
PKIX Working Group R. Housley (SPYRUS)
Internet Draft W. Ford (Verisign)
 W. Polk (NIST)
 D. Solo (BBN)
expires in six months October 14, 1997

Internet Public Key Infrastructure

 X.509 Certificate and CRL Profile

 <draft-ietf-pkix-ipki-part1-06.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This is the sixth draft of the Internet Public Key Infrastructure
 X.509 Certificate and CRL Profile. This draft is a complete
 specification. This text includes minor modifications over the
 previous draft. Please send comments on this document to the ietf-
 pkix@tandem.com mail list.

1 Executive Summary

 This specification is one part of a multipart standard for the Public
 Key Infrastructure (PKI) for the Internet. This specification is a
 standalone document; implementations of this standard may proceed
 independent from the other parts.

Housley, Ford, Polk, & Solo [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt

INTERNET DRAFT October 14, 1997

 This specification profiles the format and semantics of certificates
 and certificate revocation lists for the Internet PKI. Procedures
 are described for processing of certification paths in the Internet
 environment. Encoding rules are provided for popular cryptographic
 algorithms. Finally, ASN.1 modules are provided in the appendices
 for all data structure defined or referenced.

 The specification describes the requirements which inspire the
 creation of this document and the assumptions which affect its scope
 in Section 2. Section 3 presents an architectural model and
 describes its relationship to previous IETF and ISO standards. In
 particular, this document's relationship with the IETF PEM
 specifications and the ISO X.509 documents are described.

 The specification profiles the X.509 version 3 certificate in Section
4, and the X.509 version 2 certificate revocation list (CRL) in
Section 5. The profiles include the identification of ISO and ANSI

 extensions which may be useful in the Internet PKI and definition of
 new extensions to meet the Internet's requirements. The profiles are
 presented in the 1988 Abstract Syntax Notation One (ASN.1) rather
 than the 1993 syntax used in the ISO standards. The ASN.1 notation
 assumes implict tagging throughout.

 This specification also includes path validation procedures in
Section 6. These procedures are based upon the ISO definition, but

 the presentation assumes a self-signed root certificate.
 Implementations are required to derive the same results but are not
 required to use the specified procedures.

 Finally, Section 7 of the specification describes procedures for
 identification and encoding of public key materials and digital
 signatures. Implementations are not required to use any particular
 cryptographic algorithms. However, conforming implementations which
 use the identified algorithms are required to identify and encode the
 public key materials and digital signatures as described.

Appendix A contains all ASN.1 structures defined or referenced within
 this specification. As above, the material is presented in the 1988
 Abstract Syntax Notation One (ASN.1) rather than the 1993 syntax.

Appendix B contains the same information in the 1993 ASN.1 notation.
Appendix C contains notes on less familiar features of the ASN.1

 notation used within this specification. Appendix D contains
 examples of a conforming certificate and a conforming CRL.

2 Requirements and Assumptions

 Goal is to develop a profile and associated management structure to
 facilitate the adoption/use of X.509 certificates within Internet

Housley, Ford, Polk, & Solo [Page 2]

INTERNET DRAFT October 14, 1997

 applications for those communities wishing to make use of X.509
 technology. Such applications may include WWW, electronic mail, user
 authentication, and IPSEC, as well as others. In order to relieve
 some of the obstacles to using X.509 certificates, this document
 defines a profile to promote the development of certificate
 management systems; development of application tools; and
 interoperability determined by policy, as opposed to syntax.

 Some communities will need to supplement, or possibly replace, this
 profile in order to meet the requirements of specialized application
 domains or environments with additional authorization, assurance, or
 operational requirements. However, for basic applications, common
 representations of frequently used attributes are defined so that
 application developers can obtain necessary information without
 regard to the issuer of a particular certificate or certificate
 revocation list (CRL).

 A certificate user should review the certification practice Statement
 (CPS) generated by the CA before relying on the authentication or
 non-repudiation services associated with the public key in a
 particular certificate. To this end, this standard does not
 prescribe legally binding rules or duties.

 As supplemental authorization and attribute management tools emerge,
 such as attribute certificates, it may be appropriate to limit the
 authenticated attributes that are included in a certificate. These
 other management tools may be more appropriate method of conveying
 many authenticated attributes.

2.1 Communication and Topology

 The users of certificates will operate in a wide range of
 environments with respect to their communication topology, especially
 users of secure electronic mail. This profile supports users without
 high bandwidth, real-time IP connectivity, or high connection
 availablity. In addition, the profile allows for the presence of
 firewall or other filtered communication.

 This profile does not assume the deployment of an X.500 Directory
 system. The profile does not prohibit the use of an X.500 Directory,
 but other means of distributing certificates and certificate
 revocation lists (CRLs) are supported.

2.2 Acceptability Criteria

 The goal of the Internet Public Key Infrastructure (PKI) is to meet
 the needs of deterministic, automated identification, authentication,
 access control, and authorization functions. Support for these

Housley, Ford, Polk, & Solo [Page 3]

INTERNET DRAFT October 14, 1997

 services determines the attributes contained in the certificate as
 well as the ancillary control information in the certificate such as
 policy data and certification path constraints.

2.3 User Expectations

 Users of the Internet PKI are people and processes who use client
 software and are the subjects named in certificates. These uses
 include readers and writers of electronic mail, the clients for WWW
 browsers, WWW servers, and the key manager for IPSEC within a router.
 This profile recognizes the limitations of the platforms these users
 employ and the sophistication/attentiveness of the users themselves.
 This manifests itself in minimal user configuration responsibility
 (e.g., root keys, rules), explicit platform usage constraints within
 the certificate, certification path constraints which shield the user
 from many malicious actions, and applications which sensibly automate
 validation functions.

2.4 Administrator Expectations

 As with users, the Internet PKI profile is structured to support the
 individuals who generally operate Certification Authorities (CAs).
 Providing administrators with unbounded choices increases the chances
 that a subtle CA administrator mistake will result in broad
 compromise. Also, unbounded choices greatly complicates the software
 that must process and validate the certificates created by the CA.

3 Overview of Approach

 Following is a simplified view of the architectural model assumed by
 the PKIX specifications.

