note that it may be possible to have different PCN-boundary-node behaviours for different ingress-egress-aggregates within the same PCN-domain.
- Appendix: Created an Appendix about "Possible work items beyond the scope of the current PCN WG Charter". Material moved from near start of S3 and elsewhere throughout draft. Moved text about centralised decision node to Appendix.
- o Other minor clarifications.

<u>15.3</u>. Changes from -01 to -02

- o S1: Benefits: provisioning bullet extended to stress that PCN does not use <u>RFC2475</u>-style traffic conditioning.
- o S1: Deployment models: mentioned, as variant of PCN-domain extending to end nodes, that may extend to LAN edge switch.
- o S3.1: Trust Assumption: added note about not needing PCN-marking capability if known that an interface cannot become pre-congested.
- o S4: now divided into sub-sections
- o S4.1: Admission control: added second proposed method for how to decide to block new flows (PCN-egress-node receives one (or several) PCN-marked packets).
- o S5: Probing sub-section removed. Material now in new S7.
- o S5.6: Addressing: clarified how PCN-ingress-node can discover address of PCN-egress-node
- o S5.6: Addressing: centralised node case, added that PCN-ingressnode may need to know address of PCN-egress-node
- o S5.8: Tunnelling: added case of "partially PCN-capable tunnel" and degraded bullet on this in S6 (Open Issues)
- o S7: Probing: new section. Much more comprehensive than old S5.5.
- o S8: Operations and Management: substantially revised.
- o other minor changes not affecting semantics

<u>15.4</u>. Changes from -00 to -01

In addition to clarifications and nit squashing, the main changes are:

- S1: Benefits: added one about provisioning (and contrast with DiffServ SLAs)
- S1: Benefits: clarified that the objective is also to stop PCNpackets being significantly delayed (previously only mentioned not dropping packets)
- S1: Deployment models: added one where policing is done at ingress of access network and not at ingress of PCN-domain (assume trust between networks)
- o S1: Deployment models: corrected MPLS-TE to MPLS
- o S2: Terminology: adjusted definition of PCN-domain
- S3.5: Other assumptions: corrected, so that two assumptions (PCNnodes not performing ECN and PCN-ingress-node discarding arriving CE packet) only apply if the PCN WG decides to encode PCN-marking in the ECN-field.
- o S4 & S5: changed PCN-marking algorithm to marking behaviour
- o S4: clarified that PCN-interior-node functionality applies for each outgoing interface, and added clarification: "The functionality is also done by PCN-ingress-nodes for their outgoing interfaces (ie those 'inside' the PCN-domain)."
- o S4 (near end): altered to say that a PCN-node "should" dedicate some capacity to lower priority traffic so that it isn't starved (was "may")
- o S5: clarified to say that PCN functionality is done on an 'interface' (rather than on a 'link')
- o S5.2: deleted erroneous mention of service level agreement
- S5.5: Probing: re-written, especially to distinguish probing to test the ingress-egress-aggregate from probing to test a particular ECMP path.
- o S5.7: Addressing: added mention of probing; added that in the case where traffic is always tunnelled across the PCN-domain, add a note that he PCN-ingress-node needs to know the address of the

PCN-egress-node.

- o S5.8: Tunnelling: re-written, especially to provide a clearer description of copying on tunnel entry/exit, by adding explanation (keeping tunnel encaps/decaps and PCN-marking orthogonal), deleting one bullet ("if the inner header's marking state is more sever then it is preserved" - shouldn't happen), and better referencing of other IETF documents.
- o S6: Open issues: stressed that "NOTE: Potential solutions are out of scope for this document" and edited a couple of sentences that were close to solution space.
- o S6: Open issues: added one about scenarios with only one tunnel endpoint in the PCN domain .
- o S6: Open issues: ECMP: added under-admission as another potential risk
- o S6: Open issues: added one about "Silent at start"
- o S10: Conclusions: a small conclusions section added

<u>16</u>. <u>Appendix A</u>: Possible work items beyond the scope of the current PCN WG Charter

This section mentions some topics that are outside the PCN WG's current Charter, but which have been mentioned as areas of interest. They might be work items for: the PCN WG after a future rechartering; some other IETF WG; another standards body; an operatorspecific usage that's not standardised.

