
Network Working Group                                         R. Housley
Internet-Draft                                       Vigil Security, LLC
Intended status: Standards Track                              S. Ashmore
Expires: April 9, 2009                          National Security Agency
                                                              C. Wallace
                                                      Cygnacom Solutions
                                                         October 6, 2008

Cryptographic Message Syntax (CMS) Content Constraints X.509 Certificate
                               Extension

draft-ietf-pkix-cms-content-constraints-00

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 9, 2009.

Housley, et al.           Expires April 9, 2009                 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-cms-content-constraints-00
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


Internet-Draft           CMS Content Constraints            October 2008

Abstract

   This document specifies the syntax and semantics for the
   Cryptographic Message Syntax (CMS) content constraints X.509
   certificate extension.  This extension is used to determine whether
   the public key in an X.509 public key certificate is appropriate to
   use in the processing of a protected content.  In particular, the CMS
   content constraints certificate extension is one part of the
   authorization decision; it is used when validating a digital
   signature on a CMS SignedData content or validating a message
   authentication code (MAC) on a CMS AuthenticatedData content or CMS
   AuthEnvelopedData content.  The signed or authenticated content type
   is identified by an ASN.1 object identifier, and this certificate
   extension indicates the content types that the certified public key
   is authorized to validate.  If the authorization check is successful,
   the CMS content constraints certificate extension also provides
   default values for absent attributes.



Housley, et al.           Expires April 9, 2009                 [Page 2]



Internet-Draft           CMS Content Constraints            October 2008

Table of Contents

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
1.1.  CMS Data Structures  . . . . . . . . . . . . . . . . . . .  5
1.2.  CMS Content Constraints Model  . . . . . . . . . . . . . .  7
1.3.  Abstract Syntax Notation . . . . . . . . . . . . . . . . . 10
1.4.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . 10

2.  CMS Content Constraints X.509 Certificate Extension  . . . . . 11
3.  Certification Path Processing  . . . . . . . . . . . . . . . . 14
3.1.  Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.  Initialization . . . . . . . . . . . . . . . . . . . . . . 14
3.3.  Basic Certificate Processing . . . . . . . . . . . . . . . 15
3.4.  Preparation for Certificate i+1  . . . . . . . . . . . . . 16
3.5.  Wrap-up procedure  . . . . . . . . . . . . . . . . . . . . 16
3.6.  Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.  CMS Content Constraints Processing . . . . . . . . . . . . . . 18
4.1.  Collection of signer or originator information . . . . . . 20
4.1.1.  Signature or MAC Verification  . . . . . . . . . . . . 20

4.2.  Collection of Attributes . . . . . . . . . . . . . . . . . 20
4.3.  Leaf node classification . . . . . . . . . . . . . . . . . 20
4.4.  Content Type and Constraint Checking . . . . . . . . . . . 21
4.4.1.  Inputs . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2.  Processing . . . . . . . . . . . . . . . . . . . . . . 22
4.4.3.  Outputs  . . . . . . . . . . . . . . . . . . . . . . . 23

5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 24
6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 25
7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.  Normative References . . . . . . . . . . . . . . . . . . . 26
7.2.  Informative References . . . . . . . . . . . . . . . . . . 26

Appendix A.  ASN.1 Modules . . . . . . . . . . . . . . . . . . . . 27
A.1.  ASN.1 Module Using 1993 Syntax . . . . . . . . . . . . . . 27
A.2.  ASN.1 Module Using 1988 Syntax . . . . . . . . . . . . . . 28

   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30
   Intellectual Property and Copyright Statements . . . . . . . . . . 31



Housley, et al.           Expires April 9, 2009                 [Page 3]



Internet-Draft           CMS Content Constraints            October 2008

1.  Introduction

   The CMS SignedData [RFC3852] construct is used to sign many things,
   including cryptographic module firmware packages [RFC4108] and
   certificate management messages [RFC5272].  Similarly, the CMS
   AuthenticatedData and CMS AuthEnvelopedData constructs provide
   authentication, which can be affiliated with an originator's X.509
   certificate.

   This document assumes a particular authorization model, where each
   originator is associated with one or more authorized content types.
   A CMS SignedData, AuthenticatedData, or AuthEnvelopedData will be
   considered valid only if the signature or message authentication code
   (MAC) verification process is successful and the originator is
   authorized for the encapsulated content type.  For example, one
   originator might be acceptable for verifying signatures on firmware
   packages, but that same originator may be unacceptable for verifying
   signatures on certificate management messages.

   An originator's constraints are derived from the certification path
   used to validate the originator's certificate.  Constraints are
   associated with trust anchors and constraints are optionally included
   in public key certificates.  The trust anchor structure lists the
   content types for which it may be used, and the trust anchor may also
   include constraints associated with each of the content types.
   Certificates may include a CMS Content Constraints certificate
   extension that refines the privileges of the trust anchor for a
   particular certificate subject.

   The entity that operates a trust anchor holds the corresponding
   private signature key, and that entity may delegate authority to
   another entity.  Delegation is accomplished by issuing an X.509
   certificate to that other entity.  If the trust anchor issues a
   certification authority (CA) certificate, then that entity may
   perform further delegation.  If the trust anchor issues an end entity
   certificate, then that entity is unable to perform further
   delegation.

   The CMS Content Constraints certificate extension provides a
   mechanism to constrain the authorizations that are delegated when a
   certificate is issued by a trust anchor or a CA.  The certificate
   containing the CMS Content Constraints certificate extension is
   limited to a subset of the content types associated with the
   certificate issuer, whether the issuer is a trust anchor or a CA.
   Also, the certificate issuer may add constraints to a content type
   that is not constrained for the certificate issuer.  However, no
   amplification of authorization is possible through use of this
   certificate extension.  When a content signature or MAC is validated,

https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc4108
https://datatracker.ietf.org/doc/html/rfc5272


Housley, et al.           Expires April 9, 2009                 [Page 4]



Internet-Draft           CMS Content Constraints            October 2008

   checks must be performed to ensure that the encapsulated content type
   is within the permitted set and that the constraints associated with
   the specific content type, if any, are satisfied.

