
PKIX Working Group R. Housley (SPYRUS)
Internet Draft W. Ford (NorTel)
 S. Farrell (SSE)
 D. Solo (BBN)
expires in six months November 1995

Internet Public Key Infrastructure

draft-ietf-pkix-ipki-00.txt

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet- Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This is the first draft of the Internet Public Key Infrastructure.
 It is provided as a strawman for the first meeting of the PKIX
 Working Group. The intent of this strawman is to generate productive
 discussions at the first meeting.

1 Executive Summary

 << Write this last. >>

2 Requirements and Assumptions

 Goal is to develop a profile and associated management structure to
 facilitate the adoption/use of X.509 certificates within internet
 applications for those communities wishing to make use of X.509

Housley, Ford, Farrell, Solo [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-00.txt

INTERNET DRAFT November 1995

 technology. Such applications may include HTTP, electronic mail,
 IPSP, user authentication, electronic payment systems, as well as
 others. In order to relieve some of the obstacles to using X.509
 certificates, this draft will define profiles, rules, and management
 protocols that should serve to promote the development of reusable
 certificate management systems; development of reusable application
 tools; and interoperabilty determined by policy, not syntax.

 Many communities will need to supplement, or possibly replace, this
 profile in order to meet the requirements of specialized domains or
 environments with additional authorization, assurance, or operational
 requirements. However, for basic applications, it is essential that
 a core of features be defined and that common means of representing
 common information be agreed to so that application developers can
 obtain necessary information without regard to the issuer of a
 particular certificate.

 As supplemental authorization and attribute management tools emerge,
 such as attribute certificates, it may be appropriate to limit what
 the certificate is used for in terms of conveying authenticated
 attributes as opposed to other means of conveying information.

 << Note, this section needs to be expanded >>

2.1 Communication and Topology

 The users of certificates will operate in a wide range of
 environments with respect to their communication topology, especially
 for secure electronic mail users. This profile will allow for users
 without high bandwidth, real-time IP connectivity, or high
 availablity of a connection. In addition, the profile must allow for
 the presence of firewall or other filtered communication.

2.2 Access Control and Acceptability Decisions

 The goal of the Public Key Infrstructure (PKI) is to meet the needs
 of deterministic, automated access control and authorization
 functions. This will drive the types of attributes and the nature of
 the identity contained in the certificate as well as the ancillary
 control information in the certificate such as policy data and
 certification path constraints.

2.3 User Expectations

 In this context, user refers to the users of the client software and
 the subjects of the certificates. These are the readers and writers
 of electronic mail, the clients for WWW browsers, etc. A goal of
 this profile is to recognize the limitations of both the platforms

Housley, Ford, Farrell, Solo [Page 2]

INTERNET DRAFT November 1995

 these users will employ and the sophistication/attentiveness of the
 users. This manifests itself in requirements to simplify the
 configuration responsibility of the user (e.g., root keys, rules),
 make platform usage constraints explicit in the certificate, to
 construct certification path constraints which shield the user from
 malicious action, and to construct applications which sensibly
 automate checking functions.

2.4 Administration Expectations

 As with users, the certificate profile should also be structured to
 be consistent with the types of individuals who must administer the
 CA space. Providing such an administrator with unbounded choices
 complicates not only the software that must process these
 certificates but also increases the chances that a subtle mistake by
 the CA administrator will result in broader compromise.

3 Overview of Approach

3.1 X.509 Version 3 Certificate

 Application of public key technology requires the user of a public
 key to be confident that the public key belongs to the correct remote
 subject (person or system) with which an encryption or digital
 signature mechanism will be used. This confidence is obtained
 through the use of public key certificates, which are data structures
 that bind public key values to subject identities. The binding is
 achieved by having a trusted certification authority (CA) digitally
 sign each certificate. A certificate has a limited valid lifetime
 which is indicated in its signed contents. Because a certificate's
 signature and timeliness can be independently checked by a
 certificate-using client, certificates can be distributed via
 untrusted communications and server systems, and can be cached in
 unsecured storage in certificate-using systems.

 The standard known as ITU-T X.509 (formerly CCITT X.509) or ISO/IEC
 9594-8, which was first published in 1988 as part of the X.500
 Directory recommendations, defines a standard certificate format. The
 certificate format in the 1988 standard is called the version 1 (v1)
 format. When X.500 was revised in 1993, two more fields were added,
 resulting in the version 2 (v2) format. These two fields are used to
 support directory access control, and are not applicable to public
 key infrastructures.

 The Internet Privacy Enhanced Mail (PEM) proposals, published in
 1993, included specifications for a public key infrastructure based
 on X.509 version 1 certificates [RFC 1422]. The experience gained in
 attempts to deploy RFC 1422 made it clear that the v1 and v2

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Farrell, Solo [Page 3]

INTERNET DRAFT November 1995

 certificate formats were deficient in several respects. Most
 importantly, more fields were needed to carry information which PEM
 design and implementation experience had proven necessary. In
 response to these new requirements, ISO/IEC and ANSI X9 developed the
 X.509 version 3 (v3) certificate format. The v3 format extends the
 v2 format by adding provision for additional extension fields.
 Particular extension field types may be specified in standards or may
 be defined and registered by any organization or community having a
 need. In August, 1995, standardization of the basic v3 format was
 completed [ISO TC].

 ISO/IEC and ANSI X9 have also developed a set of standard extensions
 for use in the v3 extensions field [ISO DAM]. These extensions can
 convey such data as additional subject identification information,
 key attribute information, policy information, and certification path
 constraints.

 However, the ISO/IEC and ANSI standard extensions are very broad in
 their applicability. In order to develop interoperable
 implementations of X.509 v3 systems for Internet use, it is necessary
 to specify profiles of use of the X.509 v3 extensions tailored for
 the Internet. It is one goal of this document to specify such
 profiles.

3.2 Certification Paths and Trust

 A user of a security service requiring knowledge of a public key
 generally needs to obtain and validate a certificate containing the
 required public key. If the public-key user does not already hold an
 assured copy of the public key of the CA that signed the certificate,
 then it might need an additional certificate to obtain that public
 key. In general, a chain of multiple certificates may be needed,
 comprising a certificate of the public key owner (the end entity)
 signed by one CA, and zero or more additional certificates of CAs
 signed by other CAs. Such chains, called certification paths, are
 required because a public key user is only initialized with a limited
 number (often one) of assured CA public keys.

 There are different ways in which CAs might be configured in order
 for public key users to be able to find certification paths. For
 PEM, RFC 1422 defined a rigid hierarchical structure of CAs. There
 are three types of PEM certification authority:

 (a) Internet Policy Registration Authority (IPRA): This authority,
 operated under the auspices of the Internet Society, acts as the root
 of the PEM certification hierarchy at level 1. It issues
 certificates only for the next level of authorities, PCAs. All
 certification paths start with the IPRA.

https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Farrell, Solo [Page 4]

INTERNET DRAFT November 1995

 (b) Policy Certification Authorities (PCAs): PCAs are at level 2 of
 the hierarchy, each PCA being certified by the IPRA. A PCA must
 establish and publish a statement of its policy with respect to
 certifying users or subordinate certification authorities. Distinct
 PCAs aim to satisfy different user needs. For example, one PCA (an
 organizational PCA) might support the general electronic mail needs
 of commercial organizations, and another PCA (a high-assurance PCA)
 might have a more stringent policy designed for satisfying legally
 binding signature requirements.

 (c) Certification Authorities (CAs): CAs are at level 3 of the
 hierarchy and can also be at lower levels. Those at level 3 are
 certified by PCAs. CAs represent, for example, particular
 organizations, particular organizational units (e.g., departments,
 groups, sections), or particular geographical areas.

RFC 1422 furthermore has a name subordination rule which requires
 that a CA can only issue certificates for entities whose names are
 subordinate (in the X.500 naming tree) to the name of the CA itself.
 The trust associated with a PEM certification path is implied by the
 PCA name. The name subordination rule ensures that CAs below the PCA
 are sensibly constrained as to the set of subordinate entities they
 can certify (e.g., a CA for an organization can only certify entities
 in that organization's name tree). Certificate user systems are able
 to mechanically check that the name subordination rule has been
 followed.

 The RFC 1422 CA hierarchical model has been found to have several
 deficiencies, including:

 (a) The pure top-down hierarchy, with all ertification paths
 starting from the root, is too restrictive for many purposes. For
 some applications, verification of certification paths should start
 with a public key of a CA in a user's own domain, rather than
 mandating that verification commence at the top of a hierarchy. In
 many environments, the local domain is often the most trusted.
 Also,initialization and key-pair-update operations can be more
 effectively conducted between an end entity and a local management
 system.

 (b) The name subordination rule introduces undesirable constraints
 upon the X.500 naming system an organization may use.

 (c) Use of the PCA concept requires knowledge of individual PCAs to
 be built into certificate chain verification logic. In the
 particular case of Internet mail, this is not a major problem -- the
 PCA name can always be displayed to the human user who can make a
 decision as to what trust to imply from a particular chain. However,

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Farrell, Solo [Page 5]

INTERNET DRAFT November 1995

 in many commercial applications, such as electronic commerce or EDI,
 operator intervention to make policy decisions is impractical. The
 process needs to be automated to a much higher degree. In fact, the
 full process of certificate chain processing needs to be
 implementable in trusted software.

 Because of the above shortcomings, it is proposed that more flexible
 CA structures than the RFC 1422 hierarchy be supported by the PKIX
 specifications. In fact, the main reason for the structural
 restrictions imposed by RFC 1422 was the restricted certificate
 format provided with X.509 v1. With X.509 v3, most of the
 requirements addressed by RFC 1422 can be addressed using certificate
 extensions, without a need to restrict the CA structures used. In
 particular, the certificate extensions relating to certificate
 policies obviate the need for PCAs and the constraint extensions
 obviate the need for the name subordination rule.

