
PKIX Working Group R. Housley (SPYRUS)
Internet Draft W. Ford (Verisign)
 W. Polk (NIST)
 D. Solo (BBN)
expires in six months December 1996

Internet Public Key Infrastructure

 Part I: X.509 Certificate and CRL Profile

 <draft-ietf-pkix-ipki-part1-03.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This is the second draft of the Internet Public Key Infrastructure
 X.509 Certificate and CRL Profile. Since the first version was
 distributed, ISO has completed work on X.509 Version 3 Certificates
 and X.509 Version 2 Certificate Revocation Lists (CRLs). Many of the
 Internet community requirements that were in the previous version of
 this document have been included in the final ISO document. As a
 result, this document has gotten simpler. Please send comments on
 this document to the ietf-pkix@tandem.com mail list.

Housley, Ford, Polk, & Solo [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-03.txt

INTERNET DRAFT December 1996

1 Executive Summary

 This specification is Part 1 of a four part standard for development
 of a Public Key Infrastructure for the Internet. This specification
 is a standalone document; implementations of this standard may
 proceed before completion of parts two through four.

 This specification profiles the format and semantics of certificates
 and certificate revocation lists for the Internet PKI. Procedures
 are described for processing of certification paths in the Internet
 environment. Encoding rules are provided for popular cryptographic
 algorithms. Finally, a comprehensive ASN.1 module is provided in the
 appendices for all data structure defined or referenced.

 The specification presents profiles of the X.509 version 3
 certificate and version 2 certificate revocation lists. The profiles
 include the identification of ISO and ANSI extensions which may be
 useful in the Internet PKI and definition of new extensions to meet
 the Internet's requirements. The profiles are presented in the 1988
 Abstract Syntax Notation One (ASN.1) rather than the 1993 syntax used
 in the ISO standards.

 This specification also includes path validation procedures. These
 procedures are based upon the ISO definition, but incorporate the
 Internet defined extensions. Implementations are required to derive
 the same results but are not required to use the specified
 procedures.

 Finally, the specification describes procedures for identification
 and encoding of public key materials and digital signatures.
 Implementations are not required to use any particular cryptographic
 algorithms. However, conforming implementations which use the
 identified algorithms are required to identify and encode the public
 key materials and digital signatures as described.

 An Appendix is provided containing all ASN.1 structures defined or
 referenced within this specification. As above, the material is
 presented in the 1988 Abstract Syntax Notation One (ASN.1) rather
 than the 1993 syntax.

2 Requirements and Assumptions

 Goal is to develop a profile and associated management structure to
 facilitate the adoption/use of X.509 certificates within Internet
 applications for those communities wishing to make use of X.509
 technology. Such applications may include WWW, electronic mail, user
 authentication, and IPSEC, as well as others. In order to relieve
 some of the obstacles to using X.509 certificates, this document

Housley, Ford, Polk, & Solo [Page 2]

INTERNET DRAFT December 1996

 defines a profile to promote the development of certificate
 management systems; development of application tools; and
 interoperability determined by policy, as opposed to syntax.

 Some communities will need to supplement, or possibly replace, this
 profile in order to meet the requirements of specialized application
 domains or environments with additional authorization, assurance, or
 operational requirements. However, for basic applications, common
 representations of frequently used attributes are defined so that
 application developers can obtain necessary information without
 regard to the issuer of a particular certificate or certificate
 revocation list (CRL).

 As supplemental authorization and attribute management tools emerge,
 such as attribute certificates, it may be appropriate to limit the
 authenticated attributes that are included in a certificate. These
 other management tools may be more appropriate method of conveying
 many authenticated attributes.

2.1 Communication and Topology

 The users of certificates will operate in a wide range of
 environments with respect to their communication topology, especially
 users of secure electronic mail. This profile supports users without
 high bandwidth, real-time IP connectivity, or high connection
 availablity. In addition, the profile allows for the presence of
 firewall or other filtered communication.

 This profile does not assume the deployment of an X.500 Directory
 system. The profile does not prohibit the use of an X.500 Directory,
 but other means of distributing certificates and certificate
 revocation lists (CRLs) are supported.

2.2 Acceptability Criteria

 The goal of the Internet Public Key Infrastructure (PKI) is to meet
 the needs of deterministic, automated identification, authentication,
 access control, and authorization functions. Support for these
 services determines the attributes contained in the certificate as
 well as the ancillary control information in the certificate such as
 policy data and certification path constraints.

2.3 User Expectations

 Users of the Internet PKI are people and processes who use client
 software and are the subjects named in certificates. These uses
 include readers and writers of electronic mail, the clients for WWW
 browsers, WWW servers, and the key manager for IPSEC within a router.

Housley, Ford, Polk, & Solo [Page 3]

INTERNET DRAFT December 1996

 This profile recognizes the limitations of the platforms these users
 employ and the sophistication/attentiveness of the users themselves.
 This manifests itself in minimal user configuration responsibility
 (e.g., root keys, rules), explicit platform usage constraints within
 the certificate, certification path constraints which shield the user
 from many malicious actions, and applications which sensibly automate
 validation functions.

2.4 Administrator Expectations

 As with users, the Internet PKI profile is structured to support the
 individuals who generally operate Certification Authorities (CAs).
 Providing administrators with unbounded choices increases the chances
 that a subtle CA administrator mistake will result in broad
 compromise. Also, unbounded choices greatly complicates the software
 that must process and validate the certificates created by the CA.

3 Overview of Approach

 Following is a simplified view of the architectural model assumed by
 the PKIX specifications.

Housley, Ford, Polk, & Solo [Page 4]

INTERNET DRAFT December 1996

 +---+
 | C | +------------+
 | e | <-------------------->| End entity |
 | r | Operational +------------+
 | t | transactions ^
 | | and management | Management
 | / | transactions | transactions
 | | |
 | C | PKI users v
 | R | -------+-------+--------+------
 | L | PKI management ^ ^
 | | entities | | | |
 | | v |
 | R | +------+ |
 | e | <-------------- | RA | <-----+ |
 | p | certificate | | | |
 | o | publish +------+ | |
 | s | | |
 | I | v v
 | t | +------------+
 | o | <--------------------------| CA |
 | r | certificate publish +------------+
 | y | CRL publish ^
 | | |
 +---+ | Management
 | transactions
 v
 +------+
 | CA |
 +------+

 Figure 1 - PKI Entities

 The components in this model are:

 end entity: user of PKI certificates and/or end user system that
 the PKI certifies;
 CA: certification authority;
 RA: registration authority, i.e., an optional system to
 which a CA delegates certain management functions;
 repository: a system or collection of distributed systems that
 store certificates and CRLs and serves as a means of
 distributing these certificates and CRLs to end
 entities.

Housley, Ford, Polk, & Solo [Page 5]

INTERNET DRAFT December 1996

3.1 X.509 Version 3 Certificate

 Application of public key technology requires the user of a public
 key to be confident that the public key belongs to the correct remote
 subject (person or system) with which an encryption or digital
 signature mechanism will be used. This confidence is obtained
 through the use of public key certificates, which are data structures
 that bind public key values to subject identities. The binding is
 achieved by having a trusted certification authority (CA) digitally
 sign each certificate. A certificate has a limited valid lifetime
 which is indicated in its signed contents. Because a certificate's
 signature and timeliness can be independently checked by a
 certificate-using client, certificates can be distributed via
 untrusted communications and server systems, and can be cached in
 unsecured storage in certificate-using systems.

 The standard known as ITU-T X.509 (formerly CCITT X.509) or ISO/IEC
 9594-8, which was first published in 1988 as part of the X.500
 Directory recommendations, defines a standard certificate format. The
 certificate format in the 1988 standard is called the version 1 (v1)
 format. When X.500 was revised in 1993, two more fields were added,
 resulting in the version 2 (v2) format. These two fields are used to
 support directory access control.

 The Internet Privacy Enhanced Mail (PEM) proposals, published in
 1993, include specifications for a public key infrastructure based on
 X.509 v1 certificates [RFC 1422]. The experience gained in attempts
 to deploy RFC 1422 made it clear that the v1 and v2 certificate
 formats are deficient in several respects. Most importantly, more
 fields were needed to carry information which PEM design and
 implementation experience has proven necessary. In response to these
 new requirements, ISO/IEC and ANSI X9 developed the X.509 version 3
 (v3) certificate format. The v3 format extends the v2 format by
 adding provision for additional extension fields. Particular
 extension field types may be specified in standards or may be defined
 and registered by any organization or community. In June 1996,
 standardization of the basic v3 format was completed [X.509-AM].

 ISO/IEC and ANSI X9 have also developed a set of standard extensions
 for use in the v3 extensions field [X.509-AM][X9.55]. These
 extensions can convey such data as additional subject identification
 information, key attribute information, policy information, and
 certification path constraints.

 However, the ISO/IEC and ANSI standard extensions are very broad in
 their applicability. In order to develop interoperable
 implementations of X.509 v3 systems for Internet use, it is necessary
 to specify a profile for use of the X.509 v3 extensions tailored for

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 6]

INTERNET DRAFT December 1996

 the Internet. It is one goal of this document to specify a profile
 for Internet WWW, electronic mail, and IPSEC applications.
 Environments with additional requirements may build on this profile
 or may replace it.

3.2 Certification Paths and Trust

 A user of a security service requiring knowledge of a public key
 generally needs to obtain and validate a certificate containing the
 required public key. If the public-key user does not already hold an
 assured copy of the public key of the CA that signed the certificate,
 then it might need an additional certificate to obtain that public
 key. In general, a chain of multiple certificates may be needed,
 comprising a certificate of the public key owner (the end entity)
 signed by one CA, and zero or more additional certificates of CAs
 signed by other CAs. Such chains, called certification paths, are
 required because a public key user is only initialized with a limited
 number (often one) of assured CA public keys.

 There are different ways in which CAs might be configured in order
 for public key users to be able to find certification paths. For
 PEM, RFC 1422 defined a rigid hierarchical structure of CAs. There
 are three types of PEM certification authority:

 (a) Internet Policy Registration Authority (IPRA): This authority,
 operated under the auspices of the Internet Society, acts as the root
 of the PEM certification hierarchy at level 1. It issues
 certificates only for the next level of authorities, PCAs. All
 certification paths start with the IPRA.

 (b) Policy Certification Authorities (PCAs): PCAs are at level 2 of
 the hierarchy, each PCA being certified by the IPRA. A PCA must
 establish and publish a statement of its policy with respect to
 certifying users or subordinate certification authorities. Distinct
 PCAs aim to satisfy different user needs. For example, one PCA (an
 organizational PCA) might support the general electronic mail needs
 of commercial organizations, and another PCA (a high-assurance PCA)
 might have a more stringent policy designed for satisfying legally
 binding signature requirements.

 (c) Certification Authorities (CAs): CAs are at level 3 of the
 hierarchy and can also be at lower levels. Those at level 3 are
 certified by PCAs. CAs represent, for example, particular
 organizations, particular organizational units (e.g., departments,
 groups, sections), or particular geographical areas.

RFC 1422 furthermore has a name subordination rule which requires
 that a CA can only issue certificates for entities whose names are

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 7]

INTERNET DRAFT December 1996

 subordinate (in the X.500 naming tree) to the name of the CA itself.
 The trust associated with a PEM certification path is implied by the
 PCA name. The name subordination rule ensures that CAs below the PCA
 are sensibly constrained as to the set of subordinate entities they
 can certify (e.g., a CA for an organization can only certify entities
 in that organization's name tree). Certificate user systems are able
 to mechanically check that the name subordination rule has been
 followed.

 The RFC 1422 CA hierarchical model has been found to have several
 deficiencies, including:

 (a) The pure top-down hierarchy, with all certification paths
 starting from the root, is too restrictive for many purposes. For
 some applications, verification of certification paths should start
 with a public key of a CA in a user's own domain, rather than
 mandating that verification commence at the top of a hierarchy. In
 many environments, the local domain is often the most trusted. Also,
 initialization and key-pair-update operations can be more effectively
 conducted between an end entity and a local management system.