NOTE: it should be crystal clear that this section discusses possibilities only.

The first set of possibilities relate to the restrictions on scope imposed by the PCN WG Charter (see <u>Section 3</u>):

- o a single PCN-domain encompasses several autonomous systems that don't trust each other (perhaps by using a mechanism like re-ECN, [I-D.briscoe-re-pcn-border-cheat].
- o not all the nodes run PCN. For example, the PCN-domain is a multi-site enterprise network. The sites are connected by a VPN tunnel; although PCN doesn't operate inside the tunnel, the PCN mechanisms still work properly because the of the good QoS on the virtual link (the tunnel). Another example is that PCN is

deployed on the general Internet (ie widely but not universally deployed).

- applying the PCN mechanisms to other types of traffic, ie beyond inelastic traffic. For instance, applying the PCN mechanisms to traffic scheduled with the Assured Forwarding per-hop behaviour.
 One example could be flow-rate adaptation by elastic applications, that adapts according to the pre-congestion information.
- o the aggregation assumption doesn't hold, because the link capacity is too low. Measurement-based admission control is then risky.
- o the applicability of PCN mechanisms for emergency use (911, GETS, WPS, MLPP, etc.)

Other possibilities include:

- o The PCN-domain extends to the end users. The scenario is described in [<u>I-D.babiarz-pcn-sip-cap</u>]. The end users need to be trusted to do their own policing. This scenario is in the scope of the PCN WG charter if there is sufficient traffic for the aggregation assumption to hold. A variant is that the PCN-domain extends out as far as the LAN edge switch.
- o indicating pre-congestion through signalling messages rather than in-band (in the form of PCN-marked packets)
- o the decision-making functionality is at a centralised node rather than at the PCN-boundary-nodes. This requires that the PCNegress-node signals PCN-feedback-information to the centralised node, and that the centralised node signals to the PCN-ingressnode about the decision about admission (or termination). It may also need the centralised node and the PCN-boundary-nodes to know each other's addresses. It would be possible for the centralised node to be one of the PCN-boundary-nodes, when clearly the signalling would sometimes be replaced by a message internal to the node.
- o Signalling extensions for specific protocols (eg RSVP, NSIS). For example: the details of how the signalling protocol installs the flowspec at the PCN-ingress-node for an admitted PCN-flow; and how the signalling protocol carries the PCN-feedback-information. Perhaps also for other functions such as: coping with failure of a PCN-boundary-node ([I-D.briscoe-tsvwg-cl-architecture] considers what happens if RSVP is the QoS signalling protocol); establishing a tunnel across the PCN-domain if it is necessary to carry ECN marks transparently. Note: There is a PCN WG Milestone on "Requirements for signalling", which is potential input for the

appropriate WGs.

- Policing by the PCN-ingress-node may not be needed if the PCNdomain can trust that the upstream network has already policed the traffic on its behalf.
- o PCN for Pseudowire: PCN may be used as a congestion avoidance mechanism for edge to edge pseudowire emulations [I-D.ietf-pwe3-congestion-frmwk].
- PCN for MPLS: [<u>RFC3270</u>] defines how to support the DiffServ architecture in MPLS networks. [<u>RFC5129</u>] describes how to add PCN for admission control of microflows into a set of MPLS aggregates (Multi-protocol label switching). PCN-marking is done in MPLS's EXP field (which [<u>I-D.andersson-mpls-expbits-def</u>] proposes to rename to the Class of Service (CoS) bits).
- PCN for Ethernet: Similarly, it may be possible to extend PCN into Ethernet networks, where PCN-marking is done in the Ethernet header. NOTE: Specific consideration of this extension is outside the IETF's remit.

<u>17</u>. <u>Appendix B</u>: Probing

<u>**17.1</u>**. Introduction</u>

Probing is an optional mechanism to assist admission control.