3.3 Revocation

 When a certificate is issued, it is expected to be in use for its
 entire validity period. However, various circumstances may cause a
 certificate to become invalid prior to the expiration of the validity
 period. Such circumstances might include change of name, change of
 association between subject and CA (e.g., an employee terminates
 employment with an organization), and compromise or suspected
 compromise of the corresponding private key. Under such
 circumstances, the CA needs to revoke the certificate.

 X.509 defines one method of certificate revocation. This method
 involves each CA periodically issuing a signed data structure called
 a certificate revocation list (CRL). A CRL is a time stamped list
 identifying revoked certificates which is signed by a CA and made
 freely available in a public repository. Each revoked certificate is
 identified in a CRL by its certificate serial number. When a
 certificate-using system uses a certificate (e.g., for verifying a
 remote user's digital signature), that system not only checks the
 certificate signature and validity but also acquires a suitably-
 recent CRL and checks that the certificate serial number is not on
 that CRL. The meaning of "suitably-recent" may vary with local
 policy, but it usually means the most recently-issued CRL. A CA
 issues a new CRL on a regular periodic basis (e.g., hourly, daily, or
 weekly). Entries are added to CRLs as revocations occur, and an
 entry may be removed when the certificate expiration date is reached.

 An advantage of this revocation method is that CRLs may be
 distributed by exactly the same means as certificates themselves,
 namely, via untrusted communications and server systems.

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Farrell, Solo [Page 6]

INTERNET DRAFT November 1995

 One limitation of the CRL revocation method, using untrusted
 communications and servers, is that the time granularity of
 revocation is limited to the CRL issue period. For example, if a
 revocation is reported now, that revocation will not be reliably
 notified to certificate-using systems until the next periodic CRL is
 issued -- this may be up to one hour, one day, or one week depending
 on the frequency that the CA issues CRLs.

 Another potential problem with CRLs is a risk of a CRL growing to an
 entirely unacceptable size. In the 1988 and 1993 versions of X.509,
 the CRL for the end-user certificates needed to cover the entire
 population of end-users for one CA. It is desirable to allow such
 populations to be in the range of thousands, tens of thousands, or
 possibly even hundreds of thousands of users. The end-user CRL is
 therefore at risk of growing to such sizes, which present major
 communication and storage overhead problems. With the version 2 CRL
 format, introduced along with the v3 certificate format, it becomes
 possible to arbitrarily divide the population of certificates for one
 CA into a number of partitions, each partition being associated with
 one CRL distribution point (e.g., directory entry or URL) from which
 CRLs are distributed. Therefore, the maximum CRL size can be
 controlled by a CA. Separate CRL distribution points can also exist
 for different revocation reasons. For example, routine revocations
 (e.g., name change) may be placed on a different CRL to revocations
 resulting from suspected key compromises, and policy may specify that
 the latter CRL be updated and issued more frequently than the former.

 As with the X.509 v3 certificate format, in order to facilitate
 interoperable implementations from multiple vendors, the X.509 v2 CRL
 format needs to be profiled for Internet use. It is one goal of this
 document to specify such profiles.

 Furthermore, it is recognized that on-line methods of revocation
 notification may be applicable in some environments as an alternative
 to the X.509 CRL. On-line revocation checking elimiates the latency
 between a revocation report and CRL the next issue. Once the
 revocation is reported, any query to the on- line service will
 correctly reflect the certificate validation impacts of the
 revocation. Therefore, this document will also consider standard
 approaches to on-line revocation notification.

3.4 Supporting Protocols

 Management protocols are required to support on-line interactions
 between Public Key Infrastructure (PKI) components. For example,
 management protocol might be used between a CA and a client system
 with which a key pair is associated, or between two CAs which cross-
 certify each other. The set of functions which potentially need to

Housley, Ford, Farrell, Solo [Page 7]

INTERNET DRAFT November 1995

 be supported by management protocols include:

 (a) registration: This is the process whereby a user first makes
 itself known to a CA, prior to that CA issuing a certificate or
 certificates for that user.

 (b) initialization: Before a client system can operate securely it
 is necessary to install in it necessary key materials which have the
 appropriate relationship with keys stored elsewhere in the
 infrastructure. For example, the client needs to be securely
 initialized with the public key of a CA, to be used in validating
 certificate paths. Furthermore, a client typically needs to be
 initialized with its own key pair(s).

 (c) certification: This is the process in which a CA issues a
 certificate for a user's public key, and returns that certificate to
 the user's client system and/or posts that certificate in a public
 repository.

 (d) key pair recovery: As an option, user client key materials
 (e.g., a user's private key used for encryption purposes) may be
 backed up by a CA or a key backup system associated with a CA. If a
 user needs to recover these backed up key materials (e.g., as a
 result of a forgotten password or a lost key chain file), an on-line
 protocol exchange may be needed to support such recovery.

 (e) key pair update: All key pairs need to be updated regularly,
 i.e., replaced with a new key pair, and new certificates issued.

 (f) revocation request: An authorized person advises a CA of an
 abnormal situation requiring certificate revocation.

 (g) cross-certification: Two CAs exchange the information necessary
 to establish cross-certificates between those CAs.

 Note that on-line protocols are not the only way of implementing the
 above functions. For all functions there are off-line methods of
 achieving the same result, and this specification does not mandate
 use of on- line protocols. For example, when hardware tokens are
 used, many of the functions may be achieved through as part of the
 physical token delivery. Furthermore, some of the above functions
 may be combined into one protocol exchange. In particular, two or
 more of the registration, initialization, and certification functions
 can be combined into one protocol exchange.

Section 9 defines a set of standard protocols supporting the above
 functions. The protocols for conveying these exchanges in different
 environments (on-line, E-mail, and WWW) are specified in Section 10.

Housley, Ford, Farrell, Solo [Page 8]

INTERNET DRAFT November 1995

4 Certificate and Certificate Extensions Profile

 As described above, one goal of this draft is to create a profile for
 X.509 v3 certificates that will foster interoperability and a
 reusable public key infrastructure. To achieve this goal, some
 assumptions need to be made about the nature of information to be
 included along with guidelines for how extensibility will be
 employed.

 Certificates may be used in a wide range of applications and
 environments covering a broad spectrum of interoperability goals and
 a broader spectrum of operational and assurance requirements. The
 goal of this draft is to establish a common baseline for generic
 applications requiring broad interoperability and limited special
 purpose requirements. In particular, the emphasis will be on
 supporting the use of X.509 v3 certificates for informal internet
 electronic mail, IPSEC, and WWW applications. The draft will define
 a baseline set of information along with common locations within a
 certificate and common representations for common information.
 Environments with additional requirements may build on this profile
 or may replace it.

4.1 Basic Certificate Fields

 The X.509 v3 certificate Basic syntax is as follows. For signature
 calculation, the certificate is ASN.1 DER encoded (reference). ASN.1
 DER encoding is a tag, length, value encoding system for each
 element.

 Certificate ::= SIGNED { SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] Extensions OPTIONAL
 -- If present, version must be v3
 } }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

Housley, Ford, Farrell, Solo [Page 9]

INTERNET DRAFT November 1995

 Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 The following items describe a proposed use of the X.509 v3
 certificate for the Internet.

4.1.1 Version

 This field describes the version of the encoded certificate. When
 extensions are used, as expected in this profile, use X.509 version 3
 (value is 2). If no extensions are present, but a UniqueID is
 present, use version 2 (value is 1). If only basic fields are
 present, use version 1 (the value is omitted from the certificate as
 the default value).

 << All capabilites available in X.509 v2 certificates are available
 in X.509 v3 certificates. Since there are so few X.509 v2
 certificate implementations, should the profile prohibit the use of
 v2? >>

4.1.2 Serial number

 The serial number is an integer assigned by the certification
 authority to each certificate. It must be unique for each
 certificate issued by a given CA (i.e., the issuer name and serial
 number identify a unique certificate).

 << Do we want to define a maximum value for the serial number? >>

4.1.3 Signature

 This field contains the algorithm identifier for the algorithm used
 to sign the certificate.

4.1.4 Issuer Name

 The issuer name provides a globally unique identifier of the
 authority signing the certificate. The syntax of the issuer name is
 an X.500 distinguished name. A name in the certificate may provide
 semantic information, may provide a reference to an external
 information store or service, provides a unique identifier, may

Housley, Ford, Farrell, Solo [Page 10]

INTERNET DRAFT November 1995

 provide authorization information, or may provide a basis for
 managing the CA relationships and certificate paths (other purposes
 are also possible). This strawman suggests that the issuer (and
 subject) name fields must provide a globally unique identifier. In
 addition, they should contain semantic information identifying the
 issuer/subject (e.g. a full name, organization name, etc.). Access
 information will be provided in a separate extension (when other than
 via X.500 directory) and internet specific identities (electronic
 mail address, DNS name, and URLs) will be carried in alternative name
 extensions.

 << Further discussion of naming guidelines for internet use is
 needed. >>

4.1.5 Validity

 This field indicates the dates on which the certificate becomes valid
 (notBefore) and on which the certificate ceases to be valid
 (notAfter).

4.1.6 Subject Name

 The purpose of the subject name is to provide a unique identifier of
 the subject of the certificate. The syntax of the subject name is an
 X.500 distinguished name. The discussion in section 4.1.4 on issuer
 names applies to subject names as well.

4.1.7 Subject Public Key Info

 This field is used to carry the public key and identify the algorithm
 with which the key is used.

4.1.8 Unique Identifiers

 The subject and issuer unique identifier are present in the
 certificate to handle the possibility of reuse of subject and/or
 issuer names over time. Based on the approach to naming, names will
 not be reused and internet certificates will not make use of these
 unique identifiers.