Housley, Ford, Polk, & Solo [Page 4]

INTERNET DRAFT October 14, 1997

 +---+
 | C | +------------+
 | e | <-------------------->| End entity |
 | r | Operational +------------+
 | t | transactions ^
 | | and management | Management
 | / | transactions | transactions
 | | |
 | C | PKI users v
 | R | -------+-------+--------+------
 | L | PKI management ^ ^
 | | entities | | | |
 | | v |
 | R | +------+ |
 | e | <-------------- | RA | <-----+ |
 | p | certificate | | | |
 | o | publish +------+ | |
 | s | | |
 | I | v v
 | t | +------------+
 | o | <--------------------------| CA |
 | r | certificate publish +------------+
 | y | CRL publish ^
 | | |
 +---+ | Management
 | transactions
 v
 +------+
 | CA |
 +------+

 Figure 1 - PKI Entities

 The components in this model are:

 end entity: user of PKI certificates and/or end user system that
 is the subject of a certificate;
 CA: certification authority;
 RA: registration authority, i.e., an optional system to
 which a CA delegates certain management functions;
 repository: a system or collection of distributed systems that
 store certificates and CRLs and serves as a means of
 distributing these certificates and CRLs to end
 entities.

Housley, Ford, Polk, & Solo [Page 5]

INTERNET DRAFT October 14, 1997

3.1 X.509 Version 3 Certificate

 Application of public key technology requires the user of a public
 key to be confident that the public key belongs to the correct remote
 subject (person or system) with which an encryption or digital
 signature mechanism will be used. This confidence is obtained
 through the use of public key certificates, which are data structures
 that bind public key values to subjects. The binding is achieved by
 having a trusted certification authority (CA) digitally sign each
 certificate. A certificate has a limited valid lifetime which is
 indicated in its signed contents. Because a certificate's signature
 and timeliness can be independently checked by a certificate-using
 client, certificates can be distributed via untrusted communications
 and server systems, and can be cached in unsecured storage in
 certificate-using systems.

 The standard known as ITU-T X.509 (formerly CCITT X.509) or ISO/IEC
 9594-8, which was first published in 1988 as part of the X.500
 Directory recommendations, defines a standard certificate format. The
 certificate format in the 1988 standard is called the version 1 (v1)
 format. When X.500 was revised in 1993, two more fields were added,
 resulting in the version 2 (v2) format. These two fields are used to
 support directory access control.

 The Internet Privacy Enhanced Mail (PEM) proposals, published in
 1993, include specifications for a public key infrastructure based on
 X.509 v1 certificates [RFC 1422]. The experience gained in attempts
 to deploy RFC 1422 made it clear that the v1 and v2 certificate
 formats are deficient in several respects. Most importantly, more
 fields were needed to carry information which PEM design and
 implementation experience has proven necessary. In response to these
 new requirements, ISO/IEC and ANSI X9 developed the X.509 version 3
 (v3) certificate format. The v3 format extends the v2 format by
 adding provision for additional extension fields. Particular
 extension field types may be specified in standards or may be defined
 and registered by any organization or community. In June 1996,
 standardization of the basic v3 format was completed [X.509-AM].

 ISO/IEC and ANSI X9 have also developed standard extensions for use
 in the v3 extensions field [X.509-AM][X9.55]. These extensions can
 convey such data as additional subject identification information,
 key attribute information, policy information, and certification path
 constraints.

 However, the ISO/IEC and ANSI standard extensions are very broad in
 their applicability. In order to develop interoperable
 implementations of X.509 v3 systems for Internet use, it is necessary
 to specify a profile for use of the X.509 v3 extensions tailored for

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 6]

INTERNET DRAFT October 14, 1997

 the Internet. It is one goal of this document to specify a profile
 for Internet WWW, electronic mail, and IPSEC applications.
 Environments with additional requirements may build on this profile
 or may replace it.

3.2 Certification Paths and Trust

 A user of a security service requiring knowledge of a public key
 generally needs to obtain and validate a certificate containing the
 required public key. If the public-key user does not already hold an
 assured copy of the public key of the CA that signed the certificate,
 then it might need an additional certificate to obtain that public
 key. In general, a chain of multiple certificates may be needed,
 comprising a certificate of the public key owner (the end entity)
 signed by one CA, and zero or more additional certificates of CAs
 signed by other CAs. Such chains, called certification paths, are
 required because a public key user is only initialized with a limited
 number of assured CA public keys.

 There are different ways in which CAs might be configured in order
 for public key users to be able to find certification paths. For
 PEM, RFC 1422 defined a rigid hierarchical structure of CAs. There
 are three types of PEM certification authority:

 (a) Internet Policy Registration Authority (IPRA): This
 authority, operated under the auspices of the Internet Society,
 acts as the root of the PEM certification hierarchy at level 1.
 It issues certificates only for the next level of authorities,
 PCAs. All certification paths start with the IPRA.

 (b) Policy Certification Authorities (PCAs): PCAs are at level 2
 of the hierarchy, each PCA being certified by the IPRA. A PCA
 must establish and publish a statement of its policy with respect
 to certifying users or subordinate certification authorities.
 Distinct PCAs aim to satisfy different user needs. For example,
 one PCA (an organizational PCA) might support the general
 electronic mail needs of commercial organizations, and another PCA
 (a high-assurance PCA) might have a more stringent policy designed
 for satisfying legally binding signature requirements.

 (c) Certification Authorities (CAs): CAs are at level 3 of the
 hierarchy and can also be at lower levels. Those at level 3 are
 certified by PCAs. CAs represent, for example, particular
 organizations, particular organizational units (e.g., departments,
 groups, sections), or particular geographical areas.

RFC 1422 furthermore has a name subordination rule which requires
 that a CA can only issue certificates for entities whose names are

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 7]

INTERNET DRAFT October 14, 1997

 subordinate (in the X.500 naming tree) to the name of the CA itself.
 The trust associated with a PEM certification path is implied by the
 PCA name. The name subordination rule ensures that CAs below the PCA
 are sensibly constrained as to the set of subordinate entities they
 can certify (e.g., a CA for an organization can only certify entities
 in that organization's name tree). Certificate user systems are able
 to mechanically check that the name subordination rule has been
 followed.

 The RFC 1422 was based upon the X.509 v1 certificate formats. The
 limitations of X.509 v1 required imposition of several structural
 restrictions to clearly associate policy information or restrict the
 utility of certificates. These restrictions included:

 (a) a pure top-down hierarchy, with all certification paths
 starting from the root;

 (b) a naming subordination rule restricting the names of a CA's
 subjects; and

 (c) use of the PCA concept, which requires knowledge of individual
 PCAs to be built into certificate chain verification logic.
 Knowledge of individual PCAs was required to determine if a chain
 could be accepted.

 With X.509 v3, most of the requirements addressed by RFC 1422 can be
 addressed using certificate extensions, without a need to restrict
 the CA structures used. In particular, the certificate extensions
 relating to certificate policies obviate the need for PCAs and the
 constraint extensions obviate the need for the name subordination
 rule. As a result, this document supports a more flexible
 architecture, including:

 (a) Certification paths may start with a public key of a CA in a
 user's own domain, or with the public key of the top of a
 hierarchy. Starting with the public key of a CA in a user's own
 domain has certain advantages. In many environments, the local
 domain is often the most trusted. Initialization and key-pair-
 update operations can often be more effectively conducted between
 an end entity and a local management system.

