
Internet Draft
PKIX Working Group Amit Kapoor (Certicom)
Expires in 6 months Ronald Tschal r (Certicom)

 October 03 2000

Transport Protocols for CMP
<draft-ietf-pkix-cmp-transport-protocols-02.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 03, 2001

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes how to layer Certificate Management
 Protocols [CMP] over various transport protocols.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD
 NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in
 uppercase, as shown) are to be interpreted as described in
 [RFC2119].

1. Motivation

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-cmp-transport-protocols-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Section 5 of the [RFC2510] spec specifies how to exchange CMP
 messages over various transports. However, implementors, during
 various interoperability workshops, found the protocol lacking in
 the following respects:

 1. For CMP-over-TCP (section 5.2):
 A. No clear definition on when the connection is to be
 closed and by whom.
 B. No version number specified to allow for extensions.
 C. Error messages cannot be processed by applications.

 2. For CMP-over-HTTP (section 5.4):
 A. No support for polling
 B. No specification of what to do in the case where there
 is no CMP response message (e.g. after a conf)

 Realizing that this could not be achieved in a backward compatible
 way, and acknowledging the changes being made to [RFC2510], the
 decision was made to enhance the protocol now to avoid
 interoperability conflicts later and to pull the transport section
 out in a separate draft. This enhancement tries to keep as much of
 the older protocol as possible, while ensuring that implementations
 using the old protocol will not mistake a new message for a valid
 message in the [RFC2510] format.

 For CMP-over-HTTP a new content type is specified which carries a
 TCP-message instead of a plain DER-encoded PKIMessage.

2. TCP-Based Management Protocol

 While this section is called TCP-Based and the messages are called
 TCP-message's, the same protocol can be used over any reliable,
 connection oriented transport protocol (e.g. SNA, DECnet, etc.).
 This protocol is suitable for cases where an end entity (or an RA)
 initiates a transaction and can poll to pick up the results.

 The client sends a TCP-message to the server, and the server
 responds with another TCP-message. Note that a response MUST be
 sent for every request, even if the encapsulated CMP message in the
 request does not have a corresponding response.

 The protocol basically assumes a listener process on an RA or CA
 which can accept TCP-messages on a well-defined port (default port
 number is 829). Typically a client initiates connection to the
 server and submits a PKI message. The server replies with a PKI
 message or with a reference number to be used later when polling
 for the actual PKI message response.

 If a polling-reference was supplied then the client will send a
 polling request using this polling-reference after waiting for at
 least the specified time. The server may again reply with a

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510

 polling-reference or with the actual PKI message response.

 When the final PKI response message has been picked up by the
 client then no new polling reference is supplied.

 If a transaction is initiated by a PKI entity (RA or CA) then an
 end entity must either supply a listener process or be supplied
 with a polling reference (see below) in order to allow it to pick
 up the PKI message from the PKI management component.

2.1 General Form

 A TCP-message consists of:

 length (32-bits)
 version (8-bits)
 flags (variable length)
 message-type (8-bits),
 value (defined below)

 The length field contains the number of octets of the remainder of
 the TCP-message (i.e., number of octets of <value> plus <flags-length>
 plus 2). All bit values in this protocol are specified to be in
 network byte order.

 The version field indicates the version of the TCP-message. It MUST
 be incremented for each specification which changes the flags field
 in a way that is not fully backwards compatible with the previous
 version (e.g. when the length of the flags field is changed).

 The flags field is for transporting TCP-message specific data. The
 length of this field is version dependent and is fixed for a given
 version.

 The message-type field is used to indicate the type of TCP-message.

 The value field contains message-type dependent data.

2.2 Version Negotiation

 If a client knows the protocol version(s) supported by the
 server (e.g. from a previous TCP-message exchange or via some
 out-of-band means) then it SHOULD send a TCP-message with the highest
 version supported both by it and the server. If a client does
 not know what version(s) the server supports then it SHOULD send
 a TCP-message using the highest version it supports.

 If a server receives a TCP-message version that it supports, then it
 MUST reply with a TCP-message of the same version. If the version
 received is higher than what the server supports, it MUST send
 back a VersionNotSupported errorMsgRep (defined below) containing
 the highest version it supports.

