
Internet Draft C. Adams (Entrust Technologies)
PKIX Working Group M. Myers (VeriSign)
draft-ietf-pkix-cmmf-01.txt
Expires in 6 months July 1998

Internet X.509 Public Key Infrastructure
Certificate Management Message Formats

<draft-ietf-pkix-cmmf-02.txt>

1. Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of 6 months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za(Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
ftp.isi.edu (US West Coast).

2. Abstract

This is a draft of the Internet X.509 Public Key Infrastructure (PKI)
Certificate Management Messages Formats (CMMF). It establishes
harmonized message formats to be used in conjunction with security
protocol implementations that require interaction with a Public Key
Infrastructure (PKI).

This draft is being discussed on the "ietf-pkix" mailing list. To
subscribe, send a message to ietf-pkix-request@tandem.com with the
single word "subscribe" in the body of the message.

3. Introduction

This document defines message formats to be used between a PKI client
and a PKI server or service(where a PKI is defined to encompass the
roles of Registration Authority and Certification Authority). Using
these message formats, a PKI client may:
- Request public key certification
 - Responses may include CA-generated key pairs
- Request revocation of a certificate
- Receive announcements directly from a PKI on:
 - CA Key Update
 - Renewed Certificates

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-cmmf-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-cmmf-02.txt

 - Subscriber Revocation notices
 - CRL refresh

Myers, Adams [Page 1]

INTERNET DRAFT February 1998

- Request data of a PKI, including:
 - OneÆs own or othersÆ certificate
 - CRL download

The specification of a transaction protocol using these message formats
is beyond the scope of this document. It is expected that such protocols
will be defined with a view towards localized interoperability needs.
Where requirements exist to exchange information which is substantially
aligned with the message content in this document, such protocols should
reference these message formats.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
as shown) are to be interpreted as described in [RFC2119].

4. Common Data Structures

Several structures are common to more than one message format. These
are:

- Status information
- Failure information
- Certificate identification
- Encrypted values

4.1 Status Information

Responses may include status information pertaining to a prior request.
The following values are defined:

 PKIStatus ::= INTEGER {
 granted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- FullCertTemplate

https://datatracker.ietf.org/doc/html/rfc2119

 }

Myers, Adams [Page 2]

INTERNET DRAFT February 1998

4.2 Failure Information

The following values may be used to provide more information about
failure cases.

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (used for notary services)
 missingTimeStamp (8)
 -- when the timestamp is missing but should be there (by policy)
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 String (note: each UTF8String SHOULD
 -- include an RFC 1766 language tag to indicate the language
 -- of the contained text)

4.3 Certificate Identification

In order to identify particular certificates the following data
structure is used.

CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER }

https://datatracker.ietf.org/doc/html/rfc1766

4.4 Encrypted Values

Certain values in responses may require encryption beyond that that
which may be performed in a PKI protocol. For example, a CA may

Myers, Adams [Page 3]

INTERNET DRAFT February 1998

generate key pairs for subscribers but deliver them via an RA.As a
general rule RAs should be prohibited from unnecessary or inadvertent
contact with a subscriberÆs private keys.

EncryptedData ::= CHOICE {
 encryptedValue [0] EncryptedValue,
 cMSEnveloped [1] EnvelopedData }

The syntax of encryptedValue is defined in [CRMF]. For reference, this
syntax is:

EncryptedValue ::= SEQUENCE {
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL,
 -- algorithm used to encrypt the symmetric key
 valueHint [4] OCTET STRING OPTIONAL,
 -- a brief description or identifier of the encValue content
 -- (may be meaningful only to the sending entity, and used only
 -- if EncryptedValue might be re-examined by the sending entity
 -- in the future)
 encValue BIT STRING }

Use of this data structure requires that the creator and intended
recipient respectively be able to encrypt and decrypt. Typically, this
will mean that the sender and recipient have, or are able to generate, a
shared secret key.

For key agreement algorithms (such as Diffie-Hellman), the encSymmKey
field of EncryptedValue is not included. For key exchange algorithms
(such as RSA), the encSymmKey is a symmetric key encrypted under the
subscriber's public key.