 (b) Name constraints may be imposed through explicit inclusion of
 a name constraints extension in a certificate, but are not
 required.

 (c) Policy extensions and policy mappings replace the PCA
 concept, which permits a greater degree of automation. The
 application can determine if the certification path is acceptable

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 8]

INTERNET DRAFT October 14, 1997

 based on the contents of the certificates instead of a priori
 knowledge of PCAs. This permits the full process of certificate
 chain processing to be implemented in software.

3.3 Revocation

 When a certificate is issued, it is expected to be in use for its
 entire validity period. However, various circumstances may cause a
 certificate to become invalid prior to the expiration of the validity
 period. Such circumstances might include change of name, change of
 association between subject and CA (e.g., an employee terminates
 employment with an organization), and compromise or suspected
 compromise of the corresponding private key. Under such
 circumstances, the CA needs to revoke the certificate.

 X.509 defines one method of certificate revocation. This method
 involves each CA periodically issuing a signed data structure called
 a certificate revocation list (CRL). A CRL is a time stamped list
 identifying revoked certificates which is signed by a CA and made
 freely available in a public repository. Each revoked certificate is
 identified in a CRL by its certificate serial number. When a
 certificate-using system uses a certificate (e.g., for verifying a
 remote user's digital signature), that system not only checks the
 certificate signature and validity but also acquires a suitably-
 recent CRL and checks that the certificate serial number is not on
 that CRL. The meaning of "suitably-recent" may vary with local
 policy, but it usually means the most recently-issued CRL. A CA
 issues a new CRL on a regular periodic basis (e.g., hourly, daily, or
 weekly). Entries are added to CRLs as revocations occur, and an
 entry may be removed when the certificate expiration date is reached.

 An advantage of this revocation method is that CRLs may be
 distributed by exactly the same means as certificates themselves,
 namely, via untrusted communications and server systems.

 One limitation of the CRL revocation method, using untrusted
 communications and servers, is that the time granularity of
 revocation is limited to the CRL issue period. For example, if a
 revocation is reported now, that revocation will not be reliably
 notified to certificate-using systems until the next periodic CRL is
 issued -- this may be up to one hour, one day, or one week depending
 on the frequency that the CA issues CRLs.

 Another potential problem with CRLs is the risk of a CRL growing to
 an entirely unacceptable size. In the 1988 and 1993 versions of
 X.509, the CRL for the end-user certificates needed to cover the
 entire population of end-users for one CA. It is desirable to allow
 such populations to be in the range of thousands, tens of thousands,

Housley, Ford, Polk, & Solo [Page 9]

INTERNET DRAFT October 14, 1997

 or possibly even hundreds of thousands of users. The end-user CRL is
 therefore at risk of growing to such sizes, which present major
 communication and storage overhead problems. With the version 2 CRL
 format, introduced along with the v3 certificate format, it becomes
 possible to arbitrarily divide the population of certificates for one
 CA into a number of partitions, each partition being associated with
 one CRL distribution point (e.g., directory entry or URL) from which
 CRLs are distributed. Therefore, the maximum CRL size can be
 controlled by a CA. Separate CRL distribution points can also exist
 for different revocation reasons. For example, routine revocations
 (e.g., name change) may be placed on a different CRL to revocations
 resulting from suspected key compromises, and policy may specify that
 the latter CRL be updated and issued more frequently than the former.

 As with the X.509 v3 certificate format, in order to facilitate
 interoperable implementations from multiple vendors, the X.509 v2 CRL
 format needs to be profiled for Internet use. It is one goal of this
 document to specify that profile.

 Furthermore, it is recognized that on-line methods of revocation
 notification may be applicable in some environments as an alternative
 to the X.509 CRL. On-line revocation checking significantly reduces
 the latency between a revocation report and the next issue of a CRL.
 Once the CA accepts the report as authentic and valid, any query to
 the on-line service will correctly reflect the certificate validation
 impacts of the revocation. However, these methods impose new
 security requirements; the certificate validator must trust the on-
 line validation service while the repository did not need to be
 trusted.

 Therefore, this profile also considers standard approaches to on-line
 revocation notification. The PKIX series of specifications defines a
 set of standard message formats supporting these functions in
 [PKIXOCSP]. The protocols for conveying these messages in different
 environments are also specified.

3.4 Operational Protocols

 Operational protocols are required to deliver certificates and CRLs
 (or status information) to certificate using client systems.
 Provision is needed for a variety of different means of certificate
 and CRL delivery, including request/delivery procedures based on E-
 mail, http, X.500, and WHOIS++. These specifications include
 definitions of, and/or references to, message formats and procedures
 for supporting all of the above operational environments, including
 definitions of or references to appropriate MIME content types.

 Operational protocols supporting these functions are defined in the

Housley, Ford, Polk, & Solo [Page 10]

INTERNET DRAFT October 14, 1997

 PKIX specifications [PKIXLDAP], [PKIXFTP] and [PKIXOCSP].

3.5 Management Protocols

 Management protocols are required to support on-line interactions
 between Public Key Infrastructure (PKI) components. For example,
 management protocol might be used between a CA and a client system
 with which a key pair is associated, or between two CAs which cross-
 certify each other. The set of functions which potentially need to
 be supported by management protocols include:

 (a) registration: This is the process whereby a user first makes
 itself known to a CA (directly, or through an RA), prior to that CA
 issuing a certificate or certificates for that user.

 (b) initialization: Before a client system can operate securely it
 is necessary to install in it necessary key materials which have the
 appropriate relationship with keys stored elsewhere in the
 infrastructure. For example, the client needs to be securely
 initialized with the public key of a CA, to be used in validating
 certificate paths. Furthermore, a client typically needs to be
 initialized with its own key pair(s).

 (c) certification: This is the process in which a CA issues a
 certificate for a user's public key, and returns that certificate to
 the user's client system and/or posts that certificate in a
 repository.

 (d) key pair recovery: As an option, user client key materials
 (e.g., a user's private key used for encryption purposes) may be
 backed up by a CA or a key backup system. If a user needs to recover
 these backed up key materials (e.g., as a result of a forgotten
 password or a lost key chain file), an on-line protocol exchange may
 be needed to support such recovery.

 (e) key pair update: All key pairs need to be updated regularly,
 i.e., replaced with a new key pair, and new certificates issued.

 (f) revocation request: An authorized person advises a CA of an
 abnormal situation requiring certificate revocation.

 (g) cross-certification: Two CAs exchange the information necessary
 to establish cross-certificates between those CAs.

