
Internet Draft                                   Denis Pinkas, Integris
draft-ietf-pkix-dpv-dpd-00.txt
                                                             July, 2001
Expires in six months

                      Delegated Path Validation and
                    Delegated Path Discovery Protocols
                     <draft-ietf-pkix-dpv-dpd-00.txt>

Status of this memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC 2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups.  Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time.  It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

1.  Abstract

This document specifies two protocols. The first one, called Delegated
Path Validation (DPV) can be used to fully delegate a path validation
processing to an DPV server, according to a set of rules called a
validation policy.

The second one, called Delegated Path Discovery (DPD) can be used to
obtain from a DPD server all the information needed (e.g. leaf
certificates, CA certificates, full CRLs, delta-CRLs, OCSP responses)
to locally validate a certificate according to a set of rules called
a path validation criteria. This provides a single protocol to collect
at one time all data elements that normally require different
protocols.

It also defines an optional protocol allowing to define the set of
rules to validate a certificate or to build a path for a certificate.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-dpv-dpd-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-dpv-dpd-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
   this document (in uppercase, as shown) are to be interpreted as
   described in [RFC2119].

Pinkas                                                         [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119


Internet Draft                 DPV&DPD                        July 2001

2. Delegated Path Validation Protocol Overview

The Delegated Path Validation (DPV) protocol allows to validate one
certificate for a time T and according to a set of rules, called a
validation policy. The validation policies may be known a priori by the
DPV server or may be defined by the DPV client. When the validation
policy is not a priori known by the DPV server, the client may define
it using an additional protocol. The support of that additional
protocol is optional.

In this way, the validation protocol always refers to a validation
policy defined both by an OID and a hash in order to make sure that
the definition of the validation policy is as intended.

The time T may be close to the present time or a time in the past.

When it is a time close to the present time, the server MUST do its
best efforts to perform the validation (validation may not be possible
if the required data may not be collected). This is called an initial
validation.

The support of validation in the past, using some data previously
captured at the time of initial verification is optional.

When supported, the server MUST be able to use the data that is
provided by the requester which may be the validation data that has
been previously returned when making an initial validation. This is
called a re-validation.

In order to obtain the revocation status information of any
certificate from the certification path, the DPV server MAY use, as
appropriate and accordingly to the validation policy, any combination
of OCSP requests, CRLs or delta-CRLs.

3. Validation Policy

A validation policy is a set of rules against which the validation of
the certificate is performed. In order to succeed, one valid path
(i.e. none of the certificates from the path must be revoked) must be
found between a leaf certificate and a trust anchor.

A trust anchor is defined as a public key for a given CA name and
valid during some time interval, a set of Certification Policy
constraints and a set of naming constraints. The use of a self-signed
certificate allows to specify at the same time: the public key to be
used, the CA name and the validity period of the root key. Additional
constrains MAY be included in the self-signed certificate.

Additional conditions that apply to the certificates from the chain,



in particular to the leaf certificate MAY also be specified in the
validation policy.

Pinkas                                                         [Page 2]



Internet Draft                 DPV&DPD                        July 2001

An optional protocol allows to define the validation policy. See
section 8.

4.  Initial validation and re-validation

The same validation protocol may be used either for:

   1) initial validation or for,
   2) re-validation.

4.1 Initial validation

The initial validation is performed according to the validation
policy. Additional conditions MAY be locally added, e.g. in order to
test the presence of some extensions in the certificate chain.

If the client does not specify in its request the validation policy to
be used, the server will indicate in the response the one that has
been used. In such a case, the client MUST verify that the one
selected is appropriate for its use.

The status of the response may be one out of four types:

   1) the certificate is valid according to the validation policy,

   2) the certificate is not valid according to the validation policy,

   3) the certificate is conditionally valid according to the
      validation policy. A path has been able to be constructed,
      however one or more revocation status information are missing.
      If another request could made later on, the certificate could
      be determined as valid.

   4) the server cannot determine the validity (e.g. a path cannot
      be constructed).

In most instances, in order to be able to prove to a third party that
the check has correctly be done, the client will only require a
signed response. In other cases, the client will need to get all the
data that has been collected during the validation so that the test
can be redone again using the same information, in a subsequent re-
validation. In such a case the server will need to return that
information, called validation data.

The validation data can be rather long since it consists of a
certification path and its associated revocation status information
for each element from the path.

If the validation data was directly part of the signed response, then
the response could be rather long if needed to be stored. For that



reason, only the unambiguous references to the certification path and
the revocation status information are optionally returned, and only the
hash of it is part of the signed response.