If the recipient of the PKIMessage already possesses a private key
usable for decryption, then the encSymmKey field MAY contain a session
key encrypted using the recipientÆs public key.

5. Message Formats

5.1 Certification Request

[CRMF] defines the preferred structure for production of certification
requests. It is a flexible mechanism designed to enable mandatory and
optional cryptographic algorithms, centralized key generation, a variety
of proof-of-possession options and several other control features useful
to a robust PKI client enrollment capability.

Current industry practice can be supported for clients through use of
the following structure.

Myers, Adams [Page 4]

INTERNET DRAFT February 1998

PKCSReq ::= SEQUENCE {
 endEntityInfo EndEntityInfo,
 regInfo OCTET STRING OPTIONAL,
 certReqId INTEGER OPTIONAL }

The endEntityInfo field is used to carry a public key, to prove
possession of the public key and to provide additional ASN.1 attributes
useful to production of the resulting certificate.

The certReqId field can be used to identify individual certification
requests in the event multiple PKCSReqs are sent to a CA.

The regInfo field contains supplementary information related to the
context of the certification request when such information is required
to fulfill a certification request. This information could include
subscriber contact information, billing information or other
ancillary information useful to fulfillment of the certification
request.

Current industry practice has established two structures for producing a
signed public key. The use of explicit tagging below allows
disambiguation among these options while maintaining bits on the wire
compatibility with prior implementations:

endEntityInfo :: CHOICE {
pKCS10 CertificationRequest,
signedKey [0] SignedPublicKeyAndChallenge }

SignedPublicKeyAndChallenge :: SEQUENCE {
publicKeyAndChallenge PublicKeyAndChallenge,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

PublicKeyAndChallenge :: SEQUENCE {
spki SubjectPublicKeyInfo,
challenge IA5String }

CertificationRequest ::= SEQUENCE {
 certificationRequestInfo SEQUENCE {
 version INTEGER,
 subject Name,
 subjectPublicKeyInfo SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
 attributes [0] IMPLICIT SET OF Attribute }
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

The client MAY incorporate one or more standard X.509 v3 extensions in
the request as an ExtensionReq attribute:

ExtensionReq ::= SEQUENCE OF Extension

Myers, Adams [Page 5]

INTERNET DRAFT February 1998

where Extension is imported from PKIX Part 1 and ExtensionReq is
identified by the OID value {pkcs-9 14}.

5.2 Certification Response

Two options are established for the response to a certification request:
a simple form that enables basic interoperability and a form that
enables generation of subscriber private keys by the CA.

5.2.1 Use of SignedData

[CMS] supports a degenerate case of the SignedData content type where
there are no signers on the content. This degenerate case is used to
convey certificate and CRL information. Certification Authorities MAY
use this format for returning certificate information resulting from the
successful fulfillment of a certification request. The certificate
response MUST include the actual subject certificate corresponding to
the information in the certification request. The response SHOULD
include other certificates which link the issuer to higher level
certification authorities and corresponding CRLs.

CertRep ::= SEQUENCE {
 response SignedData, OPTIONAL
 rspInfo OCTET STRING }

Successful requests would include the resulting certificate(s) in the
response field along with any additional {name, value} information
useful to client-side processing of a successful request. In the event
of an unsuccessful request, the rspInfo field contains information
regarding the failure which may be useful to the requesting entity.

RspInfo content MAY include state information the PKI client needs such
as the contents of the regInfo in the CRMF (see [CRMF]). Other
additional data could include detailed error information that uniquely
identifies an information field supplied in the original regInfo; e.g.
the Zip Code was incorrect for the specified address or locale or
billing failed because credit card information was in error.

5.2.2 CertRepContent

A CertRepContent data structure contains a CA public key, a status value
and optionally failure information, a subject certificate, and an
encrypted private key.