 (b) The name subordination rule introduces undesirable constraints
 upon the X.500 naming system an organization may use.

 (c) Use of the PCA concept requires knowledge of individual PCAs to
 be built into certificate chain verification logic. In the
 particular case of Internet mail, this is not a major problem -- the
 PCA name can always be displayed to the human user who can make a
 decision as to what trust to imply from a particular chain. However,
 in many commercial applications, such as electronic commerce or EDI,
 operator intervention to make policy decisions is impractical. The
 process needs to be automated to a much higher degree. In fact, the
 full process of certificate chain processing needs to be
 implementable in trusted software.

 Because of the above shortcomings, it is proposed that more flexible
 CA structures than the RFC 1422 hierarchy be supported by the PKIX
 specifications. In fact, the main reason for the structural
 restrictions imposed by RFC 1422 was the restricted certificate
 format provided with X.509 v1. With X.509 v3, most of the
 requirements addressed by RFC 1422 can be addressed using certificate
 extensions, without a need to restrict the CA structures used. In
 particular, the certificate extensions relating to certificate
 policies obviate the need for PCAs and the constraint extensions
 obviate the need for the name subordination rule.

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 8]

INTERNET DRAFT December 1996

3.3 Revocation

 When a certificate is issued, it is expected to be in use for its
 entire validity period. However, various circumstances may cause a
 certificate to become invalid prior to the expiration of the validity
 period. Such circumstances might include change of name, change of
 association between subject and CA (e.g., an employee terminates
 employment with an organization), and compromise or suspected
 compromise of the corresponding private key. Under such
 circumstances, the CA needs to revoke the certificate.

 X.509 defines one method of certificate revocation. This method
 involves each CA periodically issuing a signed data structure called
 a certificate revocation list (CRL). A CRL is a time stamped list
 identifying revoked certificates which is signed by a CA and made
 freely available in a public repository. Each revoked certificate is
 identified in a CRL by its certificate serial number. When a
 certificate-using system uses a certificate (e.g., for verifying a
 remote user's digital signature), that system not only checks the
 certificate signature and validity but also acquires a suitably-
 recent CRL and checks that the certificate serial number is not on
 that CRL. The meaning of "suitably-recent" may vary with local
 policy, but it usually means the most recently-issued CRL. A CA
 issues a new CRL on a regular periodic basis (e.g., hourly, daily, or
 weekly). Entries are added to CRLs as revocations occur, and an
 entry may be removed when the certificate expiration date is reached.

 An advantage of this revocation method is that CRLs may be
 distributed by exactly the same means as certificates themselves,
 namely, via untrusted communications and server systems.

 One limitation of the CRL revocation method, using untrusted
 communications and servers, is that the time granularity of
 revocation is limited to the CRL issue period. For example, if a
 revocation is reported now, that revocation will not be reliably
 notified to certificate-using systems until the next periodic CRL is
 issued -- this may be up to one hour, one day, or one week depending
 on the frequency that the CA issues CRLs.

 Another potential problem with CRLs is the risk of a CRL growing to
 an entirely unacceptable size. In the 1988 and 1993 versions of
 X.509, the CRL for the end-user certificates needed to cover the
 entire population of end-users for one CA. It is desirable to allow
 such populations to be in the range of thousands, tens of thousands,
 or possibly even hundreds of thousands of users. The end-user CRL is
 therefore at risk of growing to such sizes, which present major
 communication and storage overhead problems. With the version 2 CRL
 format, introduced along with the v3 certificate format, it becomes

Housley, Ford, Polk, & Solo [Page 9]

INTERNET DRAFT December 1996

 possible to arbitrarily divide the population of certificates for one
 CA into a number of partitions, each partition being associated with
 one CRL distribution point (e.g., directory entry or URL) from which
 CRLs are distributed. Therefore, the maximum CRL size can be
 controlled by a CA. Separate CRL distribution points can also exist
 for different revocation reasons. For example, routine revocations
 (e.g., name change) may be placed on a different CRL to revocations
 resulting from suspected key compromises, and policy may specify that
 the latter CRL be updated and issued more frequently than the former.

 As with the X.509 v3 certificate format, in order to facilitate
 interoperable implementations from multiple vendors, the X.509 v2 CRL
 format needs to be profiled for Internet use. It is one goal of this
 document to specify such profiles.

 Furthermore, it is recognized that on-line methods of revocation
 notification may be applicable in some environments as an alternative
 to the X.509 CRL. On-line revocation checking eliminates the latency
 between a revocation report and CRL the next issue. Once the
 revocation is reported, any query to the on-line service will
 correctly reflect the certificate validation impacts of the
 revocation. Therefore, this profile will also consider standard
 approaches to on-line revocation notification.

3.4 Operational Protocols

 Operational protocols are required to deliver certificates and CRLs
 to certificate using client systems. Provision is needed for a
 variety of different means of certificate and CRL delivery, including
 request/delivery procedures based on E-mail, http, X.500, and
 WHOIS++. These specifications include definitions of, and/or
 references to, message formats and procedures for supporting all of
 the above operational environments, including definitions of or
 references to appropriate MIME content types.

3.5 Management Protocols

 Management protocols are required to support on-line interactions
 between Public Key Infrastructure (PKI) components. For example,
 management protocol might be used between a CA and a client system
 with which a key pair is associated, or between two CAs which cross-
 certify each other. The set of functions which potentially need to
 be supported by management protocols include:

 (a) registration: This is the process whereby a user first makes
 itself known to a CA, prior to that CA issuing a certificate or
 certificates for that user.

Housley, Ford, Polk, & Solo [Page 10]

INTERNET DRAFT December 1996

 (b) initialization: Before a client system can operate securely it
 is necessary to install in it necessary key materials which have the
 appropriate relationship with keys stored elsewhere in the
 infrastructure. For example, the client needs to be securely
 initialized with the public key of a CA, to be used in validating
 certificate paths. Furthermore, a client typically needs to be
 initialized with its own key pair(s).

 (c) certification: This is the process in which a CA issues a
 certificate for a user's public key, and returns that certificate to
 the user's client system and/or posts that certificate in a public
 repository.

 (d) key pair recovery: As an option, user client key materials
 (e.g., a user's private key used for encryption purposes) may be
 backed up by a CA or a key backup system associated with a CA. If a
 user needs to recover these backed up key materials (e.g., as a
 result of a forgotten password or a lost key chain file), an on-line
 protocol exchange may be needed to support such recovery.

 (e) key pair update: All key pairs need to be updated regularly,
 i.e., replaced with a new key pair, and new certificates issued.

 (f) revocation request: An authorized person advises a CA of an
 abnormal situation requiring certificate revocation.

 (g) cross-certification: Two CAs exchange the information necessary
 to establish cross-certificates between those CAs.

 Note that on-line protocols are not the only way of implementing the
 above functions. For all functions there are off-line methods of
 achieving the same result, and this specification does not mandate
 use of on- line protocols. For example, when hardware tokens are
 used, many of the functions may be achieved through as part of the
 physical token delivery. Furthermore, some of the above functions
 may be combined into one protocol exchange. In particular, two or
 more of the registration, initialization, and certification functions
 can be combined into one protocol exchange.

 Part 3 of the PKIX series of specifications defines a set of standard
 message formats supporting the above functions. The protocols for
 conveying these messages in different environments (on-line, e-mail,
 and WWW) are also specified.

4 Certificate and Certificate Extensions Profile

 This section presents a profile for public key certificates that will
 foster interoperability and a reusable public key infrastructure.

Housley, Ford, Polk, & Solo [Page 11]

INTERNET DRAFT December 1996

 This section is based upon the X.509 V3 certificate format and the
 standard certificate extensions defined in the Amendment [X.509-AM].
 The ISO definitions use the 1993 version of ASN.1; while this
 document uses the older ASN.1 syntax, the encoded certificate and
 standard extensions are equivalent. This section also defines
 private extensions required to support a public key infrastructure
 for the Internet community.

 Certificates may be used in a wide range of applications and
 environments covering a broad spectrum of interoperability goals and
 a broader spectrum of operational and assurance requirements. The
 goal of this document is to establish a common baseline for generic
 applications requiring broad interoperability and limited special
 purpose requirements. In particular, the emphasis will be on
 supporting the use of X.509 v3 certificates for informal internet
 electronic mail, IPSEC, and WWW applications. Other efforts are
 looking at certificate profiles for payment systems.

4.1 Basic Certificate Fields

 The X.509 v3 certificate basic syntax is as follows. For signature
 calculation, the certificate is encoded using the ASN.1 distinguished
 encoding rules (DER) [X.208]. ASN.1 DER encoding is a tag, length,
 value encoding system for each element.

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertificate ::= SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] Extensions OPTIONAL
 -- If present, version must be v3
 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

Housley, Ford, Polk, & Solo [Page 12]

INTERNET DRAFT December 1996

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {
 notBefore CertificateValidityDate,
 notAfter CertificateValidityDate }

 CertificateValidityDate ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

 The following items describe a proposed use of the X.509 v3
 certificate for the Internet.

4.1.1 Certificate Fields

 The Certificate is a SEQUENCE of three required fields. The fields
 are are described in detail in the following subsections

4.1.1.1 tbsCertificate

 The first field in the sequence is the tbsCertificate. This is a
 itself a sequence, and contains the names of the subject and issuer,
 a public key associated with the subject an expiration date, and
 other associated information. The fields of the basic tbsCertificate
 are described in detail in section 4.1.2; the tbscertificate may also
 include extensions which are described in section 4.2.

4.1.1.2 signatureAlgorithm

 The signatureAlgorithm field contains the algorithm identifier for
 the algorithm used by the CA to sign the certificate. Section 7.2
 lists the supported signature algorithms.

 This field should contain the same algorithm identifier as the field
 signature in the sequence tbsCertificate (see section 4.1.2.3)

Housley, Ford, Polk, & Solo [Page 13]

INTERNET DRAFT December 1996

4.1.1.3 signature

 The signature field contains a digital signature computed upon the
 ASN.1 DER encoded TBSCertificate. The ASN.1 DER encoded
 TBSCertificate is used as the input to a one-way hash function. The
 one-way hash function output value is ASN.1 encoded as an OCTET
 STRING and the result is encrypted (e.g., using RSA Encryption) to
 form the signed quantity. This signature value is then ASN.1 encoded
 as a BIT STRING and included in the Certificate's signature field.

 By generating this signature, a CA certifies the validity of the
 information in tbscertificate. In particular, the CA certifies the
 binding between the public key material and the subject of the
 certificate.

4.1.2 TBSCertificate

 The sequence TBSCertificate is a sequence which contains information
 associated with the subject of the certificate and the CA who issued
 it. Every TBSCertificate contains the names of the subject and
 issuer, a public key associated with the subject, an expiration date,
 a version number and a serial number; some will contain optional
 unique identifier fields. The remainder of this section describes
 the syntax and semantics of these fields. A TBSCertificate may also
 include extensions. Extensions for the Internet PKI are described in

Section 4.2.

4.1.2.1 Version

 This field describes the version of the encoded certificate. When
 extensions are used, as expected in this profile, use X.509 version 3
 (value is 2). If no extensions are present, but a UniqueIdentifier
 is present, use version 2 (value is 1). If only basic fields are
 present, use version 1 (the value is omitted from the certificate as
 the default value).

 Implementations should be prepared to accept any version certificate.
 In particular, at a minimum, implementations must recognize version 3
 certificates; determine whether any critical extensions are present;
 and accept certificates without critical extensions even if they
 don't recognize any extensions. A certificate with an unrecognized
 critical extension must always be rejected.

 Generation of version 2 certificates is not expected by
 implementations based on this profile.