Pinkas                                                         [Page 3]



Internet Draft                 DPV&DPD                        July 2001

In addition the actual values of the validation data (certificates,
CRLs, delta-CRLs or OCSP responses) may also be returned and only the
hash of it is part of the signed response.

4.2 Re-validation

Re-validation is performed according to a validation policy.

The client MUST specify in its request the validation policy to be
used.

The requestor MUST specify the certificate to be validated and MUST
provide previous returned references of the certification path, but
may need to provide as well previous returned values of the
certification path.

5. Description the DPV protocol

   A DPV request may be optionally signed and contains the following

   data:

   -- protocol version
   -- optionally, the identification of the requestor
   -- identification of the certificate to validate
   -- optionally, the validation policy to be used
   -- whether or not the references of the path should be returned
   -- whether or not the values of the path should be returned
   -- whether or not the references of the path should be time-stamped
   -- optionally, useful certificates that can be used by the server
   -- optionally, useful revocation information that can be used by
      the server
   -- optionally, previous returned references for re-validation
   -- optionally, previous returned values for re-validation
   -- a nonce to allow replay protection, when the client has no clock
   -- optional extensions

   Upon receipt of a request, a DPV Responder determines if:

   1. the message is well formed;

   2. the responder is configured to provide the requested service; and

   3. the request contains the information needed by the responder.

   If any one of the prior conditions are not met, the DPV responder
   produces an error message; otherwise, it returns a definitive
   response.

A DPV response contains a major status, followed by a signed response



in case of "success" and optionally followed with path references and
path values.

Pinkas                                                         [Page 4]



Internet Draft                 DPV&DPD                        July 2001

The signed response includes the following data:

   -- protocol version,
   -- an optional identification of the requestor,
   -- the validation status,
   -- identification of the certificate that has been validated,
   -- the reference of the validation policy that has been used
   -- the validation time,
   -- the response time,
   -- an optional hash of the path references, that may include
      a sequence of time-stamps,
   -- an optional hash of the path values,
   -- an optional nonce to detect replays,
   -- a field for future extensions.

5.2. Detailed Protocol

The ASN.1 syntax imports terms defined in [RFC2459] and in [ES-F].
For signature calculation, the data to be signed is encoded using the
ASN.1 distinguished encoding rules (DER) [X.690].

   ASN.1 EXPLICIT tagging is used as a default unless specified
   otherwise.

   The terms imported from elsewhere are: Extensions,
   CertificateSerialNumber, SubjectPublicKeyInfo, Name,
   AlgorithmIdentifier, CRLReason, CompleteCertificateRefs,
   CompleteRevocationRefs.

5.2.1. Request

This section specifies the ASN.1 specification for a request. The
actual formatting of the message could vary depending on the transport
mechanism used (HTTP, SMTP, LDAP, etc.).

   DPVRequest     ::=     SEQUENCE {
       tbsRequest                TBSRequest,
       optionalSignature    [0]  EXPLICIT Signature       OPTIONAL }

   TBSRequest      ::=     SEQUENCE {
       version              [0]  EXPLICIT Version           DEFAULT v1,
       requestorName        [1]  EXPLICIT GeneralName       OPTIONAL,
       certToValidate            CertOrCertRef,
       valPolicyRef              ValPolicyRef               OPTIONAL,
       validationTime            GeneralizedTime            OPTIONAL,
       returnRefs           [2]  BOOLEAN Default            FALSE,
       returnValues         [3]  BOOLEAN Default            FALSE,
       timeStampRefs        [4]  BOOLEAN Default            FALSE,
       usefulCerts               UsefulCerts                OPTIONAL,

https://datatracker.ietf.org/doc/html/rfc2459


       usefulRevoc               UsefulRevoc                OPTIONAL,
       previousReturnedRefs      PathReferences             OPTIONAL,
       nonce                     INTEGER                    OPTIONAL,
       requestExtensions    [5]  EXPLICIT Extensions        OPTIONAL }

Pinkas                                                         [Page 5]



Internet Draft                 DPV&DPD                        July 2001

   Signature       ::=     SEQUENCE {
       signatureAlgorithm        AlgorithmIdentifier,
       signature                 BIT STRING,
       certs                [0]  EXPLICIT SEQUENCE OF Certificate
                                 OPTIONAL }

   Version ::=                   INTEGER  {  v1(0) }

   CertOrCertRef ::=  CHOICE {
       certificate          [1]  Certificate,
       certRef              [2]  OtherCertID }

   ValPolicyRef ::=   SEQUENCE{
     valPolicyID                 ValPolicyID,
     valPolicyHashAlg            AlgorithmIdentifier,
     valPolicyHash               ValPolicyHash,
     valPolLocation              ValPolLocations     OPTIONAL }

   ValPolicyID :: = CHOICE {
       policybyOId               OBJECT IDENTIFIER,
       policybyURN               NAME }

ValPolicyHash ::= OCTET STRING

The value for valPolicyHash SHALL be computed on the hash of the DER
encoding of ValidationPolicyDef when the policy is locally defined or
of the definition of the policy when it is externally defined.