1.1.  CMS Data Structures

   CMS encapsulation can be used to compose structures of arbitrary
   breadth and depth.  Four documents define the primary CMS content
   types:

RFC 3852 [RFC3852]: Cryptographic Message Syntax (CMS)

      - SignedData

      - EnvelopedData

      - EncryptedData

      - DigestedData

      - AuthenticatedData

RFC 5083 [RFC5083]: The Cryptographic Message Syntax (CMS)
   AuthEnvelopedData Content Type

      - AuthEnvelopedData

RFC 4073 [RFC4073]: Protecting Multiple Contents with the
   Cryptographic Message Syntax (CMS)

      - ContentCollection

      - ContentWithAttributes

RFC 3274 [RFC3274]: Compressed Data Content Type for Cryptographic
   Message Syntax (CMS)

      - CompressedData

   When using the CMS, the outermost structure is always ContentInfo.
   ContentInfo consists of an object identifier and an associated
   content.  The object identifier describes the structure of the
   content.  Object identifiers are used throughout the CMS family of
   specifications to identify structures.

   Using the content types listed above, ignoring for the moment
   ContentCollection, encapsulation can be used to create structures of
   arbitrary depth.  Two examples based on [RFC4108] are shown in Figure

https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc4073
https://datatracker.ietf.org/doc/html/rfc4073
https://datatracker.ietf.org/doc/html/rfc3274
https://datatracker.ietf.org/doc/html/rfc3274
https://datatracker.ietf.org/doc/html/rfc4108


Housley, et al.           Expires April 9, 2009                 [Page 5]



Internet-Draft           CMS Content Constraints            October 2008

   1 and Figure 2.

   When ContentCollection is used in conjunction with the other content
   types, tree-like structures can be defined, as shown in Figure 3.

   The examples in Figures 1, 2, and 3 can each be represented as a
   tree: the root node is the outermost ContentInfo, and the leaf nodes
   are the encapsulated contents.  The trees are shown in Figure 4.

         +---------------------------------------------------------+
         | ContentInfo                                             |
         |                                                         |
         | +-----------------------------------------------------+ |
         | | SignedData                                          | |
         | |                                                     | |
         | | +-------------------------------------------------+ | |
         | | | FirmwarePackage                                 | | |
         | | |                                                 | | |
         | | |                                                 | | |
         | | +-------------------------------------------------+ | |
         | +-----------------------------------------------------+ |
         +---------------------------------------------------------+

                Figure 1.  Example of a Signed Firmware Package.

         +---------------------------------------------------------+
         | ContentInfo                                             |
         |                                                         |
         | +-----------------------------------------------------+ |
         | | SignedData                                          | |
         | |                                                     | |
         | | +-------------------------------------------------+ | |
         | | | EncryptedData                                   | | |
         | | |                                                 | | |
         | | | +---------------------------------------------+ | | |
         | | | | FirmwarePackage                             | | | |
         | | | |                                             | | | |
         | | | |                                             | | | |
         | | | +---------------------------------------------+ | | |
         | | +-------------------------------------------------+ | |
         | +-----------------------------------------------------+ |
         +---------------------------------------------------------+

         Figure 2.  Example of a Signed and Encrypted Firmware Package.



Housley, et al.           Expires April 9, 2009                 [Page 6]



Internet-Draft           CMS Content Constraints            October 2008

   These examples do not illustrate all of the details of the CMS
   structures; most CMS protecting content types, and some content
   types, contain attributes.  These attributes can influence processing
   and handling of the CMS protecting content type or the encapsulated
   content type.  Throughout this document, paths through the tree
   structure from a root node to a leaf node in a CMS-protected message
   are referred to as CMS paths.

         +---------------------------------------------------------+
         | ContentInfo                                             |
         |                                                         |
         | +-----------------------------------------------------+ |
         | | SignedData                                          | |
         | |                                                     | |
         | | +-------------------------------------------------+ | |
         | | | ContentCollection                               | | |
         | | |                                                 | | |
         | | | +----------------------+ +--------------------+ | | |
         | | | | SignedData           | | SignedData         | | | |
         | | | |                      | |                    | | | |
         | | | | +------------------+ | | +----------------+ | | | |
         | | | | | EncryptedData    | | | | Firmware       | | | | |
         | | | | |                  | | | | Package        | | | | |
         | | | | | +--------------+ | | | |                | | | | |
         | | | | | | Firmware     | | | | +----------------+ | | | |
         | | | | | | Package      | | | +--------------------+ | | |
         | | | | | |              | | |                        | | |
         | | | | | +--------------+ | |                        | | |
         | | | | +------------------+ |                        | | |
         | | | +----------------------+                        | | |
         | | +-------------------------------------------------+ | |
         | +-----------------------------------------------------+ |
         +---------------------------------------------------------+

         Figure 3.  Example of Two Firmware Packages in a Collection.

1.2.  CMS Content Constraints Model

   The CMS content constraints certificate extension is used to restrict
   the types of content for which a particular public key can be used to
   verify a signature or MAC.  Trust in a public key is established by
   building and validating a certification path from a trust anchor to
   the subject public key.  Section 6 of [RFC5280] describes the
   algorithm for certification path validation, and the basic path
   validation algorithm is augmented, as described in Section 3 of this
   document, to include processing required to determine the CMS content

https://datatracker.ietf.org/doc/html/rfc5280#section-6


Housley, et al.           Expires April 9, 2009                 [Page 7]



Internet-Draft           CMS Content Constraints            October 2008

   constraints that have been delegated to the subject public key.  If
   the subject public key is explicitly trusted (the public key belongs
   to a trust anchor), then any CMS content constraints associated with
   the trust anchor are used directly.  If the subject public key is not
   explicitly trusted, then the CMS content constraints are determined
   by calculating the intersection of the CMS content constraints
   included in each certificate in a valid certification path from the
   trust anchor to the subject public key.