4.2 Certificate Extensions

 The extensions already defined by ANSI X9 and ISO for X.509 v3
 certificates provide methods for associating additional attributes
 with users or public keys and for managing the certification
 hierarchy. The X.509 v3 certificate format also allows communities to
 define private extensions to carry information unique to those
 communities. Each extension in a certificate may be designated as

Housley, Ford, Farrell, Solo [Page 11]

INTERNET DRAFT November 1995

 critical or non-critical. A certificate using system (an application
 validating a certificate) must reject the certificate if it
 encounters a critical extension it does not recognize. A non-
 critical extension may be ignored if it is not recognized. The
 following presents recommended extensions used within Internet
 certificates and standard locations for information. Communities may
 elect to use additional extensions; however, caution should be
 exercised in adopting any critical extensions in certificates which
 might be used in a general context.

4.2.1 Subject Alternative Name

 The altNames extension allows additional identities to be bound to
 the subject of the certificate. Defined options include an rfc822
 name (electronic mail address), a DNS name, and a URL. Each of these
 are IA5 strings. Multiple instances may be included. Whenever such
 identities are to be bound in a certificate, the subject alternative
 name (or issuer alternative name) field shall be used.

 << This implies that encoding of such identities within the subject
 or issuer distinguished name is discouraged. >>

 << Note definition is based on a recommended change to the DAM. >>

 AltNames ::= SEQUENCE OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] INSTANCE OF OTHER-NAME,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] IA5String,
 url [6] IA5String }

 << Should we permit an IP address? With the current list of choices,
 IPSec would use dnsName. This leads to trusted resolution of DNS
 Names to IP Addresses which is not done today. Maybe IP address is
 too specific and LAN address should be allowed too. >>

4.2.2 Issuer Alternative Name

 As with 4.2.1, this extension is used to bind Internet style
 identities to the issuer name.

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Farrell, Solo [Page 12]

INTERNET DRAFT November 1995

4.2.3 Certificate Policies

 The certificatePolicies extension contains an object identifier (OID)
 which indicates the policy under which the certificate has been
 issued. Use of policies is discussed elsewhere in this draft.

4.2.4 Key Attributes

 The keyAttributes extension contains information about the key itself
 including a unique key identifier, a key usage period (lifetime of
 the key as opposed to the lifetime of the certificate), and key
 usage. The Internet certificate should use the keyAttributes
 extension and contain a key identifier and private key validity to
 aid in system management. The key usage field in this extension is
 intended to be advisory (as contrasted with the key usage restriction
 extension which imposes mandatory restrictions). The key usage field
 in this extension should not be used.

 KeyAttributes ::= SEQUENCE {
 keyIdentifier KeyIdentifier OPTIONAL,
 intendedKeyUsage KeyUsage OPTIONAL,
 privateKeyUsagePeriod PrivateKeyValidity OPTIONAL }

 KeyIdentifier ::= OCTET STRING

 PrivateKeyValidity ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }

 KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 offLineCRLSign (6) }

4.2.5 Key Usage Restriction

 The keyUsageRestriction extension defines mandatory restrictions on
 the use of the key contained in the certificate based on policy
 and/or usage (e.g., signature, encryption). This field should be
 used whenever the use of the key is to be restricted based on either
 usage or policy (see discussion in policies). The usage restriction
 would be employed when a multipurpose key is to be restricted (e.g.,
 when an RSA key should be used only for signing or only for key
 encipherment).

Housley, Ford, Farrell, Solo [Page 13]

INTERNET DRAFT November 1995

 keyUsageRestriction ::= SEQUENCE {
 certPolicySet SEQUENCE OF CertPolicyId OPTIONAL,
 restrictedKeyUsage KeyUsage OPTIONAL }

4.2.6 Basic Constraints

 The basicConstraints extension identifies whether the subject of the
 certificate is a CA or an end user. In addition, this field can
 limit the authority of the CA in terms of the certificates it can
 issue. Discussion of certification path restriction is covered
 elsewhere in this draft. The subject type field should be present in
 all Internet certificates.

 basicConstraints ::= SEQUENCE {
 subjectType SubjectType,
 pathLenConstraint INTEGER OPTIONAL,
 permittedSubtrees SEQUENCE OF GeneralName OPTIONAL,
 excludedSubtrees SEQUENCE OF GeneralName OPTIONAL }

 SubjectType ::= BIT STRING {
 cA (0),
 endEntity (1) }

4.2.7 CRL Distribution Points

 The cRLDistributionPoints extension identifies the CRL distribution
 point or points to which a certificate user should refer to acertain
 if the certificate has been revoked. This extenstion provides a
 mechanism to divide the CRL inot manageable pieces if the CA has a
 large constituency.

 << Need a section which discusses the alternatives. Should permit
 URLs as one method to name the location for the most recent CRL. >>

4.2.8 Information Access

 The informationAccess field is proposed as a private extension to
 tell how information about a subject or CA (or ancillary CA services)
 may be accessed. For example, this field might provide a pointer to
 information about a user (e.g., a URL) or might tell how to access CA
 information such as certificate status or on-line validation
 services. The structure of this extension is TBD.

 << Suggestions on the ASN.1 syntax are welcome. >>

Housley, Ford, Farrell, Solo [Page 14]

INTERNET DRAFT November 1995

4.2.9 Other extensions

 The DAM defines additional extensions; however, this draft does not
 include them as there use is not part of the basic Internet profile.

4.3 Examples

 << Certificate samples including descriptive text and ASN.1 encoded
 blobs will be inserted. >>

5 CRL and CRL Extensions Profile

 As described above, one goal of this draft is to create a profile for
 X.509 v2 CRLs that will foster interoperability and a reusable public
 key infrastructure. To achieve this goal, some assumptions need to
 be made about the nature of information to be included along with
 guidelines for how extensibility will be employed.

 CRLs may be used in a wide range of applications and environments
 covering a broad spectrum of interoperability goals and a broader
 spectrum of operational and assurance requirements. The goal of this
 draft is to establish a common baseline for generic applications
 requiring broad interoperability and limited special purpose
 requirements. Emphasis will be on support for X.509 v2 CRLs. The
 draft will define a baseline set of information along with common
 locations within a CRL and common representations for common
 information. Environments with additional requirements may build on
 this profile or may replace it.

5.1 CRL Fields

 The X.509 v2 CRL syntax is as follows. For signature calculation,
 the data that is to be signed is ASN.1 DER encoded. ASN.1 DER
 encoding is a tag, length, value encoding system for each element.

 CertificateList ::= SIGNED SEQUENCE {
 version Version DEFAULT v1,
 signature AlgorithmIdentifier,
 issuer Name,
 lastUpdate UTCTime,
 nextUpdate UTCTime,
 revokedCertificates SIGNED SEQUENCE OF SEQUENCE {
 signature AlgorithmIdentifier,
 issuer Name,
 userCertificate SerialNumber,
 revocationDate UTCTime,
 crlEntryExtensions Extensions OPTIONAL } OPTIONAL,
 crlExtensions [0] Extensions OPTIONAL } }

Housley, Ford, Farrell, Solo [Page 15]

INTERNET DRAFT November 1995

 Version ::= INTEGER { v1(0), v2(1) }

 SerialNumber ::= INTEGER

 The following items describe a proposed use of the X.509 v2 CRL for
 the Internet.

5.1.1 Version

 This field describes the version of the encoded CRL. When extensions
 are used, as expected in this profile, use version 2 (value is 1).
 If neither CRL extensions nor CRL entry extensions are present, use
 version 1 (the value is omitted).

5.1.2 Signature

 This field contains the algorithm identifier for the algorithm used
 to sign the CRL.

5.1.3 Issuer Name

 The issuer name provides a globally unique identifier of the
 certification authority signing the CRL. The syntax of the issuer
 name is an X.500 distinguished name. This strawman suggests that the
 issuer name must provide a globally unique identifier. In addition,
 it should contain semantic information identifying the certification
 authority.

 << Any changes to 4.1.4 must be reflected here too. >>

5.1.4 Last Update

 This field indicates the date on which this CRL was issued.

5.1.5 Next Update

 This field indicates the date by which the next CRL will be issued.
 The next CRL could be issued before the indicated date, but it will
 not be issued any later than the indicated date.

5.1.6 Revoked Certificates

 Revoked certificates are listed. The certificates are named by the
 combination of the issuer name and the user certificate serial
 number. The date on which the revocation occured is specified. Each
 revocation entry is individually signed. This profile mandates the
 use of same signature algorithm to sign each CRL entry and the whole
 CRL. CRL entry extensions are discussed in section 5.3.

Housley, Ford, Farrell, Solo [Page 16]

INTERNET DRAFT November 1995

5.2 CRL Extensions

 The extensions already defined by ANSI X9 and ISO for X.509 v2 CRLs
 provide methods for associating additional attributes with CRLs. The
 X.509 v2 CRL format also allows communities to define private
 extensions to carry information unique to those communities. Each
 extension in a CRL may be designated as critical or non-critical. A
 CRL validation must fail if it encounters an critical extension.
 However, an unrecognized non-critical extension may be ignored. The
 following presents recommended extensions used within Internet CRLs
 and standard locations for information. Communities may elect to use
 additional extensions; however, caution should be exercised in
 adopting any critical extensions in CRLs which might be used in a
 general context.

5.2.1 Authority Key Identifier

 The authorityKeyIdentifier is a non-critical CRL extension that
 allows the CA to include an identifier of the key used to sign the
 CRL. This extension is useful when a CA uses more than one key. See

section 7 for a discussion key changeover.

