
Internet Draft Ronald Tschalar (Trustpoint)
PKIX Working Group Amit Kapoor (Trustpoint)
Expires in 6 months Carlisle Adams (Entrust)

 Sep. 1999

Using TCP as a Transport Protocol for CMP
<draft-ietf-pkix-cmp-tcp-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on February 2, 2000

Copyright Notice

 Copyright (C)The Internet Society (1999). All Rights Reserved.

Abstract

 This document describes how to layer Certificate Management
 Protocols [CMP] over [TCP]. A method for doing so is described in
 section 5.2 of [CMP], but that method does not solve problems
 encountered by implementors. This document specifies an enhanced
 method which extends the protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
 as shown) are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-cmp-tcp-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

1. Motivation

Section 5.2 of the CMP spec specifies sending the DER-encoded CMP
 message directly over TCP. However, implementors, during various
 interoperability workshops, found the protocol lacking in the
 following respects:

 1. No clear definition on when the connection is to be closed
 and by whom.
 2. No version number specified to allow for extensions.
 3. Error messages cannot be processed by applications.

 Realizing that this could not be achieved in a backward compatible
 way, the decision was made to enhance the protocol now to avoid
 interoperability conflicts later. This enhancement tries to keep
 as much of the older protocol as possible, while ensuring that
 implementations using the old protocol will not mistake a TCP-Message
 (defined in Section 2.1) for a valid message in the RFC-2510 format.

2. TCP-Based Management Protocol

 The following simple TCP-based protocol is to be used for transport
 of PKI messages. This protocol is suitable for cases where an end
 entity (or an RA) initiates a transaction and can poll to pick up the
 results.

 The client sends a TCP-message to the server, and the server responds
 with another TCP-message.

 The protocol basically assumes a listener process on an RA or CA
 which can accept TCP-messages on a well-defined port (default port number
 is 829). Typically a client initiates connection to the server and
 submits a PKI message. The server replies with a PKI message or with
 a reference number to be used later when polling for the actual PKI
 message response.

 If a polling-reference was supplied then the client will send
 a polling request using this polling-reference after waiting for at
 least the specified time. The server may again reply with a
 polling-reference or with the actual PKI message response.

 When the final PKI response message has been picked up by the
 client then no new polling reference is supplied.

 If a transaction is initiated by a PKI entity (RA or CA) then an end
 entity must either supply a listener process or be supplied with a
 polling reference (see below) in order to allow it to pick up the PKI
 message from the PKI management component.

2.1 General Form

https://datatracker.ietf.org/doc/html/rfc2510

 A TCP-message consists of:

 length (32-bits)
 version (8-bits)
 flags (variable length)
 message-type (8-bits),
 value (defined below)

 The length field contains the number of octets of the remainder of
 the TCP-message (i.e., number of octets of <value> plus <flags-length>
 plus 2). All bit values in this protocol are specified to be in
 network byte order.

 The version field indicates the version of the TCP-message. It MUST
 be incremented for each specification which changes the flags field
 in a way that is not fully backwards compatible with the previous
 version (e.g. when the length of the flags field is changed), or
 which introduces a new message-type.

 The flags field is for transporting TCP-message specific data. The
 length of this field is version dependent and is fixed for a given
 version.

 The message-type field is used to indicate the type of TCP-message.

 The value field contains message-type dependent data.

2.2 Version Negotiation

 If a client knows the protocol version(s) supported by the
 server (e.g. from a previous TCP-message exchange or via some
 out-of-band means) then it SHOULD send a TCP-message with the highest
 version supported both by it and the server. If a client does
 not know what version(s) the server supports then it SHOULD send
 a TCP-message using the highest version it supports.

 If a server receives a TCP-message version that it supports, then it
 MUST reply with a TCP-message of the same version. If the version
 received is higher than what the server supports, it MUST send
 back a VersionNotSupported errorMsgRep (defined below) containing
 the highest version it supports.

2.3 TCP-message Version 10

 The TCP-message version will be 10 for this document. The number has
 deliberately been chosen to prevent RFC-2510 compliant applications
 from treating it as a valid message type. Applications receiving a
 version less than 10 SHOULD interpret the message as being an

RFC-2510 style message.

 The length of the flags field for this version is 1 octet. The LSB

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510

 is used to indicate a connection close; all other bits in the flags
 octet MUST be ignored by servers, and MUST be set to zero by
 senders.