Housley, et al.           Expires April 9, 2009                 [Page 8]



Internet-Draft           CMS Content Constraints            October 2008

         +---------------------------------------------------------+
         |                                                         |
         |     CMS PATH RESULTING            CMS PATH RESULTING    |
         |       FROM FIGURE 1.                FROM FIGURE 2.      |
         |                                                         |
         |       ContentInfo                   ContentInfo         |
         |           |                             |               |
         |           V                             V               |
         |       SignedData                    SignedData          |
         |           |                             |               |
         |           V                             V               |
         |       FirmwarePackage               EncryptedData       |
         |                                         |               |
         |                                         V               |
         |                                     FirmwarePackage     |
         |                                                         |
         |                                                         |
         |            CMS PATHS RESULTING FROM FIGURE 3.           |
         |                                                         |
         |                       ContentInfo                       |
         |                           |                             |
         |                           V                             |
         |                       SignedData                        |
         |                           |                             |
         |                           V                             |
         |                       ContentCollection                 |
         |                           |                             |
         |                +----------+--------------+              |
         |                |                         |              |
         |                V                         V              |
         |            SignedData                SignedData         |
         |                |                         |              |
         |                V                         V              |
         |            EncryptedData             FirmwarePackage    |
         |                |                                        |
         |                V                                        |
         |            FirmwarePackage                              |
         |                                                         |
         +---------------------------------------------------------+

                     Figure 4.  Example CMS Path Structures.

   The CMS enables the use of multiple nested signatures or MACs.  Each
   signature or MAC can protect and associate attributes with an
   encapsulated data object.  The CMS content constraints certificate
   extension is associated with a public key, and that public key is
   used to verify a signature or a MAC.



Housley, et al.           Expires April 9, 2009                 [Page 9]



Internet-Draft           CMS Content Constraints            October 2008

   The CMS content constraints mechanism can be used to permit the use
   of the subject public key to verify signatures on or authenticate one
   or more specific content types.  Also, within a permitted content
   type, a permitted set of values can be expressed for one or more
   specific attribute types.

   When multiple parties collaborate to produce a signed or
   authenticated CMS-protected content, each party must be authorized
   for the content types and attribute values appearing in the result.
   In all cases, the signer or originator closest to a leaf node must be
   authorized to serve as a source for the leaf node contents; outer
   signers or originators need not be authorized to serve as a source.

   A signer or originator may be constrained to use a specific set of
   attribute values for some attribute types when producing a particular
   content type.  If a signer or originator is constrained for a
   particular attribute that does not appear in a protected content of
   the type for which the constraint is defined, the constraint serves
   as a default attribute, i.e., the payload should be processed as if
   an attribute equal to the constraint appeared in the protected
   content.  However, in some cases, the processing rules for a
   particular content type may disallow the usage of default values for
   some attribute types and require a signer to explicitly assert the
   attribute to satisfy the constraint.

1.3.  Abstract Syntax Notation

   All X.509 certificate [RFC5280] extensions are defined using ASN.1
   [X.680][X.690].

   CMS content types [RFC3852] are also defined using ASN.1.

   CMS uses the Attribute type.  The syntax of Attribute is compatible
   with X.501 [X.501].

1.4.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119


Housley, et al.           Expires April 9, 2009                [Page 10]



Internet-Draft           CMS Content Constraints            October 2008

2.  CMS Content Constraints X.509 Certificate Extension

   The CMS content constraints certificate extension MAY be critical,
   and it MUST appear at most one time in a certificate.  The CMS
   content constraints certificate extension is identified by the id-pe-
   cmsContentConstraints object identifier:

         id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
             { iso(1) identified-organization(3) dod(6) internet(1)
               security(5) mechanisms(5) pkix(7) pe(1) 18 }

   The CMS content constraints certificate extension provides a
   mechanism to constrain authorization during delegation.  If the CMS
   content constraints certificate extension is not present, then the
   subject of the certificate has the same set of authorizations as the
   issuer of the certificate.  A certificate containing the CMS content
   constraints certificate extension is limited to a subset of the
   content types for which the certificate issuer is authorized.  Also,
   the certificate issuer may add constraints to a previously
   unconstrained content type, or add additional constraints to a
   previously constrained content type.

   The syntax for the CMS content constraints certificate extension is:

     CMSContentConstraints ::= ContentTypeConstraintList

     ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) OF
       ContentTypeConstraint

     ContentTypeConstraint ::= SEQUENCE {
       contentType           ContentType,
       canSource             BOOLEAN DEFAULT TRUE,
       attrConstraints       AttrConstraintList OPTIONAL }

     AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

     AttrConstraint ::= SEQUENCE {
       attrType               AttributeType,
       attrValues             SET SIZE (1..MAX) OF AttributeValue }

     ContentType ::= OBJECT IDENTIFIER

     id-ct-anyContentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
            ct(1) 0 }



Housley, et al.           Expires April 9, 2009                [Page 11]



Internet-Draft           CMS Content Constraints            October 2008

   The CMSContentConstraints is a list of permitted content types and
   associated constraints.  A particular content type MUST NOT appear
   more than once in a ContentTypeConstraintList.  When the extension is
   present, the certificate subject is being authorized by the
   certificate issuer to sign or authenticate the content types listed
   in the permitted list as long as the provided constraints, if any,
   are met.  The certificate issuer MUST be authorized to delegate the
   privileges.  When the extension is absent, the certificate issuer is
   authorizing the subject to sign or authenticate all of the content
   types for which the issuer is authorized.

   The special id-ct-anyContentType value indicates the certificate
   subject is being authorized for any content type without any
   constraints.  The id-ct-anyContentType object identifier can be used
   in trust anchor certificates when the trust anchor is unconstrained.
   Where id-ct-anyContentType is asserted in the contentType field,
   canSource and attrConstraints MUST BE absent, indicating the trust
   anchor can serve as a source for any content type without any
   constraints.