 AuthorityKeyId ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 certIssuer [1] Name OPTIONAL,
 certSerialNumber [2] CertificateSerialNumber OPTIONAL }
 (CONSTRAINED BY {
 -- certIssuer and certSerialNumber constitute a logical pair,
 -- and if either is present both must be present. Either this
 -- pair or the keyIdentifier field or all shall be present. -- })

5.2.2 Issuer Alternative Name

 The issuerAltName is a non-critical CRL extension that provides a CA
 name, in a form other than an X.500 distinguished name. The syntax
 for the issuerAltName is the same as described in section 4.2.1. Each
 of the alternate names is an IA5 string. Multiple instances may be
 included. Whenever such alternative names are included in a CRL, the
 issuer alternative name field shall be used.

5.2.3 CRL Number

 The cRLNumber is a non-critical CRL extension which conveys a
 monotonically increacing sequence number for each CRL issued by a
 given CA through a given CA X.500 Directory entry or CRL distribution
 point. This extension allows users to easily determine is a
 particular CRL superceeds another CRL. Use of this CRL extension is
 strongly encouraged.

Housley, Ford, Farrell, Solo [Page 17]

INTERNET DRAFT November 1995

 CRLNumber ::= INTEGER

5.2.4 Issuing Distribution Point

 The issuingDistributionPoint is a critical CRL extension that
 identifiers the CRL distribution point for this particular CRL, and
 it indicates whether the CRL covers revocation for end entities
 certificate only, CA certificates only, or a limitied set of reason
 codes. Support for CRL distribution points is strongly encouraged.
 However, the use of certificateHold is strongly discouraged.

 DistributionPoint ::= SEQUENCE {
 distributionPoint DistributionPointName,
 reasons ReasonFlags OPTIONAL }

 DistributionPointName ::= CHOICE {
 fullName [0] Name,
 nameRelativeToCA [1] RelativeDistinguishedName }

 ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 caCompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

5.2.5 Delta CRL Indicator

 The deltaCRLIndicator is a critical CRL extension that identifies a
 delta-CRL. The use of delta-CRLs is strongly discouraged. Rather,
 CAs are encouraged to always issue complete CRLs.

5.3 CRL Entry Extensions

 The CRL entry extensions already defined by ANSI X9 and ISO for X.509
 v2 CRLs provide methods for associating additional attributes with
 CRL entries. The X.509 v2 CRL format also allows communities to
 define private CRL entry extensions to carry information unique to
 those communities. Each extension in a CRL entry may be designated
 as critical or non-critical. A CRL validation must fail if it
 encounters an critical CRL entry extension. However, an unrecognized
 non-critical CRL entry extension may be ignored. The following
 presents recommended extensions used within Internet CRL entries and
 standard locations for information. Communities may elect to use
 additional CRL entry extensions; however, caution should be exercised
 in adopting any critical extensions in CRL entries which might be

Housley, Ford, Farrell, Solo [Page 18]

INTERNET DRAFT November 1995

 used in a general context.

5.3.1 Reason Code

 The reasonCode is a non-critical CRL entry extension that identifies
 the reason for the certificate revocation. The inclusion of reason
 codes is encouraged. The reasonCode extension permits certificates
 to placed on hold or suspended. The processing associated with
 suspended certificates greatly complicates certificate validation.
 The use of this feature is strongly discouraged.

 CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 caCompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 certHoldRelease (7),
 removeFromCRL (8) }

5.3.2 Expiration Date

 The expirationDate is a non-critical CRL entry extension that
 indicates the expiration of a hold entry in a CRL. The use of this
 extension is strongly discouraged.

5.3.3 Instruction Code

 The instructionCode is a non-critical CRL entry extension that
 provides a registered instruction identifier which indicates the
 action to be taken after encountering a certificate that has been
 placed on hold. The use of this extension is strongly discouraged.

5.3.4 Invalidity Date

 The invalidityDate is a non-critical CRL entry extension that
 provides the date on which it is known or suspected that the private
 key was compromised or that the certificate otherwise became invalid.
 This date may be earlier than the revocation date in the CRL entry
 (which is the date that the CA revoked the certificate). The use of
 this extension is encouraged.

 InvalidityDate ::= GeneralizedTime

Housley, Ford, Farrell, Solo [Page 19]

INTERNET DRAFT November 1995

5.4 Examples

 << CRL samples including descriptive text and ASN.1 encoded blobs
 will be inserted. >>

6 Certificate and CRL Distribution

6.1 Distribution via X.500

 Within an X.500 Directory, the certificate for an end entity can be
 found in the userCertificate attribute. This attribute is normally
 associated with the strongAuthenticationUser object class.

 Within an X.500 Directory, the certificate for a certification
 authority can be found in the cACertificate attribute, and the most
 recent CRL can be found in the certificateRevocationList attribute.
 These attributes are normally associated with the
 certificationAuthority object class.

6.2 Distribution via Electronic Mail

RFC 1424 specifies methods for key certification, certificate
 revocation list (CRL) storage, and CRL retrieval. These services are
 required of an RFC 1422 certification authority. Each service
 involves an electronic mail request and an electronic mail reply.

 << Need to define a format for one user to send his certificate to
 another. This format could be used to obtain arbitrary certificates
 from a certificate server or to solicit certificates from the user
 themselves. >>

6.3 Distribution via HTTP

 << Need to define a convention for using HTTP to obtain certificates
 from a server. >>

 As discussed in section 4.2.7, the user certificate may contain a URL
 that specifies the location where the most recent CRL which could
 contain an entry revoking the certificate can be found. HTTP can be
 used to fetch the most recent CRL from this location.

6.4 On-line Certificate Validation

 As discussed above, consumers of certificates must be able to
 determine the validity of a certificate when using the certificate.
 There are many possible approaches to informing consumers on the
 status of the certificate and these approaches have different
 operational characteristics. One alternative is to provide an on-

https://datatracker.ietf.org/doc/html/rfc1424
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Farrell, Solo [Page 20]

INTERNET DRAFT November 1995

 line validation service. Such a service reduces the complexity of
 the client applications (by moving it to the on-line service), and it
 provides the most timely status possible.

 In addition, on-line validation servers can also help to resolve the
 root key management a distribution problem by providing a single
 trusted agent for asserting root key status where the agent is
 independent of the certification hierarchy itself.

 The on-line validation could be performed by either the CA who issued
 the certificate (directly or via a delegatee) or as a general service
 by a "trusted" third party. Note, this service could also be
 extended to the validation of any certificate like item (e.g., PGP
 credential, DNS record, STT credential) and could facilitate
 application interaction between users using different certificate
 formats.

 The general model involves a request/response format which might be
 transferred using a number of alternative transport protocols. In
 general, the requestor sends the certificate (or a user reference)
 along with an indication of the service to be provided. This service
 might be coupled with the general certificate distribution service by
 adding service flags to that request as well.

 The request should contain: << this section is still in progress >>

 Certificate (or cert path)
 Service parameters
 Parse cert for me
 Check CRLs
 Result format (ASN, Text, HTML,)
 Sign result (with a specified algorithm)
 Other qualifiers
 Desired domain/policy OID (does this validate to a specific Root)

 A possible Syntax:

 ValidationRequest ::= SEQUENCE {
 CertPathType OBJECT IDENTIFIER,
 CertPath SEQUENCE OF OCTET STRING,
 TargetRootID Name OPTIONAL,
 ServiceParams SEQUENCE OF ServiceParam OPTIONAL }

 ServiceParam ::= INTEGER {
 ASNresult (1),
 Textresult (2),
 HTMLresult (3),
 }

Housley, Ford, Farrell, Solo [Page 21]

INTERNET DRAFT November 1995

 The response should contain:

 Status: current/valid, expired (date), revoked (date/reason),
suspended
 Cert path problem: what failed, where, and why
 Policy/attribute/constraints from validated cert path
 Parsed data: name, key, attributes
 Could be signed by validator or rely on secure channel

 A possible syntax:

 ValidationResponse ::= OPTIONALLY SIGNED SEQUENCE {
 validator Name OPTIONAL,
 certInfo CHOICE {
 cert OCTET STRING,
 reference IssuerSerial,
 certdata T61 STRING },
 -- text including name, key, and attributes
 status StatusCode,
 detail ANY Defined By StatusCode OPTIONAL,
 validationData ???? }
 -- problems with cert path, policy attributes, etc.

 StatusCode ::= INTEGER {
 valid (1),
 revoked (2),
 expired (3),
 suspended (4) }

7 Key Pair Updating Procedures

 A fundamental principle of the PKI is that it must be possible to
 update all of the cryptographic keys used, both by end entity's and
 by PKI components (e.g., CAs). Furthermore, for the PKI to be
 usable, the update of one key pair must not force the update of any
 other key pair or Certificate. In this section, we deal with the
 update of CA key pairs. Key updating for end entities is dealt with
 in section 9.4.

 For CA key pair updating we will fulfil the following requirements:

 (a) All certificates valid before the update must remain valid.

 (b) A subject whose certificate is verifiable using the new CA
 public key must also be able to verify certificates verifiable using
 the old public key.

 (c) End entities who directly trust the old CA key pair must be able
 to verify certificates signed using the new key CA private key. This

Housley, Ford, Farrell, Solo [Page 22]

INTERNET DRAFT November 1995

 is required for situations where the old CA public key is "hardwired"
 into the end entity's cryptographic equipment (e.g., smartcard
 memory).

 (d) All entities (not just those certified by that CA) must have
 both the new and old CA public keys available from the time of the
 change (whether or not they trust it is a local matter).

 The basis of the scheme described below is that the CA protects its
 new public key using its previous private key and vice-versa. Thus
 when a CA updates its key pair it must generate two new cACertificate
 attribute values if certificates are made available using an X.500
 directory.