 Note that on-line protocols are not the only way of implementing the
 above functions. For all functions there are off-line methods of
 achieving the same result, and this specification does not mandate
 use of on-line protocols. For example, when hardware tokens are

Housley, Ford, Polk, & Solo [Page 11]

INTERNET DRAFT October 14, 1997

 used, many of the functions may be achieved as part of the physical
 token delivery. Furthermore, some of the above functions may be
 combined into one protocol exchange. In particular, two or more of
 the registration, initialization, and certification functions can be
 combined into one protocol exchange.

 The PKIX series of specifications defines a set of standard message
 formats supporting the above functions in [PKIXMGMT]. The protocols
 for conveying these messages in different environments (on-line, e-
 mail, and WWW) are also specified in [PKIXMGMT].

4 Certificate and Certificate Extensions Profile

 This section presents a profile for public key certificates that will
 foster interoperability and a reusable public key infrastructure.
 This section is based upon the X.509 V3 certificate format
 [COR95][X.509-AM] and the standard certificate extensions defined in
 the Amendment [X.509-AM]. The ISO documents use the 1993 version of
 ASN.1; while this document uses the 1988 ASN.1 syntax, the encoded
 certificate and standard extensions are equivalent. This section
 also defines private extensions required to support a public key
 infrastructure for the Internet community.

 Certificates may be used in a wide range of applications and
 environments covering a broad spectrum of interoperability goals and
 a broader spectrum of operational and assurance requirements. The
 goal of this document is to establish a common baseline for generic
 applications requiring broad interoperability and limited special
 purpose requirements. In particular, the emphasis will be on
 supporting the use of X.509 v3 certificates for informal internet
 electronic mail, IPSEC, and WWW applications. Other efforts are
 looking at certificate profiles for payment systems.

4.1 Basic Certificate Fields

 The X.509 v3 certificate basic syntax is as follows. For signature
 calculation, the certificate is encoded using the ASN.1 distinguished
 encoding rules (DER) [X.208]. ASN.1 DER encoding is a tag, length,
 value encoding system for each element.

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,

Housley, Ford, Polk, & Solo [Page 12]

INTERNET DRAFT October 14, 1997

 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] EXPLICIT Extensions OPTIONAL
 -- If present, version must be v3
 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {
 notBefore Time,
 notAfter Time }

 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

 The following items describe a proposed use of the X.509 v3
 certificate for the Internet.

4.1.1 Certificate Fields

 The Certificate is a SEQUENCE of three required fields. The fields
 are are described in detail in the following subsections

Housley, Ford, Polk, & Solo [Page 13]

INTERNET DRAFT October 14, 1997

4.1.1.1 tbsCertificate

 The first field in the sequence is the tbsCertificate. This is a
 itself a sequence, and contains the names of the subject and issuer,
 a public key associated with the subject an expiration date, and
 other associated information. The fields of the basic tbsCertificate
 are described in detail in section 4.1.2; the tbscertificate may also
 include extensions which are described in section 4.2.

4.1.1.2 signatureAlgorithm

 The signatureAlgorithm field contains the algorithm identifier for
 the algorithm used by the CA to sign this certificate. Section 7.2
 lists the supported signature algorithms.

 An algorithm identifier is defined by the following ASN.1 structure:

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 and it is used to identify a cryptographic algorithm. The OBJECT
 IDENTIFIER algorithm identifies the algorithm (such as RSA with SHA-
 1). The contents of the optional parameters field will vary according
 to the algorithm identfied and the purpose of the algorithm
 identifier.

 In this case, the parameters field will usually be empty. Section 7.2
 lists the supported algorithms for this specification and describes
 the contents of the parameters fields for each algorithm.

 This field should contain the same algorithm identifier as the
 signature field in the sequence tbsCertificate (see section 4.1.2.3)

4.1.1.3 signature

 The signature field contains a digital signature computed upon the
 ASN.1 DER encoded TBSCertificate. The ASN.1 DER encoded
 TBSCertificate is used as the input to a one-way hash function. The
 one-way hash function output value is encrypted (e.g., using RSA
 Encryption) to form the signed quantity. This signature value is
 then ASN.1 encoded as a BIT STRING and included in the Certificate's
 signature field. The details of this process are specified for each
 of the supported algorithms in Section 7.2.

 By generating this signature, a CA certifies the validity of the
 information in tbscertificate. In particular, the CA certifies the
 binding between the public key material and the subject of the

Housley, Ford, Polk, & Solo [Page 14]

INTERNET DRAFT October 14, 1997

 certificate.

4.1.2 TBSCertificate

 The sequence TBSCertificate is a sequence which contains information
 associated with the subject of the certificate and the CA who issued
 it. Every TBSCertificate contains the names of the subject and
 issuer, a public key associated with the subject, an expiration date,
 a version number and a serial number; some will contain optional
 unique identifier fields. The remainder of this section describes
 the syntax and semantics of these fields. A TBSCertificate may also
 include extensions. Extensions for the Internet PKI are described in

Section 4.2.

4.1.2.1 Version

 This field describes the version of the encoded certificate. When
 extensions are used, as expected in this profile, use X.509 version 3
 (value is 2). If no extensions are present, but a UniqueIdentifier
 is present, use version 2 (value is 1). If only basic fields are
 present, use version 1 (the value is omitted from the certificate as
 the default value).

 Implementations should be prepared to accept any version certificate.
 At a minimum, conforming implementations shall recognize version 3
 certificates.

 Generation of version 2 certificates is not expected by
 implementations based on this profile.

4.1.2.2 Serial number

 The serial number is an integer assigned by the certification
 authority to each certificate. It must be unique for each
 certificate issued by a given CA (i.e., the issuer name and serial
 number identify a unique certificate).

4.1.2.3 Signature

 This field contains the algorithm identifier for the algorithm used
 by the CA to sign the certificate. Section 7.2 lists the supported
 signature algorithms.

 This field should contain the same algorithm identifier as the
 signatureAlgorithm field in the sequence Certificate (see section

4.1.1.2).

Housley, Ford, Polk, & Solo [Page 15]

INTERNET DRAFT October 14, 1997

4.1.2.4 Issuer Name

 The issuer name identifies the entity who has signed (and issued the
 certificate). The issuer identity may be carried in the issuer name
 field and/or the issuerAltName extension. If identity information is
 present only in the issuerAltName extension, then the issuer name may
 be an empty sequence and the issuerAltName extension must be
 critical.

 Where it is non-null, the issuer name field shall contain an X.500
 distinguished name (DN). The issuer field is defined as the X.501
 type Name. Name is defined by the following ASN.1 structures:

 Name ::= CHOICE {
 RDNSequence }

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName ::=
 SET OF AttributeTypeAndValue

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY

 -- Directory string type --

 DirectoryString ::= CHOICE {
 teletexString TeletexString (SIZE (1..maxSize),
 printableString PrintableString (SIZE (1..maxSize)),
 universalString UniversalString (SIZE (1..maxSize)),
 bmpString BMPString (SIZE(1..maxSIZE))
 }

 The Name describes a hierarchical name composed of attributes, such
 as country name, and corresponding values, such as US. The type of
 the component AttributeValue is determined by the AttributeType; in
 general it will be a directoryString.