   The fields of the ContentTypeConstraint type have the following
   meanings:

   contentType  contentType is an object identifier that specifies a
      permitted content type.  When the extension appears in an end
      entity certificate, it indicates that a content of this type can
      be verified using the public key in the certificate.  When the
      extension appears in a CA certificate, it indicates that a content
      of this type can be verified using the public key in the CA
      certificate or the public key in an appropriately authorized
      subordinate certificate.  For example, this field contains id-ct-
      firmwarePackage when the certified public key can be used to
      verify digital signatures on firmware packages defined in
      [RFC4108].  A particular content type MUST NOT appear more than
      once in the list.  The CMS-related content types need not be
      included in the list of permitted content types.  These content
      types are always authorized to facilitate the use of CMS in the
      protection of content, and they MUST NOT appear in the contentType
      field.  The always authorized content types are:

         id-signedData,

         id-envelopedData,

         id-digestedData,

https://datatracker.ietf.org/doc/html/rfc4108


Housley, et al.           Expires April 9, 2009                [Page 12]



Internet-Draft           CMS Content Constraints            October 2008

         id-encryptedData,

         id-ct-authEnvData,

         id-ct-authData,

         id-ct-compressedData,

         id-ct-contentCollection

         id-ct-contentWithAttrs.

   canSource  canSource is a Boolean flag, and it applies to direct
      signatures or direct authentication for the specified content
      type.  If the canSource flag is FALSE, then the subject cannot
      directly sign or authenticate the specified content type.
      Regardless of the flag value, a subject can sign or authenticate a
      content that is already authenticated (when SignedData,
      AuthenticatedData, or AuthEnvelopedData is already present).

   attrConstraints  attrConstraints is an optional field that contains
      constraints that are specific to the content type.  If the
      attrConstraints field is absent, the certified public key can be
      used to verify the specified content type without further
      checking.  If the attrConstraints field is present, then the
      certified public key can only be used to verify the specified
      content type if all of the constraints are satisfied.  A
      particular constraint type MUST NOT appear more than once in the
      attrConstraints.  Constraints are checked by matching the values
      in the constraint against the corresponding attribute value in the
      content.  Constraints processing fails if the attribute is present
      and the value is not one of the values provided in the constraint.
      Constraint checking is described fully in section 4.

      The fields of the AttrConstraint type have the following meanings:

      attrType  attrType is an AttributeType, which is an object
         identifier that names an attribute.  For a content encapsulated
         in a CMS SignedData, AuthenticatedData, or AuthEnvelopedData to
         satisfy the constraint, if the attributes that are covered by
         the signature or MAC include an attribute of the same type,
         then the attribute value must be equal to one of the values
         supplied in the attrValues field.

      attrValues  attrValues is a set of AttributeValue.  The structure
         of each of the values in attrValues is determined by attrType.
         Constraint checking is described fully in section 4.



Housley, et al.           Expires April 9, 2009                [Page 13]



Internet-Draft           CMS Content Constraints            October 2008

3.  Certification Path Processing

   When CMS content constraints are used for authorization, the
   processing described in this section MUST be included in the
   certification path validation.  The processing is presented as
   additions to the certification path validation algorithm described in

section 6 of [RFC5280].  Alternative implementations are possible but
   MUST yield the same results as described below.

   Certification path processing validates the binding between the
   subject and subject public key.  If a valid certification path cannot
   be found, then the corresponding CMS path MUST be rejected.

3.1.  Inputs

   If the trust anchor that terminates the path is authorized using CMS
   Content Constraints, then the trust anchor information includes a CMS
   Content Constraints structure.  The trust anchor may be constrained
   or unconstrained, and if unconstrained it will include a CMS Content
   Constraints structure with a single permitted content type equal to
   the special id-ct-anyContentType value.  In some cases, a particular
   CMS Content Constraints definition may be implied by the trust anchor
   information or application context.  Otherwise, if the trust anchor
   does not contain a CMS Content Constraints structure, the CMS content
   constraints processing fails due to invalid input.

   The content type of the protected content being verified is provided
   as input along with the set of attributes collected from the CMS
   path.  Alternatively, the id-ct-anyContentType value can be provided
   as the content type input, along with an empty set of attributes, to
   determine the full set of constraints associated with a public key in
   the end entity certificate terminating the certification path being
   validated.

   In some cases, a trust anchor may directly sign an object other than
   an X.509 certificate.  In these cases, certification path validation
   as described in section 6 of [RFC5280] is not necessary but
   constraints processing must still be performed for the trust anchor.
   In such cases, the initialization and wrap-up steps described below
   can be performed to determine if the public key in the trust anchor
   is appropriate to use in the processing of a protected content.

3.2.  Initialization

   Create a constant input variable named cms_content_type and set it
   equal to the content type provided as input.

   Create a constant input variable named cms_effective_attributes and

https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://datatracker.ietf.org/doc/html/rfc5280#section-6


Housley, et al.           Expires April 9, 2009                [Page 14]



Internet-Draft           CMS Content Constraints            October 2008

   set it equal to the set of attributes provided as input.

   Create a state variable named working_permitted_content_types.  The
   initial value of working_permitted_content_types is the permitted
   content type list from the trust anchor, including any associated
   constraints.

   Create an state variable of type SEQUENCE OF AttrConstaint named
   subject_default_attributes and initialize it to empty.

   Create an state variable of type SEQUENCE OF ContentTypeConstraint
   named subject_constraints and initialize it to empty.

3.3.  Basic Certificate Processing

   If the CMS content constraints certificate extension is not present
   in the certificate or if the certificate is present and includes a
   single permitted content type equal to the special id-ct-
   anyContentType value, no action is taken and
   working_permitted_content_types is unchanged.

   If the CMS content constraints certificate extension is present in
   the certificate, the extension contains a list of two or more
   permitted content types, one of which is the special id-ct-
   anyContentType value, constraints processing fails and certification
   path processing fails.