Housley, Ford, Polk, & Solo [Page 14]

INTERNET DRAFT December 1996

4.1.2.2 Serial number

 The serial number is an integer assigned by the certification
 authority to each certificate. It must be unique for each
 certificate issued by a given CA (i.e., the issuer name and serial
 number identify a unique certificate).

4.1.2.3 Signature

 This field contains the algorithm identifier for the algorithm used
 by the CA to sign the certificate. Section 7.2 lists the supported
 signature algorithms.

4.1.2.4 Issuer Name

 The issuer name identifies the entity who has signed (and issued the
 certificate). The issuer identity may be carried in the issuer name
 field and/or the issuerAltName extension. If identity information is
 present only in the issuerAltName extension, then the issuer name may
 be an empty sequence and the issuerAltName extension must be
 critical.

4.1.2.5 Validity

 This field indicates the dates on which the certificate becomes valid
 (notBefore) and on which the certificate ceases to be valid
 (notAfter). Both notBefore and notAfter may be encoded as UTCTime or
 GeneralizedTime.

 CAs conforming to this profile shall not issue certificates where
 notAfter or notBefore is encoded as GeneralizedTime before the year
 2005. CAs conforming to this profile shall not issue certificates
 where notAfter or notBefore is encoded as UTCTime after the year
 2015.

4.1.2.5.1 UTCTime

 The universal time type, UTCTime, is a standard ASN.1 type intended
 for international applications where local time alone is not
 adequate. UTCTime specifies the year through the two low order digits
 and time is specified to the precision of one minute or one second.
 UTCTime includes either Z (for Zulu, or Greenwich Mean Time) or a
 time differential.

 For the purposes of this profile, UTCTime values shall be expressed
 Greenwich Mean Time (Zulu) and shall include< seconds (i.e., times
 are YYMMDDHHMMSSZ), even where the number of seconds is zero.
 Conforming systems shall interpret the year field (YY) as follows:

Housley, Ford, Polk, & Solo [Page 15]

INTERNET DRAFT December 1996

 Where YY is greater than 50, the year shall be interpreted as
 19YY; and

 Where YY is less than or equal to 50, the year shall be
 interpreted as 20YY.

4.1.2.6 GeneralizedTime

 The generalized time type, GeneralizedTime, is a standard ASN.1 type
 for variable precision representation of time. Optionally, the
 GeneralizedTime field can include a representation of the time
 differential between local and Greenwich Mean Time.

 For the purposes of this profile, GeneralizedTime values shall be
 expressed Greenwich Mean Time (Zulu) and shall include seconds (i.e.,
 times are YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
 GeneralizedTime values shall not include fractional seconds.

4.1.2.6 Subject Name

 The subject name identifies the entity associated with the public key
 stored in the subject public key field. The subject identity may be
 carried in the subject field and/or the subjectAltName extension. If
 identity information is present only in the subjectAltName extension
 (e.g., a key bound only to an email address or URI), then the subject
 name may be an empty sequence and the subjectAltName extension must
 be critical.

4.1.2.7 Subject Public Key Info

 This field is used to carry the public key and identify the algorithm
 with which the key is used.

4.1.2.8 Unique Identifiers

 The subject and issuer unique identifier are present in the
 certificate to handle the possibility of reuse of subject and/or
 issuer names over time. This profile recommends that names not be
 reused and that Internet certificates not make use of unique
 identifiers. CAs conforming to this profile should not generate
 certificates with unique identifiers. Applications conforming to
 this profile should be capable of parsing unique identifiers and
 making comparisons.

4.2 Certificate Extensions

 The extensions defined for X.509 v3 certificates provide methods for
 associating additional attributes with users or public keys, for

Housley, Ford, Polk, & Solo [Page 16]

INTERNET DRAFT December 1996

 managing the certification hierarchy, and for managing CRL
 distribution. The X.509 v3 certificate format also allows
 communities to define private extensions to carry information unique
 to those communities. Each extension in a certificate may be
 designated as critical or non-critical. A certificate using system
 (an application validating a certificate) must reject the certificate
 if it encounters a critical extension it does not recognize. A non-
 critical extension may be ignored if it is not recognized. The
 following presents recommended extensions used within Internet
 certificates and standard locations for information. Communities may
 elect to use additional extensions; however, caution should be
 exercised in adopting any critical extensions in certificates which
 might be used in a general context.

 Each extension includes an object identifier and an ASN.1 structure.
 When an extension appears in a certificate, the object identifier
 appears as the field extnID and the corresponding ASN.1 encoded
 structure is the value of the bit string extnValue. Only one
 instance of a particular extension may appear in a particular
 certificate. For example, a certificate may contain only one
 authority key identifier extension (4.2.1.1). An extension may also
 include the optional boolean critical; critical's default value is
 FALSE. The text for each extension specifies the acceptable values
 for the critical field.

 Conforming CAs are required to support the Basic Constraints
 extension (Section 4.2.1.10). If the CA issues certificates with an
 empty sequence for the subject field, the CA must support the
 altSubjectName extension. If the CA issues certificates with an
 empty sequence for the issuer field, the CA must support the
 altIssuerName extension. Support for the remaining extensions is
 optional. Conforming CAs may support extensions that are not
 identified within this specification; certificate issuers are
 cautioned that marking such extensions as critical may inhibit
 interoperability.

 At a minimum, applications conforming to this profile shall recognize
 extensions which shall or may be critical. These extensions are: key
 usage (4.2.1.3), certificate policies (4.2.1.5), the alternative
 subject name (4.2.1.7), issuer alternative name (4.2.1.8), basic
 constraints (4.2.1.10), name constraints (4.2.1.11), policy
 constraints (4.2.1.12), authority information access (4.2.2.2), and
 CA information access (4.2.2.3).

 In addition, this profile recommends support for key identifiers
 (4.2.1.2 and 4.2.1.3) and CRL distribution points (4.2.1.13).

Housley, Ford, Polk, & Solo [Page 17]

INTERNET DRAFT December 1996

4.2.1 Standard Extensions

 This section identifies standard certificate extensions defined in
 [X.509-AM] for use in the Internet Public Key Infrastructure. Each
 extension is associated with an object identifier defined in [X.509-
 AM]. These object identifiers are members of the
 certificateExtension arc, which is defined by the following:

 certificateExtension OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 29}
 id-ce OBJECT IDENTIFIER ::= certificateExtension

 4.2.1.1 Authority Key Identifier

 The authority key identifier extension provides a means of
 identifying the particular public key used to sign a certificate.
 This extension would be used where an issuer has multiple signing
 keys (either due to multiple concurrent key pairs or due to
 changeover). In general, this extension should be included in
 certificates.

 The identification can be based on either the key identifier (the
 subject key identifier in the issuer's certificate) or on the issuer
 name and serial number. The key identifier method is recommended in
 this profile. Conforming CAs that generate this extension shall
 include or omit both authorityCertIssuer and
 authorityCertSerialNumber. If authorityCertIssuer and
 authorityCertSerialNumber are omitted, the keyIdentifier field shall
 be present.

 This extension shall not be marked critical.

 id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

 AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier
OPTIONAL,
 authorityCertIssuer [1] GeneralNames
OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber
OPTIONAL
 }

 KeyIdentifier ::= OCTET STRING

4.2.1.2 Subject Key Identifier

 The subject key identifier extension provides a means of identifying
 the particular public key used in an application. Where a reference
 to a public key identifier is needed (as with an Authority Key

 Identifier) and one is not included in the associated certificate, a
 SHA-1 hash of the subject public key shall be used. The hash shall

Housley, Ford, Polk, & Solo [Page 18]

INTERNET DRAFT December 1996

 be calculated over the value (excluding tag and length) of the
 subject public key field in the certificate. This extension should
 be marked non-critical.

 id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }

 SubjectKeyIdentifier ::= KeyIdentifier

4.2.1.3 Key Usage

 The key usage extension defines the purpose (e.g., encipherment,
 signature, certificate signing) of the key contained in the
 certificate. The usage restriction might be employed when a
 multipurpose key is to be restricted (e.g., when an RSA key should be
 used only for signing or only for key encipherment). The profile
 recommends that when used, this be marked as a critical extension.

 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

 KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6) }

4.2.1.4 Private Key Usage Period

 The private key usage period extension allows the certificate issuer
 to specify a different validty period for the private key than the
 certificate. This extension is intended for use with digital
 signature keys. This extension consists of two optional components
 notBefore and notAfter. The private key associated with the
 certificate should not be used to sign objects before or after the
 times specified by the two components, respectively. CAs conforming
 to this profile shall not generate certificates with private key
 usage period extensions unless at least one of the two components is
 present.

 This profile recommends against the use of this extension. CAs
 conforming to this profile shall not generate certificates with
 critical private key usage period extensions.

 id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

 PrivateKeyUsagePeriod ::= SEQUENCE {

Housley, Ford, Polk, & Solo [Page 19]

INTERNET DRAFT December 1996

 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }

4.2.1.5 Certificate Policies

 The certificate policies extension contains a sequence of policy
 information terms, each of which consists of an object identifier
 (OID) and optional qualifiers. These policy information terms
 indicate the policy under which the certificate has been issued and
 the purposes for which the certificate may be used. This profile
 strongly recommends that a simple OID be present in this field.
 Optional qualifiers which may be present are expected to provide
 information about obtaining CA rules, not change the definition of
 the policy.

 Applications with specific policy requirements are expected to have a
 list of those policies which they will accept and to compare the
 policy OIDs in the certificate to that list. If this extension is
 critical, the path validation software must be able to interpret this
 extension, or must reject the certificate. (Applications are free to
 ignore the policy field, even if the extension is marked critical.)

 This specification defines two policy qualifiers types for use by
 certificate policy writers and certificate issuers at their own
 discretion. The quailfier types are the CPS Pointer qualifier, and
 the User Notice qualifier.

 The CPS Pointer qualifier contains a pointer to a Certification
 Practice Statement (CPS) published by the CA. The pointer is in the
 form of a URI.

 The User Notice qualifier contains a text string that is to be
 displayed to a certificate user (including subscribers and relying
 parties) prior to the use of the certificate. The text string may be
 an IA5String or a BMPString - a subset of the ISO 100646-1 multiple
 octet coded character set. A CA may invoke a procedure that requires
 that the certficate user acknowledge that the applicable terms and
 conditions have been disclosed or accepted.

 id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

 certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

Housley, Ford, Polk, & Solo [Page 20]

INTERNET DRAFT December 1996

 CertPolicyId ::= OBJECT IDENTIFIER

 PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId PolicyQualifierId,
 qualifier ANY DEFINED BY policyQualifierId }

 -- policyQualifierIds for Internet policy qualifiers

 id-pkix-cps OBJECT IDENTIFIER ::= { pkix 4 }
 id-pkix-unotice OBJECT IDENTIFIER ::= { pkix 5 }

 PolicyQualifierId ::= ENUMERATED { id-pkix-cps, id-pkix-unotice }

 Qualifier ::= CHOICE {
 cPSuri CPSuri,
 userNotice UserNotice }

 CPSuri ::= IA5String

 UserNotice ::= CHOICE {
 ia5String IA5String,
 bmpString ANY }

4.2.1.6 Policy Mappings

 This extension is used in CA certificates. It lists pairs of
 obbjectidentifiers; each pair includes an issuerDomainPolicy and a
 subjectDomainPolicy. The pairing indicates the issuing CA considers
 its issuerDomainPolicy equivalent to the subject CA's
 subjectDomainPolicy.

 The issuing CA's users may accept an issuerDomainPolicy for certain
 applications. The policy mapping tells the issuing CA's users which
 policies associated with the subject CA are comparable to the policy
 they accept.