2.3 TCP-message Version 10

 The TCP-message version will be 10 for this document. The number
 has deliberately been chosen to prevent [RFC2510] compliant
 applications from treating it as a valid message type. Applications
 receiving a version less than 10 SHOULD interpret the message as
 being an [RFC2510] style message.

 The length of the flags field for this version is 1 octet. The LSB
 is used to indicate a connection close; all other bits in the flags
 octet MUST be ignored by receivers, and MUST be set to zero by
 senders.

 By default connections are kept open after the receipt of a
 response. Either party (client or server) MAY set the connection
 close bit at any time. If the connection close bit is set on a
 request, then the server MUST set the bit in the response and
 close the connection after sending the response. If the bit is set
 on a response from the server, the client MUST NOT send any further
 requests on that connection. Applications MAY decide to close an
 idle connection (one on which no response is outstanding) after
 some time-out. Because of the problem where a client sends a
 request and the server closes the connection while the request is
 still in flight, clients SHOULD automatically retry a request for
 which no part of the response could be read due to a connection
 close or reset.

 If the connection is kept open, it MUST only be used for subsequent
 request/response transactions started by the client - the server
 MUST NOT use it to send requests to the client. Different
 transactions may be freely interwoven on the same connection. E.g.
 a CR/CP need not immediately be followed by the Confirm, but may be
 followed by any other request from a different transaction.

2.4 Detecting and Interoperating with RFC-2510 Conformant Implementations

 Servers wishing to interoperate with clients conforming to
 [RFC2510] can do so by treating any received message with a version
 less than 10 as an [RFC2510] message and responding in that format.
 Servers not wishing to support [RFC2510] messages MUST respond with
 a [RFC2510] errorMsgRep.

 Clients wishing to interoperate with [RFC2510] compliant servers
 SHOULD treat a response with a version less than 10 as an [RFC2510]
 style message. If this message is an errorMsgRep (message-type 06)
 then the client MAY automatically retry the request using the
 [RFC2510] format; if the message is not an errorMsgRep or the
 implementation does not wish to support [RFC2510] then it MUST
 abort the corresponding CMP transaction.

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2510

2.5 Message Types

 message-types 0-127 are reserved and will be issued under IANA
 auspices. message-types 128-255 are reserved for application use.

 The message-type's currently defined are:

 Message name Message-type

 pkiReq '00'H

 pollRep '01'H

 pollReq '02'H

 finRep '03'H

 pkiRep '05'H

 errorMsgRep '06'H

 If server receives an unknown message-type then it MUST reply with
 an InvalidMessageType errorMsgRep. If a client receives an unknown
 message-type then it MUST abort the CMP transaction.

 The different TCP-messages are discussed in the following sections:

2.5.1 pkiReq

 The pkiReq is to be used to carry a PKIMessage from the client to the
 server. The <value> portion of this TCP-message will contain:

 DER-encoded PKIMessage.

 The type of PKIMessages that can be carried by this TCP-message are:

 CRL Announcement
 Certificate Confirmation
 Poll Request
 Subscription Request
 CA Key Update Announcement
 Certificate Announcement
 Certification Request
 Cross-Certification Request
 Error Message
 General Message
 Initialization Request
 Key Recovery Request
 Key Update Request
 Nested Message
 PKCS-10 Request
 POP Response

 Revocation Request

2.5.2 pkiRep

 This TCP-message is to be used to send back the response to the request.
 The <value> portion of the pkiRep will contain:

 DER encoded PKI message

 The type of PKIMessages that can be carried by this TCP-message are:

 Confirmation
 Poll Response
 Subscription Response
 Certification Response
 Error Message
 General Response
 Initialization Response
 Key Recovery Response
 Key Update Response
 POP Challenge
 Revocation Response

2.5.3 pollReq

 The pollReq will be the used by the client to check the status of a
 pending TCP-message. The <value> portion of the pollReq will
 contain:

 polling-reference (32 bits)

 The <polling-reference> MUST be the one returned via the pollRep
 TCP-message.

2.5.4 pollRep

 The pollRep will be the response sent by the server to the client
 when there are no TCP-message response ready. The <value> portion of
 the pollRep will contain:

 polling-reference (32 bits)
 time-to-check-back (32 bits)

 The <polling-reference> is a unique 32-bit number sent by the server.
 The <time-to-check-back> is the time in seconds indicating the minimum
 interval after which the client SHOULD check the status again.