   If the CMS content constraints certificate extension is present in
   the certificate, the extension contains a list of permitted content
   types, and working_permitted_content_types contains the id-ct-
   anyContentType special value, assign working_permitted_content_types
   the value of the CMS content constraints certificate extension.

   If the CMS content constraints certificate extension is present in
   the certificate, the extension contains a list of permitted content
   types, and working_permitted_content_types does not contain the id-
   ct-anyContentType special value, then the processing actions to be
   performed for each entry in the permitted content type list sequence
   in the CMS content constraints certificate extension are as follows:

      - If the CMS content constraints certificate extension includes a
      content type that is not present in
      working_permitted_content_types, no action is taken based on this
      entry. working_permitted_content_types is unchanged.

      - If the CMS content constraints certificate extension includes a
      content type that is already present in
      working_permitted_content_types, then the constraints in the CMS



Housley, et al.           Expires April 9, 2009                [Page 15]



Internet-Draft           CMS Content Constraints            October 2008

      content constraints certificate extension can further reduce the
      authorization by adding constraints to previously unconstrained
      attributes or by removing attribute values from the attrValues set
      of a constrained attribute.  Similarly, the canSource flag can be
      further constrained by setting the value to FALSE.  The processing
      actions to be performed for each entry in the AttrConstraintList
      follow:

         -- If the CMS content constraints certificate extension
         includes an attribute type that is not present in
         working_permitted_content_types for this content type, add the
         attribute type and the associated set of attribute values to
         working_permitted_content_types entry for the content type.

         -- If the CMS content constraints certificate extension
         includes an attribute type that is already present in
         working_permitted_content_types for this content type, then
         compute the intersection of the set of attribute values from
         the working_permitted_content_types and the set of attribute
         values from the CMS content constraints certificate extension.
         If the intersection contains at least one attribute value, then
         the set of attribute values in working_permitted_content_types
         entry for this content type is assigned the intersection.  If
         the intersection is empty, then the entry associated with the
         content type is removed from working_permitted_content_types.

   Remove each entry in working_permitted_content_types that includes a
   content type that is not present in the CMS content constraints
   certificate extension.

3.4.  Preparation for Certificate i+1

   No additional action associated with the CMS content constraints
   certificate extension is taken during this phase of certification
   path validation as described in section 6 of [RFC5280].

3.5.  Wrap-up procedure

   If cms_content_type equals the special value anyContentType, the CCC
   processing portion of path validation succeeds.  Set
   subject_constraints equal to working_permitted_content_types.  If
   subject_constraints is empty, then the public key in the end entity
   certificate of the certification path is not authorized for any
   content type (though alternative certification paths may exist that
   yield different results).  If cms_content_type is not equal to the
   special value anyContentType, perform the following steps:

https://datatracker.ietf.org/doc/html/rfc5280#section-6


Housley, et al.           Expires April 9, 2009                [Page 16]



Internet-Draft           CMS Content Constraints            October 2008

      - If working_permitted_content_types is equal to the special value
      anyContentType, set subject_constraints equal to
      working_permitted_content_types; the CCC processing portion of
      path validation succeeds.

      - If cms_content_type does not equal the content type of an entry
      in working_permitted_content_types, constraints processing fails
      and path validation fails.

      - If cms_content_type equals the content type of an entry in
      working_permitted_content_types, add the entry from
      working_permitted_content_types to subject_constraints.

      - If the attrConstraints field of the corresponding entry in
      working_permitted_content_types is absent; the CCC processing
      portion of path validation succeeds.

      - If the attrConstraints field of the corresponding entry in
      working_permitted_content_types is present, then constraints must
      be checked.  For each attrType in the attrConstraints, the
      constraint is satisfied if either the attribute type is absent
      from cms_effective_attributes or each attribute value in the
      attrsValues field of the corresponding entry in
      cms_effective_attributes is equal to one of the values for this
      attribute type in the attrConstraints field.  If
      cms_effective_attributes does not contain an attribute of that
      type, then the entry from attrConstraints is added to the
      subject_default_attributes for use in processing the payload.

3.6.  Outputs

   If certification path validation processing succeeds, return the
   value of the subject_constraints and subject_default_attributes
   variables.



Housley, et al.           Expires April 9, 2009                [Page 17]



Internet-Draft           CMS Content Constraints            October 2008

4.  CMS Content Constraints Processing

   CMS content constraints processing consists of four primary
   activities:

      - Collection of Signer or Originator Keys

      - Collection of Attributes

      - Leaf node classification

      - Content Type and Constraint Checking

   Processing is performed for each CMS path from the root node of a
   CMS-protected content to a leaf node, proceeding from the root node
   to the leaf node.  Each path is processed independently of the other
   paths.  Thus, it is possible that some leaf nodes in a content
   collection may be acceptable while other nodes are not acceptable.
   The processing described in this section applies to CMS paths that
   contain at least one SignedData, AuthEnvelopedData, or
   AuthenticatedData node.

   Signer or originator public keys are collected when verifying
   signatures or message authentication codes (MACs).  These keys will
   be used to determine the constraints of each signer or originator by
   building and validating a certification path to the public key.
   Public key values, public key certificates or public key identifiers
   are accumulated in a state variable named cms_public_keys, which is
   either initialized to empty or to an application provided set of keys
   when processing begins.  The variable will be updated each time a
   SignedData, AuthEnvelopedData, or AuthenticatedData node is
   encountered in the CMS path.