   ValPolLocations :: = SEQUENCE OF Name

   UsefulCerts ::= CHOICE {
       certificateSet                   CertificateSet,
       completeCertificateRefs          CompleteCertificateRefs }

   UsefulRevoc ::= CHOICE {
       certificateRevocationLists       CertificateRevocationLists,
       completeRevocationRefs           CompleteRevocationRefs }

   PathReferences :: = SEQUENCE {
       completeCertificateRefs          CompleteCertificateRefs,
       completeRevocationRefs           CompleteRevocationRefs }

   PathValues :: = SEQUENCE {
       certificateValues                CertificateValues,
       revocationValues                 RevocationValues }

version allows to identify the version of the protocol.

requestorName is an optional field that allows to identify the



requestor. It is used when the request is signed. In that case the
name of the requestor must match one of the names found in the
certificate.

Pinkas                                                         [Page 6]



Internet Draft                 DPV&DPD                        July 2001

certToValidate is the certificate to validate. It is either the actual
value of the certificate or an unambiguous reference of that
certificate: the issuer name and the serial number of the certificate,
and a hash value of the certificate in order to guard against
compromission of CA keys. Structures like ESSCertID can be used as a
reference.

validationPolicyRef is a reference to the validation policy to be
used. If the field is missing, the server will indicate which pre-
defined policy has been used. It is composed of an OID or a URN, the
hash algorithm to be used to compute the hash value of the policy and
the hash value of the policy.

validationTime is the time for which the validation should be
performed. If that field is missing, then the current time is assumed.

returnRefs is an indicator to ask the server to return the references
of the path (both the references of the certificates used and the
references of the revocation information used).

returnValues is an indicator to ask the server to return the values of
the path (both the values of the certificates used and the values of
the revocation information used).

timeStampRefs is an indicator to ask the server to return a time-
stamped version of the returnRefs. The number of time-stamps and the
names of the TSAs are indicated in the validation Policy. This
provides a protection in case a key from a CA, CRL Issuer or OCSP
responder would be compromised after the date of issue of the time-
stamps.

usefulCerts is a set of certificates, usually obtained through the
application protocol that may be useful for the server to build a path.

usefulRevoc is a set of revocation information, usually obtained
through the application protocol that may be useful for the server to
make sure that no element from the path is revoked.

previousReturnedRefs is used to avoid to return previous returned
paths.

nonce is a unique number (e.g. a large pseudo random number) generated
by the client that may be used to detect replay.

requestExtensions is a way to allow additional elements to be added
later on, if needed.

5.2.2.  Response Syntax

   This section specifies the ASN.1 specification for a confirmation



   response. The actual formatting of the message could vary depending
   on the transport mechanism used (HTTP, SMTP, LDAP, etc.).

Pinkas                                                         [Page 7]



Internet Draft                 DPV&DPD                        July 2001

   An DPV response at a minimum consists of a dPVStatus field
   indicating the processing status of the prior request. If the value
   of dPVStatus is one of the error conditions, tbsResponse and
   optionalSignature are not set.

   DPVResponse     ::=     SEQUENCE {
       dPVStatus                   DPVResponseStatus,
       tbsResponse                 TBSResponse           OPTIONAL,
       optionalSignature   [0]     EXPLICIT Signature    OPTIONAL,
       pathReferences              CertPathRefs          OPTIONAL,
       pathValues                  CertPathValues        OPTIONAL }

   CertPathRefs :: = SEQUENCE {
       pathReferences            SEQUENCE OF PathReferences,
       timeStamping              SEQUENCE OF TimeStampToken OPTIONAL }

   CertPathValues ::= SEQUENCE OF PathValues

   DPVResponseStatus ::= ENUMERATED {
       successful            (0),  -- Request was understood
       malformedRequest      (1),  -- malformed request
       internalError         (2),  -- internal error in issuer
       tryLater              (3),  -- try again later
                                   -- (4) is not used
       sigRequired           (5),  -- must sign the request
       unauthorized          (6)   -- request unauthorized }

   TBSResponse       ::= SEQUENCE {
      tbsResponseData      DPVResponseData,
      signatureAlgorithm   AlgorithmIdentifier,
      signature            BIT STRING,
      certs                [0] EXPLICIT SEQUENCE OF Certificate
                               OPTIONAL }

The value for signature SHALL be computed on the hash of the DER
encoding of DPVResponseData.