 This extension may be supported by CAs and/or applications, and it is
 always non-critical.

 id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }

 PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

Housley, Ford, Polk, & Solo [Page 21]

INTERNET DRAFT December 1996

4.2.1.7 Subject Alternative Name

 The subject alternative names extension allows additional identities
 to be bound to the subject of the certificate. Defined options
 include an rfc822 name (electronic mail address), a DNS name, an IP
 address, and a URI. Other options exist, including completely local
 definitions. Multiple instances of a name and multiple name forms
 may be included. Whenever such identities are to be bound into a
 certificate, the subject alternative name (or issuer alternative
 name) extension shall be used. (Note: a form of such an identifier
 may also be present in the subject distinguished name; however, the
 alternative name extension is the preferred location for finding such
 information.)

 Further, if the only subject identity included in the certificate is
 an alternative name form (e.g., an electronic mail address), then the
 subject distinguished name should be empty (an empty sequence), the
 subjectAltName extension should be used. If the subject field
 contains an empty squence, the subjectAltName extension shall be
 marked critical.

 Alternative names may be constrained in the same manner as subject
 distinguished names using the name constraints extension as described
 in section 4.2.1.11.

 id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

 SubjectAltName ::= GeneralNames

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] ANY,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER }

 EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString }

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 22]

INTERNET DRAFT December 1996

4.2.1.8 Issuer Alternative Name

 As with 4.2.1.7, this extension is used to associate Internet style
 identities with the certificate issuer. If the only issuer identity
 included in the certificate is an alternative name form (e.g., an
 electronic mail address), then the issuer distinguished name should
 be empty (an empty sequence), the issuerAltName extension should be
 used. If the issuer field is empty and more than one issuerAltName
 extension is included in the certificate, the issuerAltName extension
 shall be marked critical.

 id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

 IssuerAltName ::= GeneralNames

4.2.1.9 Subject Directory Attributes

 The subject directory attributes extension is not recommended as an
 essential part of this profile, but it may
 be used in local environments. This extension is always non-critical.

 id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }

 SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

4.2.1.10 Basic Constraints

 The basic constraints extension identifies whether the subject of the
 certificate is a CA and how deep a certification path may exist
 through that CA. This profile requires the use of this extension,
 and it shall be critical for all certificates issued to CAs.

 id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

 BasicConstraints ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

4.2.1.11 Name Constraints

 The name constraints extension provides permitted and excluded
 subtrees that place restrictions on names that may be included within
 a certificate issued by a given CA. Restrictions may apply to the
 subject distringuished name or subject alternative names. Any name
 matching a restriction in the excluded subtrees field is invalid
 regardless of information appearing in the permitted subtrees. This
 extension may be critical or non-critical.

Housley, Ford, Polk, & Solo [Page 23]

INTERNET DRAFT December 1996

 Restrictions for the rfc822, dNSName, and uri name forms are all
 expressed in terms of strings with wild card matching. An "*" is the
 wildcard character. The minimum and maximum fields in general
 subtree are not used for these name forms. For uris and rfc822
 names, the restriction applies to the host part of the name.
 Examples would be foo.bar.com; www*.bar.com; *.xyz.com.

 Restrictions of the form directoryName shall be applied to the
 subject field in the certificate and to the subjectAltName extensions
 of type directoryName. Restrictions of the form x400Address shall be
 applied to subjectAltName extensions of type x400Address.

 The syntax and semantics for name constraints for otherName,
 ediPartyName, and registeredID are not defined by this specification.

 id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }

 NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

4.2.1.12 Policy Constraints

 The policy constraints extension can be used in certificates issued
 to CAs. The policy constraints extension constrains path validation
 in two ways. It can be used to prohibit policy mapping or limit the
 set of poicies that can in subsequent certificates. This extension
 may be critical or non-critical.

 id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 34 }

 PolicyConstraints ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 policySet [0] CertPolicySet OPTIONAL,
 requireExplicitPolicy [1] SkipCerts OPTIONAL,
 inhibitPolicyMapping [2] SkipCerts OPTIONAL }

 SkipCerts ::= INTEGER (0..MAX)

 CertPolicySet ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 24]

INTERNET DRAFT December 1996

4.2.1.13 CRL Distribution Points

 The CRL distribution points extension identifies how CRL information
 is obtained. The extension shall be non-critical, but this profile
 recommends support for this extension by CAs and applications.
 Further discussion of CRL management is contained in section 5.

 id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= { id-ce 31 }

 cRLDistributionPoints ::= {
 CRLDistPointsSyntax }

 CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

 DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

 ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

4.2.2 Private Internet Extensions

 This section defines new extensions for use in the Internet Public
 Key Infrastructure. These extensions may be used to direct
 applications to additional information about the certificate's
 subject or issuer. This extension includes the type of information,
 where it is located, and a method for obtaining the information. The
 types of information include certificate status, CA policy
 information, and related certificates.

 The object identifiers associated with the private extensions are
 defined under the iso (1), org (3), dod (6), internet (1),
 security(5) or 1.3.6.1.5, branch of the name space. These extensions
 make use of OIDs of the form {applTCPProtoID port}, which identify
 TCP-based protocols that don't have OIDs assigned by other means, to
 identify common methods for retrieving information.

Housley, Ford, Polk, & Solo [Page 25]

INTERNET DRAFT December 1996

 The following ASN.1 defines object identifiers which may be used by
 applications that implement the private extensions; additional access
 methods may be used, but the semantics are undefined by this
 document.

 pkix OBJECT IDENTIFIER ::= { iso(1) org(3) dod (6) internet (1)
 security(5) pkix(?) }

 -- Object identifiers for ftp, http, smtp and ldap protocols

 applTCPProto OBJECT IDENTIFIER ::= { 1 3 6 1 2 1 27 4 }

 ftpID OBJECT-IDENTIFIER ::= {applTCPProtoID 21}
 httpID OBJECT-IDENTIFIER ::= {applTCPProtoID 80}
 smtpID OBJECT-IDENTIFIER ::= {applTCPProtoID 25}
 ldapID OBJECT-IDENTIFIER ::= {applTCPProtoID 389}

 -- Object identifier for the X.500 directory access protocol

 dap OBJECT-IDENTIFIER ::= { 2 5 3 1 }

4.2.2.1 Subject Information Access

 The name information in the certificate identifies the entity to
 which the public key is bound. In some instances, it may also be
 necessary to know where to find additional information about the
 named entity. In the case of X.500 names, this relationship is
 automatic. The subject information access extension provides a means
 of identifying where and how to find information about the subject.
 The extension specifies a method of obtaining information and a
 general name form indicating where. This extension shall always be
 non-critical.

 id-pkix-subjectInfoAccess OBJECT-IDENTIFIER ::= { pkix 1}

 -- subjectInfoAccess ::= { SubjectInfoAccessSyntax }

 SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription

 AccessDescription ::= SEQUENCE {
 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

 This specification defines the following values for accessMethod:
 ftpID, httpID, smtpID, ldapID, and dap. The accessMethod value
 indicates the protocol required to obtain the information. If
 accessMethod is ftpID, then the information must available through
 anonymous ftp. If accessMethod is ftpID, httpID, smtpID, or ldapID,

Housley, Ford, Polk, & Solo [Page 26]

INTERNET DRAFT December 1996

 then the accessLocation shall be a uniformResourceIndicator (i.e., a
 URI). The URI shall specify all information required to retrieve the
 information. If accessMethod is dap, then the accessLocation shall
 be a directoryName.

4.2.2.2 Authority Information Access

 The authority information access extension indicates how to access CA
 information and services for the issuer of the certificate in which
 the extension appears. Information and services include certificate
 status or on-line validation services, certificate retrieval, CA
 policy data, and CA certificates (certificates certifying the target
 CA to aid in certification path navigation). This extension may be
 included in subject or CA certificates and may be critical or non-
 critical.

 id-pkix-authorityInfoAccess OBJECT-IDENTIFIER ::= { pkix 2}

 -- authorityInfoAccess ::= { AuthorityInfoAccessSyntax }

 AuthorityInfoAccessSyntax ::= SEQUENCE {
 certStatus [0] SEQUENCE OF AccessDescription OPTIONAL,
 certRetrieval [1] SEQUENCE OF AccessDescription OPTIONAL,
 caPolicy [2] SEQUENCE OF AccessDescription OPTIONAL,
 caCerts [3] SEQUENCE OF AccessDescription OPTIONAL }

 If certStatus is present, each entry in that sequence describes a
 mechanism and location for

 on-line verification of the status of this certificate, or

 the CRL on which this certificate would appear if revoked.

 If certRetrieval is present, each entry in the sequence describes how
 to retrieve all current certificates whose subject is the issuer of
 the certificate in which this extension appears.

 If caPolicy is present, each entry in the sequence describes how to
 retrieve the policy that was in effect when this certificate was
 issued.

 If caCerts is present, each entry in the sequence describes a
 mechanism and location for retrieval of certificates the issuer has
 issued to other CAs.

 If the certStatus, certRetrieval, caPolicy, or caCerts sequence has
 more than one value, conforming applications are not required to
 process all the values. Successful processing of any one

Housley, Ford, Polk, & Solo [Page 27]

INTERNET DRAFT December 1996

 AccessDescritpion shall be sufficient. It is the responsibility of
 the certificate issuer to ensure all mechanisms provide the same
 information.

 The expected values for AccessDescription are the values defined in
 4.2.2.1. Processing rules for other values for accessMethod are not
 defined.

 If this extension is critical, applications are required to use the
 information in the certStatus field (if present) to check the
 revocation status of this certificate, the certRetrieval field (if
 present) to obtain the issuer's current certificates, and the caCerts
 field (if present) to obtain certificates issued by the subject to
 other CAs.

 There are no additional processing requirements for cAPolicy if the
 extension is marked as critical.

4.2.2.3 CA Information Access

 Where the subject of a certificate is a CA, the subjectInfoAccess
 extension may be insufficient. The CA information access extension
 indicates how to access CA information and services for the subject
 of the certificate in which the extension appears. Information and
 services include certificate status or on-line validation services,
 certificate retrieval, CA policy data, and CA certificates
 (certificates certifying the target CA to aid in cert path
 navigation). This extension is syntactically identical to
 authorityInfoAccess, but is identified by a different OID. This
 extension may be included only in CA certificates and may be critical
 or non-critical. CA certificates may include both an authority and a
 caInfoAccess extension to describe access methods for both the CA and
 its issuer.

 id-pkix-caInfoAccess OBJECT-IDENTIFIER ::= { pkix 3 }

 -- caInfoAccess ::= { AuthorityInfoAccessSyntax }

 If certStatus is present, each entry in that sequence describes a
 mechanism and location for

 on-line verification of the status of this certificate, or

 CRL issued by the subject of this certificate.

 If certRetrieval is present, each entry in the sequence describes how
 to retrieve all current certificates whose subject is the subject of
 the certificate in which this extension appears.

Housley, Ford, Polk, & Solo [Page 28]

INTERNET DRAFT December 1996

 If caPolicy is present, each entry in the sequence describes how to
 retrieve the current policy tssociated with the subject of this
 certificate.

 If caCerts is present, each entry in the sequence describes a
 mechanism and location for retrieval of certificates the subject has
 issued to other CAs.

 If the certStatus, certRetrieval, caPolicy, or caCerts sequence has
 more than one value, conforming applications are not required to
 process all the values. Successful processing of any one
 AccessDescritpion shall be sufficient. It is the responsibility of
 the certificate issuer to ensure all mechanisms provide the same
 information.

 The legal values for AccessDescription shall be as defined in
 4.2.2.1.

 If this extension is critical, applications are required to use the
 information in the certStatus field (if present) to check the
 revocation status of this certificate, the certRetrieval field (if
 present) to obtain the subject's other current certificates, and the
 caCerts field (if present) to obtain certificates issued by the
 subject to other CAs.

 There are no additional processing requirements for cAPolicy if the
 extension is marked as critical.