   Attributes are collected from each node after the first SignedData,
   AuthEnvelopedData, or AuthenticatedData in a CMS path, including the
   attributes protected by the first SignedData, AuthEnvelopedData, or
   AuthenticatedData.  During processing, attributes collected from the
   nodes in the CMS path are maintained in a state variable named
   cms_effective_attributes and default attributes derived from message
   originator authorizations are collected in a state variable named
   cms_default_attributes.  A default attribute value comes from a
   constraint that does not correspond to an attribute contained in the
   CMS path.  When processing begins, cms_effective_attributes and
   cms_default_attributes are initialized to empty.  Alternatively,
   cms_effective_attributes may be initialized to an application-
   provided sequence of attributes.  The cms_effective_attributes value
   will be updated each time an attribute set is encountered in a
   SignedData, AuthEnvelopedData, or AuthenticatedData node while



Housley, et al.           Expires April 9, 2009                [Page 18]



Internet-Draft           CMS Content Constraints            October 2008

   processing a CMS path.

   The output of content type and constraint checking always includes a
   set of attributes collected from the various nodes in a CMS path.
   When processing terminates at an encrypted node, the set of signer or
   originator public keys is also returned.  When processing terminates
   at a payload node, a set of default attribute values is also returned
   along with a set of constraints that apply to the CMS-protected
   content.

   When processing terminates at an encrypted node, the attributes and
   public keys are returned and may be used as inputs for CMS content
   constraints processing of the decrypted payload contents.  An
   application may elect to discard some attributes before processing an
   encrypted payload.  For example, attributes related to routing the
   encrypted content may be discarded or the MessageDigest and
   ContentType related to an outer signature layer may be discarded.

   This section describes the processing of a CMS path.  The output from
   CMS Content Constraints processing will depend on the type of the
   leaf node that terminates the CMS path.  Four different output
   variables are possible.  The conditions under which each is returned
   is described in the following sections.  The variables are:

   cms_public_keys  cms_public_keys is a list of public key values,
      public key certificates or public key identifiers.  Information
      maintained in cms_public_keys will be used to performed the
      certification path operations required to determine if a
      particular signer or originator is authorized to produce a
      specific object.

   cms_effective_attributes  cms_effective_attributes contains the
      attributes collected from the nodes in a CMS path.
      cms_effective_attributes is a SEQUENCE OF Attribute, which is the
      same as the AttrConstraintList structure except that it may have
      zero entries in the sequence.

   cms_default_attributes  cms_default_attributes contains default
      attributes derived from message signer or originator
      authorizations.  A default attribute value is taken from a
      constraint that does not correspond to an attribute contained in
      the CMS path. cms_default_attributes is a SEQUENCE OF Attribute,
      which is the same as the AttrConstraintList structure except that
      it may have zero entries in the sequence.



Housley, et al.           Expires April 9, 2009                [Page 19]



Internet-Draft           CMS Content Constraints            October 2008

   cms_constraints  cms_constraints contains the constraints associated
      with the message signer or originator for the content type of the
      protected content terminating a CMS path. cms_constraints is a
      SEQUENCE OF Attribute, which is the same as the AttrConstraintList
      structure except that it may have zero entries in the sequence.

4.1.  Collection of signer or originator information

   Signer or originator constraints are identified using the public keys
   to verify each SignedData, AuthEnvelopedData, or AuthenticatedData
   layer encountered in a CMS path.  The public key value, public key
   certificate or public key identifier of each signer or originator are
   collected in a state variable named cms_public_keys.  Constraints are
   determined by building and validating a certification path for each
   public key after the content type and attributes of the CMS-protected
   object have been identified.

4.1.1.  Signature or MAC Verification

   The signature or MAC generated by the originator MUST be verified.
   If signature or MAC verification fails, then the CMS path containing
   the signature or MAC MUST be rejected.  Signature and MAC
   verification procedures are defined in [RFC3852][RFC5083].  The
   public key or public key certificate used to verify each signature or
   MAC in a CMS path is added to the cms_public_keys state variable for
   use in content type and constraint checking.

4.2.  Collection of Attributes

   Attributes are collected from all authenticated nodes in a CMS path.
   That is, attributes are not collected from content types that occur
   before the first SignedData, AuthEnvelopedData, or AuthenticatedData
   instance.  Additionally, an application may specify a set of
   attributes that it has authenticated, perhaps from processing one or
   more content types that encapsulate a CMS-protected content.  If the
   content is not a leaf node in a CMS path, and it contains attributes,
   then add the attributes to cms_effective_attributes.  Leaf node
   attributes may be checked independent of the CMS content constraints
   certificate extension processing, but such processing is not
   addressed in this document.

4.3.  Leaf node classification

   The type of leaf node that terminates a CMS path determines the types
   of information that is returned and the type of processing that is
   performed.  There are two types of leaf nodes: encrypted leaf nodes
   and payload leaf nodes.

https://datatracker.ietf.org/doc/html/rfc3852


Housley, et al.           Expires April 9, 2009                [Page 20]



Internet-Draft           CMS Content Constraints            October 2008

   A node in a CMS path is a leaf node if the content type of the node
   is not one of the following content types:

      id-signedData (SignedData),

      id-digestedData (DigestedData),

      id-ct-authData (AuthenticatedData),

      id-ct-compressedData (CompressedData),

      id-ct-contentCollection (ContentCollection), and

      id-ct-contentWithAttrs (ContentWithAttributes).

   A leaf node is an encrypted leaf node if the content type of the node
   is one of the following content types:

      id-encryptedData (EncryptedData),

      id-envelopedData (EnvelopedData), and

      id-ct-authEnvelopedData (AuthEnvelopedData).

   All other leaf nodes are payload leaf nodes, since no further CMS
   encapsulation can occur beyond that node.  However, specifications
   may define content types that provide protection similar to the CMS
   content types, may augment the lists of possible leaf nodes and
   encrypted leaf nodes or may define some encrypted types as payload
   leaf nodes.

   When an encrypted leaf node is encountered, processing terminates and
   returns information that may be used as input when procesing the
   decrypted contents.  Content type and constraints checking are only
   performed for payload leaf nodes.  When an encrypted leaf node
   terminates a CMS path, the attributes collected in
   cms_effective_attributes are returned along with the public key
   information collected in cms_public_keys.  When a payload leaf node
   terminates a CMS path, content type and constraint checking must be
   performed, as described in the next section.