   DPVResponseData      ::=     SEQUENCE {
       version             [0]     EXPLICIT Version      DEFAULT v1,
       requestorName       [1]     EXPLICIT GeneralName  OPTIONAL,
       validationStatus            ValidationStatus
       certProcessed               CertOrCertRef,
       valPolicyRef                ValPolicyRef,
       validationTime              GeneralizedTime,
       producedAt                  GeneralizedTime,
       pathReferencesHash          OCTET STRING          OPTIONAL,
       pathValuesHash              OCTET STRING          OPTIONAL,
       nonce                       INTEGER               OPTIONAL,



       responseExtensions  [2]     EXPLICIT Extensions   OPTIONAL }

The value for returnedRefsHash SHALL be computed on the hash of the
DER encoding of CertPathRefs.

Pinkas                                                         [Page 8]



Internet Draft                 DPV&DPD                        July 2001

The value for returnedValuesHash SHALL be computed on the hash of the
DER encoding of CertPathValues.

   ValidationStatus ::= CHOICE {
       valid                [0]     IMPLICIT NULL,
       invalid              [1]     IMPLICIT RevokedInfo,
       conditionallyValid   [2]     IMPLICIT TryLater,
       unknown              [3]     IMPLICIT UnknownInfo }

   RevokedInfo ::= SEQUENCE {
       revocationTime              GeneralizedTime,
       revokedCert                 CertOrCertRef,
       revocationReason     [0]    EXPLICIT CRLReason   OPTIONAL }

   TryLater ::= GeneralizedTime

   UnknownInfo ::= NULL -- this can be replaced with an enumeration

The response MUST be integrity protected. Thus the signature MUST be
used if the request was successful.

The various parameters from the DPVResponseData are the following:

version allows to identify the version of the protocol.

requestorName is a copy of the field present in the request, if that
field was present.

validationStatus indicates the validity of the certificate according to
the validation policy.

    When the response indicates "valid", this means that the
    certificate is valid according to the validation policy.

    When the response indicates "invalid", this means that the
    certificate is invalid according to the validation policy.

    When the response indicates "conditionallyValid", this means
    that either some revocation information is currently missing
    or that the one element of the certification path is currently
    "on hold". In that case the server indicates when another attempt
    could be done.

    When the response indicates "unknown", this means that information
    is missing to build a path between the leaf certificate and a
    trusted anchor. This may also be, when the reference to the
    certificate is used, because the server is unable to get the
    actual value of the leaf certificate.



certProcessed is the certificate to validate. It is a copy of the
field present in the request.

Pinkas                                                         [Page 9]



Internet Draft                 DPV&DPD                        July 2001

validationPolicy is the validation policy that has been used. It is a
copy of the field present in the request, if that field was present.
If the field was not present, it is the object identifier that has
been used to perform the validation.

validationTime is the time for which the validation should be
performed. If that field was present in the request it is a copy of
the field present in the request. If that field was not present then
the current time is being assumed and that time is identical to the
next field: producedAt.

producedAt is the time at which the response has been formed.

pathReferencesHash is a hash computed over the references of the path
(both the references of the certificates used and the references of
the revocation information used). It may also include a sequence of
time-stamps, if this has been requested in the request. Since only
the hash is included in the signature, this allows to keep signatures
short and does not mandate to know the values of the references of the
path to verify the dPVResponseStatus from the response.

pathValuesHash is a hash computed over the values of the path (both
the values of the certificates used and the values of the revocation
information used). Since only the hash is included in the signature,
this allows to keep signatures short and does not mandate to know the
values of the values of the path to verify the dPVResponseStatus from
the response.

nonce is a pseudo random number generated by the client that may be
used to detect replay.

requestExtensions is a way to allow additional elements to be added
later on, if needed.

6. Delegated Path Discovery Protocol Overview

The Delegated Path Discovery (DPD) protocol allows to obtain
information that can be used to locally validate one certificate for
the current time and according to a path validation criteria. The path
validation criteria may either be a sequence of self-signed
certificates or a reference to a validation policy.

None, one or several certification paths may be returned. Each path
consists of a sequence of certificates, starting with the certificate
to validate and ending with one self-signed certificate. In addition,
the revocation information associated with each path may also be
returned.

The client may indicate the maximum number of certification paths that



MUST be returned, provided that they may be found. If the number is not
specified, that number is defaulted to one.

Pinkas                                                        [Page 10]



Internet Draft                 DPV&DPD                        July 2001

The paths that are returned may need to match some additional local
controls done by the client, e.g. verifying some certificate
extensions.