 Note that the scheme below does not make use of any of the X.509 v3
 certificate extensions as it must be able to work for X.509 v1
 certificates. However, the presence of the KeyIdentifier extension
 permits efficiency improvements.

 Note that the change of a CA key affects both certificate
 verification and CRL checking.

 It is worth noting that the operation involved here is key update,
 only the key pair (and related attributes) of the CA are changed.
 Thus, this operation cannot be used in the event of a CA key
 compromise.

 While the scheme could be generalised to cover cases where the CA
 updates its key pair more than once during the validity period of one
 of its end entity's certificates, this generalisation seems of
 dubious value. Therefore, the validity period of a CA key must be
 greater than the validity period of any certificate issued by that
 CA.

 We first present the data structures required then specify the steps
 involved in changing the CA key and the various possibilities for
 certificate verification. Note that the description below assumes
 that X.500 is used for publishing certificates. This assumption is
 simply for clarity of presentation, if the same data structures are
 published some other way, the scheme still works.

7.1 ASN.1 Data Types

 -- existing CA cert from X.509
 -- this contains the current and old CA certificate(s)
 -- all entities under this CA need a local copy of
 -- one of these
 CACertificate ::= ATTRIBUTE

Housley, Ford, Farrell, Solo [Page 23]

INTERNET DRAFT November 1995

 WITH ATTRIBUTE-SYNTAX Certificate

 -- Securing the old CA public key with the new private key and
 -- vice-versa. Securing the new CA public key with the old private
 -- key is needed to avoid having to issue the new CA public key
 -- using out-of-band means to entities certified using the old CA
 -- key; with this they can verify certificates signed using the new
 -- CA private key.
 -- The data structures can be stored in this X.500 attribute
 CALinkages ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CALinkage

 CALinkage ::= SIGNED SEQUENCE {
 protectedCACertSerial INTEGER,
 -- the serial number in the CACertificate
 -- value which we wish to link to
 protectingCACertSerial INTEGER,
 -- the serial number in the CACertificate
 -- value which contains the public key
 -- corresponding to the private key used
 -- to sign this
 caName Name,
 link HASH Certificate }

7.2 CA Operator Actions

 To change the key of the CA, the CA operator does the following:

 (1) Generates a new key pair.

 (2) Calculate the certificate for the new key pair.

 (3) Create a CALinkage (based on the old CA certificate) using the
 new private key.

 (4) Create a CALinkage (based on the new CA certificate) using the
 old private key.

 (5) Publish these new data structures.

7.3 Verifying Certificates

 Normally when verifying a signature, the verifier simply verifies the
 certificate containing the public key of the signer. However, once a
 CA is allowed to update it's key there are a range of new
 possibilities. These are shown in the table below.

 The term PSE (personal security environment) is used to denote

Housley, Ford, Farrell, Solo [Page 24]

INTERNET DRAFT November 1995

 locally held and trusted information. This can only be assumed to
 include a single CA public key.

 CACertificate contains CACertificate contains only
 NEW public key OLD public key

 PSE Contains PSE Contains PSE Contains PSE Contains
 NEW public OLD public NEW public OLD public
 key key key key

 Signer's Case 1: Case 3: Case 5: Case 7:
 cert is This is the In this case Although the In this case
 protected standard the verifier CA operator the CA
 using NEW case where must access has not operator has
 public the the updated the not updated
 key verifier directory in directory the the directory
 can order to get verifier can attributes
 directly the value of verify the and so the
 verify the the NEW certificate verification
 certificate public key directly - will FAIL
 without this is thus
 using the the same as
 directory case 1.

 Signer's Case 2: Case 4: Case 6: Case 8:
 cert is In this In this case The verifier Although the
 protected case the the verifier thinks this CA operator
 using OLD verifier can directly is the has not
 public must access verify the situation of updated the
 key the certificate case 2 and directory, the
 directory without will access verifier can
 in order to using the the verify the
 get the directory directory, certificate
 value of however the directly --
 the OLD verification this is thus
 public key will FAIL the same as
 case 4.

7.3.1 Verification in cases 1, 4, 5 and 8

 In these cases the verifier has a local copy of the CA public key
 which can be used to verify the certificate directly. This is the
 same as the situation where no key change has ever occurred.

 Note that case 8 may arise between the time when the CA operator has
 generated the new key pair and the time when the CA operator stores
 the updated attributes in the Directory. Case 5 can only arise if
 the CA operator has issued both the signer's and verifier's

Housley, Ford, Farrell, Solo [Page 25]

INTERNET DRAFT November 1995

 certificates during this "gap" (the CA operator should avoid this as
 it leads to the failure cases described below).

7.3.2 Verification in case 2

 In case 2 the verifier must get access to the old public key of the
 CA. The verifier does the following:

 (1) Lookup the CACertificate attribute in the directory and pick the
 appropriate value.

 (2) Lookup the associated CALinkages attribute value.

 (3) Verify that these are correct using the new CA key (which the
 verifier has locally).

 (4) If correct then check the signer's certificate using the old CA
 key.

 Case 2 will arise when the CA operator has issued the signer's
 certificate, then changed key and then issued the verifier's
 certificate, so it is quite a typical case.

7.3.3 Verification in case 3

 In case 3 the verifier must get access to the new public key of the
 CA. The verifier does the following:

 (1) Lookup the CACertificate attribute in the directory and pick the
 appropriate value.

 (2) Lookup the associated CALinkages attribute value.

 (3) Verify that these are correct using the old CA key (which the
 verifier has stored locally).

 (4) If correct then check the signer's certificate using the new CA
 key.

 Case 3 will arise when the CA operator has issued the verifier's
 certificate, then changed key and then issued the signer's
 certificate, so it is also quite a typical case.

7.3.4 Failure of verification in case 6

 In this case, the CA has issued the verifier's PSE containing the new
 key without updating the directory attributes. This means that the
 verifier has no means to get a trustworthy version of the CA's old

Housley, Ford, Farrell, Solo [Page 26]

INTERNET DRAFT November 1995

 key and so verification fails.

 Note that the failure is the CA operator's fault.

7.3.5 Failure of verification in case 7

 In this case the CA has issued the signer's certificate protected
 with the new key without updating the directory attributes. This
 means that the verifier has no means to get a trustworthy version of
 the CA's new key and so verification fails.

 Note that the failure is the CA operator's fault.

7.4 Revocation - Change of CA Key

 As we saw above, the verification of a certificate becomes more
 complex once the CA is allowed to change its key. This is also true
 for revocation checks as the CA may have signed the CRL using a newer
 private key than the one within the user's PSE. The analysis of the
 alternatives is exactly as for certificate verification.

8 Guidelines for Certificate Policy Definition

 << To Be Decided >>

9 Supporting Management Protocols

 The certificate management protocol exchanges defined in this section
 support management communications between client systems, each of
 which supports one or more users, and CAs. In addition, one
 management protocol exchange is defined for use between two CAs, for
 the purpose of establishing cross-certificates. Each exchange is
 defined in terms of a sequence of messages between the two systems
 concerned. This section defines the contents of the messages
 exchanged.

 The protocols for conveying these exchanges in different environments
 (on-line, E-mail, and WWW) are specified in Section 10.

 The protocol exchanges defined in this document are:

 - One-Step Registration/Certification
 - User Registration
 - User Initialization/Certification with Client-Generated
 Encryption Key Pair
 - User Initialization/Certification with Centrally-Generated
 Encryption Key Pair
 - Encryption Key Pair Recovery

Housley, Ford, Farrell, Solo [Page 27]

INTERNET DRAFT November 1995

 - Key Pair Update for Client-Generated Key Pair
 - Key Pair Update for Centrally-Generated Key Pair
 - Key Pair Update (Centrally-Initiated)
 - Revocation Request
 - Cross-Certification

 The following notes apply to the protocol exchange descriptions:

 - In exchanges between a client system and a CA, the protocol exchange
 is initiated by the client system. The one exception to this is the
 Key Pair Update (Centrally-Initiated) exchange.
 - To provide an upgrade path, a protocol version indicator is always
 included in the first message of an exchange.
 - A message type indicator is included in the protected part of all
 messages.
 - All messages include an optional transaction identifier which is used
 to assist correlation of request and response messages for one
 transaction. This identifier is generated by the initiator of the
 exchange and will typically include the initiator's name plus a
 transaction sequence number.
 - The initial message from the client to the CA may optionally contain
 the client system time. This is used to facilitate the correction
 of client time problems by central administrators.
 - Responses from CA to client include the CA system time. The client
 can use this time to check that its own system time is within a
 reasonable range.
 - Random numbers are used in some of the protocols to prevent replay
 of the exchanges.
 - Responses can be aborted at any time. An enumerated error code is
 sent from the aborting end and can be decoded into a user readable
 error string at the other end. Error codes are not specified in
 this version of this document.
 - Items in square brackets [] are optional.
 - In every instance in which a public key is transferred, it is
 transferred in the form of X.509 subjectPublicKeyInfo, including
 algorithm identifier and (optional) parameters.
 - When a new key pair is generated by a client, a key identifier may
 optionally be sent to the CA along with the public key for inclusion
 in the certificate. However, the CA may override this value with a
 key identifier of its own. If the client is concerned about the key
 identifier value used, it should check the new certificate.
 - Where this description refers to an encryption key pair, this could
 be a key pair for RSA key transport or could be key pair for key
 establishment using, for example, a Diffie-Hellman based algorithm.

 Note that in this version of this document, the message contents are
 defined at an outline level only. A future version of this document
 will fill out the full details of message syntax in ASN.1.