4.4.  Content Type and Constraint Checking

4.4.1.  Inputs

   The inputs to content type and constraint checking are the values
   collected in cms_public_keys and cms_effective_attributes from a CMS
   path along with the payload leaf node that terminates the CMS path.



Housley, et al.           Expires April 9, 2009                [Page 21]



Internet-Draft           CMS Content Constraints            October 2008

4.4.2.  Processing

   When a payload leaf node is encountered in a CMS path and a signed or
   authenticated content type is present in the CMS path, content type
   and constraint checking MUST be performed.  Content type and
   constraint checking need not be performed for CMS paths that do not
   contain at least one SignedData, AuthEnvelopedData, or
   AuthenticatedData content type.  The cms_effective_attributes and
   cms_public_keys variables are used to perform constraint checking.
   Two additional state variables are used during the processing:
   cms_constraints and cms_default_attributes, both of which are
   initialized to empty.  The steps required to perform content type and
   constraint checking are below.

   For each public key in cms_public_keys, build and validate a
   certification path from a trust anchor to the public key, providing
   the content type of the payload leaf node and
   cms_effective_attributes as input.

      If path validation is successful, add the contents of
      subject_default_attributes to cms_default_attributes.  The
      subject_constraints variable returned from certification path
      validation will contain a single entry.  If the
      subject_constraints entry is equal to the special value
      anyContentType, content type and constraints checking succeeds.
      If the subject_constraints entry is not equal to the special value
      anyContentType, for each entry in the attrConstraints field of the
      entry in subject_constraints,

         If there is an entry in cms_constraints with the same attrType
         value, add the value from the attrContraints entry to the entry
         in cms_constraints if that value does not already appear.

         If there is no entry in cms_constraints with the same attrType
         value, add a new entry to cms_constraints equal to the entry
         from the attrConstraints field.

      If the value of canSource field of the entry in the
      subject_constraints variable for the public key used to verify the
      signature or MAC closest to the payload leaf node is set to FALSE,
      constraints checking fails and the CMS path MUST be rejected.

   If no valid certification path can be found, constraints checking
   fails and the CMS path MUST be rejected.



Housley, et al.           Expires April 9, 2009                [Page 22]



Internet-Draft           CMS Content Constraints            October 2008

4.4.3.  Outputs

   When a payload leaf node is encountered and content type and
   constraint checking succeeds, return cms_constraints,
   cms_default_attributes and cms_effective_attributes for use in leaf
   node payload processing.

   When an encrypted leaf node is encountered and constraint checking is
   not performed, return cms_public_keys and cms_effective_attributes
   for use in continued processing (as described in section 4.3.1).

   The cms_effective_attributes list may contain multiple instances of
   the same attribute type or attributes with multiple values.  Payload
   processing, which might take advantage of these effective attributes,
   needs to describe the proper handling of this situation.  Payload
   processing is described in other documents, and it is expected to be
   specific to a particular content type.

   The cms_default_attributes list may contain attributes with multiple
   values.  Payload processing, which might take advantage of these
   default attributes, needs to describe the proper handling of this
   situation.  Payload processing is described in other documents, and
   it is expected to be specific to a particular content type.



Housley, et al.           Expires April 9, 2009                [Page 23]



Internet-Draft           CMS Content Constraints            October 2008

5.  Security Considerations

   The authorization model described in section 1 allows trust anchors
   with different privileges.  Delegation is accomplished by issuing an
   X.509 certificate.  If the trust anchor issues a certification
   authority (CA) certificate, then further delegation is permitted.  If
   the trust anchor issues an end entity certificate, then further
   delegation is prohibited.

   For any given certificate, multiple certification paths may exist,
   and each one can yield different results for CMS content constraints
   processing.  To avoid creating unintended results, the impact of CMS
   content constraints included (or omitted) from cross-certificates
   must be evaluated.

   CMS content constraints are not used with countersignatures.

   Though not explicitly discussed in this document, CMS content
   constraints can be applied to CMS-protected contents featuring
   multiple parallel signers, for example where there is more than one
   SignerInfo, each carrying a signature from a different party, within
   a single SignedData content.  In such cases, each SignerInfo must be
   processed as if it were the only SignerInfo, and the CMS content
   constraints must be met in order for that signature to be considered
   valid.  Unlike signers represented in distinct SignedData contents,
   signers represented by multiple SignerInfos are not considered to be
   collaborating with regard to a particular content.  Each parallel
   signer is evaluated independently; no relationship to the other
   signers in the set of SignerInfos implied.  A content is considered
   valid only if there is at least one valid CMS path employing one
   SignerInfo within each SignedData content, even when more than one
   SignerInfo is present.



Housley, et al.           Expires April 9, 2009                [Page 24]



Internet-Draft           CMS Content Constraints            October 2008

6.  IANA Considerations

   There are no IANA considerations.  Please delete this section prior
   to RFC publication.

Housley, et al.           Expires April 9, 2009                [Page 25]



Internet-Draft           CMS Content Constraints            October 2008

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3274]  Gutmann, P., "Compressed Data Content Type for
              Cryptographic Message Syntax (CMS)", RFC 3274, June 2002.

   [RFC3852]  Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 3852, July 2004.

   [RFC4073]  Housley, R., "Protecting Multiple Contents with the
              Cryptographic Message Syntax (CMS)", RFC 4073, May 2005.

   [RFC5083]  Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              November 2007.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, May 2008.

   [X.680]    "ITU-T Recommendation X.680: Information Technology -
              Abstract Syntax Notation One", 1997.

   [X.690]    "ITU-T Recommendation X.690 Information Technology - ASN.1
              encoding rules: Specification of Basic Encoding Rules
              (BER), Canonical Encoding Rules (CER) and Distinguished
              Encoding Rules (DER)", 1997.

7.2.  Informative References

   [PKIXASN1]
              Hoffman, P. and J. Schaad, "New ASN.1 Modules for PKIX",
              in progress.