 CertRepContent ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,
 response SEQUENCE of CertResponse }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,

 -- to match this response with corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request)

Myers, Adams [Page 6]

INTERNET DRAFT February 1998

 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair, OPTIONAL }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedValue OPTIONAL,
 publicationInfo [1] PKIPublicationInfo OPTIONAL }

 CertOrEncCert ::= CHOICE {
 certificate [0] Certificate,
 encryptedCert [1] EncryptedValue }

Given an EncryptedCert and the relevant decryption key the certificate
may be obtained. The purpose of this is to allow a CA to return the
value of a certificate, but with the constraint that only the intended
recipient can obtain the actual certificate. The benefit of this
approach is that a CA may reply with a certificate even in the absence
of a proof that the requester is the end entity which can use the
relevant private key (note that the proof is not obtained until
confirmation of receipt is received by the CA). Thus the CA will not
have to revoke that certificate in the event that something goes wrong
with the proof of possession.

5.3 GetCertInitial

The GetCertInitial message is used to poll for the certificate
associated with prior request if the response to that prior request was
a CertRep message with a status of PENDING.

Certificates are normally referenced using the CA DN and the certificate
serial number. In this case however a certificate has not yet been
issued. Thus the CA and Subject DNs are present in the message as a
means to identify the requested certification. The certReqId field, if
used, contains a value that matches a corresponding value in a prior
certification request in the event multiple requests have been sent to a
CA and those requests contained a certReqId value.

IssuerAndSubject ::= SEQUENCE {
 issuer Name,
 subject Name,
 certReqId INTEGER OPTIONAL }

5.4 GetCRL

This operation is used to retrieve CRLs from a certificate server or
serviceÆs repository. This message is useful in circumstances where a
fully-deployed Directory is either infeasible or undesired.

The GetCRL message body consists of the following syntax:

Myers, Adams [Page 7]

INTERNET DRAFT February 1998

GetCRL ::= SEQUENCE {
 issuerName Name,
 cRLName GeneralName, OPTIONAL
 time GeneralizedTime, OPTIONAL
 reasons ReasonFlags OPTIONAL }

The Name component is the value of the Issuer DN in the subject certifi-
cate. The cRLName component may be the value of CRLDistributionPoints in
the subject certificate or equivalent value in the event the certificate
does not contain such a value. The time component is used by the client
to specify from among potentially several issues of CRL that one whose
thisUpdate value is less than but nearest to the specified time. In the
absence of a time component, the CA always returns with the most recent
CRL. The reasonFlags field can be used to specify from among CRLs
partitioned by revocation reason. Implementors should bear in mind that
while a specific revocation request has a single CRLReason code--and
consequently entries in the CRL would have a single CRLReason code
value--a single CRL can aggregate information for one or more
reasonFlags.

5.5 Revocation Request

Two options are established to enable programmatic submission of a
revocation request.

5.5.1 RevRequest

RevRequests ::= SEQUENCE OF RevRequest

RevRequest ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER,
 reason CRLReason,
 passphrase OCTET STRING OPTIONAL,
 comment UTF8string OPTIONAL }

For a revocation request to become a reliable object in the event of a
dispute, a strong proof of originator authenticity is required. A
Registration AuthorityÆs digital signature on the request can provide
this proof for certificates within the scope of the RAÆs revocation
authority. However, in the instance when an end-entity has lost use of
their signature private key, it is impossible to produce a reliable
digital signature. [CRMF] provides for the use specification of a
passphrase during enrollment which may be used as an alternative
authenticator in the instance of loss of use. The acceptability of this
practice is a matter of local security policy.

5.5.2 RevReqContent

When requesting revocation of a certificate (or several certificates)

the following data structure is used.

Myers, Adams [Page 8]

INTERNET DRAFT February 1998

RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 revocationReason ReasonFlags,
 -- from the Draft Amendment (DAM), so CA knows what to use in
 -- Distribution point
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions
 -- requested crlEntryExtensions }

5.6 Revocation Response

The response to the RevReqContent message. If produced, this is sent to
the requester of the revocation. (A separate revocation announcement
message MAY be sent to the subject of the certificate for which
revocation was requested.)

 RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one) }

5.7 Challenge-Response Proof Of Possession

[CRMF] establishes the basis for a challenge-response proof of
possession technique. The challenge-response messages for proof of
possession of a private decryption key are specified as follows (see
[MvOV97, p.404], for details).