Housley, Ford, Farrell, Solo [Page 28]

INTERNET DRAFT November 1995

9.1 One-Step Registration/Certification

9.1.1 Overview of Exchange

 This protocol exchange is used to support registration of a user,
 together with request and issue of certificate(s), for use in
 environments in which client systems generate their own key pair or
 pairs. It is a simple exchange, designed

 for easy implementation, but lacks some of the features and
 protective measures inherent in the exchanges defined subsequently.
 The user must have a pre-established digital signature key pair.
 Furthermore, the user must have a preestablished reliably-known copy
 of the public key of the CA concerned (this generally requires some
 form of off-line data exchange to ensure that the correct public key
 is known).

 If the request is accepted by the CA, it results in the generation of
 certificate(s) for client-generated digital signature and/or
 encryption public keys.

9.1.2 Detailed Description

 A single message is used for a user to register with a CA and request
 certificate issuance.

 RegCertRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 user unique name (DN)
 [user signature public key]
 [user signature key identifier]
 [client-generated encryption public key]
 [client-generated encryption key identifier]
 user attributes
 [certificate policy]
 } Signature (signed with user signature private key)

 No specific message is defined to return the generated
 certificate(s). It is assumed that the client will obtain a copy of
 the certificate(s) by other means and, by checking the certificate
 contents and CA signature, ensure that the request was processed by
 the correct CA.

Housley, Ford, Farrell, Solo [Page 29]

INTERNET DRAFT November 1995

9.2 User Registration

9.2.1 Overview of Exchange

 This protocol exchange is used for a user to request registration
 with a CA. It is a first step in the establishment of key materials
 and certificates between client and CA for that user. Assuming the
 CA accepts the request, it will be necessary to follow-up this
 exchange with a User Initialization/Certification exchange as
 described in 9.3 or 9.4. At the time this request is issued, it is
 not necessary for the client to have any established key materials.

9.2.2 Detailed Description

 A single message is used for a user to request registration with a
 CA.

 RegisterUserRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 user unique name (DN)
 user attributes
 [certificate policy]
 } Signature (signed with user signature private key)

 No specific message is defined to respond to this request. It is
 asumed that the procedure defined in 9.3 or 9.4 will follow.

9.3 User Initialization/Certification with Client-Generated Encryption
Key Pair

9.3.1 Overview of Exchange

 This protocol exchange is used to support client initialization,
 including certificate issuance, for one user, with provision for
 simultaneously establishing and certifying separate key pairs for
 digital signature and encryption (or encryption key exchange)
 purposes. Both key pairs are generated by the client and no private
 key is exposed to the CA. Generation and certification of the
 encryption key pair is optional.

 Prior to conducting this exchange, the user must have registered with
 the CA, either using the user registration exchange defined in 9.2 or
 by other means.

Housley, Ford, Farrell, Solo [Page 30]

INTERNET DRAFT November 1995

 Following registration, the CA creates a secret data item, called an
 authorization code, and transfers this data item by out-of-band
 means to the user. The authorization code is used to establish
 authentication and integrity protection of the user
 initialization/certification on-line exchange. This is done by
 generating a symmetric key based on the authorization code and using
 this symmetric key for generating Message Authentication Codes (MACs)
 on all exchanges between client and CA.

 In the first two messages exchanged, the client sends its user
 signature public key (and, optionally, a client-generated encryption
 public key) to the CA and the CA returns the currently valid CA
 certificate(s). This exchange of public keys allows the client and CA
 to authenticate each other.

9.3.2 Detailed Description

 The user receives a reference number and a secret machine-generated
 authorization code from the CA administrator. Both pieces of
 information are transferred to the user in a secure manner which
 preserves their integrity and confidentiality. The reference number
 is used to uniquely identify the client at the CA and the
 authorization code is used to secure the exchange integrity-wise. The
 reference number is used instead of a DN to uniquely identify the
 client because a DN may be lengthy and difficult for a user to
 manually type without error.

 After the reference number and authorization code have been entered
 by the user, the client generates:

 - a client random number,
 - (if a new user signature key pair is required) a new user
 signature key pair,
 - (if a new client-generated encryption key pair is required) a
 new encryption key pair.

 The client securely stores locally any new signature private key
 and/or client-generated encryption private key. The client then
 sends the message InitClientRequest to the CA. The entire structure
 is protected from modification with a MAC based on the authorization
 code.

 InitClientRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]

Housley, Ford, Farrell, Solo [Page 31]

INTERNET DRAFT November 1995

 client random number
 reference number
 user signature public key
 [user signature key id]
 [client-generated encryption public key]
 [client-generated encryption key id]
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the InitClientRequest structure, if the CA recognizes
 the reference number and if the protocol version is valid, it saves
 the client random number, generates its own random number (CA random
 number), and validates the MAC. Then for the user encryption public
 key, it creates:

 - a new certificate for the user?s digital signature public key,
 - (if a new client-generated encryption key pair is required) a
 new certificate.

 The CA responds to the client with the message InitClientResponse.
 The entire structure is protected from modification with a MAC based
 on the authorization code.

 InitClientResponse:: CA-to-client
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 CA signature public key certificate
 new user signature public-key certificate
 [new user encryption public-key certificate]
 CA system time
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the InitClientResponse structure, the client checks
 that its own system time is sufficiently close to the CA system time,
 checks the client random number, and validates the MAC. The client
 then securely stores the new certificates and acknowledges the
 transaction by sending back the message InitClientConfirm. The fields
 in this message are protected from modification with a MAC based on
 the authorization code.

 InitClientConfirm:: client-to-CA
 {
 message type
 [transaction identifier]

Housley, Ford, Farrell, Solo [Page 32]

INTERNET DRAFT November 1995

 client random number
 CA random number
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the InitClientConfirm structure, the CA checks the
 random numbers and validates the MAC. If no errors occur, the CA
 archives the new user public-key certificate(s).

9.4 User Initialization/Certification with Centrally-Generated
Encryption Key Pair

9.4.1 Overview of Exchange

 This protocol exchange is used to support client initialization,
 including certificate issuance, for one user, with provision for
 simultaneously establishing and certifying separate key pairs for
 digital signature and encryption (or encryption key exchange)
 purposes. The digital signature key pair is generated by the client.
 Optionally, a new encryption key pair is generated by (and,
 optionally, backed up by) a central facility associated with the CA.

 Prior to conducting this exchange, the user must have registered with
 the CA, either using the user registration exchange defined in 9.2 or
 by other means.

 Following registration, the CA creates a secret data item, called an
 authorization code, and transfers this data item by out-of-band
 means to the user. The authorization code is used to establish
 authentication and integrity protection of the user
 initialization/certification on-line exchange. This is done by
 generating a symmetric key based on the authorization code and using
 this symmetric key for generating Message Authentication Codes (MACs)
 on all exchanges between client and CA.

 In the first two messages exchanged, the client sends its user
 signature public key to the CA and the CA returns the currently valid
 CA certificate(s). This exchange of public keys allows the client and
 CA to authenticate each other.

 If a centrally-generated encryption key pair is to be established,
 the private key of the newly generated key pair is sent from the CA
 to the client. The client first generates a protocol encryption key
 pair and sends the public protocol encryption key to the CA. The CA
 creates a random symmetric key called the session key and encrypts
 the user encryption private key with it and then encrypts the session
 key with the public protocol encryption key it received from the
 client. The CA sends the encrypted user encryption private key and

Housley, Ford, Farrell, Solo [Page 33]

INTERNET DRAFT November 1995

 encrypted session key back to the client. The client uses its private
 protocol decryption key to decrypt the session key and then uses the
 session key to decrypt the encryption private key. The protocol
 encryption key pair and session key are discarded after the exchange.

9.4.2 Detailed Description

 The user receives a reference number and a secret machine-generated
 authorization code from the CA administrator. Both pieces of
 information are transferred to the user in a secure manner which
 preserves their integrity and confidentiality. The reference number
 is used to uniquely identify the client at the CA and the
 authorization code is used to secure the exchange integrity-wise. The
 reference number is used instead of a DN to uniquely identify the
 client because a DN may be lengthy and difficult for a user to
 manually type without error.

 After the reference number and authorization code have been entered
 by the user, the client generates:

 - a client random number,
 - (if a new user signature key pair is required) a new user
 signature key pair,
 - (if a new centrally-generated encryption key pair is required)
 a protocol encryption key pair.

 The client securely stores locally any new signature private key
 and/or client-generated encryption private key. The client then
 sends the message InitCentralRequest to the CA. The entire structure
 is protected from modification with a MAC based on the authorization
 code.

 InitCentralRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 client random number
 reference number
 user signature public key
 [user signature key id]
 [protocol encryption key]
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the InitCentralRequest structure, if the CA
 recognizes the reference number and if the protocol version is valid,

Housley, Ford, Farrell, Solo [Page 34]

INTERNET DRAFT November 1995

 it saves the client random number, generates its own random number
 (CA random number), and validates the MAC. It then creates:

 - a new certificate for the user?s digital signature public key,
 - (if a new centrally-generated encryption key pair is required)
 a session key, a new user encryption key pair, and a new
 certificate for the user encryption public key.

 The CA responds to the client with the message InitCentralResponse.
 If a new centrally-generated encryption key pair is being generated,
 the user encryption private key is encrypted using the session key
 and the session key is encrypted with the protocol encryption public
 key. The entire structure is protected from modification with a MAC
 based on the authorization code.

 InitCentralResponse:: CA-to-client
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 CA signature public key certificate
 new user signature public-key certificate
 [new user encryption public-key certificate]
 [new user encryption private key encrypted with session key]
 [session key encrypted with protocol encryption key]
 CA system time
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the InitCentralResponse structure, the client checks
 that its own system time is sufficiently close to the CA system time,
 checks the client random number, and validates the MAC. If a new
 centrally-generated encryption key pair is included, the client
 decrypts the encryption private key. The client then securely stores
 the new certificates and encryption private key (if present) and
 acknowledges the transaction by sending back the message
 InitCentralConfirm. The fields in this message are protected from
 modification with a MAC based on the authorization code.