   [RFC4108]  Housley, R., "Using Cryptographic Message Syntax (CMS) to
              Protect Firmware Packages", RFC 4108, August 2005.

   [RFC5272]  Schaad, J. and M. Myers, "Certificate Management over CMS
              (CMC)", RFC 5272, June 2008.

   [X.208]    "ITU-T Recommendation X.208 - Specification of Abstract
              Syntax Notation One (ASN.1)", 1988.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3274
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc4073
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4108
https://datatracker.ietf.org/doc/html/rfc5272


Housley, et al.           Expires April 9, 2009                [Page 26]



Internet-Draft           CMS Content Constraints            October 2008

Appendix A.  ASN.1 Modules

Appendix A.1 provides the normative ASN.1 definitions for the
   structures described in this specification using ASN.1 as defined in
   [X.680].  Appendix A.2 provides a module using ASN.1 as defined in
   [X.208].  The module in A.2 removes usage of newer ASN.1 features
   that provide support for limiting the types of elements that may
   appear in certain SEQUENCE and SET constructions.  Otherwise, the
   modules are compatible in terms of encoded representation, i.e., the
   modules are bits-on-the-wire compatible aside from the limitations on
   SEQUENCE and SET constituents.  A.2 is included as a courtesy to
   developers using ASN.1 compilers that do not support current ASN.1.
   A.1 references an ASN.1 module from [PKIXASN1].

A.1.  ASN.1 Module Using 1993 Syntax

    CMSContentConstraintsCertExtn-93
      { iso(1) identified-organization(3) dod(6) internet(1) security(5)
        mechanisms(5) pkix(7) id-mod(0) cmsContentConstr-93(42) }

    DEFINITIONS IMPLICIT TAGS ::= BEGIN

    IMPORTS
        ContentType
          FROM CryptographicMessageSyntax2004 -- from [RFC3852]
            { iso(1) member-body(2) us(840) rsadsi(113549)
              pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }
        AttributeType, AttributeValue
          FROM PKIX1Explicit88 -- from [RFC5280]
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5) mechanisms(5) pkix(7) id-mod(0)
              id-pkix1-explicit(18) }
        EXTENSION
          FROM PKIX-CommonTypes
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5) mechanisms(5) pkix(7) id-mod(0)
              id-mod-pkixCommon(43) } ;

    id-ct-anyContentType OBJECT IDENTIFIER ::=
        { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
          ct(1) 0 }

    cmsContentConstraints EXTENSION ::= {
        SYNTAX         CMSContentConstraints
        IDENTIFIED BY  id-pe-cmsContentConstraints }

https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc5280


Housley, et al.           Expires April 9, 2009                [Page 27]



Internet-Draft           CMS Content Constraints            October 2008

    id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
        { iso(1) identified-organization(3) dod(6) internet(1)
          security(5) mechanisms(5) pkix(7) pe(1) 18 }

    CMSContentConstraints ::= ContentTypeConstraintList

    ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) OF
                              ContentTypeConstraint

    ContentTypeConstraint ::= SEQUENCE {
        contentType           ContentType,
        canSource             BOOLEAN DEFAULT TRUE,
        attrConstraints       AttrConstraintList OPTIONAL }

    AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

    AttrConstraint ::= SEQUENCE {
        attrType               AttributeType,
        attrValues             SET SIZE (1..MAX) OF AttributeValue }

    END

A.2.  ASN.1 Module Using 1988 Syntax



Housley, et al.           Expires April 9, 2009                [Page 28]



Internet-Draft           CMS Content Constraints            October 2008

    CMSContentConstraintsCertExtn-88
      { iso(1) identified-organization(3) dod(6) internet(1) security(5)
        mechanisms(5) pkix(7) id-mod(0) cmsContentConstr-88(41) }

    DEFINITIONS IMPLICIT TAGS ::=
    BEGIN

    IMPORTS
        ContentType
          FROM CryptographicMessageSyntax2004 -- from [RFC3852]
            { iso(1) member-body(2) us(840) rsadsi(113549)
              pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }
        AttributeType, AttributeValue
          FROM PKIX1Explicit88 -- from [RFC5280]
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5) mechanisms(5) pkix(7) id-mod(0)
              id-pkix1-explicit(18) } ;

    id-ct-anyContentType OBJECT IDENTIFIER ::=
        { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
          ct(1) 0}

    -- Extension object identifier

    id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
        { iso(1) identified-organization(3) dod(6) internet(1)
          security(5) mechanisms(5) pkix(7) pe(1) 18 }

    -- CMS Content Constraints Certificate Extension

    CMSContentConstraints ::= ContentTypeConstraintList

    ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) OF
                              ContentTypeConstraint

    ContentTypeConstraint ::= SEQUENCE {
        contentType           ContentType,
        canSource             BOOLEAN DEFAULT TRUE,
        attrConstraints       AttrConstraintList OPTIONAL }

    AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

    AttrConstraint ::= SEQUENCE {
        attrType               AttributeType,
        attrValues             SET SIZE (1..MAX) OF AttributeValue }

    END

https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc5280


Housley, et al.           Expires April 9, 2009                [Page 29]



Internet-Draft           CMS Content Constraints            October 2008

Authors' Addresses

   Russ Housley
   Vigil Security, LLC
   918 Spring Knoll Drive
   Herndon, VA  20170

   Email: housley@vigilsec.com

   Sam Ashmore
   National Security Agency
   Suite 6751
   9800 Savage Road
   Fort Meade, MD  20755

   Email: srashmo@radium.ncsc.mil

   Carl Wallace
   Cygnacom Solutions
   Suite 5200
   7925 Jones Branch Drive
   McLean, VA  22102

   Email: cwallace@cygnacom.com



Housley, et al.           Expires April 9, 2009                [Page 30]



Internet-Draft           CMS Content Constraints            October 2008

Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr


Housley, et al.           Expires April 9, 2009                [Page 31]