PCN's admission control, as described so far, is essentially a reactive mechanism where the PCN-egress-node monitors the precongestion level for traffic from each PCN-ingress-node; if the level rises then it blocks new flows on that ingress-egress-aggregate. However, it's possible that an ingress-egress-aggregate carries no traffic, and so the PCN-egress-node can't make an admission decision using the usual method described earlier.

One approach is to be "optimistic" and simply admit the new flow. However it's possible to envisage a scenario where the traffic levels on other ingress-egress-aggregates are already so high that they're blocking new PCN-flows, and admitting a new flow onto this 'empty' ingress-egress-aggregate adds extra traffic onto the link that's already pre-congested - which may 'tip the balance' so that PCN's flow termination mechanism is activated or some packets are dropped. This risk could be lessened by configuring on each link sufficient 'safety margin' above the PCN-threshold-rate.

An alternative approach is to make PCN a more proactive mechanism. The PCN-ingress-node explicitly determines, before admitting the prospective new flow, whether the ingress-egress-aggregate can support it. This can be seen as a "pessimistic" approach, in contrast to the "optimism" of the approach above. It involves probing: a PCN-ingress-node generates and sends probe packets in order to test the pre-congestion level that the flow would experience.

One possibility is that a probe packet is just a dummy data packet, generated by the PCN-ingress-node and addressed to the PCN-egressnode. Another possibility is that a probe packet is a signalling packet that is anyway travelling from the PCN-ingress-node to the PCN-egress-node (eg an RSVP PATH message travelling from source to destination).

<u>17.2</u>. Probing functions

The probing functions are:

- Make decision that probing is needed. As described above, this is when the ingress-egress-aggregate (or the ECMP path - <u>Section 8</u>) carries no PCN-traffic. An alternative is always to probe, ie probe before admitting every PCN-flow.
- o (if required) Communicate the request that probing is needed the PCN-egress-node signals to the PCN-ingress-node that probing is needed
- o (if required) Generate probe traffic the PCN-ingress-node generates the probe traffic. The appropriate number (or rate) of probe packets will depend on the PCN-marking algorithm; for example an excess-traffic-marking algorithm generates fewer PCNmarks than a threshold-marking algorithm, and so will need more probe packets.
- Forward probe packets as far as PCN-interior-nodes are concerned, probe packets are handled the same as (ordinary data) PCN-packets, in terms of routing, scheduling and PCN-marking.
- o Consume probe packets the PCN-egress-node consumes probe packets to ensure that they don't travel beyond the PCN-domain.

<u>17.3</u>. Discussion of rationale for probing, its downsides and open issues

It is an unresolved question whether probing is really needed, but three viewpoints have been put forward as to why it is useful. The

first is perhaps the most obvious: there is no PCN-traffic on the ingress-egress-aggregate. The second assumes that multipath routing ECMP is running in the PCN-domain. The third viewpoint is that admission control is always done by probing. We now consider each in turn.

The first viewpoint assumes the following:

- o There is no PCN-traffic on the ingress-egress-aggregate (so a normal admission decision cannot be made).
- o Simply admitting the new flow has a significant risk of leading to overload: packets dropped or flows terminated.

On the former bullet, [PCN-email-traffic-empty-aggregates] suggests that, during the future busy hour of a national network with about 100 PCN-boundary-nodes, there are likely to be significant numbers of aggregates with very few flows under nearly all circumstances.

The latter bullet could occur if a new flow starts on many of the empty ingress-egress-aggregates and causes overload on a link in the PCN-domain. To be a problem this would probably have to happen in a short time period (flash crowd) because, after the reaction time of the system, other (non-empty) ingress-egress-aggregates that pass through the link will measure pre-congestion and so block new flows, and also flows naturally end anyway.

The downsides of probing for this viewpoint are:

- o Probing adds delay to the admission control process.
- o Sufficient probing traffic has to be generated to test the precongestion level of the ingress-egress-aggregate. But the probing traffic itself may cause pre-congestion, causing other PCN-flows to be blocked or even terminated - and in the flash crowd scenario there will be probing on many ingress-egress-aggregates.