 The directoryString is defined as a choice of PrintableString,
 TeletexString, BMPString and UniversalString. Conforming CAs shall
 choose from these options as follows:

Housley, Ford, Polk, & Solo [Page 16]

INTERNET DRAFT October 14, 1997

 (a) if the character set is sufficient, the string will be
 represented as a PrintableString;

 (b) failing (a), if the teletexString character set is sufficient,
 the string will be represented as a TeletexString;

 (c) failing (a) and (b), if the bMPString character set is
 sufficient the string shall be represented as a BMPString; and

 (d) failing (a), (b) and (c), the string shall be represented as a
 UniversalString.

 Standard sets of attributes have been defined in the X.500 series of
 specifications. Where CAs issue certificates with X.501 type names,
 it is recommended that these attributes types be used.

4.1.2.5 Validity

 This field indicates the period of validity of the certificate, and
 consists of two dates, the first and last on which the certificate is
 valid. The certificate validity period is the time interval during
 which the CA warrants that it will maintain information about the
 status of the certificate, i.e. publish revocation data. The field is
 represented as a SEQUENCE of two dates: the date on which the
 certificate validity period begins (notBefore) and the date on which
 the certificate validity period ends (notAfter). Both notBefore and
 notAfter may be encoded as UTCTime or GeneralizedTime.

 CAs conforming to this profile shall always encode certificate
 validity dates through the year 2049 as UTCTime; certificate validity
 dates in 2050 or later shall be encoded as GeneralizedTime.

4.1.2.5.1 UTCTime

 The universal time type, UTCTime, is a standard ASN.1 type intended
 for international applications where local time alone is not
 adequate. UTCTime specifies the year through the two low order
 digits and time is specified to the precision of one minute or one
 second. UTCTime includes either Z (for Zulu, or Greenwich Mean Time)
 or a time differential.

 For the purposes of this profile, UTCTime values shall be expressed
 Greenwich Mean Time (Zulu) and shall include seconds (i.e., times are
 YYMMDDHHMMSSZ), even where the number of seconds is zero. Conforming
 systems shall interpret the year field (YY) as follows:

 Where YY is greater than or equal to 50, the year shall be
 interpreted as 19YY; and

Housley, Ford, Polk, & Solo [Page 17]

INTERNET DRAFT October 14, 1997

 Where YY is less than 50, the year shall be interpreted as 20YY.

4.1.2.5.2 GeneralizedTime

 The generalized time type, GeneralizedTime, is a standard ASN.1 type
 for variable precision representation of time. Optionally, the
 GeneralizedTime field can include a representation of the time
 differential between local and Greenwich Mean Time.

 For the purposes of this profile, GeneralizedTime values shall be
 expressed Greenwich Mean Time (Zulu) and shall include seconds (i.e.,
 times are YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
 GeneralizedTime values shall not include fractional seconds.

4.1.2.6 Subject Name

 The subject name identifies the entity associated with the public key
 stored in the subject public key field. The subject identity may be
 carried in the subject field and/or the subjectAltName extension. If
 identity information is present only in the subjectAltName extension
 (e.g., a key bound only to an email address or URI), then the subject
 name may be an empty sequence and the subjectAltName extension must
 be critical.

 Where it is non-null, the subject name field shall contain an X.500
 distinguished name (DN). The DN must be unique for each subject
 entity certified by the one CA as defined by the issuer name field.
 (A CA may issue more than one certificate with the same DN to the
 same subject entity.)

 The subject name field is defined as the X.501 type Name, and shall
 follow the encoding rules for the issuer name field (see 4.1.2.4).

4.1.2.7 Subject Public Key Info

 This field is used to carry the public key and identify the algorithm
 with which the key is used. The algorithm is identified using the
 algorithmIdentifier structure specified in Section 4.1.1.2. The
 object identifiers for the supported algorithms and the methods for
 encoding the public key materials (public key and parameters) are
 specified in Section 7.3.

4.1.2.8 Unique Identifiers

 The subject and issuer unique identifier are present in the
 certificate to handle the possibility of reuse of subject and/or
 issuer names over time. This profile recommends that names not be
 reused and that Internet certificates not make use of unique

Housley, Ford, Polk, & Solo [Page 18]

INTERNET DRAFT October 14, 1997

 identifiers. CAs conforming to this profile should not generate
 certificates with unique identifiers. Applications conforming to
 this profile should be capable of parsing unique identifiers and
 making comparisons.

4.1.2.9 Extensions

 This field may only appear if the version number is 3 (see 4.1.2.x).
 If present, this field is a SEQUENCE of one or more certificate
 extensions. The format and content of certificate extensions in the
 Internet PKI is defined in Section 4.2.

4.2 Certificate Extensions

 The extensions defined for X.509 v3 certificates provide methods for
 associating additional attributes with users or public keys, for
 managing the certification hierarchy, and for managing CRL
 distribution. The X.509 v3 certificate format also allows
 communities to define private extensions to carry information unique
 to those communities. Each extension in a certificate may be
 designated as critical or non-critical. A certificate using system
 (an application validating a certificate) must reject the certificate
 if it encounters a critical extension it does not recognize. A non-
 critical extension may be ignored if it is not recognized. The
 following presents recommended extensions used within Internet
 certificates and standard locations for information. Communities may
 elect to use additional extensions; however, caution should be
 exercised in adopting any critical extensions in certificates which
 might be used in a general context.

 Each extension includes an object identifier and an ASN.1 structure.
 When an extension appears in a certificate, the object identifier
 appears as the field extnID and the corresponding ASN.1 encoded
 structure is the value of the octet string extnValue. Only one
 instance of a particular extension may appear in a particular
 certificate. For example, a certificate may contain only one
 authority key identifier extension (4.2.1.1). An extension may also
 include the optional boolean critical; critical's default value is
 FALSE. The text for each extension specifies the acceptable values
 for the critical field.

 Conforming CAs are required to support the basic Constraints
 extension (Section 4.2.1.10), the key usage extension (4.2.1.3) and
 certificate policies extension (4.2.1.5). If the CA issues
 certificates with an empty sequence for the subject field, the CA
 must support the subjectAltName extension. If the CA issues
 certificates with an empty sequence for the issuer field, the CA must
 support the issuerAltName extension. Support for the remaining

Housley, Ford, Polk, & Solo [Page 19]

INTERNET DRAFT October 14, 1997

 extensions is optional. Conforming CAs may support extensions that
 are not identified within this specification; certificate issuers are
 cautioned that marking such extensions as critical may inhibit
 interoperability.