 By default connections are kept open after the receipt of a
 response. Either party (client or server) MAY set the connection
 close bit at any time. If the connection close bit is set on a request,
 then the server SHOULD set the bit in the response and close the
 connection after sending the response. If the bit is set on a
 response from the server, the client MUST NOT send any
 further requests on that connection. Applications MAY decide to
 close an idle connection (one on which no response is outstanding)
 after some time-out. Because of the problem where a client sends
 a request and the server closes the connection while the request
 is still in flight, clients SHOULD automatically retry a request
 for which no part of the response could be read due to a connection
 close or reset.

 If the connection is kept open, it MUST only be used for subsequent
 request/response transactions started by the client - the server
 MUST NOT use it to send requests to the client.

2.4 Detecting and Interoperating with RFC-2510 Conformant Implementations

 Servers wishing to interoperate with clients conforming to RFC-2510
 can do so by treating any received message with a version less than
 10 as an RFC-2510 message and responding in that format. Servers
 not wishing to support RFC-2510 messages MUST respond with a RFC-2510
 errorMsgRep.

 Clients wishing to interoperate with RFC-2510 compliant servers
 SHOULD treat a response with a version less than 10 as an RFC-2510
 style message. If this message is an errorMsgRep (message-type
 06) then the client MAY automatically retry the request using the

RFC-2510 format; if the message is not an errorMsgRep or the implementation
 does not wish to support RFC-2510 then it MUST abort the corresponding CMP
 transaction.

2.5 Message Types

 message-types 0-127 are reserved and will be issued under IANA
 auspices. message-types 128-255 are reserved for application use.

 The message-type's currently defined are:

 Message name Message-type

 pkiReq '00'H

 pollRep '01'H

 pollReq '02'H

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510

 finRep '03'H

 pkiRep '05'H

 errorMsgRep '06'H

 The different TCP-messages are discussed in the following sections:

2.5.1 pkiReq

 The pkiReq is to be used to carry a PKIMessage from the client to the
 server. The <value> portion of this TCP-message will contain:

 DER-encoded PKIMessage.

 The type of PKIMessages that can be carried by this TCP-message are:

 Initialization Request
 Certification Request
 PKCS-10 Request
 POP Response
 Key Update Request
 Key Recovery Request
 Revocation Request
 Cross-Certification Request
 CA Key Update Announcement
 CRL Announcement
 Certificate Announcement
 Confirmation
 Nested Message
 General Message
 Error Message

2.5.2 pkiRep

 This TCP-message is to be used to send back the response to the request.
 The <value> portion of the finalMsgRep will contain:

 DER encoded PKI message

 The type of PKIMessages that can be carried by this TCP-message are:

 Initialization Response
 Certification Response
 POP Request
 Key Update Response
 Key Recovery Response
 Revocation Response
 General Response
 Error Message

2.5.3 pollReq

 The pollReq will be the used by the client to check the status of
 a pending PKI message. The <value> portion of the pollReq will contain:

 polling-reference (32 bits)

 The <polling-reference> MUST be the one returned via the pollRep TCP-
message.

2.5.4 pollRep

 The pollRep will be the response sent by the server to the client
 when there are no PKI message response ready. The <value> portion of
 the pollRep will contain:

 polling-reference (32 bits)
 time-to-check-back (32 bits)

 The <polling-reference> is a unique 32-bit number sent by the server.
 The <time-to-check-back> is the time in seconds indicating the minimum
 interval after which the client SHOULD check the status again.

 The duration for which the server keeps the <polling-reference>
 unique is left to the implementation.

2.5.5 finRep

 finRep will be the response from the server indicating end of
 transaction, i.e., there are no further messages to be delivered
 from the server. The <value> portion of the finRep will
 contain:

 '00'H (8 bits)

2.5.6 errorMsgRep

 This TCP-message is sent when a TCP-message level protocol error is
 detected. Please note that PKIError messages MUST NOT be sent
 using this. Examples of TCP-message level errors are:

 1. Invalid protocol version
 2. Invalid TCP message-type
 3. Invalid polling reference number

 The <value> field of the TCP-message SHALL contain:

 error-type (16-bits)
 data-length (16-bits)
 data (<data-length> octets)
 UTF8 String (SHOULD include a RFC 1766 language tag)

https://datatracker.ietf.org/doc/html/rfc1766

 The <error-type> is of the form MMNN where M and N are hex digits
 [0-F] and MM represents the major category and NN the minor. The
 major categories defined by this specification are:

 '01'H TCP-message version negotiation
 '02'H client errors
 '03'H server errors

 The <data-length> and <data> are additional information about the
 error to be used by programs for further processing and recovery.
 <data-length> contains the length of the <data> field in number of
 octets. Error messages not needing additional information to be
 conveyed should set the <data-length> to 0.