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a

 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER MUST be used for each Challenge.]

Myers, Adams [Page 9]

INTERNET DRAFT February 1998

challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

It is recognized that, in general, there is a security risk associated
with the decryption of arbitrary data (that is, it is typically not
recommended that an entity decrypts arbitrary received ciphertext and
returns the corresponding, random-looking plaintext). This is because
obtaining the plaintext for carefully-chosen "ciphertexts" may in some
cases leak information or provide the challenger with signatures on
documents that the receiver had no intention of signing.

The witness parameter in the above challenge precludes such attacks
because it convincingly demonstrates to the receiver that the challenger
knew the plaintext that corresponds to each of the ciphertext challenges
prior to the exchange. Therefore, in a strict information-theoretic
sense, the challenger learns no information whatsoever other than the
fact that the receiver is in possession of the private key corresponding
to the public key for which certification is requested (which is what
this protocol is explicitly designed to show). Furthermore, the
challenger is not in possession of any data (e.g., a signature on a
document) after the exchange that it did not already possess prior to
the exchange.

5.8 PKI Confirmation content

This data structure is used in three-way protocols as the final
PKIMessage. Its content is the same in all cases - actually there is no
content since the PKIHeader carries all the required information.

 PKIConfirmContent ::= NULL

5.9 Announcements

>From time to time a PKI may need to distribute information to its
clients or subscribers. These messages are generally unsolicited and

and may be received by end entities at random times. Implementers of
protocols that use these message formats should take this effect into
account.

Myers, Adams [Page 10]

INTERNET DRAFT February 1998

5.9.1 CA Key Update Announcement content

When a CA updates its own key pair the following data structure MAY be
used to announce this event.

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

To change the key of the CA, the CA does the following:

 1.Generate a new key pair;

 2.Create a certificate containing the old CA public key signed with
 the new private key (the "old with new" certificate);

 3.Create a certificate containing the new CA public key signed with
 the old private key (the "new with old" certificate);

 4.Create a certificate containing the new CA public key signed with
 the new private key (the "new with new" certificate);

 5.Publish these new certificates via the directory and/or other means

 6.Export the new CA public key so that end entities may acquire it
 using the "out-of-band" mechanism (if required).

The old CA private key is then no longer required. The old CA public key
will however remain in use for some time. The time when the old CA
public key is no longer required (other than for non-repudiation) will
be when all end entities of this CA have securely acquired the new CA
public key.

The "old with new" certificate must have a validity period starting at
the generation time of the old key pair and ending at the expiry date of
the old public key.

The "new with old" certificate must have a validity period starting at
the generation time of the new key pair and ending at the time by which
all end entities of this CA will securely possess the new CA public key
(at the latest, the expiry date of the old public key).

The "new with new" certificate must have a validity period starting at
the generation time of the new key pair and ending at the time by which
the CA will next update its key pair.

5.9.2 Certificate Announcement

This structure MAY be used to announce the existence of certificates.

Myers, Adams [Page 11]

INTERNET DRAFT February 1998

Note that this message is intended to be used for those cases (if any)
where there is no pre-existing method for publication of certificates;
it is not intended to be used where, for example, X.500 is the
method for publication of certificates.

 CertAnnContent ::= Certificate

5.9.3 CRL Announcement

When a CA issues a new CRL (or set of CRLs) the following data structure
MAY be used to announce this event.

 CRLAnnContent ::= SEQUENCE OF CertificateList

5.9.4 Revocation Announcement

When a CA has revoked, or is about to revoke, a particular certificate
it MAY issue an announcement of this (possibly upcoming) event.

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
 }

A CA MAY use such an announcement to warn (or notify) a subject that its
certificate is about to be (or has been) revoked. This would typically
be used where the request for revocation did not come from the subject
concerned.

The willBeRevokedAt field contains the time at which a new entry will be
added to the relevant CRLs.

5.10 Key recovery Response

For key recovery responses the following syntax is used. For some
status values (e.g., waiting) none of the optional fields will be
present.