 At a minimum, applications conforming to this profile shall recognize
 extensions which shall or may be critical. These extensions are: key
 usage (4.2.1.3), certificate policies (4.2.1.5), the alternative
 subject name (4.2.1.7), issuer alternative name (4.2.1.8), basic
 constraints (4.2.1.10), name constraints (4.2.1.11), policy
 constraints (4.2.1.12), and extended key usage (4.2.1.14).

 In addition, this profile recommends support for key identifiers
 (4.2.1.1 and 4.2.1.2), CRL distribution points (4.2.1.13), and
 authority information access (4.2.2.1).

4.2.1 Standard Extensions

 This section identifies standard certificate extensions defined in
 [X.509-AM] for use in the Internet Public Key Infrastructure. Each
 extension is associated with an object identifier defined in [X.509-
 AM]. These object identifiers are members of the
 certificateExtension arc, which is defined by the following:

 certificateExtension OBJECT IDENTIFIER ::=
 {joint-iso-ccitt(2) ds(5) 29}
 id-ce OBJECT IDENTIFIER ::= certificateExtension

 4.2.1.1 Authority Key Identifier

 The authority key identifier extension provides a means of
 identifying the particular public key used to sign a certificate.
 This extension would be used where an issuer has multiple signing
 keys (either due to multiple concurrent key pairs or due to
 changeover). In general, this extension should be included in
 certificates.

 The identification can be based on either the key identifier (the
 subject key identifier in the issuer's certificate) or on the issuer
 name and serial number. The key identifier method is recommended in
 this profile. Conforming CAs that generate this extension shall
 include or omit both authorityCertIssuer and
 authorityCertSerialNumber. If authorityCertIssuer and
 authorityCertSerialNumber are omitted, the keyIdentifier field shall
 be present.

 This extension shall not be marked critical.

Housley, Ford, Polk, & Solo [Page 20]

INTERNET DRAFT October 14, 1997

 id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

 AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 authorityCertIssuer [1] GeneralNames OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL
 }

 KeyIdentifier ::= OCTET STRING

4.2.1.2 Subject Key Identifier

 The subject key identifier extension provides a means of identifying
 the particular public key used in an application. Where a reference
 to a public key identifier is needed (as with an Authority Key
 Identifier) and one is not included in the associated certificate, a
 SHA-1 hash of the subject public key shall be used. The hash shall
 be calculated over the value (excluding tag and length) of the
 subject public key field in the certificate. This extension should
 be marked non-critical.

 id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }

 SubjectKeyIdentifier ::= KeyIdentifier

4.2.1.3 Key Usage

 The key usage extension defines the purpose (e.g., encipherment,
 signature, certificate signing) of the key contained in the
 certificate. The usage restriction might be employed when a key that
 could be used for more than one operation is to be restricted. For
 example, when an RSA key should be used only for signing, the
 digitalSignature and nonRepudiation bits would be asserted. Likewise,
 when an RSA key should be used only for key management, the
 keyEncipherment bit would be asserted. The profile recommends that
 when used, this be marked as a critical extension.

 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

 KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6),
 encipherOnly (7),

Housley, Ford, Polk, & Solo [Page 21]

INTERNET DRAFT October 14, 1997

 decipherOnly (8) }

 Bits in the KeyUsage type are used as follows:

 The digitalSignature bit is asserted when the subject public key
 is used to verifying digital signatures that have purposes other
 than non-repudiation, certificate signature, and CRL signature.
 For example, The digitalSignature bit is asserted when the subject
 public key is used to provide authentication.

 The nonRepudiation bit is asserted when the subject public key is
 used to verifying digital signatures used to provide a non-
 repudiation service which protects against the signing entity
 falsely denying some action, excluding certificate or CRL signing.

 The keyEncipherment bit is asserted when the subject public key is
 used for key transport. For example, when an RSA key is to be
 used exclusively for key management, then this bit must asserted.

 The dataEncipherment bit is asserted when the subject public key
 is used for enciphering user data, other than cryptographic keys.

 The keyAgreement bit is asserted when the subject public key is
 used for key agreement. For example, when a Diffie-Hellman key is
 to be used exclusively for key management, then this bit must
 asserted.

 The keyCertSign bit is asserted when the subject public key is
 used for verifying a signature on certificates. This bit may only
 be asserted in CA certificates.

 The cRLSign bit is asserted when the subject public key is used
 for verifying a signature on CRLs. This bit may only be asserted
 in CA certificates.

 When the encipherOnly bit is asserted and the keyAgreement bit is
 also set, the subject public key may be used only for enciphering
 data while performing key agreement. The meaning of the
 encipherOnly bit is undefined in the absence of the keyAgreement
 bit.

 When the decipherOnly bit is asserted and the keyAgreement bit is
 also set, the subject public key may be used only for deciphering
 data while performing key agreement. The meaning of the
 decipherOnly bit is undefined in the absence of the keyAgreement
 bit.

Housley, Ford, Polk, & Solo [Page 22]

INTERNET DRAFT October 14, 1997

 This profile does not restrict the combinations the bits that may
 be set in an instantiation of the keyUsage extension. However,
 appropriate values for keyUsage extensions for particular
 algorithms are specifed in section 7.3.

4.2.1.4 Private Key Usage Period

 The private key usage period extension allows the certificate issuer
 to specify a different validity period for the private key than the
 certificate. This extension is intended for use with digital
 signature keys. This extension consists of two optional components
 notBefore and notAfter. The private key associated with the
 certificate should not be used to sign objects before or after the
 times specified by the two components, respectively. CAs conforming
 to this profile shall not generate certificates with private key
 usage period extensions unless at least one of the two components is
 present.

 This profile recommends against the use of this extension. CAs
 conforming to this profile shall not generate certificates with
 critical private key usage period extensions. Where used, notBefore
 and notAfter are represented as GeneralizedTime and shall be
 specified and interpreted as defined in Section 4.1.2.5.2.

 id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

 PrivateKeyUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }

4.2.1.5 Certificate Policies

 The certificate policies extension contains a sequence of one or more
 policy information terms, each of which consists of an object
 identifier (OID) and optional qualifiers. These policy information
 terms indicate the policy under which the certificate has been issued
 and the purposes for which the certificate may be used. This profile
 strongly recommends that a simple OID be present in this field.
 Optional qualifiers which may be present are expected to provide
 information about obtaining CA rules, not change the definition of
 the policy.