4.3 Examples

 << Certificate samples including descriptive text and ASN.1 encoded
 blobs will be inserted. >>

 4.3.1 Simple certificate, no extensions

 <<TBD>>

 4.3.2 Certificate with Private extensions

 <<TBD>>

 4.3.3 certificate with no subject DN

 <<TBD>>

Housley, Ford, Polk, & Solo [Page 29]

INTERNET DRAFT December 1996

5 CRL and CRL Extensions Profile

 As described above, one goal of this X.509 v2 CRL profile is to
 foster the creation of an interoperable and reusable Internet PKI.
 To achieve this goal, guidelines for the use of extensions are
 specified, and some assumptions are made about the nature of
 information included in the CRL.

 CRLs may be used in a wide range of applications and environments
 covering a broad spectrum of interoperability goals and an even
 broader spectrum of operational and assurance requirements. This
 profile establishes a common baseline for generic applications
 requiring broad interoperability. Emphasis is placed on support for
 X.509 v2 CRLs. The profile defines a baseline set of information
 that can be expected in every CRL. Also, the profile defines common
 locations within the CRL for frequently used attributes, and common
 representations for these attributes.

 This profile does not define any private Internet CRL extensions or
 CRL entry extensions.

 Environments with additional or special purpose requirements may
 build on this profile or may replace it.

 Conforming CAs are not required to issue CRLs if other revocation or
 status mechanisms are provided. Conforming CAs that issue CRLs are
 required to issue version 2 CRLs. Conforming applications are
 required to process version 1 and 2 certificates.

5.1 CRL Fields

 The X.509 v2 CRL syntax is as follows. For signature calculation,
 the data that is to be signed is ASN.1 DER encoded. ASN.1 DER
 encoding is a tag, length, value encoding system for each element.

 CertificateList ::= SEQUENCE {
 tbsCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertList ::= SEQUENCE {
 version Version OPTIONAL,
 -- if present, must be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate ChoiceOfTime,
 nextUpdate ChoiceOfTime,
 revokedCertificates SEQUENCE OF SEQUENCE {

Housley, Ford, Polk, & Solo [Page 30]

INTERNET DRAFT December 1996

 userCertificate CertificateSerialNumber,
 revocationDate ChoiceOfTime,
 crlEntryExtensions Extensions OPTIONAL
 -- if present, must be v2
 } OPTIONAL,
 crlExtensions [0] Extensions OPTIONAL
 -- if present, must be v2
 }

 ChoiceOfTime ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 -- contains a value of the type
 -- registered for use with the
 -- algorithm object identifier value

 CertificateSerialNumber ::= INTEGER

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {
 extnId OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }
 -- contains a DER encoding of a value
 -- of the type registered for use with
 -- the extnId object identifier value

 The following items describe the proposed use of the X.509 v2 CRL in
 the Internet PKI.

5.1.1 CertificateList Fields

 The CertificateList is a SEQUENCE of three required fields. The
 fields are are described in detail in the following subsections

5.1.1.1 tbsCertList

 The first field in the sequence is the tbsCertList. This is a itself
 a sequence, and is generally thought of as the X.509 CRL. It contains
 the names of the subject and issuer, a public key associated with the
 subject an expiration date, and other associated information. The

Housley, Ford, Polk, & Solo [Page 31]

INTERNET DRAFT December 1996

 fields of the basic tbsCertificate are described in detail in section
4.1.2; the tbscertificate may also include extensions which are

 described in section 4.2.

5.1.1.2 signatureAlgorithm

 The signatureAlgorithm field contains the algorithm identifier for
 the algorithm used by the CA to sign the CertificateList. Section

7.2 lists the supported signature algorithms.

5.1.1.3 signature

 The signature field contains a digital signature computed upon the
 ASN.1 DER encoded TBSCertList. The ASN.1 DER encoded TBSCertificate
 is used as the input to a one-way hash function. The one-way hash
 function output value is ASN.1 encoded as an OCTET STRING and the
 result is encrypted (e.g., using RSA Encryption) to form the signed
 quantity. This signature value is then ASN.1 encoded as a BIT STRING
 and included in the Certificate's signature field.

5.1.2 Certificate List "To Be Signed"

 The certificate list to be signed, or tBSCertList, is a SEQUENCE of
 required and optional fields. The required fields identify the CRL
 issuer, the algorithm used to sign the CRL, the date and time the CRL
 was issued, and the date and time by which the CA will issue the next
 CRL.

 Optional fields include lists of revoked certificates and CRL
 extensions. The revoked certificate list is optional to support the
 special case where a CA has not revoked any unexpired certificates it
 has issued. It is expected that nearly all CRLs issued in the
 Internet PKI will contain one or more lists of revoked certificates.
 Similarly, the profile requires conforming CAs to use of one CRL
 extension (CRL number) in all CRLs issued.

5.1.2.1 Version

 This field describes the version of the encoded CRL. When extensions
 are used, as expected in this profile, use version 2 (the integer
 value is 1). If neither CRL extensions nor CRL entry extensions are
 present, version 1 CRLs are recommended (e.g., the integer value
 should be omitted).

5.1.2.2 Signature

 This field contains the algorithm identifier for the algorithm used
 to sign the CRL. Section 7.2 lists the signature algorithms used in

Housley, Ford, Polk, & Solo [Page 32]

INTERNET DRAFT December 1996

 the Internet PKI.

5.1.2.3 Issuer Name

 The issuer name identifies the entity who has signed (and issued the
 CRL). The issuer identity may be carried in the issuer name field
 and/or the issuerAltName extension. If identity information is
 present only in the issuerAltName extension, then the issuer name may
 be an empty sequence and the issuerAltName extension must be
 critical.

5.1.2.4 This Update

 This field indicates the issue date of this CRL. ThisUpdate may be
 encoded as UTCTime or GeneralizedTime.

 CAs conforming to this profile shall not issue CRLs where thisUpdate
 is encoded as GeneralizedTime before the year 2005. CAs conforming to
 this profile shall not issue CRLs where thisUpdate is encoded as
 UTCTime after the year 2015.

 Where encoded as UTCTime, thisUpdate shall be specified and
 interpreted as defined in Section 4.1.2.5.1. Where encoded as
 GeneralizedTime, thisUpdate shall be specified and interpreted as
 defined in Section 4.1.2.5.2.

5.1.2.5 Next Update

 This field indicates the date by which the next CRL will be issued.
 The next CRL could be issued before the indicated date, but it will
 not be issued any later than the indicated date. nextUpdate may be
 encoded as UTCTime or GeneralizedTime.

 CAs conforming to this profile shall not issue CRLs where nextUpdate
 is encoded as GeneralizedTime before the year 2005. CAs conforming to
 this profile shall not issue CRLs where nextUpdate is encoded as
 UTCTime after the year 2015.

 Where encoded as UTCTime, nextUpdate shall be specified and
 interpreted as defined in Section 4.1.2.5.1. Where encoded as
 GeneralizedTime, nextUpdate shall be specified and interpreted as
 defined in Section 4.1.2.5.2.

5.1.2.6 Revoked Certificates

 Revoked certificates are listed. The revoked certificates are named
 by their serial numbers. Certificates are uniquely identified by the
 combination of the issuer name or issuer alternative name along with

Housley, Ford, Polk, & Solo [Page 33]

INTERNET DRAFT December 1996

 the user certificate serial number. The date on which the revocation
 occured is specified. The time for revocationDate shall be expressed
 as described in section 5.1.2.4. Additional information may be
 supplied in CRL entry extensions; CRL entry extensions are discussed
 in section 5.3.

5.2 CRL Extensions

 The extensions defined by ANSI X9 and ISO for X.509 v2 CRLs [X.509-
 AM] [X9.55] provide methods for associating additional attributes
 with CRLs. The X.509 v2 CRL format also allows communities to define
 private extensions to carry information unique to those communities.
 Each extension in a CRL may be designated as critical or non-
 critical. A CRL validation must fail if it encounters an critical
 extension which it does not know how to process. However, an
 unrecognized non-critical extension may be ignored. The following
 presents those extensions used within Internet CRLs. Communities may
 elect to include extensions in CRLs which are not defined in this
 specification. However, caution should be exercised in adopting any
 critical extensions in CRLs which might be used in a general context.

 Conforming CAs that issue CRLs are required to support the CRL number
 extension (5.2.3), and include it in all CRLs issued. Conforming
 applications are required to support the critical and optionally
 critical CRL extensions issuer alternative name (5.2.2), issuing
 distribution point (5.2.4) and delta CRL indicator (5.2.5).

5.2.1 Authority Key Identifier

 The authority key identifier extension provides a means of
 identifying the particular public key used to sign a CRL. The
 identification can be based on either the key identifier (the subject
 key identifier in the CRL signer's certificate) or on the issuer name
 and serial number. The key identifier method is recommended in this
 profile. This extension would be used where an issuer has multiple
 signing keys, either due to multiple concurrent key pairs or due to
 changeover. In general, this non-critical extension should be
 included in certificates.

 The syntax for this CRL extension is defined in Section 4.2.1.1.

5.2.2 Issuer Alternative Name

 The issuer alternative names extension allows additional identities
 to be associated with the issuer of the CRL. Defined options include
 an rfc822 name (electronic mail address), a DNS name, an IP address,
 and a URI. Multiple instances of a name and multiple name forms may
 be included. Whenever such identities are used, the issuer

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 34]

INTERNET DRAFT December 1996

 alternative name extension shall be used.

 Further, if the only issuer identity included in the CRL is an
 alternative name form (e.g., an electronic mail address), then the
 issuer distinguished name should be empty (an empty sequence), the
 issuerAltName extension should be used, and the issuerAltName
 extension must be marked critical. If more than one issuerAltName
 extension appears in the CRL and the issuer distinguished name is
 empty, exactly one issuerAltName extension must be marked critical.

 The object identifier and syntax for this CRL extension are defined
 in Section 4.2.1.8.

5.2.3 CRL Number

 The CRL number is a non-critical CRL extension which conveys a
 monotonically increacing sequence number for each CRL issued by a
 given CA through a specific CA X.500 Directory entry or CRL
 distribution point. This extension allows users to easily determine
 when a particular CRL supercedes another CRL. CAs conforming to this
 profile shall include this extension in all CRLs.

 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 cRLNumber ::= INTEGER (0..MAX)

5.2.4 Issuing Distribution Point

 The issuing distribution point is a critical CRL extension that
 identifies the CRL distribution point for a particular CRL, and it
 indicates whether the CRL covers revocation for end entity
 certificates only, CA certificates only, or a limitied set of reason
 codes. Since this extension is critical, all certificate users must
 be prepared to receive CRLs with this extension.

 The CRL is signed using the CA's private key. CRL Distribution
 Points do not have their own key pairs. If the CRL is stored in the
 X.500 Directory, it is stored in the Directory entry corresponding to
 the CRL distribution point, which may be different that the Directory
 entry of the CA.

 CRL distribution points, if used by a CA, should be partition the CRL
 on the basis of compromise and routine revocation. That is, the
 revocations with reason code keyCompromise (1) shall appear in one
 distribution point, and the revocations with other reason codes shall
 appear in another distribution point.

 id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

Housley, Ford, Polk, & Solo [Page 35]

INTERNET DRAFT December 1996

 issuingDistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

5.2.5 Delta CRL Indicator

 The delta CRL indicator is a critical CRL extension that identifies a
 delta-CRL. The use of delta-CRLs can significantly improve
 processing time for applications which store revocation information
 in a format other than the CRL structure. This allows changes to be
 added to the local database while ignoring unchanged information that
 is already in the local databse.

 When a delta-CRL is issued, the CAs shall also issue a complete CRL.

 The value of BaseCRLNumber identifies the CRL number of the base CRL
 that was used as the starting point in the generation of this delta-
 CRL. The delta-CRL contains the changes between the base CRL and the
 current CRL issued along with the delta-CRL. It is the decision of a
 CA as to whether to provide delta-CRLs. Again, a delta-CRL shall not
 be issued without a corresponding CRL. The value of CRLNumber for
 both the delta-CRL and the corresponding CRL shall be identical.