 The duration for which the server keeps the <polling-reference>
 unique is left to the implementation.

2.5.5 finRep

 finRep is sent by the server whenever no other response applies
 (such as after receiving a CMP certConf), and usually indicates
 the end of the CMP transaction. The <value> portion of the finRep
 will contain:

 '00'H (8 bits)

2.5.6 errorMsgRep

 This TCP-message is sent when a TCP-message level protocol error is
 detected. Please note that PKIError messages MUST NOT be sent
 using this. Examples of TCP-message level errors are:

 1. Invalid protocol version
 2. Invalid TCP message-type
 3. Invalid polling reference number

 The <value> field of the TCP-message SHALL contain:

 error-type (16-bits)
 data-length (16-bits)
 data (<data-length> octets)
 UTF8 String (SHOULD include a RFC 1766 language tag)

 The <error-type> is of the form MMNN where M and N are hex digits
 (0-F) and MM represents the major category and NN the minor. The
 major categories defined by this specification are:

 '01'H TCP-message version negotiation
 '02'H client errors
 '03'H server errors

 The major categories '80'H-'FF'H are reserved for application use.

 The <data-length> and <data> are additional information about the
 error to be used by programs for further processing and recovery.
 <data-length> contains the length of the <data> field in number of
 octets. Error messages not needing additional information to be
 conveyed MUST set the <data-length> to 0.

 The UTF8 text string is for user readable error messages.

2.5.6.1 VersionNotSupported errorMsgRep

 The VersionNotSupported errorMsgRep is defined as follows:

 error-type: '0101'H
 data-length: 1
 data: <version>
 UTF8-text String: implementation defined

 where <version> is the highest version the server supports.

https://datatracker.ietf.org/doc/html/rfc1766

2.5.6.2 GeneralClientError errorMsgRep

 The GeneralClientError errorMsgRep is defined as follows:

 error-type: '0200'H
 data-length: 0
 data: <empty>
 UTF8-text String: implementation defined

2.5.6.3 InvalidMessageType errorMsgRep

 The InvalidMessageType errorMsgRep is defined as follows:

 error-type: '0201'H
 data-length: 1
 data: <message-type>
 UTF8-text String: implementation defined

 where <message-type> is the message-type received by the
 server.

2.5.6.4 InvalidPollID errorMsgRep

 The InvalidPollID errorMsgRep is defined as follows:

 error-type: '0202'H
 data-length: 4
 data: <polling-reference>
 UTF8-text String: implementation defined

 where <polling-reference> is the polling-reference received by
 the server.

2.5.6.5 GeneralServerError errorMsgRep

 The GeneralServerError errorMsgRep is defined as follows:

 error-type: '0300'H
 data-length: 0
 data: <empty>
 UTF8-text String: implementation defined

3. HTTP-Based Management Protocol

 A client creates a TCP-message, as specified in section 2.0. The
 message is then sent as the entity-body of an HTTP POST request. If
 the HTTP request is successful then the server returns a similar
 message in the body of the response. The response status code in
 this case MUST be 200; other 2xx codes MUST NOT be used. The content
 type of the request and response MUST be "application/pkixcmp-poll".

 Applications MAY wish to also recognized and use the
 "application/x-pkixcmp-poll" MIME type (specified in earlier
 versions of this document) in order to support backward
 compatibility wherever applicable. Content codings may be applied.

 Note that a server may return any 1xx, 3xx, 4xx, or 5xx code if the
 HTTP request needs further handling or is otherwise not acceptable.

 Because in general CMP messages are not cacheable, requests and
 responses should include a "Cache-Control: no-cache" (and, if either
 side uses HTTP/1.0, a "Pragma: no-cache") to prevent the client from
 getting cached responses. This is especially important for polling
 requests and responses.

 Connection management SHOULD be based on the HTTP provided mechanisms
 (Connection and Proxy-Connection header fields) and not on the
 connection flag carried in the TCP-message.

4. File based protocol

 A file containing a PKI message MUST contain only the DER encoding of
 one PKI message, i.e., there MUST be no extraneous header or trailer
 information in the file.