The open issues associated with this viewpoint include:

- o What rate and pattern of probe packets does the PCN-ingress-node need to generate, so that there's enough traffic to make the admission decision?
- o What difficulty does the delay (whilst probing is done) cause applications, eg packets might be dropped?
- Are there other ways of dealing with the flash crowd scenario?
 For instance limit the rate at which new flows are admitted; or

perhaps for a PCN-egress-node to block new flows on its empty ingress-egress-aggregates when its non-empty ones are pre-congested.

The second viewpoint applies in the case where there is multipath routing (ECMP) in the PCN-domain. Note that ECMP is often used on core networks. There are two possibilities:

(1) If admission control is based on measurements of the ingressegress-aggregate, then the viewpoint that probing is useful assumes:

- o there's a significant chance that the traffic is unevenly balanced across the ECMP paths, and hence there's a significant risk of admitting a flow that should be blocked (because it follows an ECMP path that is pre-congested) or blocking a flow that should be admitted.
- Note: [PCN-email-ECMP] suggests unbalanced traffic is quite possible, even with quite a large number of flows on a PCN-link (eg 1000) when Assumption 3 (aggregation) is likely to be satisfied.

(2) If admission control is based on measurements of pre-congestion on specific ECMP paths, then the viewpoint that probing is useful assumes:

- o There is no PCN-traffic on the ECMP path on which to base an admission decision.
- Simply admitting the new flow has a significant risk of leading to overload.
- o The PCN-egress-node can match a packet to an ECMP path.
- o Note: This is similar to the first viewpoint and so similarly could occur in a flash crowd if a new flow starts more-or-less simultaneously on many of the empty ECMP paths. Because there are several (sometimes many) ECMP paths between each pair of PCN-boundary-nodes, it's presumably more likely that an ECMP path is 'empty' than an ingress-egress-aggregate. To constrain the number of ECMP paths, a few tunnels could be set-up between each pair of PCN-boundary-nodes. Tunnelling also solves the third bullet (which is otherwise hard because an ECMP routing decision is made independently on each node).

The downsides of probing for this viewpoint are:

- o Probing adds delay to the admission control process.
- Sufficient probing traffic has to be generated to test the precongestion level of the ECMP path. But there's the risk that the probing traffic itself may cause pre-congestion, causing other PCN-flows to be blocked or even terminated.
- o The PCN-egress-node needs to consume the probe packets to ensure they don't travel beyond the PCN-domain (eg they might confuse the destination end node). Hence somehow the PCN-egress-node has to be able to disambiguate a probe packet from a data packet, via the characteristic setting of particular bit(s) in the packet's header or body - but these bit(s) mustn't be used by any PCN-interiornode's ECMP algorithm. In the general case this isn't possible, but it should be OK for a typical ECMP algorithm which examines: the source and destination IP addresses and port numbers, the protocol ID and the DSCP.

The third viewpoint assumes the following:

- o Every admission control decision involves probing, using the signalling set-up message as the probe packet (eg RSVP PATH).
- o The PCN-marking behaviour is such that every packet is PCN-marked if the flow should be blocked, hence only a single probing packet is needed.

This viewpoint [I-D.<u>draft-babiarz-pcn-3sm</u>] has in particular been suggested for the scenario where the PCN-domain reaches out towards the end terminals (note that it's assumed the trust and aggregation assumptions still hold), although it has also been suggested for other scenarios.

<u>18</u>. Informative References

```
[I-D.briscoe-tsvwg-cl-architecture]
```

Briscoe, B., "An edge-to-edge Deployment Model for Pre-Congestion Notification: Admission Control over a DiffServ Region", <u>draft-briscoe-tsvwg-cl-architecture-04</u> (work in progress), October 2006.

[I-D.briscoe-tsvwg-cl-phb]

Briscoe, B., "Pre-Congestion Notification marking", <u>draft-briscoe-tsvwg-cl-phb-03</u> (work in progress), October 2006.

```
[I-D.babiarz-pcn-sip-cap]
```

draft-ietf-pwe3-congestion-frmwk-01.txt>.