 InitCentralConfirm:: client-to-CA
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 MAC algorithm id
 } MAC (key based on authorization code)

Housley, Ford, Farrell, Solo [Page 35]

INTERNET DRAFT November 1995

 Upon receipt of the InitCentralConfirm structure, the CA checks the
 random numbers and validates the MAC. If no errors occur, the CA
 archives the new user public-key certificate(s) and (if there is a
 new centrally-generated encryption key pair and key recovery is to be
 supported) the encryption private key.

9.5 Encryption Key-Pair Recovery

9.5.1 Overview of Exchange

 This protocol exchange is used to support recovery in the event that
 a client no longer has a valid signature key pair (due to expiration
 or revocation), or client system key materials have been lost, e.g.,
 as a result of a forgotten user password. This exchange assumes a
 system in which an encryption key pair has been centrally generated
 and backed up (by a central system associated with a CA).

 This exchange is very similar to the exchange for User
 Initialization/Certification with Centrally-Generated Encryption Key
 Pair. The client and CA start without a way to trust one another,
 i.e., they have no reliable shared key pairs.

9.5.2 Detailed Description

 The user must first receive, by out-of-band means, a reference number
 and a secret machine-generated authorization code from the CA
 administrator. The on-line exchange then consists of a sequence of
 KeyRecoverRequest, KeyRecoverResponse and KeyRecoverConfirm, which
 are the same as the exchange in 9.4 except for two differences.
 First, the CA does not generate (or archive) a new encryption key
 pair and encryption public-key certificate for the user. Second, the
 user?s entire encryption key history (list of encryption public-key
 certificates and matching encryption private keys) are sent back to
 the client with KeyRecoverResponse.

 KeyRecoverRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 client random number
 reference number
 user signature public key
 [user signature key id]
 protocol encryption key
 MAC algorithm id
 } MAC (key based on authorization code)

Housley, Ford, Farrell, Solo [Page 36]

INTERNET DRAFT November 1995

 KeyRecoverResponse:: CA-to-client
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 CA certificate(s)
 user encryption private key history encrypted with session key
 session key encrypted with protocol encryption key
 user encryption public-key certificate history
 new user signature public-key certificate
 CA system time
 MAC algorithm id
 } MAC(key based on authorization code)

 KeyRecoverConfirm:: client-to-CA
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 MAC algorithm id
 } MAC (key based on authorization code)

9.6 Key Pair Update for Client-Generated Key Pair(s)

9.6.1 Overview of Exchange

 This exchange is used to update the signature key pair and/or
 client-generated encrypyion key pair of a user, (e.g., as a result of
 routine cryptoperiod expiry).

 A user must have a valid signature key pair in order to do this
 exchange. It is up to the client to determine when a new signature
 key pair should be generated; this has to be done prior to the
 expiration of its signature public-key certificate.

 A key pair update request from a client is digitally signed using the
 original user signature private key, this signature being verifiable
 using an existing signature certificate. If the key pair update is
 for a new user digital signature key, then the client signs the
 request message once more (including the first signature), this time
 using the new signature private key. The reason for this second
 signature is to prove to the CA that the client possesses both the
 new and old private keys.

 The request is verified at the CA by using the matching user
 signature public key. A protocol signature key pair is used to

Housley, Ford, Farrell, Solo [Page 37]

INTERNET DRAFT November 1995

 authenticate messages from the CA to the client. CA responses are
 signed with the protocol signature private key.

 A CA response is validated at the client by using a protocol
 signature public-key certificate which is included in the CA
 response. The protocol signature public-key certificate can be
 validated by using the CA certificate stored at the client. A new
 user initialization (as in 9.3) or key pair recovery (as in 9.4) must
 be done if the user signature key pair becomes invalid.

 In some client system implementations, local key materials are stored
 in an encrypted key data disk file. A user may have several copies of
 this key data file on different computers. It is possible that a key
 update could occur and the user could forget to copy the updated key
 data file to all the computers they use. To help keep the client
 using the latest keys, the client sends the CA the serial number of
 the latest user signature public-key certificate it has in the key
 update request. Serial numbers are sent so that the CA can check if
 the client has the latest key pair. If the client does not have the
 latest signature private key and the signature public-key certificate
 serial number is equal to that of a previous certificate, the CA
 sends back an error code which indicates that the client has an old
 version of the key data file. After this, the client can either find
 the latest key data file or, if that fails, key recovery can be done.

9.6.2 Detailed Description

 The client initiates the exchange by creating a new signature and/or
 encryption key pair and generating a random number (client random
 number). The client then sends the CA the message
 UpdateClientKeyRequest. The fields in this message are protected from
 modification and authenticated by a digital signature using the pre-
 existing user signature private key. If the update includes a new
 signature key pair, the result is additionally signed using the new
 user signature private key.

 UpdateClientKeyRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 client random number
 user unique name (DN)
 [new user signature public key]
 [new user signature key id]
 [new user encryption public key]
 [new user encryption key id]

Housley, Ford, Farrell, Solo [Page 38]

INTERNET DRAFT November 1995

 serial number of latest signature public-key certificate
 } Signature (signed with pre-existing user signature private key)
 [Signature (signed with new user signature private key)]

 Upon receipt of the UpdateClientKeyRequest structure, the CA checks
 the protocol version, checks the serial number, saves the client
 random number, generates its own random number (CA random number) and
 verifies the signature using the previous user verification key which
 is archived at the CA. If a user digital signature key pair is being
 updated, the CA also checks the second signature. It then generates
 new user signature and/or encryption public-key certificate(s). The
 CA responds with the message UpdateClientKeyResponse. The fields in
 this message are protected from modification and authenticated by a
 digital signature using the CA protocol signature private key.

 UpdateClientKeyResponse:: CA-to-client
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 protocol signature public-key certificate
 [new user signature public-key certificate]
 [new user encryption public-key certificate]
 CA system time
 } Signature (signed with protocol signature private key)

 Upon receipt of the UpdateClientKeyResponse structure, the client
 verifies the digital signature using the protocol verification key
 contained in the protocol signature public-key certificate, checks
 that its own system time is close to the CA system time, and checks
 the received client random number. The client then securely stores
 locally the new user public-key certificate(s). It responds with the
 message UpdateClientKeyConfirm. The fields in this message are
 protected from modification and authenticated by a digital signature
 using the pre-existing user signature private key.

 UpdateClientKeyConfirm:: client-to-CA
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 } Signature (signed with pre-existing user signature private key)

 Upon receipt of the UpdateClientKeyConfirm structure, the CA checks
 that the client and CA random numbers are the same as the ones
 initially generated, and verifies the received signature using the

Housley, Ford, Farrell, Solo [Page 39]

INTERNET DRAFT November 1995

 previous user signature public key which is archived at the CA. The
 CA then archives the new user public-key certificate(s) and updates
 its data stores to reflect the new status of the user.

9.7 Key Pair Update for Centrally-Generated Encryption Key Pair

9.7.1 Overview of Exchange

 This exchange is used to update the encryption key pair of an user,
 under the assumption that encryption key pairs are generated (and,
 optionally, backed up) centrally. A user must have a valid signature
 key pair in order to do this exchange. It is up to the client to
 determine when a new encryption key pair should be generated; this
 has to be done some time before the expiration date in its encryption
 public-key certificate.

9.7.2 Detailed Description

 The client initiates the exchange by generating a random number
 (client random number) and a protocol encryption key pair. The client
 then sends the CA the message UpdateEncKeyRequest1. The fields in
 this message are protected from modification and authenticated by a
 digital signature using the latest user signature private key.

 UpdateCentralKeyRequest:: client-to-CA
 {
 protocol version
 message type
 [transaction identifier]
 [client system time]
 client random number
 user unique name (DN)
 latest user encryption public-key certificate serial number
 latest user signature public-key certificate serial number
 protocol encryption key
 } Signature (signed with latest user signature private key)

 Upon receipt of the UpdateCentralKeyRequest structure, the CA checks
 the protocol version, checks the serial numbers, saves the client
 random number, generates its own random number (CA random number),
 generates a session key, and verifies the received signature using
 the latest user signature public key which is archived at the CA. It
 then generates a new end-user encryption key pair and encryption
 public-key certificate for the user. In the case where the encryption
 public-key certificate serial number is the second latest, the CA
 does not generate any keys and uses the latest encryption public-key
 certificate and encryption private key that it has. The CA responds
 with the message UpdateEncKeyResponse1. In this message, the new or

Housley, Ford, Farrell, Solo [Page 40]

INTERNET DRAFT November 1995

 latest encryption private key is encrypted with the session key and
 the session key is encrypted with the protocol encryption key. The
 fields in this message are protected from modification and
 authenticated by a digital signature using the protocol signature
 private key.

 UpdateCentralKeyResponse:: CA-to-client
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 new or latest user encryption private key encrypted with session key
 new or latest user encryption public-key certificate
 session key encrypted with protocol encryption key
 protocol signature public-key certificate
 CA system time
 } Signature (signed with protocol signature private key)

 Upon receipt of the UpdateCentralKeyResponse structure, the client
 verifies the digital signature using the protocol signature public-
 key certificate, makes sure its own system time is close to the CA
 system time, and checks the received client random number. The client
 then decrypts the new or latest encryption private key and securely
 stores locally the new or latest user encryption public-key
 certificate and encryption private key. It responds with the message
 UpdateCentralKeyConfirm. The fields in this message are protected
 from modification and authenticated by a digital signature using the
 latest user signature private key.