 Applications with specific policy requirements are expected to have a
 list of those policies which they will accept and to compare the
 policy OIDs in the certificate to that list. If this extension is
 critical, the path validation software must be able to interpret this
 extension, or must reject the certificate. (Applications without
 specific policy requirements are not required to list acceptable

Housley, Ford, Polk, & Solo [Page 23]

INTERNET DRAFT October 14, 1997

 policies, and may accept any valid certificate regardless of policy
 even if the extension is marked critical.)

 This specification defines two policy qualifiers types for use by
 certificate policy writers and certificate issuers at their own
 discretion. The qualifier types are the CPS Pointer qualifier, and
 the User Notice qualifier.

 The CPS Pointer qualifier contains a pointer to a Certification
 Practice Statement (CPS) published by the CA. The pointer is in the
 form of a URI.

 User notice is intended for display to a relying party when a
 certificate is used. The application software should display all
 user notices in all certificates of the certification path used,
 except that if a notice is duplicated only one copy need be
 displayed. It is recommended that only the lowest-level certificate
 issued by one organization in a certification path contain a user
 notice.

 The user notice has two optional fields: the noticeRef field and the
 explicitText field.

 The noticeRef field, if used, names an organization and
 identifies, by number, a particular textual statement prepared by
 that organization. For example, it might identify the
 organization "CertsRUs" and notice number 1. In a typical
 implementation, the application software will have a notice file
 containing the current set of notices for CertsRUs; the
 application will extract the notice text from the file and display
 it. Messages may be multilingual, allowing the software to select
 the particular language message for its own environment.

 An explicitText field includes the textual statement directly in
 the certificate. The explicitText field is a string with a
 maximum size of 200 characters.

 If both the noticeRef and explicitText options are included in the
 one qualifier and if the application software can locate the notice
 text indicated by the noticeRef option then that text should be
 displayed; otherwise, the explicitText string should be displayed.

 id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

 certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,

Housley, Ford, Polk, & Solo [Page 24]

INTERNET DRAFT October 14, 1997

 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

 CertPolicyId ::= OBJECT IDENTIFIER

 PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId PolicyQualifierId,
 qualifier ANY DEFINED BY policyQualifierId }

 -- policyQualifierIds for Internet policy qualifiers

 id-qt ::= { id-pkix 2 } -- pkix arc for qualifier types
 id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 }
 id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }

 PolicyQualifierId ::=
 OBJECT IDENTIFIER (id-qt-cps | id-qt-unotice)

 Qualifier ::= CHOICE {
 cPSuri CPSuri,
 userNotice UserNotice }

 CPSuri ::= IA5String

 UserNotice ::= SEQUENCE {
 noticeRef NoticeReference OPTIONAL,
 explicitText DisplayText OPTIONAL}

 NoticeReference ::= SEQUENCE {
 organization IA5String,
 noticeNumbers SEQUENCE OF INTEGER }

 DisplayText ::= CHOICE {
 visibleString VisibleString,
 bmpString BMPString }

4.2.1.6 Policy Mappings

 This extension is used in CA certificates. It lists one or more
 pairs of object identifiers; each pair includes an issuerDomainPolicy
 and a subjectDomainPolicy. The pairing indicates the issuing CA
 considers its issuerDomainPolicy equivalent to the subject CA's
 subjectDomainPolicy.

 The issuing CA's users may accept an issuerDomainPolicy for certain
 applications. The policy mapping tells the issuing CA's users which
 policies associated with the subject CA are comparable to the policy

Housley, Ford, Polk, & Solo [Page 25]

INTERNET DRAFT October 14, 1997

 they accept.

 This extension may be supported by CAs and/or applications, and it is
 always non-critical.

 id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }

 PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

4.2.1.7 Subject Alternative Name

 The subject alternative names extension allows additional identities
 to be bound to the subject of the certificate. Defined options
 include an rfc822 name (electronic mail address), a DNS name, an IP
 address, and a URI. Other options exist, including completely local
 definitions. Multiple instances of a name and multiple name forms
 may be included. Whenever such identities are to be bound into a
 certificate, the subject alternative name (or issuer alternative
 name) extension shall be used. (Note: a form of such an identifier
 may also be present in the subject distinguished name; however, the
 alternative name extension is the preferred location for finding such
 information.)

 Further, if the only subject identity included in the certificate is
 an alternative name form (e.g., an electronic mail address), then the
 subject distinguished name shall be empty (an empty sequence), and
 the subjectAltName extension shall be present. If the subject field
 contains an empty sequence, the subjectAltName extension shall be
 marked critical.

 Where the subjectAltName extension contains a dNSName, this name may
 contain the wildcard character. An "*" is the wildcard character.
 Where a dNSName includes a wildcard, the subject of this certificate
 is a subnet or a collection of hosts. Examples include *.bar.com and
 www*.bar.com.

 Where the subjectAltName extension contains an rfc822Name, this name
 may also include the wildcard character. Use of the wildcard is
 limited to the host name.

 Where the subjectAltName extension contains a
 uniformResourceIdentifier, the URI is a pointer to a sequence of
 certificates issued by this CA (and optionally other CAs) to this
 subject. The URI may not contain the wildcard character in the host
 name.

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 26]

INTERNET DRAFT October 14, 1997

 The URI must be an absolute, not relative, pathname and must specify
 the host. This specification recognizes the following values for the
 URI scheme: ftp, http, ldap, and mailto. The mailto scheme
 indicates that mail sent to the specified address will generate an
 electronic mail response (to the sender) containing the subject's
 certificates. No message is required. If the URI scheme is ftp,
 then the information is available through anonymous ftp. If the URI
 scheme is http or ldap, then the information may be retrieved using
 that protocol.

 (If the URI specifies any other scheme, contains a relative pathname,
 or omits the host, the semantics are not defined by this
 specification.)

 When the subjectAltName extension contains a iPAddress, the address
 shall be stored in the octet string in "network byte order," as
 specified in RFC791. The least significant bit (LSB) of each octet is
 the LSB of the corresponding byte in the network address. For IP
 Version 4, as specified in RFC 791, the octet string must contain
 exactly four octets. For IP Version 6, as specified in RFC 1883, the
 octet string must contain exactly sixteen octets.

 Alternative names may be constrained in the same manner as subject
 distinguished names using the name constraints extension as described
 in section 4.2.1.11.