[I-D.briscoe-tsvwg-ecn-tunnel]

"Layered Encapsulation of Congestion Notification", July 2008, <<u>http://www.ietf.org/internet-drafts/</u> <u>briscoe-tsvwg-ecn-tunnel-01.txt</u>>.

[I-D.charny-pcn-single-marking]

"Pre-Congestion Notification Using Single Marking for Admission and Termination", November 2007, <<u>http://</u> <u>www.ietf.org/internet-drafts/</u> <u>draft-charny-pcn-single-marking-03.txt</u>>.

[I-D.eardley-pcn-architecture]

"Pre-Congestion Notification Architecture", June 2007, <ht tp://www.ietf.org/internet-drafts/ draft-eardley-pcn-architecture-00.txt>.

[I-D.westberg-pcn-load-control]

"LC-PCN: The Load Control PCN Solution", February 2008, <h
ttp://www.ietf.org/internet-drafts/
draft-westberg-pcn-load-control-03.txt>.

- [I-D.behringer-tsvwg-rsvp-security-groupkeying]
 "Applicability of Keying Methods for RSVP Security",
 November 2007, <<u>http://www.watersprings.org/pub/id/</u>
 - draft-behringer-tsvwg-rsvp-security-groupkeying-01.txt>.
- [I-D.briscoe-re-pcn-border-cheat]

"Emulating Border Flow Policing using Re-ECN on Bulk

Data", February 2008, <<u>http://tools.ietf.org/id/</u> draft-briscoe-re-pcn-border-cheat-01.txt>.

[I-D.draft-babiarz-pcn-3sm]

"Three State PCN Marking", November 2007, <<u>http://</u> www.watersprings.org/pub/id/draft-babiarz-pcn-3sm-01.txt>.

- [RFC5129] "Explicit Congestion Marking in MPLS", <u>RFC 5129</u>, January 2008.
- [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and W. Weiss, "An Architecture for Differentiated Services", <u>RFC 2475</u>, December 1998.
- [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec, J., Courtney, W., Davari, S., Firoiu, V., and D. Stiliadis, "An Expedited Forwarding PHB (Per-Hop Behavior)", <u>RFC 3246</u>, March 2002.
- [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration Guidelines for DiffServ Service Classes", <u>RFC 4594</u>, August 2006.
- [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", <u>RFC 3168</u>, September 2001.
- [RFC2211] Wroclawski, J., "Specification of the Controlled-Load Network Element Service", <u>RFC 2211</u>, September 1997.
- [RFC2998] Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B., Wroclawski, J., and E. Felstaine, "A Framework for Integrated Services Operation over Diffserv Networks", <u>RFC 2998</u>, November 2000.
- [RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen, P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-Protocol Label Switching (MPLS) Support of Differentiated Services", <u>RFC 3270</u>, May 2002.
- [RFC1633] Braden, B., Clark, D., and S. Shenker, "Integrated Services in the Internet Architecture: an Overview", <u>RFC 1633</u>, June 1994.
- [RFC2983] Black, D., "Differentiated Services and Tunnels",

RFC 2983, October 2000.

- [RFC2747] Baker, F., Lindell, B., and M. Talwar, "RSVP Cryptographic Authentication", <u>RFC 2747</u>, January 2000.
- [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, <u>RFC 3411</u>, December 2002.
- [RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)", <u>RFC 3393</u>, November 2002.
- [RFC4216] Zhang, R. and J. Vasseur, "MPLS Inter-Autonomous System (AS) Traffic Engineering (TE) Requirements", <u>RFC 4216</u>, November 2005.
- [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", <u>RFC 4656</u>, September 2006.
- [RFC4774] Floyd, S., "Specifying Alternate Semantics for the Explicit Congestion Notification (ECN) Field", <u>BCP 124</u>, <u>RFC 4774</u>, November 2006.
- [RFC4778] Kaeo, M., "Operational Security Current Practices in Internet Service Provider Environments", <u>RFC 4778</u>, January 2007.