 UpdateCentralKeyConfirm:: client-to-CA
 {
 message type
 [transaction identifier]
 client random number
 CA random number
 } Signature (signed with latest user signature private key)

 Upon receipt of the UpdateClientKeyConfirm structure, the CA checks
 that the client and CA random numbers are correct and verifies the
 signature using the latest user signature public key which is
 archived at the CA. If no errors occur, the CA archives the new user
 encryption public-key certificate and encryption private key, and
 updates its data stores to reflect the new status of the user.

Housley, Ford, Farrell, Solo [Page 41]

INTERNET DRAFT November 1995

9.8 Key Pair Update (Centrally-Initiated)

9.8.1 Overview of Exchange

 This exchange is used to update the encryption key pair of an user,
 under the assumption that encryption key pairs are generated (and,
 optionally, backed up) centrally. This exchange differs from the
 preceding exchange (Key Pair Update for Centrally-Generated
 Encryption Key Pair) in that the exchange is initiated by the CA
 rather than the client.

9.8.2 Detailed Description

 << To be supplied >>

9.9 Revocation Request

9.9.1 Overview of Exchange

 This protocol exchange is used to support a revocation request from a
 user or other authorized party.

9.9.2 Detailed Description

 << To be supplied >>

9.10 Cross-Certification

9.10.1 Overview of Exchange

 The cross certification exchange allows two CAs to simultaneously
 certify each other. This means that each CA will create a certificate
 that contains the CA verification key of the other CA.

 Cross certification is initiated at one CA known as the responder.
 The CA administrator for the responder identifies the CA it wants to
 cross certify and the responder CA equipment generates an
 authorization code. The responder CA administrator passes this
 authorization code by out-of-band means to the requester CA
 administrator. The requester CA administrator enters the
 authorization code at the requester CA in order to initiate the on-
 line exchange.

 The authorization code is used for authentication and integrity
 purposes. This is done by generating a symmetric key based on the
 authorization code and using the symmetric key for generating Message
 Authentication Codes (MACs) on all messages exchanged.

Housley, Ford, Farrell, Solo [Page 42]

INTERNET DRAFT November 1995

 Serial numbers and protocol version are used in the same manner as in
 the above CA-client exchanges.

9.10.2 Detailed Description

 The requester CA initiates the exchange by generating a random number
 (requester random number). The requester CA then sends the responder
 CA the message CrossCertifyRequest. The fields in this message are
 protected from modification with a MAC based on the authorization
 code.

 CrossCertifyRequest:: requester CA to responder CA
 {
 protocol version
 message type
 [transaction identifier]
 requester random number
 requester CA unique name (DN)
 requester CA public key
 [requester CA key id]
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the CrossCertifyRequest structure, the responder CA
 checks the protocol version, saves the requester random number,
 generates its own random number (reponder random number) and
 validates the MAC. It then generates and archives a new requester
 certificate which contains the requester CA public key and is signed
 with the responder CA signature private key. The responder CA
 responds with the message CrossCertifyResponse. The fields in this
 message are protected from modification with a MAC based on the
 authorization code.

 CrossCertifyResponse:: responder CA to requester CA
 {
 message type
 [transaction identifier]
 requester random number
 reponder random number
 requester certificate (requester CA is the subject, signed by responder CA)
 responder CA public key
 [responder CA key id]
 responder CA system time
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the CrossCertifyResponse structure, the requester CA
 checks that its own system time is close to the responder CA system

Housley, Ford, Farrell, Solo [Page 43]

INTERNET DRAFT November 1995

 time, checks the received random numbers and validates the MAC. It
 then generates and archives a new responder certificate which
 contains the responder CA public key and is signed by the requester
 CA signature private key. The requester CA responds with the message
 CrossCertifyConfirm. The fields in this message are protected from
 modification with a MAC based on the authorization code.

 CrossCertifyConfirm:: requester CA to responder CA
 {
 message type
 [transaction identifier]
 requester random number
 reponder random number
 reponder certificate (responder CA is the subject, signed by requester CA)
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the CrossCertifyConfirm structure, the responder CA
 checks the random numbers, archives the reponder certificate, and
 validates the MAC. It writes both the request and reponder
 certificates to the Directory. It then responds with the message
 CrossCertifyFinish. The fields in this message are protected from
 modification with a MAC based on the authorization code.

 CrossCertifyFinish:: responder CA to requester CA
 {
 message type
 [transaction identifier]
 requester random number
 responder random number
 MAC algorithm id
 } MAC (key based on authorization code)

 Upon receipt of the CrossCertifyFinish message, the requester CA
 checks the random numbers and validates the MAC. The requester CA
 writes both the requester and reponder certificates to the Directory.

10 Management Protocol Transport

10.1 On-line Management Protocol

 << To be supplied. This subsection will specify a means for
 conveying ASN.1-encoded messages for the protocol exchanges described
 in Section 9 over a TCP connection. >>

Housley, Ford, Farrell, Solo [Page 44]

INTERNET DRAFT November 1995

10.2 Management Protocol via E-mail

 << To be supplied. This subsection will specify a means for
 conveying ASN.1-encoded messages for the protocol exchanges described
 in Section 9 via Internet mail. >>

10.3 Management Protocol via HTTP

 << To be supplied. This subsection will specify a means for
 conveying ASN.1-encoded messages for the protocol exchanges described
 in Section 9 over WWW browser-server links, employing HTTP or related
 WWW protocols. >>

11 Algorithm Support

11.1 One-way Hash Functions

 One-way hash functions are also called message digest algorithms.
 MD5 and SHA-1 will be the most popular one-way hash functions used in
 the Internet PKI. However, PEM uses MD2 for certificates [RFC1422,

RFC1423]. For this reason, MD2 will continue to be used in
 certificates for many years.

11.1.1 MD5 One-way Hash Function

 MD5 was developed by Ron Rivest, and RSA Data Security has placed the
 MD5 algorithm in the public domain. MD5 is fully described in RFC

1321.

 MD5 is the one-way hash function of choice for use with the RSA
 signature algorithm.

11.1.2 MD2 One-way Hash Function

 MD2 was also developed by Ron Rivest, but RSA Data Security has not
 placed the MD2 algorithm in the public domain. Rather, RSA Data
 Security has granted license to use MD2 for non-commerical Internet
 Privacy-Enhanced Mail. For this reason, MD2 may continue to be used
 with PEM certificates, but MD5 is preferred. MD2 is fully described
 in RFC 1319.

11.1.3 SHA-1 One-way Hash Function

 SHA-1 was developed by the U.S. Government. SHA-1 is fully described
 in FIPS 180-1.

 SHA-1 is the one-way hash function of choice for use with the DSA
 signature algorithm.

https://datatracker.ietf.org/doc/html/rfc1423
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1319

Housley, Ford, Farrell, Solo [Page 45]

INTERNET DRAFT November 1995

11.2 Signature Algorithms

 RSA and DSA will be the most popular signature algorithms used in the
 Internet PKI.

 There is some ambiguity in 1988 X.509 document regarding the
 definition of the SIGNED macro regarding, the representation of a
 signature in a certificate or a CRL. The interpretation selected for
 the Internet requires that the data to be signed (e.g., the one-way
 function output value) is first ASN.1 encoded as an OCTET STRING and
 the result is encrypted (e.g., using RSAEncryption) to form the
 signed quantity, which is then ASN.1 encoded as a BIT STRING.

11.2.1 RSA Signature Algorithm

 The RSA algorithm is named for it's inventors: Rivest, Shamir, and
 Adleman. The RSA signature algorithm is defined in PKCS #1. It
 combines the either the MD2 or the MD5 one-way hash function with the
 RSA asymmetric encryption algorithm. As defined in PKCS #1, the
 ASN.1 object identifiers used to identify these signature algorithms
 are:

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 md4WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 4 }

 << Should we permit RSA with SHA-1? >>

 When this object identifier is used with the ASN.1 type
 AlgorithmIdentifier, the parameters component of that type is the
 ASN.1 type NULL.

11.2.2 DSA Signature Algorithm

 The Digital Signature Algorithm (DSA) is also called the Digital
 Signature Standard (DSS). DSA was developed by the U.S. Government,
 and DSA is used in conjunction with the the SHA-1 one-way hash
 function. DSA is fully described in FIPS 186. The ASN.1 object
 identifiers used to identify this signature algorithm is:

 dsaWithSHA-1 OBJECT IDENTIFIER ::= {
 joint-iso-ccitt(2) country(16) US(840) organization(1)
 us-government(101) dod(2) infosec(1) algorithms(1) 2 }

Housley, Ford, Farrell, Solo [Page 46]

INTERNET DRAFT November 1995

 When this object identifier is used with the ASN.1 type
 AlgorithmIdentifier, the parameters component of that type is
 optional. If it is absent, the DSA parameters p, q, and g are
 assumed to be known, otherwise the parameters are included using the
 following ASN.1 structure:

 Dss-Parms ::= SEQUENCE {
 p OCTET STRING,
 q OCTET STRING,
 g OCTET STRING }

Security Considerations

 This entire memo is about security mechanisms.
Author Addresses:

 Russell Housley
 SPYRUS
 PO Box 1198
 Herndon, VA 22070
 USA
 housley@spyrus.com

 Warwick Ford
 Bell-Northern Research
 PO Box 3511, Station C
 Ottawa, Ontario
 Canada KY 4H7
 wford@bnr.ca

 Stephen Farrell
 Software and Systems Engineering Ltd
 7984 Fitzwilliam Court
 Dublin 2
 IRELAND
 stephen.farrell@sse.ie

 David Solo
 BBN
 150 CambridgePark Drive
 Cambridge, MA 02140
 USA
 solo@bbn.com

Housley, Ford, Farrell, Solo [Page 47]