 The UTF8 text string is for user readable error messages.

2.5.6.1 VersionNotSupported errorMsgRep

 The VersionNotSupported errorMsgRep is defined as follows:

 error-type: '0101'H
 data-length: 1
 data: <version>
 UTF8-text String: implementation defined

 where <version> is the highest version the server supports.

2.5.6.2 GeneralClientError errorMsgRep

 The GeneralClientError errorMsgRep is defined as follows:

 error-type: '0200'H
 data-length: 0
 data: <empty>
 UTF8-text String: implementation defined

2.5.6.3 MessageTypeUnknown errorMsgRep

 The MessageTypeUnknown errorMsgRep is defined as follows:

 error-type: '0201'H
 data-length: 1
 data: <message-type>
 UTF8-text String: implementation defined

 where <message-type> is the message-type received by the
 server.

2.5.6.4 InvalidPollID errorMsgRep

 The InvalidPollID errorMsgRep is defined as follows:

 error-type: '0202'H
 data-length: 4
 data: <polling-reference>
 UTF8-text String: implementation defined

 where <polling-reference> is the polling-reference received by
 the server.

3. CMP over TCP

 The following sections describe how the above protocol is to be
 used to carry the PKI messages. Similar behaviour has been
 put in the same section.

3.1 Initialization/Certificate/Key Update/Key Recovery/Revocation

 These requests MUST be sent using the pkiReq message-type. In response,
 the server SHOULD send back one of the following:

 1. errorMsgRep
 2. pollRep
 3. pkiRep

 Any other TCP-message is to be treated as an error.

 On receiving the pollRep, the client SHOULD use the delta time
 specified in the pollRep to check the status, using pollReq.

 The final PKI message in the transaction MUST be sent in pkiRep from
 the server to the client. The client MUST send the
 PKIConfirm in pkiReq, and on successful processing SHOULD get back
 a finRep indicating an end of the transaction.

3.2 Cross Certification/General Message

 These requests MUST be sent using the pkiReq message-type. In response,
 the server SHOULD send back one of the following:

 1. errorMsgRep
 2. pollRep
 3. pkiRep

 Any other TCP-message is to be treated as an error.

 On receiving the pollRep, the client SHOULD use the delta time
 specified in the pollRep to check the status later, using pollReq.
 It is RECOMMENDED, however, that the server process the PKI message
 immediately and return the PKI response (i.e. instead of sending a
 pollRep).

 The server MUST send back the Cross Certification response/
 General response in a pkiRep.

3.3 CA Key Update/Certificate Ann/ Revocation Ann/CRL Ann

 These requests MUST be sent using the pkiReq message-type. In response,
 the server SHOULD send back one of the following:

 1. errorMsgRep
 2. pollRep
 3. pkiRep

 Any other TCP-message is to be treated as an error.

 The server MUST send the pkiRep only if it contains a PKIError message.
 Successful processing of the request MUST result in a finRep.

4. Security Considerations

 No new security considerations with respect to [CMP] are introduced.

5. Acknowledgments

 The following individuals also deserve credit for their review and
 input:

 Robert Moskowitz, ICSA;
 Keith Brady, Baltimore;
 Ron Chittaro, Entrust;
 Mike Shanzer, Iris Associates;
 John Wray, Iris Associates;

6. References

 [CMP] Adams, C., Farrell, S., "Internet X.509 Public Key
 Infrastructure, Certificate Management Protocols", RFC 2510,
 March 1999.

 [HTTP] Fielding, R.T., et. al, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC821] Postel, J., "Simple Mail Transfer Protocol", RFC 821,
 August 1982.

Authors' Addresses

 Amit Kapoor
 Trustpoint

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc821

 429 Castro Street, Suite B
 Mountain View, CA 94041
 US

 E-Mail: amit@trustpoint.com

 Ronald Tschal r
 Trustpoint
 429 Castro Street, Suite B
 Mountain View, CA 94041
 US

 E-Mail: ronald@trustpoint.com

 Carlisle Adams
 Entrust Technologies
 750 Heron Road, Suite E08,
 Ottawa, Ontario
 Canada K1V 1A7

 EMail: cadams@entrust.com

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