 A CRL user constructing a locally held CRL from delta-CRLs shall
 consider the constructed CRL incomplete and unusable if the CRLNumber
 of the received delta-CRL is more that one greater that the CRLnumber
 of the delta-CRL last processed.

 id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

 deltaCRLIndicator ::= BaseCRLNumber

 BaseCRLNumber ::= CRLNumber

5.3 CRL Entry Extensions

 The CRL entry extensions already defined by ANSI X9 and ISO for X.509
 v2 CRLs [X.509-AM] [X9.55] provide methods for associating additional
 attributes with CRL entries. The X.509 v2 CRL format also allows
 communities to define private CRL entry extensions to carry
 information unique to those communities. Each extension in a CRL
 entry may be designated as critical or non-critical. A CRL
 validation must fail if it encounters a critical CRL entry extension
 which it does not know how to process. However, an unrecognized
 non-critical CRL entry extension may be ignored. The following

Housley, Ford, Polk, & Solo [Page 36]

INTERNET DRAFT December 1996

 presents recommended extensions used within Internet CRL entries and
 standard locations for information. Communities may elect to use
 additional CRL entry extensions; however, caution should be exercised
 in adopting any critical extensions in CRL entries which might be
 used in a general context.

 All CRL entry extensions are non-critical; support for these
 extensions is optional for conforming CAs and applications. However,
 CAs that issue CRLs are strongly encouraged to include reason codes
 (5.3.1) whenever this information is available.

5.3.1 Reason Code

 The reasonCode is a non-critical CRL entry extension that identifies
 the reason for the certificate revocation. CAs are strongly
 encouraged to include reason codes in CRL entries; however, the
 reason code CRL entry extension should be absent instead of using the
 unspecified (0) reasonCode value.

 id-ce-cRLReason OBJECT IDENTIFIER ::= { id-ce 21 }

 -- reasonCode ::= { CRLReason }

 CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8) }

5.3.2 Hold Instruction Code

 The hold instruction code is a non-critical CRL entry extension that
 provides a registered instruction identifier which indicates the
 action to be taken after encountering a certificate that has been
 placed on hold.

 id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

 holdInstructionCode ::= OBJECT IDENTIFIER

 The following instruction codes have been defined. Conforming applications
 that process this extension shall recognize the following instruction codes.

 holdInstruction OBJECT IDENTIFIER ::=

Housley, Ford, Polk, & Solo [Page 37]

INTERNET DRAFT December 1996

 { iso(1) member-body(2) us(840) x9-57(10040) 2 }

 id-holdinstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1}
 id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2}
 id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}

 Conforming applications which encounter a id-holdinstruction-
 callissuer must call the certificate issuer or reject the
 certificate. Conforming applications which encounter a id-
 holdinstruction-reject ID shall reject the transaction. id-
 holdinstruction-none is semantically equivalent to the absence of a
 holdInstructionCode. Its use is strongly deprecated for the Internet
 PKI.

 <<Note: I didn't think id-holdinstruction-pickupToken was appropriate
 for the Internet PKI>>

5.3.3 Invalidity Date

 The invalidity date is a non-critical CRL entry extension that
 provides the date on which it is known or suspected that the private
 key was compromised or that the certificate otherwise became invalid.
 This date may be earlier than the revocation date in the CRL entry,
 but it must be later than the issue date of the previously issued
 CRL. Remember that the revocation date in the CRL entry specifies
 the date that the CA revoked the certificate. Whenever this
 information is available, CAs are strongly encouraged to share it
 with CRL users.

 The GeneralizedTime values included in this field shall be expressed
 in Greenwich Mean Time (Zulu) and omit trailing zeros in fractional
 seconds. GeneralizedTime shall be expressed as YYYYMMDDHHMMSSZ.

 id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

 invalidityDate ::= GeneralizedTime

5.4 Examples

 5.4.1 Empty CRL

 <<TBD>>

 5.4.2 CRL with entries, no extensions

 <<TBD>>

 5.4.3 CRL with extensions

Housley, Ford, Polk, & Solo [Page 38]

INTERNET DRAFT December 1996

 <<TBD>>

6 Certificate Path Validation

 Certification path validation procedures for the Internet PKI are
 based on Section 12.4.3 of [X.509-AM].

 Certification path processing verifies the binding between the
 subject distinguished name and subject public key. The basic
 constraints and policy constraints extensions facilitate automated,
 self-contained implementation of certification path processing logic.

 The following is an outline of a procedure for validating
 certification paths. An implementation shall be functionally
 equivalent to the external behaviour resulting from this procedure.
 Any algorithm may be used by a particular implementation so long as
 it derives the correct result.

 The inputs to the certification path processing procedure are:

 (a) a set of certificates comprising a certification path;

 (b) a CA name and trusted public key value (or an identifier of
 such a key if the key is stored internally to the certification
 path processing module) for use in verifying the first certificate
 in the certification path;

 (c) a set of initial-policy identifiers (each comprising a
 sequence of policy element identifiers), which identifies one or
 more certificate policies, any one of which would be acceptable
 for the purposes of certification path processing; and

 (d) the current date/time (if not available internally to the
 certification path processing module).

 The outputs of the procedure are:

 (a) an indication of success or failure of certification path
 validation;

 (b) if validation failed, a reason for failure; and

 (c) if validation was successful, a (possibly empty) set of
 policy qualifiers obtained from CAs on the path.

 The procedure makes use of the following set of state variables:

Housley, Ford, Polk, & Solo [Page 39]

INTERNET DRAFT December 1996

 (a) acceptable policy set: A set of certificate policy
 identifiers comprising the policy or policies recognized by the
 public key user together with policies deemed equivalent through
 policy mapping;

 (b) constrained subtrees: A set of root names defining a set of
 subtrees within which all subject names in subsequent certificates
 in the certification path shall fall; if no restriction is in
 force this state variable takes the special value unbounded; and

 (c) excluded subtrees: A set of root names defining a set of
 subtrees within which no subject name in subsequent certificates
 in the certification path may fall; if no restriction is in force
 this state variable takes the special value empty.

 The procedure involves an initialization step, followed by a
 series of certificate-processing steps. The initialization step
 comprises:

 (a) Initialize the constrained subtress to unbounded;

 (b) Initialize the excluded subtrees indicator to empty; and

 (c) Initialize the acceptable policy set to the set of initial-
 policy identifiers.

 Each certificate is then processed in turn, starting with the
 certificate signed using the trusted CA public key which was input to
 this procedure. The last certificate is processed as an end-entity
 certificate; all other certificates (if any) are processed as CA-
 certificates.

 The following checks are applied to all certificates:

 (a) Check that the signature verifies, that dates are valid, that
 the subject and issuer names chain correctly, and that the
 certificate has not been revoked;

 If the certificate has an empty sequence in the name field, name
 chaining will use the critical altSubjectNames and altIssuerNames
 fields. If the certificate has a critical authorityInfoAccess or
 caInfoAccess extension, the information in that extension must be
 used to determine the status of the certificates.

 (b) If a key usage restriction extension is present in the
 certificate and contains a certPolicySet component, check that at
 least one member of the acceptable policy set appears in the
 field;

Housley, Ford, Polk, & Solo [Page 40]

INTERNET DRAFT December 1996

 (c) Check that the subject name or critical AltSubjectName
 extension is consistent with the constrained subtrees state
 variables; and

 (d) Check that the subject name or critical AltSubjectName
 extension is consistent with the excluded subtrees state
 variables.

 If any one of the above checks fails, the procedure terminates,
 returning a failure indication and an appropriate reason. If none of
 the above checks fail on the end-entity certificate, the procedure
 terminates, returning a success indication together with the set of
 all policy qualifier values encountered in the set of certificates.

 For a CA-certificate, the following constraint recording actions are
 then performed, in order to correctly set up the state variables for
 the processing of the next certificate:

 (a) If permittedSubtrees is present in the certificate, set the
 constrained subtrees state variable to the intersection of its
 previous value and the value indicated in the extension field.

 (b) If excludedSubtrees is present in the certificate, set the
 excluded subtrees state variable to the union of its previous
 value and the value indicated in the extension field.

 Note: It is possible to specify an extended version of the above
 certification path processing procedure which results in default
 behaviour identical to the rules of Privacy Enhanced Mail [RFC
 1422]. In this extended version, additional inputs to the
 procedure are a list of one or more Policy Certification Authority
 (PCA) names and an indicator of the position in the certification
 path where the PCA is expected. At the nominated PCA position,
 the CA name is compared against this list. If a recognized PCA
 name is found, then a constraint of SubordinateToCA is implicitly
 assumed for the remainder of the certification path and processing
 continues. If no valid PCA name is found, and if the
 certification path cannot be validated on the basis of identified
 policies, then the certification path is considered invalid.

7 Algorithm Support

 This section describes cryptographic alogrithms which may be used
 with this standard. The section describes one-way hash functions and
 digital signature algorithms which may be used to sign certificates
 and CRLs, and identifies object identifiers for public keys contained
 in a certificate.

Housley, Ford, Polk, & Solo [Page 41]

INTERNET DRAFT December 1996

 Conforming CAs and applications are not required to support the
 algorithms or algorithm identifiers described in this section.
 However, this profile requires conforming CAs and applications to
 conform when they use the algorithms identified here.

7.1 One-way Hash Functions

 This section identifies one-way hash functions for use in the
 Internet PKI. One-way hash functions are also called message digest
 algorithms. SHA-1 is the preferred one-way hash function for the
 Internet PKI. However, PEM uses MD2 for certificates [RFC 1422] [RFC
 1423]. For this reason, MD2 is included in this profile.

7.1.1 MD2 One-way Hash Function

 MD2 was developed by Ron Rivest, but RSA Data Security has not placed
 the MD2 algorithm in the public domain. Rather, RSA Data Security
 has granted license to use MD2 for non-commerical Internet Privacy-
 Enhanced Mail. For this reason, MD2 may continue to be used with PEM
 certificates, but SHA-1 is preferred. MD2 is fully described in RFC

1319 [RFC 1319].

 At the Selected Areas in Cryptography '95 conference in May 1995,
 Rogier and Chauvaud presented an attack on MD2 that can nearly find
 collisions [RC95]. Collisions occur when two different messages
 generate the same message digest. A checksum operation in MD2 is the
 only remaining obstacle to the success of the attack. For this
 reason, the use of MD2 for new applications is discouraged. It is
 still reasonable to use MD2 to verify existing signatures, as the
 ability to find collisions in MD2 does not enable an attacker to find
 new messages having a previously computed hash value.

 << More information on the attack and its implications can be
 obtained from a RSA Laboratories security bulletin. These bulletins
 are available from <http://www.rsa.com/>. >>

7.1.2 SHA-1 One-way Hash Function

 SHA-1 was developed by the U.S. Government. SHA-1 is fully described
 in FIPS 180-1 [FIPS 180-1].

 SHA-1 is the one-way hash function of choice for use with both the
 RSA and DSA signature algorithms.

7.2 Signature Algorithms

 Certificates and CRLs described by this standard may be signed with
 any public key signature algorithm. The certificate or CRL indicates

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1319
http://www.rsa.com/

Housley, Ford, Polk, & Solo [Page 42]

INTERNET DRAFT December 1996

 the algorithm through an algorithmidentifier which appears in the
 signatureAlgorithm field in a Certificate or CertificateList. This
 algorithmidentfier is an OID and has optionally associated
 parameters. This section identifies algorithm identifiers and
 parameters that shall be used in the signatureAlgorithm field in a
 Certificate or CertificateList.

 RSA and DSA are the most popular signature algorithms used in the
 Internet. Signature algorithms are always used in conjunction with a
 one-way hash function identified in Section 7.1.