If the paths that are returned do not mach the local conditions, then
the number of number of certification paths to be returned can be
extended, by augmenting this value.

The server may use a local cache to avoid to search again the same
elements, but is not mandated to maintain any local state information
from any previous request.

Path discovery is performed according to the path validation criteria.

The status of the response may be one out of three types:

   1) one or more certification paths could be found according to the
      path validation criteria, with partial or full revocation
      information present.

   2) one or more certification paths could be found according to the
      path validation criteria, with no revocation information present.

   3) no certification path could be found according to the path
      validation criteria,

The information that is returned consists of one or more certification
paths and its associated revocation status information for each
element from the path.

6.1. Description the DPD protocol

   A DPD request may be optionally signed and contains the following
   data:

   -- protocol version
   -- identification of the certificate for the path discovery
   -- the path discovery criteria to be used
   -- optionally, the number of certification paths to be returned
   -- whether or not the revocation data should be returned
   -- optionally, useful certificates that can be used by the server
   -- optionally, useful revocation information that can be used by
      the server
   -- a nonce to allow replay protection, when the client has no clock
   -- optional extensions

   Upon receipt of a request, a DPD Responder determines if:

   1. the message is well formed;



   2. the responder is configured to provide the requested service; and
   3. the request contains the information needed by the responder.

Pinkas                                                        [Page 11]



Internet Draft                 DPV&DPD                        July 2001

   If any one of the prior conditions are not met, the DPD responder
   produces an error message; otherwise, it returns a definitive
   response.

A DPD response contains a major status, followed by a response in case
of "success" and with path values. The response includes the following
data:

   -- protocol version,
   -- the discovery status,
   -- identification of the certificate under path discovery,
   -- the path discovery criteria that has been used
   -- the response time,
   -- the path values,
   -- an optional limit for the number of certification paths
      that have been returned
   -- an optional nonce to detect replays,
   -- a field for future extensions.

The response SHOULD be protected by a data origin authentication
service combined with a data integrity service. A TLS protection or an
IPSEC protection may be appropriate.

6.2. Detailed Protocol

The ASN.1 syntax imports terms defined in [RFC2459] and in [ES-F].

   ASN.1 EXPLICIT tagging is used as a default unless specified
   otherwise.

   The terms imported from elsewhere are: Extensions,
   CertificateSerialNumber, SubjectPublicKeyInfo, Name,
   AlgorithmIdentifier, CRLReason, CompleteCertificateRefs,
   CompleteRevocationRefs.

6.2.1. Request

This section specifies the ASN.1 specification for a request. The
actual formatting of the message could vary depending on the transport
mechanism used (HTTP, SMTP, LDAP, etc.).

   DPDRequest     ::=     SEQUENCE {
       version              [0]  EXPLICIT Version           DEFAULT v1,
       certUnderDiscovery        CertOrCertRef,
       pathDiscoveryCriteria     PathDiscoveryCriteria,
       pathsNumber               INTEGER    DEFAULT                1,
       returnRevocInfo           BOOLEAN    DEFAULT             TRUE,
       usefulCerts               UsefulCerts                OPTIONAL,
       usefulRevoc               UsefulRevoc                OPTIONAL,
       nonce                     INTEGER                    OPTIONAL,

https://datatracker.ietf.org/doc/html/rfc2459


       requestExtensions    [2]  EXPLICIT Extensions        OPTIONAL }

   Version ::=                   INTEGER  {  v1(0) }

Pinkas                                                        [Page 12]



Internet Draft                 DPV&DPD                        July 2001

   CertOrCertRef ::=  CHOICE {
       certificate          [1]  Certificate,
       certRef              [2]  OtherCertID }

   PathDiscoveryCriteria :: = CHOICE {
       trustpoints               SEQUENCE OF Certificate
                                 -- self-signed certificates
       valpolref                 ValPolicyRef }

version allows to identify the version of the protocol.

certUnderDiscovery is the certificate for which one or more path
should be formed. It is either the actual value of the certificate or
an unambiguous reference of that certificate: the issuer name and the
serial number of the certificate, and a hash value of the certificate
in order to guard against compromission of CA keys. Structures like
ESSCertID can be used as a reference.

pathDiscoveryCriteria is either a sequence of self-signed root
certificates or a reference to a validation policy to be
used. This field MUST be present.

pathsNumber indicates the number of paths to be returned. The default
value is one.

returnRevocInfo indicates whether or not revocation information should
be returned. By default, revocation information is returned.

usefulCerts is a set of certificates, usually obtained through the
application protocol that may be useful for the server to build a path.

usefulRevoc is a set of revocation information, usually obtained
through the application protocol that may be useful for the server to
make sure that no element from the path is revoked.

nonce is a unique number (e.g. a large pseudo random number) generated
by the client that may be used to detect replay.

requestExtensions is a way to allow additional elements to be added
later on, if needed.