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

Myers, Adams [Page 12]

INTERNET DRAFT February 1998

5.11 PKI General Message content

>From time to time a PKI MAY announce other information not explicitly
called out in this specification. In such cases the following structure
MAY be used to unambiguously identify this information when transmitted
as a PKI message.

InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- This construct MAY also be used to define new PKIX Certificate
 -- Management Protocol request and response messages, or general-
 -- purpose (e.g., announcement) messages for future needs or for
 -- specific environments.
 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue
 -- May be sent by EE, RA, or CA (depending on message content).
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue will typically
 -- be omitted for some of the examples given above. The receiver is
 -- free to ignore any contained OBJ. IDs that it does not recognize.
 -- If sent from EE to CA, the empty set indicates that the CA may send
 -- any/all information that it wishes.

5.12 PKI General Response content

GenRepContent ::= SEQUENCE OF InfoTypeAndValue
 -- The receiver is free to ignore any contained OBJ. IDs that it does
 -- not recognize.

5.13 Error Message

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

6. SECURITY CONSIDERATIONS

This entire memo is about security mechanisms.

One cryptographic consideration is worth explicitly spelling out. In
the protocols specified above, when an end entity is required to
prove possession of a decryption key, it is effectively challenged
to decrypt something (its own certificate). This scheme (and many
others!) could be vulnerable to an attack if the possessor of the
decryption key in question could be fooled into decrypting an
arbitrary challenge and returning the cleartext to an attacker.

Although in this specification a number of other failures in
security are required in order for this attack to succeed, it is
conceivable that some future services (e.g., notary, trusted time)

Myers, Adams [Page 13]

INTERNET DRAFT February 1998

could potentially be vulnerable to such attacks. For this reason we
re-iterate the general rule that implementations should be very
careful about decrypting arbitrary "ciphertext" and revealing
recovered "plaintext" since such a practice can lead to serious
security vulnerabilities.

7. References

 [COR95] ISO/IEC JTC 1/SC 21, Technical Corrigendum 2 to ISO/IEC
 9594-8: 1990 & 1993 (1995:E), July 1995.

 [MvOV97] A. Menezes, P. van Oorschot, S. Vanstone, "Handbook of
 Applied Cryptography", CRC Press, 1997.

 [PKCS7] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS10] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS11] RSA Laboratories, "The Public-Key Cryptography Standards -
 PKCS #11: Cryptographic token interface standard", RSA
 Data Security Inc., Redwood City, California, April 28,
 1995.

 [RFC2104] H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed Hashing
 for Message Authentication", Internet Request for Comments
 2104, February, 1997.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", Internet Request for Comments 2119
 (Best Current Practice: BCP 14), March, 1997.

 [X509-AM] ISO/IEC JTC1/SC 21, Draft Amendments DAM 4 to ISO/IEC
 9594-2, DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7,
 and DAM 1 to ISO/IEC 9594-8 on Certificate Extensions,
 1 December, 1996.

 [CRMF] M. Myers, C. Adams, D. Solo, D. Kemp,
 Certificate Request Message Format,
 <draft-ietf-pkix-crmf-01.txt>,
 May, 1998

 [CMS] R. Housley, Cryptographic Message Syntax
 <draft-ietf-smime-cms-02.txt>
 December, 1997

 [PKCS8] Private Key Information Syntax Standard, v1.2

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-crmf-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-02.txt

 RSA Laboratories Technical Note
 November 1, 1993

Myers, Adams [Page 14]

INTERNET DRAFT February 1998

Authors' Addresses
 Michael Myers
 VeriSign, Inc.
 1390 Shorebird Way,
 Mountain View, CA 94043
 mmyers@verisign.com

 Carlisle Adams
 Entrust Technologies
 750 Heron Road, Suite E08,
 Ottawa, Ontario
 Canada K1V 1A7
 cadams@entrust.com

Appendix A: ASN.1 Module

CMMF DEFINITIONS IMPLICIT TAGS ::=

BEGIN

IMPORTS

 -- Directory Authentication Framework (X.509)
 Version, AlgorithmIdentifier, Name, Time,
 SubjectPublicKeyInfo, Extensions, UniqueIdentifier,
 GeneralizedTime
 FROM AuthenticationFramework { joint-iso-itu-t ds(5)
 module(1) authenticationFramework(7) 3 }