 The signature algorithm (and one-way hash function) used to sign a
 certificate or CRL is indicated by use of an algorithm identifier.
 An algorithm identifier is an object identifier, and may include
 associated parameters. This section identifies OIDS for RSA and DSA
 and the corresponding parameters.

 The data to be signed (e.g., the one-way hash function output value)
 is first ASN.1 encoded as an OCTET STRING and the result is encrypted
 (e.g., using RSA Encryption) to form the signed quantity. This
 signature value is then ASN.1 encoded as a BIT STRING and included in
 the Certificate or CertificateList (in the signature field).

7.2.1 RSA Signature Algorithm

 A patent statement regarding the RSA algorithm can be found at the
 end of this profile.

 The RSA algorithm is named for it's inventors: Rivest, Shamir, and
 Adleman. The RSA signature algorithm combines either the MD2 or the
 SHA-1 one-way hash function with the RSA asymmetric encryption
 algorithm. The RSA signature algorithm with MD2 and the RSA
 encryption algorithm is defined in PKCS #1 [PKCS#1]. As defined in
 PKCS #1, the ASN.1 object identifier used to identify this signature
 algorithm is:

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 The RSA signature algorithm with SHA-1 and the RSA encryption
 algorithm is defined in by the OSI Ineroperability Workshop in []. As
 defined in [OIW], the ASN.1 object identifier used to identify this
 signature algorithm is:

 sha-1WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14)
 secsig(3) algorithm(2) 29 }

Housley, Ford, Polk, & Solo [Page 43]

INTERNET DRAFT December 1996

 When either of these object identifiers is used within the ASN.1 type
 AlgorithmIdentifier, the parameters component of that type shall be
 the ASN.1 type NULL.

 When signing, the RSA algorithm generates an integer y. This value
 is converted to a bit string such that the most significant bit in y
 is the first bit in the bit string and the least significant bit in y
 is the last bit in the bit string.

 (In general this occurs in two steps. The integer y is converted to
 an octect string such that the first octect has the most significance
 and the last octect has the least significance. The octet string is
 converted into a bit string such that the most significant bit of the
 first octect shall become the first bit in the bit string, and the
 least significant bit of the last octect is the last bit in the BIT
 STRING.

7.2.2 DSA Signature Algorithm

 A patent statement regarding the DSA can be found at the end of this
 profile.

 The Digital Signature Algorithm (DSA) is also called the Digital
 Signature Standard (DSS). DSA was developed by the U.S. Government,
 and DSA is used in conjunction with the the SHA-1 one-way hash
 function. DSA is fully described in FIPS 186 [FIPS 186]. The ASN.1
 object identifiers used to identify this signature algorithm are:

 id-dsa-with-sha1 ID ::= {
 iso(1) member-body(2) us(840) x9-57 (10040) secsig(2)
 x9algorithm(4) 3 }

 The id-dsa-with-sha1 algorithm syntax has NULL parameters. The DSA
 parameters in the subjectPublicKeyInfo field of the certificate of
 the issuer shall apply to the verification of the signature.

 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject certificate using DSA, then
 the certificate issuer's parameters apply to the subject's DSA key.
 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject with a signature algorithm
 other than DSA, then clients shall not validate the certificate.

 When signing, the DSA algorithm generates two values. These values
 are commonly referred to as r and s. To easily transfer these two
 values as one signature, they shall be ASN.1 encoded using the
 following ASN.1 structure:

Housley, Ford, Polk, & Solo [Page 44]

INTERNET DRAFT December 1996

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

7.3 Subject Public Key Algorithms

 Certificates described by this standard may convey a public key for
 any public key algorithm. The certificate indicates the algorithm
 through an algorithmidentifier. This algorithmidentfieier is an OID
 and optionally associated parameters.

 This section identifies preferred OIDs and parameters for the RSA,
 DSA, KEA, and Diffie-Hellman algorithms. Conforming CAs shall use
 the identified OIDs when issuing certificates containing public keys
 for these algorithms. Conforming applications supporting any of these
 algorithms shall, at a minimum, recognize the OID identified in this
 section.

7.3.1 RSA Keys

 The object identifier rsaEncryption identifies RSA public keys.

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)
 rsadsi(113549) pkcs(1) 1 }

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

 The rsaEncryption object identifier is intended to be used in the
 algorithm field of a value of type AlgorithmIdentifier. The
 parameters field shall have ASN.1 type NULL for this algorithm
 identifier.

 The rsa public key shall be encoded using the ASN.1 type
 RSAPublicKey:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
 }

 where modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is the value of the BIT
 STRING subjectPubliKey.

 This object identifier is used in public key certificates for both
 RSA signature keys and RSA encryption keys. The intended application
 for the key may be indicated in the key usage field (see Section

4.2.1.3). The use of a single key for both signature and encryption

Housley, Ford, Polk, & Solo [Page 45]

INTERNET DRAFT December 1996

 purposes is not recommended, but is not forbidden.

7.3.2 Diffie-Hellman Key Exchange Key

 This diffie-hellman object identifier supported by this standard is
 defined by ANSI X9.42.

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 US(840) ansi-x942(10046) number-type(2) 1 }

 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER, -- g }

 The dhpublicnumber object identifier is intended to be used in the
 algorithm field of a value of type AlgorithmIdentifier. The
 parameters field of that type, which has the algorithm-specific
 syntax ANY DEFINED BY algorithm, would have ASN.1 type DHParameter
 for this algorithm.

 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER, -- g }

 The fields of type DHParameter have the following meanings:

 prime is the prime p.

 base is the base g.

 The Diffie-Hellman public key (an INTEGER) is mapped to a
 subjectPublicKey (a BIT STRING) as follows: the most significant bit
 (MSB) of the INTEGER becomes the MSB of the BIT STRING; the least
 significant bit (LSB) of the INTEGER becomes the LSB of the BIT
 STRING.

7.3.3 DSA Signature Keys

 The object identifier supported by this standard is

 id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040)
 secsig(2) x9algorithm(4) 1 }

 The id-dsa algorithm syntax includes optional parameters. These
 parameters are commonly referred to as p, q, and g. If the DSA
 algorithm parameters are absent from the subjectPublicKeyInfo
 AlgorithmIdentifier and the CA signed the subject certificate using
 DSA, then the certificate issuer's DSA parameters apply to the

Housley, Ford, Polk, & Solo [Page 46]

INTERNET DRAFT December 1996

 subject's DSA key. If the DSA algorithm parameters are absent from
 the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
 subject certificate using a signature algorithm other than DSA, then
 the subject's DSA parameters are distributed by other means. The
 parameters are included using the following ASN.1 structure:

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject certificate using DSA, then
 the certificate issuer's parameters apply to the subject's DSA key.
 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject with a signature algorithm
 other than DSA, then clients shall not validate the certificate.

 When signing, DSA algorithm generates two values. These values are
 commonly referred to as r and s. To easily transfer these two values
 as one signature, they are ASN.1 encoded using the following ASN.1
 structure:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 The encoded signature is conveyed as the value of the BIT STRING
 signature in a Certificate or CertificateList.

 The DSA public key shall be ASN.1 encoded as an INTEGER; this
 encoding shall be used as the contents (i.e., the value) of the
 subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
 data element.

 DSAPublicKey ::= INTEGER -- public key Y

7.3.4 Key Exchange Algorithm (KEA)

 The Key Exchange Algorithm (KEA) is a classified algorithm for
 exchanging keys. A KEA "pairwise key" may be generated between two
 users if their KEA public keys were generated with the same KEA
 parameters. The KEA parameters are not included in a certificate;
 instead a "domain identifier" is supplied in the parameters field.

 When the subjectPublicKeyInfo field contains a KEA key, the algorithm
 identifier and parameters shall be as defined in [sdn.701r]:

Housley, Ford, Polk, & Solo [Page 47]

INTERNET DRAFT December 1996

 id-keyEncryptionAlgorithm OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 1 22 }

 KEA-Parms-Id ::= OCTET STRING

 The Kea-Parms-Id shall always appear when the subjectPublicKeyInfo
 field algorithm identifier is id-keyEncryptionAlgorithm. Kea-Parms-Id
 is the "domain identifier" and is ten octets in length. If the Kea-
 Parms-Id of two KEA keys are equivalent, the subjects possess the
 same KEA parameter values and may exchange keys.

 <<Need encoding of KEA key>>

8. ASN.1 Structures and OIDs

 PKIX1 DEFINITIONS ::=

 BEGIN

 -- need ASN.1 for:
 -- AlgorithmIdentifier
 -- ORAddress

 -- attribute data types --

 Attribute ::= SEQUENCE {
 type AttributeValue,
 values SET OF AttributeValue
 -- at least one value is required -- }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeValue,
 value AttributeValue }

 AttributeValueAssertion ::= SEQUENCE {AttributeType, AttributeValue}

 -- naming data types --

 Name ::= CHOICE { -- only one possibility for now --

Housley, Ford, Polk, & Solo [Page 48]

INTERNET DRAFT December 1996

 rdnSequence RDNSequence }

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 DistinguishedName ::= RDNSequence

 RelativeDistinguishedName ::= SET SIZE (1 .. MAX) OF AttributeTypeAndValue

 -- Directory string type --

 DirectoryString ::= CHOICE {
 teletexString TeletexString (SIZE (1..maxSize)),
 printableString PrintableString (SIZE (1..maxSize)),
 universalString ANY -- the '93 ASN.1 type UniversalString
 }

 -- basic stuff starts here

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertificate ::= SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] Extensions OPTIONAL
 -- If present, version must be v3
 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {
 notBefore CertificateValidityDate,
 notAfter CertificateValidityDate }

 CertificateValidityDate ::= CHOICE {

Housley, Ford, Polk, & Solo [Page 49]

INTERNET DRAFT December 1996

 utcTime UTCTime,
 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

 -- Extension ::= { {id-ce 15}, ... , keyUsage }

 ID ::= OBJECT IDENTIFIER
 joint-iso-ccitt ID ::= { 2 }
 ds ID ::= {joint-iso-ccitt 5}
 certificateExtension ID ::= {ds 29}
 -- id-ce ID ::= certificateExtension
 id-ce ID ::= {ds 29}

 AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier
OPTIONAL,
 authorityCertIssuer [1] GeneralNames
OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber
OPTIONAL
 }
 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,
 authorityCertSerialNumber PRESENT} |
 WITH COMPONENTS {..., authorityCertIssuer ABSENT,
 authorityCertSerialNumber ABSENT})

 -- authorityKeyIdentifier ::= AuthorityKeyIdentifier

 KeyIdentifier ::= OCTET STRING

 -- subjectKeyIdentifier ::= KeyIdentifier

 KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),

 keyAgreement (4),
 keyCertSign (5),

Housley, Ford, Polk, & Solo [Page 50]

INTERNET DRAFT December 1996

 cRLSign (6) }

 id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

 PrivateKeyUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }
 (WITH COMPONENTS {..., notBefore PRESENT} |
 WITH COMPONENTS {..., notAfter PRESENT})

 id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

 CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

 CertPolicyId ::= OBJECT IDENTIFIER

 -- PolicyQualifierInfo ::= SEQUENCE {
 -- policyQualifierId CERT-POLICY-QUALIFIER.&id
 -- ({SupportedPolicyQualifiers}),
 -- qualifier CERT-POLICY-QUALIFIER.&Qualifier
 --
 -- ({SupportedPolicyQualifiers}{@policyQualifierId})
 -- OPTIONAL }

 -- SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ... }

 PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId PolicyQualifierId,
 qualifier ANY DEFINED BY policyQualifierId }

 PolicyQualifierId ::= ENUMERATED {
 qualId1 (1), qualId2 (2), qualId3 (3), qualId4 (4), qualId5 (5) }

 id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }

 PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

 id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

 SubjectAltName ::= GeneralNames

Housley, Ford, Polk, & Solo [Page 51]

INTERNET DRAFT December 1996

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] ANY,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER }

 -- OTHER-NAME ::= TYPE-IDENTIFIER note: not supported in '88 ASN.1
 -- substituted ANY where used [GeneralName otherName]

 EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString }

 id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

 IssuerAltName ::= GeneralNames

 id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }

 SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

 id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

 BasicConstraints ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

 id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }

 NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

Housley, Ford, Polk, & Solo [Page 52]

INTERNET DRAFT December 1996

 id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 34 }

 PolicyConstraints ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 policySet [0] CertPolicySet OPTIONAL,
 requireExplicitPolicy [1] SkipCerts OPTIONAL,
 inhibitPolicyMapping [2] SkipCerts OPTIONAL }

 SkipCerts ::= INTEGER (0..MAX)

 CertPolicySet ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

 -- cRLDistributionPoints CRLDistPointsSyntax ::=
 -- SEQUENCE SIZE (1..MAX) OF DistributionPoint

 CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

 DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

 ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

 pkix OBJECT IDENTIFIER ::= { 1 3 6 1 5 3 }

 -- Object identifiers for ftp, http, smtp and ldap protocols

 applTCPProto OBJECT IDENTIFIER ::= { 1 3 6 1 2 1 27 4 }

 ftpID OBJECT-IDENTIFIER ::= {applTCPProtoID 21}
 httpID OBJECT-IDENTIFIER ::= {applTCPProtoID 80}
 smtpID OBJECT-IDENTIFIER ::= {applTCPProtoID 25}
 ldapID OBJECT-IDENTIFIER ::= {applTCPProtoID 389}

 -- Object identifier for the X.500 directory access protocol

 dap OBJECT-IDENTIFIER ::= { 2 5 3 1 }

Housley, Ford, Polk, & Solo [Page 53]

INTERNET DRAFT December 1996

 id-pkix-subjectInfoAccess OBJECT IDENTIFIER ::= { pkix 1 }

 AccessDescription ::= SEQUENCE {
 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

 --subjectInfoAccess SubjectInfoAccessSyntax ::=
 -- SEQUENCE SIZE (1..MAX) OF AccessDescription
 SubjectInfoAccessSyntax ::=
 SEQUENCE OF AccessDescription

 id-pkix-authorityInfoAccess OBJECT IDENTIFIER ::= { pkix 2 }

 AuthorityInfoAccessSyntax ::= SEQUENCE {
 certStatus [0] SEQUENCE OF AccessDescription OPTIONAL,
 certRetrieval [1] SEQUENCE OF AccessDescription OPTIONAL,
 caPolicy [2] SEQUENCE OF AccessDescription OPTIONAL,
 caCerts [3] SEQUENCE OF AccessDescription OPTIONAL }

 id-pkix-caInfoAccess OBJECT-IDENTIFIER ::= { pkix 3 }

 -- caInfoAccess ::= {
 -- AuthorityInfoAccessSyntax }

 -- CRL structures

 CertificateList ::= SEQUENCE {
 tbsCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertList ::= SEQUENCE {
 version Version OPTIONAL,
 -- if present, must be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate ChoiceOfTime,
 nextUpdate ChoiceOfTime,
 revokedCertificates SEQUENCE OF SEQUENCE {
 userCertificate CertificateSerialNumber,
 revocationDate ChoiceOfTime,
 crlEntryExtensions Extensions OPTIONAL
 -- if present, must be v2
 } OPTIONAL,
 crlExtensions [0] Extensions OPTIONAL
 -- if present, must be v2
 }

Housley, Ford, Polk, & Solo [Page 54]

INTERNET DRAFT December 1996

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 -- contains a value of the type
 -- registered for use with the
 -- algorithm object identifier value

 ChoiceOfTime ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 CertificateSerialNumber ::= INTEGER

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {
 extnId OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }
 -- contains a DER encoding of a value
 -- of the type registered for use with
 -- the extnId object identifier value

 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 CRLNumber ::= INTEGER (0..MAX)

 id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

 IssuingDistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

 id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

 -- deltaCRLIndicator ::= BaseCRLNumber

 BaseCRLNumber ::= CRLNumber

 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 -- reasonCode EXTENSION ::= {

Housley, Ford, Polk, & Solo [Page 55]

INTERNET DRAFT December 1996

 -- SYNTAX CRLReason
 -- IDENTIFIED BY { id-ce 21 } }

 CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8) }

 id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

 HoldInstructionCode ::= OBJECT IDENTIFIER

 member-body ID ::= { iso 2 }
 us ID ::= { member-body 840 }
 x9cm ID ::= { us 10040 }
 holdInstruction ID ::= {x9cm 2}

 id-holdinstruction-none ID ::= {holdInstruction 1}
 id-holdinstruction-callissuer ID ::= {holdInstruction 2}
 id-holdinstruction-reject ID ::= {holdInstruction 3}

 id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

 InvalidityDate ::= GeneralizedTime

 -- Algorithm strustures

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 sha-1WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithm(2) 29 }

 id-dsa-with-sha1 ID ::= {
 iso(1) member-body(2) us(840) x9-57 (10040) secsig(2)
 x9algorithm(4) 3 }

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

Housley, Ford, Polk, & Solo [Page 56]

INTERNET DRAFT December 1996

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)
 rsadsi(113549) pkcs(1) 1 }

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 US(840) ansi-x942(10046) 1 }

 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER -- g
 }

 id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040)
 secsig(2) x9algorithm(4) 1 }

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 id-keyEncryptionAlgorithm OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 1 22 }

 KEA-Parms-Id ::= OCTET STRING

 id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
 id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
 id-pkix-policy-CPS OBJECT IDENTIFIER ::= { pkix 4 }

 CPSuri ::= IA5String

 id-pkix-policy-userNotice OBJECT IDENTIFIER ::= { pkix 5 }

 UserNotice ::= CHOICE {
 ia5String IA5String,
 bnpString ANY -- defined as BMPString in '93 ASN.1
 }

 END

 References

Housley, Ford, Polk, & Solo [Page 57]

INTERNET DRAFT December 1996

 [X9.57] ANSI X9.57

 [FIPS 180-1] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995.
 [Supersedes FIPS PUB 180 dated 11 May 1993.]

 [FIPS 186] Federal Information Processing Standards Publication
 (FIPS PUB) 186, Digital Signature Standard, 18 May 1994.

 [PKCS#1] PKCS #1: RSA Encryption Standard, Version 1.4, RSA Data
 Security, Inc., 3 June 1991.

 [RC95] Rogier, N. and Chauvaud, P., "The compression function of
 MD2 is not collision free," Presented at Selected Areas in
 Cryptography '95, Carleton University, Ottawa, Canada,
 18-19 May 1995.

 [RFC 1319] Kaliski, B., "The MD2 Message-Digest Algorithm," RFC 1319,
 RSA Laboratories, April 1992.

 [RFC 1422] Kent, S., "Privacy Enhancement for Internet Electronic
 Mail: Part II: Certificate-Based Key Management," RFC

1422, BBN Communications, February 1993.

 [RFC 1423] Balenson, D., "Privacy Enhancement for Internet Electronic
 Mail: Part III: Algorithms, Modes, and Identifiers,"

RFC 1423, Trusted Information Systems, February 1993.

 [RFC 1959] T. Howes, M. Smith, "An LDAP URL Format", RFC 1959,
 June 1996.

 [SDN.701R] SDN.701, "Message Security Protocol", Revision 4.0
 1996-06-07 with "Corrections to Message Security Protocol,
 SDN.701, Rev 4.0, 96-06-07." August 30, 1996.

 [X.208] << Do we want to reference the 1988 or 1993 version? >>

 [X.509-AM] << Need final reference >>

 [X9.55] << Need final reference >>

Patent Statements

 The Internet PKI relies on the use of patented public key technology.
 The Internet Standards Process as defined in RFC 1310 requires a
 written statement from the Patent holder that a license will be made
 available to applicants under reasonable terms and conditions prior
 to approving a specification as a Proposed, Draft or Internet

https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1423
https://datatracker.ietf.org/doc/html/rfc1959
https://datatracker.ietf.org/doc/html/rfc1310

Housley, Ford, Polk, & Solo [Page 58]

INTERNET DRAFT December 1996

 Standard.

 Patent statements for DSA, RSA, and Diffie-Hellman follow. These
 statements have been supplied by the patent holders, not the authors
 of this profile.

 Digital Signature Algorithm (DSA)

 The U.S. Government holds patent 5,231,668 on the Digital
 Signature Algorithm (DSA), which has been incorporated into
 Federal Information Processing Standard (FIPS) 186. The patent
 was issued on July 27, 1993.

 The National Institute of Standards and Technology (NIST) has a
 long tradition of supplying U.S. Government-developed techniques
 to committees and working groups for inclusion into standards on a
 royalty-free basis. NIST has made the DSA patent available
 royalty-free to users worldwide.

 Regarding patent infringement, FIPS 186 summarizes our position;
 the Department of Commerce is not aware of any patents that would
 be infringed by the DSA. Questions regarding this matter may be
 directed to the Deputy Chief Counsel for NIST.

 RSA Signature and Encryption

 << Now that PKP has dissolved, a revised patent statement for RSA
 from RSADSI is needed. >>

 Diffie-Hellman Key Agreement

 << Now that PKP has dissolved, a revised patent statement for
 Diffie-Hellman from Cylink is needed. >>

 Obsolete PKP Patent Statement

 << This statement is included here until a replacement from RSADSI
 and Cylink can be obtained. >>

 The Massachusetts Institute of Technology and the Board of
 Trustees of the Leland Stanford Junior University have granted
 Public Key Partners (PKP) exclusive sub-licensing rights to the
 following patents issued in the United States, and all of their
 corresponding foreign patents:

 Cryptographic Apparatus and Method
 ("Diffie-Hellman")......................... No. 4,200,770

Housley, Ford, Polk, & Solo [Page 59]

INTERNET DRAFT December 1996

 Public Key Cryptographic Apparatus
 and Method ("Hellman-Merkle").............. No. 4,218,582

 Cryptographic Communications System and
 Method ("RSA")............................. No. 4,405,829

 Exponential Cryptographic Apparatus
 and Method ("Hellman-Pohlig").............. No. 4,424,414

 These patents are stated by PKP to cover all known methods of
 practicing the art of Public Key encryption, including the
 variations collectively known as El Gamal.

 Public Key Partners has provided written assurance to the Internet
 Society that parties will be able to obtain, under reasonable,
 nondiscriminatory terms, the right to use the technology covered
 by these patents. This assurance is documented in RFC 1170 titled
 "Public Key Standards and Licenses". A copy of the written
 assurance dated April 20, 1990, may be obtained from the Internet
 Assigned Number Authority (IANA).

 The Internet Society, Internet Architecture Board, Internet
 Engineering Steering Group and the Corporation for National
 Research Initiatives take no position on the validity or scope of
 the patents and patent applications, nor on the appropriateness of
 the terms of the assurance. The Internet Society and other groups
 mentioned above have not made any determination as to any other
 intellectual property rights which may apply to the practice of
 this standard. Any further consideration of these matters is the
 user's own responsibility.

Security Considerations

 This entire memo is about security mechanisms.
Author Addresses:

 Russell Housley
 SPYRUS
 PO Box 1198
 Herndon, VA 20172
 USA
 housley@spyrus.com

 Warwick Ford
 VeriSign, Inc.
 One Alewife Center
 Cambridge, MA 02140
 wford@verisign.com

https://datatracker.ietf.org/doc/html/rfc1170

Housley, Ford, Polk, & Solo [Page 60]

INTERNET DRAFT December 1996

 Tim Polk
 NIST
 Building 820, Room 426
 Gaithersburg, MD 20899
 wpolk@nist.gov

 David Solo
 BBN
 150 CambridgePark Drive
 Cambridge, MA 02140
 USA
 solo@bbn.com

Housley, Ford, Polk, & Solo [Page 61]