6.2.2.  Response Syntax

   This section specifies the ASN.1 specification for a confirmation
   response. The actual formatting of the message could vary depending
   on the transport mechanism used (HTTP, SMTP, LDAP, etc.).

   An DPD response at a minimum consists of a responseStatus field
   indicating the processing status of the prior request. If the value
   of responseStatus is one of the error conditions, discoveryResponse



   is not present.

Pinkas                                                        [Page 13]



Internet Draft                 DPV&DPD                        July 2001

   DPDResponse     ::=     SEQUENCE {
       responseStatus              DPDResponseStatus,
       discoveryResponse           DiscoveryResponse         OPTIONAL }

   DPDResponseStatus ::= ENUMERATED {
       successful            (0),  -- request was understood
       malformedRequest      (1),  -- malformed request
       internalError         (2),  -- internal error in issuer
       tryLater              (3),  -- try again later
                                   -- (4) is not used
                                   -- (5) is not used
       unauthorized          (6)   -- request unauthorized }

   DiscoveryResponse ::= SEQUENCE {
       version             [0]     EXPLICIT Version      DEFAULT v1,
       discoveryStatus             DiscoveryStatus
       certUnderDiscovery          CertOrCertRef,
       pathDiscoveryCriteria       PathDiscoveryCriteria,
       producedAt                  GeneralizedTime,
       pathsDiscovered             PathsDiscovered       OPTIONAL,
       pathsNumberLimit            INTEGER               OPTIONAL,
       nonce                       INTEGER               OPTIONAL,
       responseExtensions  [2]     EXPLICIT Extensions   OPTIONAL }

   DiscoveryStatus ::= CHOICE {
     certswithRevoc        [0]     IMPLICIT NULL,
     certsNoRevoc          [1]     IMPLICIT NULL,
     noPathFound           [2]     IMPLICIT NULL }

   PathsDiscovered::= SEQUENCE OF PathValues

The various parameters from the DiscoveryResponse are the following:

    version allows to identify the version of the protocol.

    discoveryStatus indicates the result of the discovery according
    to path validation criteria.

       When the response indicates "certswithRevoc", this means
       at least one path has been found, with partial or full
       revocation information is present.

       When the response indicates "certsNoRevoc", this means that
       at least one path has been found, but no revocation information
       is present.

       When the response indicates "noPathFound", this means that the
       no path has been able to be found.



    certUnderDiscovery is the certificate for which one or more path
    should be formed. It is a copy of the field present in the request.

Pinkas                                                        [Page 14]



Internet Draft                 DPV&DPD                        July 2001

    pathDiscoveryCriteria is either a sequence of self-signed root
    certificates or a reference to a validation policy to be
    used. It is a copy of the field present in the request.

    producedAt is the time at which the response has been formed.

    pathsDiscovered is a sequence of PathValues. Each sequence
    corresponds to one path.

    pathsNumberLimit is an optional element that is used by the server
    to indicate that the number of paths that have been returned has
    been limited by the server to this value. Rules with a lower
    granularity should be used for further requests.

    nonce is a pseudo random number generated by the client that may
    be used to detect replay.

    requestExtensions is a way to allow additional elements to be added
    later on, if needed.

7. Components for a validation policy

A validation policy is build from three components:

   1. Certificate requirements,
   2. Revocation requirements,
   3. Optional Time-Stamping requirements.

The ASN.1 construct for a validation policy definition is as follows:

   ValPolicyDef :: =   SEQUENCE OF PolicyRequirement

   PolicyRequirement :: = SEQUENCE {
       certificateRequirements     CertificateTrustPoint,
       revocRequirements           RevocRequirements,
       timeStampingRequirements    TimeStampingRequirements OPTIONAL }

7.1. Certificate Requirements

The certificateRequirements identifies a self-signed root certificate
used to start (or end) certificate path processing and the initial
conditions for certificate path validation as defined RFC 2459 [7]
section 4.

   CertificateTrustPoint ::= SEQUENCE {
       trustpoint               Certificate,
                               -- self-signed certificate
       pathLenConstraint    [0] PathLenConstraint   OPTIONAL,
       acceptablePolicySet  [1] AcceptablePolicySet OPTIONAL,
                               -- if not present "any policy"

https://datatracker.ietf.org/doc/html/rfc2459


       nameConstraints      [2] NameConstraints     OPTIONAL,
       policyConstraints    [3] PolicyConstraints   OPTIONAL }

Pinkas                                                        [Page 15]



Internet Draft                 DPV&DPD                        July 2001

The trustPoint field gives the self signed certificate for the CA that
is used as the trust point for the start of certificate path
processing.