 Such files can be used to transport PKI messages using, e.g., FTP.

5. Mail based protocol

 This subsection specifies a means for conveying ASN.1-encoded
 messages for the protocol exchanges via Internet mail.

 A simple MIME object is specified as follows.

 Content-Type: application/pkixcmp
 Content-Transfer-Encoding: base64

 <<the ASN.1 DER-encoded PKIX-CMP message, base64-encoded>>

 This MIME object can be sent and received using common MIME
 processing engines and provides a simple Internet mail transport for
 PKIX-CMP messages. Implementations MAY wish to also recognize and
 use the "application/x-pkixcmp" MIME type (specified in earlier
 versions of this document) in order to support backward compatibility
 wherever applicable.

6. Security Considerations

 Three aspects need to be considered by server side implementors:

 1. There is no security at the TCP and HTTP protocol level (unless
 tunneled via SSL/TLS) and thus TCP-message should not be used
 to change state of the transaction. Change of state should be
 done on the signed PKIMessage being carried within the
 TCP-message.

 2. If the server is going to be sending messages with sensitive
 information (not meant for public consumption) in the clear, it
 is RECOMMENDED that the server send back the message directly
 and not use the pollRep.

 3. The polling request/response mechanism can be used for all kinds
 of denial of service attacks. It is RECOMMENDED that the server
 not change the polling-reference between polling requests.

7. Acknowledgments

 The authors gratefully acknowledge the contributions of various
 members of the IETF PKIX Working Group and the ICSA CA-talk mailing
 list (a list solely devoted to discussing CMP interoperability
 efforts).

8. References

 [RFC2510] Adams, C., Farrell, S., "Internet X.509 Public Key
 Infrastructure, Certificate Management Protocols", RFC 2510,
 March 1999.

 [CMP] Adams, C., Farrell, S., "Internet X.509 Public Key
 Infrastructure, Certificate Management Protocols",

draft-ietf-pkix-rfc2510bis-01.txt, July 2000

 [HTTP] Fielding, R.T., et. al, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC821] Postel, J., "Simple Mail Transfer Protocol", RFC 821,
 August 1982.

Authors' Addresses

 Amit Kapoor
 Certicom
 25801 Industrial Blvd
 Hayward, CA 94545
 US

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc2510bis-01.txt
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc821

 E-Mail: amit@trustpoint.com

 Ronald Tschal r
 Certicom
 25801 Industrial Blvd
 Hayward, CA 94545
 US

 E-Mail: ronald@trustpoint.com

Appendix A: Registration of MIME Type for Section 3

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/pkixcmp-poll

 MIME media type name: application

 MIME subtype name: pkixcmp-poll

 Required parameters: none

 Optional parameters: none

 Encoding considerations:
 Content may contain arbitrary octet values (the ASN.1 DER encoding of
 a PKI message, as defined in the IETF PKIX Working Group
 specifications). base64 encoding is required for MIME e-mail; no
 encoding is necessary for HTTP.

 Security considerations:
 This MIME type may be used to transport Public-Key Infrastructure
 (PKI) messages between PKI entities. These messages are defined by
 the IETF PKIX Working Group and are used to establish and maintain an
 Internet X.509 PKI. There is no requirement for specific security
 mechanisms to be applied at this level if the PKI messages themselves
 are protected as defined in the PKIX specifications.

 Interoperability considerations: -

 Published specification: this document

 Applications which use this media type:
 Applications using certificate management, operational, or ancillary
 protocols (as defined by the IETF PKIX Working Group) to send PKI
 messages via e-mail or HTTP.

 Additional information:

 Magic number (s): -
 File extension (s): ".cmp"
 Macintosh File Type Code (s): -

 Person and email address to contact for further information:
 Carlisle Adams, cadams@entrust.com

 Intended usage: COMMON

 Author/Change controller: Carlisle Adams

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain
 it or assist in its implementation may be prepared, copied,
 published and distributed, in whole or in part, without restriction
 of any kind, provided that the above copyright notice and this
 paragraph are included on all such copies and derivative works.
 However, this document itself may not be modified in any way, such
 as by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards process
 must be followed, or as required to translate it into languages
 other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