[ITU-MLPP]

"Multilevel Precedence and Pre-emption Service (MLPP)", ITU-T Recommendation I.255.3, 1990.

- [Y.1541] "Network Performance Objectives for IP-based Services", ITU-T Recommendation Y.1541, February 2006.
- [P.800] "Methods for subjective determination of transmission quality", ITU-T Recommendation P.800, August 1996.

[Songhurst]

"Guaranteed QoS Synthesis for Admission Control with Shared Capacity", BT Technical Report TR-CXR9-2006-001, Feburary 2006, http://www.cs.ucl.ac.uk/staff/B.Briscoe/

projects/ipe2eqos/gqs/papers/GQS_shared_tr.pdf>.

[Menth] "PCN-Based Resilient Network Admission Control: The Impact of a Single Bit"", Technical Report , 2007, <<u>http://</u> www3.informatik.uni-wuerzburg.de/staff/menth/Publications/ Menth07-PCN-Config.pdf>.

[PCN-email-ECMP]

"Email to PCN WG mailing list", November 2007, <<u>http://</u> www1.ietf.org/mail-archive/web/pcn/current/msg00871.html>.

[PCN-email-traffic-empty-aggregates]

"Email to PCN WG mailing list", October 2007, <<u>http://</u> www1.ietf.org/mail-archive/web/pcn/current/msg00831.html>.

[PCN-email-SRLG]

"Email to PCN WG mailing list", March 2008, <<u>http://</u> www1.ietf.org/mail-archive/web/pcn/current/msg01359.html>.

[I-D.eardley-pcn-marking-behaviour]

"Marking behaviour of PCN-nodes", June 2008, <<u>http://
www.ietf.org/internet-drafts/
draft-eardley-pcn-marking-behaviour-01.txt</u>>.

[I-D.moncaster-pcn-baseline-encoding]

"Baseline Encoding and Transport of Pre-Congestion Information", July 2008, <<u>http://www.ietf.org/</u> internet-drafts/ draft-moncaster-pcn-baseline-encoding-02.txt>.

[I-D.moncaster-pcn-3-state-encoding]

"A three state extended PCN encoding scheme", June 2008, <
<u>http://www.ietf.org/internet-drafts/</u>
draft-moncaster-pcn-3-state-encoding-00.txt>.

[I-D.charny-pcn-comparison]

"Pre-Congestion Notification Using Single Marking for Admission and Termination", November 2007, <<u>http://</u> <u>www.watersprings.org/pub/id/</u> <u>draft-charny-pcn-comparison-00.txt</u>>.

[I-D.tsou-pcn-racf-applic]

"Applicability Statement for the Use of Pre-Congestion Notification in a Resource-Controlled Network", February 2008, <<u>http://tools.ietf.org/id/</u> <u>draft-tsou-pcn-racf-applic-00.txt</u>>.

[I-D.sarker-pcn-ecn-pcn-usecases]

"Usecases and Benefits of end to end ECN support in PCN Domains", May 2008, <<u>http://tools.ietf.org/id/</u> <u>draft-sarker-pcn-ecn-pcn-usecases-01.txt</u>>.

- [I-D.andersson-mpls-expbits-def]
 "MPLS EXP-bits definition", March 2008, <<u>http://
 tools.ietf.org/id/
 draft-andersson-mpls-expbits-def-00.txt>.</u>
- [Menth08] "PCN-Based Admission Control and Flow Termination", 2008, <<u>http://www3.informatik.uni-wuerzburg.de/staff/menth/</u> Publications/Menth08-PCN-Comparison.pdf>.
- [Hancock] "Slide 14 of 'NSIS: An Outline Framework for QoS Signalling'", May 2002, <<u>http://www-nrc.nokia.com/sua/</u> nsis/interim/nsis-framework-outline.ppt>.

Author's Address

Philip Eardley BT B54/77, Sirius House Adastral Park Martlesham Heath Ipswich, Suffolk IP5 3RE United Kingdom

Email: philip.eardley@bt.com

Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in $\frac{BCP}{78}$, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in <u>BCP 78</u> and <u>BCP 79</u>.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).