The pathLenConstraint field gives the maximum number of CA
certificates that may be in a certification path following the
trustpoint. A value of zero indicates that only the given trustpoint
certificate and an end-entity certificate may be used. If present, the
pathLenConstraint field must be greater than or equal to zero. Where
pathLenConstraint is not present, there is no limit to the allowed
length of the certification path.

PathLenConstraint    ::=   INTEGER (0..MAX)

The acceptablePolicySet field identifies the initial set of
certificate policies, any of which are acceptable under the signature
policy.

AcceptablePolicySet ::= SEQUENCE OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

The nameConstraints field indicates a name space within which all
subject names in subsequent certificates in a certification path must
be located. Restrictions may apply to the subject distinguished name
or subject alternative names. Restrictions apply only when the
specified name form is present. If no name of the type is in the
certificate, the certificate is acceptable.

Restrictions are defined in terms of permitted or excluded name
subtrees. Any name matching a restriction in the excludedSubtrees
field is invalid regardless of information appearing in the
permittedSubtrees.

    NameConstraints ::= SEQUENCE {
           permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,
           excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

      GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

      GeneralSubtree ::= SEQUENCE {
           base                    GeneralName,
           minimum         [0]     BaseDistance DEFAULT 0,
           maximum         [1]     BaseDistance OPTIONAL }

      BaseDistance ::= INTEGER (0..MAX)

The policyConstraints extension constrains path processing in two
ways. It can be used to prohibit policy mapping or require that each
certificate in a path contain an acceptable policy identifier.



The policyConstraints field, if present specifies requirement for
explicit indication of the certificate policy and/or the constraints
on policy mapping.

Pinkas                                                        [Page 16]



Internet Draft                 DPV&DPD                        July 2001

   PolicyConstraints ::= SEQUENCE {
        requireExplicitPolicy           [0] SkipCerts OPTIONAL,
        inhibitPolicyMapping            [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

If the inhibitPolicyMapping field is present, the value indicates the
number of additional certificates that may appear in the path
(including the trustpoint's self certificate) before policy mapping is
no longer permitted. For example, a value of one indicates that policy
mapping may be processed in certificates issued by the subject of this
certificate, but not in additional certificates in the path.

If the requireExplicitPolicy field is present, subsequent certificates
must include an acceptable policy identifier. The value of
requireExplicitPolicy indicates the number of additional certificates
that may appear in the path (including the trustpoint's self
certificate) before an explicit policy is required. An acceptable
policy identifier is the identifier of a policy required by the user
of the certification path or the identifier of a policy which has been
declared equivalent through policy mapping.

7.2. Revocation Requirements

The RevocRequirements specifies minimum requirements for revocation
information, obtained through CRLs, delta-CRLs or OCSP responses, to
be used in checking the revocation status of certificates. This ASN1
structure is used to define policy for validating the certificate.

   RevocRequirements ::= SEQUENCE {
       endCertRevReq       RevReq,
       caCerts             RevReq }

Certificate revocation requirements are specified in terms of checks
required on:

     * endCertRevReq: end certificates (i.e. the signers certificate,
       the attribute certificate or the timestamping authority
       certificate).

     * caCerts: CA certificates.

   RevReq ::= BIT STRING {
           crlCheck           (0),
           ocspCheck          (1),
           deltaCrlCheck      (2) }

Bits in RevReq are used as follows:

   The crlCheck bit is asserted when checks are to be done against



   full CRLs (or full Authority revocation lists).

   The ocspCheck bit is asserted when the revocation status check is
   to be done using the OCSP protocol (i.e. RFC 2560).

Pinkas                                                        [Page 17]

https://datatracker.ietf.org/doc/html/rfc2560


Internet Draft                 DPV&DPD                        July 2001

   The deltaCrlCheck bit is asserted when checks are to be done
   against delta CRLs and relevant associated full CRLs (or full
   Authority revocation lists).

   When more than one bit is set, then any of the indicated sources
   of revocation information MUST be used.

   When a single bit is set, then the indicated source of revocation
   information MUST be used.

   When no bit is set, then no revocation status check SHALL be done.

7.3. Time-Stamping requirements

The TimeStampingRequirements identifies the number of time stamps to
be used over the references from the path and the name of the TSAs to
be used.

TimeStampingRequirements ::= SEQUENCE OF GeneralName

8. Validation policy definition protocol

In order to validate a certificate, it is needed to refer to a
validation policy through an OID or a URI. This reference can be
temporary defined by the requester. This protocol allows to define a
validation policy. It is up to server to decide how long a temporary
defined validation policy should be kept in memory.