 -- Certificate Extensions (X.509)
 GeneralName
 FROM CertificateExtensions {joint-iso-ccitt ds(5)
 module(1) certificateExtensions(26) 0}

 -- Cryptographic Message Syntax
 EnvelopedData, SignedData
 FROM CryptographicMessageSyntax { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 modules(0) cms(1) }

 -- Certificate Request Message Format
 EncryptedValue
 FROM CRMF { . . . };

PKCSReq ::= SEQUENCE {
 endEntityInfo EndEntityInfo,
 regInfo OCTET STRING OPTIONAL,
 certReqId INTEGER OPTIONAL }

CertRep ::= SEQUENCE {
 response SignedData, OPTIONAL
 rspInfo OCTET STRING }

Myers, Adams [Page 15]

INTERNET DRAFT February 1998

endEntityInfo :: CHOICE {
pKCS10 CertificationRequest,
signedKey [0] SignedPublicKeyAndChallenge }

SignedPublicKeyAndChallenge :: SEQUENCE {
publicKeyAndChallenge PublicKeyAndChallenge,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

PublicKeyAndChallenge :: SEQUENCE {
spki SubjectPublicKeyInfo,
challenge IA5String }

CertificationRequest ::= SEQUENCE {
 certificationRequestInfo SEQUENCE {
 version INTEGER,
 subject Name,
 subjectPublicKeyInfo SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
 attributes [0] IMPLICIT SET OF Attribute }
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

ExtensionReq ::= SEQUENCE OF Extension

CertRepContent ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,
 response SEQUENCE of CertResponse }

CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair, OPTIONAL }

CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedValue OPTIONAL,
 publicationInfo [1] PKIPublicationInfo OPTIONAL }

CertOrEncCert ::= CHOICE {
 certificate [0] Certificate,
 encryptedCert [1] EncryptedValue }

EncryptedData ::= CHOICE {
 encryptedValue [0] EncryptedValue,
 cMSEnveloped [1] EnvelopedData }

Myers, Adams [Page 16]

INTERNET DRAFT February 1998

IssuerAndSubject ::= SEQUENCE {
 issuer Name,
 subject Name,
 certReqId INTEGER OPTIONAL }

GetCRL ::= SEQUENCE {
 issuerName Name,
 cRLName GeneralName, OPTIONAL
 time GeneralizedTime, OPTIONAL
 reasons ReasonFlags OPTIONAL }

RevRequests ::= SEQUENCE OF RevRequest

RevRequest ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER,
 reason CRLReason,
 passphrase OCTET STRING OPTIONAL,
 comment UTF8string OPTIONAL }

RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 revocationReason ReasonFlags,
 -- from the Draft Amendment (DAM), so CA knows what to use in
 -- Distribution point
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions
 -- requested crlEntryExtensions }

RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one) }

POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates).

Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,

 -- MUST be present in the first Challenge; MAY be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).

Myers, Adams [Page 17]

INTERNET DRAFT February 1998

 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER MUST be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name
 -- }
 }

POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

PKIConfirmContent ::= NULL

PKIStatus ::= INTEGER {
 granted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- FullCertTemplate
 }

PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier

 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported

Myers, Adams [Page 18]

INTERNET DRAFT February 1998

 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (used for notary services)
 missingTimeStamp (8)
 -- when the timestamp is missing but should be there (by policy)
 }

CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL }

PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String

RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.) }

 -- include an RFC 1766 language tag to indicate the language
 -- of the contained text)

KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL }

CertId ::= SEQUENCE {

https://datatracker.ietf.org/doc/html/rfc1766

 issuer GeneralName,
 serialNumber INTEGER }

CertAnnContent ::= Certificate
CRLAnnContent ::= SEQUENCE OF CertificateList

Myers, Adams [Page 19]

INTERNET DRAFT February 1998

RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.) }

KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL }

InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL }

GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details }