8.1. Request

The ASN.1 construct for the request is as follows:

VPDefRequest ::=     SEQUENCE {
       tbsRequest                  TbsVPDefRequest,
       optionalSignature   [0]     EXPLICIT Signature       OPTIONAL }

   TbsVPDefRequest      ::=   SEQUENCE {
       version             [0]     EXPLICIT Version         DEFAULT v1,
       requestorName       [1]     EXPLICIT GeneralName     OPTIONAL,
       valPolicyId                 ValPolicyID,
       valPolicyDef                ValPolicyDef,
       requestExtensions   [2]     EXPLICIT Extensions      OPTIONAL }

8.2. Response

The ASN.1 construct for the response is as follows:

   VPDefResponse ::=     SEQUENCE {
       vPDefStatus                 VPDefResponseStatus,
       tbsResponse                 TbsVPDefResponse        OPTIONAL }



   VPDefResponseStatus ::= ENUMERATED {
       successful            (0),  -- Request was understood
       malformedRequest      (1),  -- malformed request

Pinkas                                                        [Page 18]



Internet Draft                 DPV&DPD                        July 2001

       internalError         (2),  -- internal error in issuer
       tryLater              (3),  -- try again later
                                   -- (4) is not used

       sigRequired           (5),  -- must sign the request
       unauthorized          (6)   -- request unauthorized }

   TbsDefResponse       ::= SEQUENCE {
      tbsResponseData                VPDefResponseData,
      signatureAlgorithm             AlgorithmIdentifier   OPTIONAL,
      signature                      BIT STRING            OPTIONAL,
      certs                  [0]     EXPLICIT SEQUENCE OF Certificate
                                     OPTIONAL }

The value for signature SHALL be computed on the hash of the DER
encoding of VPDefResponseData.

VPDefResponseData :: = SEQUENCE {
       responseStatus                VPDefResponseStatus,
       validationPolicyRef           ValidationPolicyRef     OPTIONAL }

vPDefResponseStatus ::= CHOICE {
       registered           [0]     IMPLICIT NULL,
       notregistered        [1]     IMPLICIT NULL }

When both the request is understood (i.e. there is no syntax error)
and the validation policy can be correctly interpreted (i.e. there is
no semantic error) then a validation policy reference is returned.

The identifier of the policy may be specific to the request or may be
an identifier that has already been attributed as the result of a
previous request with an identical definition.

9. Security considerations

   To be provided.

10. Acknowledgments

   To be provided.

11. References

   [PKIX-1]

      Internet X.509 Public Key Infrastructure.
      Certificate and CRL Profile. RFC 2459
      R. Housley, W. Ford, W. Polk, D. Solo.

https://datatracker.ietf.org/doc/html/rfc2459


      or its successor as soon as it can be referenced.

Pinkas                                                        [Page 19]



Internet Draft                 DPV&DPD                        July 2001

   [OCSP]

      X.509 Internet Public Key Infrastructure.
      Online Certificate Status Protocol û OCSP. RFC 2560
      M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams.

   [TSP]

      Internet X.509 Public Key Infrastructure
      Time-Stamp Protocol (TSP). RFC YYYY
      C. Adams, P. Cain, D. Pinkas, R. Zuccherato.

   [ES-F]

      Electronic Signature Formats for long term electronic signatures
      D. Pinkas, J. Ross, N. Pope. RFC 3126 (to be published).

   [CMS]

      Cryptographic Message Syntax. RFC 2630.
      R. Housley June 1999.

   [ISO-X509]

      ISO/IEC 9594-8/ITU-T Recommendation X.509, "Information
      Technology - Open Systems Interconnection: The Directory:
      Authentication Framework," 1997 edition. (Pending publication
      of 1997 edition, use 1993 edition with the following amendment
      applied: Final Text of Draft Amendment DAM 1 to ISO/IEC 9594-8
      on Certificate Extensions, June 1996.)

12. Authors' addresses

   Denis Pinkas
   Integris, Bull.
   68, Route de Versailles
   78434 Louveciennes CEDEX
   FRANCE
   e-mail: Denis.Pinkas@bull.net

13. Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc3126
https://datatracker.ietf.org/doc/html/rfc2630


   are included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of

Pinkas                                                        [Page 20]



Internet Draft                 DPV&DPD                        July 2001

   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.



Pinkas                                                        [Page 21]



Internet Draft                 DPV&DPD                        July 2001

Annex A (normative): ASN.1 Definitions

To be provided.



Pinkas                                                        [Page 22]