 If the subjectAltName extension is present, the sequence must contain
 at least one entry. Unlike the subject field, conforming CAs shall
 not issue certificates with subjectAltNames containing empty
 GeneralName fields. For example, an rfc822Name is represented as an
 IA5String. While an empty string is a valid IA5String, such an
 rfc822Name is not permitted by this profile. The behavior of clients
 that encounter such a certificate when processing a certificication
 path is not defined by this profile.

 id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

 SubjectAltName ::= GeneralNames

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] OtherName,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1883

Housley, Ford, Polk, & Solo [Page 27]

INTERNET DRAFT October 14, 1997

 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER}

 OtherName ::= SEQUENCE {
 type-id OBJECT IDENTIFIER,
 value [0] EXPLICIT ANY DEFINED BY type-id }

 EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString }

4.2.1.8 Issuer Alternative Name

 As with 4.2.1.7, this extension is used to associate Internet style
 identities with the certificate issuer. If the only issuer identity
 included in the certificate is an alternative name form (e.g., an
 electronic mail address), then the issuer distinguished name shall be
 empty (an empty sequence), and the issuerAltName extension shall be
 present. If the subject field contains an empty sequence, the
 issuerAltName extension shall be marked critical.

 Where the issuerAltName extension contains a URI, the following
 semantics shall be assumed: the URI is a pointer to an ASN.1 sequence
 of certificates issued to this CA (and optionally other CAs). The
 expected values for the URI are those defined in 4.2.1.7. Processing
 rules for other values are not defined by this specification.

 Where the issuerAltName extension contains a dNSName, rfc822Name, or
 a URI, wildcard characters are not permitted.

 id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

 IssuerAltName ::= GeneralNames

4.2.1.9 Subject Directory Attributes

 The subject directory attributes extension is not recommended as an
 essential part of this profile, but it may be used in local
 environments. This extension is always non-critical.

 id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }

 SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

Housley, Ford, Polk, & Solo [Page 28]

INTERNET DRAFT October 14, 1997

4.2.1.10 Basic Constraints

 The basic constraints extension identifies whether the subject of the
 certificate is a CA and how deep a certification path may exist
 through that CA.

 The pathLenConstraint field is meaningful only if cA is set to TRUE.
 In this case, it gives the maximum number of CA certificates that may
 follow this certificate in a certification path. A value of zero
 indicates that only an end-entity certificate may follow in the path.
 Where it appears, the pathLenConstraint field must be greater than or
 equal to zero. Where pathLenConstraint does not appear, there is no
 limit to the allowed length of the certification path.

 This profile requires the use of this extension, and it shall always
 be critical for CA certificates.

 id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

 BasicConstraints ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

4.2.1.11 Name Constraints

 The name constraints extension, which shall be used only in a CA
 certificate, indicates a name space within which all subject names in
 subsequent certificates in a certification path must be located.
 Restrictions may apply to the subject distinguished name or subject
 alternative names. Restrictions are defined in terms of permitted or
 excluded name subtrees. Any name matching a restriction in the
 excludedSubtrees field is invalid regardless of information appearing
 in the permittedSubtrees. This extension must be critical.

 Within this profile, the minimum and maximum fields are not used with
 any name forms, thus minimum is always zero, and maximum is always
 absent.

 Restrictions for the rfc822, dNSName, and uri name forms are all
 expressed in terms of strings with wild card matching. An "*" is the
 wildcard character. For uris and rfc822 names, the restriction
 applies to the host part of the name. Examples would be foo.bar.com;
 www*.bar.com; *.xyz.com.

 Legacy implementations exist where an RFC 822 name is embeded in the
 subject distinguished name as a PKCS #9 e-mail attribute, which has
 the ASN.1 type EmailAddress. When rfc822 names are constrained, but
 the certificate does not include a subject alternative name, the

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 29]

INTERNET DRAFT October 14, 1997

rfc822 name constraint must be applied to PKCS #9 e-mail attributes
 in the subject distinguished name. The ASN.1 syntax for EmailAddress
 and the corresponding OID are supplied below.

 EmailAddress ::= IA5String

 pkcs-9 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 9 }

 emailAddress OBJECT IDENTIFIER ::= { pkcs-9 1 }

 Restrictions of the form directoryName shall be applied to the
 subject field in the certificate and to the subjectAltName extensions
 of type directoryName. Restrictions of the form x400Address shall be
 applied to subjectAltName extensions of type x400Address.

 The syntax and semantics for name constraints for otherName,
 ediPartyName, iPAddress, and registeredID are not defined by this
 specification.

 id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }

 NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

4.2.1.12 Policy Constraints

 The policy constraints extension can be used in certificates issued
 to CAs. The policy constraints extension constrains path validation
 in two ways. It can be used to prohibit policy mapping or require
 that each certificate in a path contain an acceptable policy
 identifier.

 If the inhibitPolicyMapping field is present, the value indicates the
 number of additional certificates that may appear in the path before
 policy mapping is no longer permitted. For example, a value of one
 indicates that policy mapping may be processed in certificates issued
 by the subject of this certificate, but not in additional

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 30]

INTERNET DRAFT October 14, 1997

 certificates in the path.

 If the requireExplicitPolicy field is present, subsequent
 certificates must include an acceptable policy identifier. The value
 of requireExplicitPolicy indicates the number of additional
 certificates that may appear in the path before an explicit policy is
 required. An acceptable policy identifier is the identifier of a
 policy required by the user of the certification path or the
 identifier of a policy which has been declared equivalent through
 policy mapping.

 Conforming CAs shall not issue certificates where policy constraints
 is a null sequence. That is, at least one of the inhibitPolicyMapping
 field or the requireExplicitPolicy field must be present. The
 behavior of clients that encounter a null policy constraints field is
 not addressed in this profile.

 This extension may be critical or non-critical.

 id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }

 CertificatePoliciesSyntax ::=
 SEQUENCE SIZE (1..MAX) OF PolicyInformation

 PolicyConstraints ::= SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

 SkipCerts ::= INTEGER (0..MAX)

4.2.1.13 CRL Distribution Points

 The CRL distribution points extension identifies how CRL information
 is obtained. The extension shall be non-critical, but this profile
 recommends support for this extension by CAs and applications.
 Further discussion of CRL management is contained in section 5.

 If the cRLDistributionPoints extension contains a
 DistributionPointName of type URI, the following semantics shall be
 assumed: the URI is a pointer to the current CRL for the associated
 reasons and will be issued by the associated cRLIssuer. The expected
 values for the URI are those defined in 4.2.1.7. Processing rules for
 other values are not defined by this specification. If the
 distributionPoint omits reasons, the CRL shall include revocations
 for all reasons. If the distributionPoint omits cRLIssuer, the CRL
 shall be issued by the CA that issued the certificate.

 id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= { id-ce 31 }

Housley, Ford, Polk, & Solo [Page 31]

INTERNET DRAFT October 14, 1997

 cRLDistributionPoints ::= {
 CRLDistPointsSyntax }

 CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

 DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

 ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

4.2.1.14 Extended key usage field

 This field indicates one or more purposes for which the certified
 public key may be used, in addition to or in place of the basic
 purposes indicated in the key usage extension field. This field is
 defined as follows:

 id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

 ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 KeyPurposeId ::= OBJECT IDENTIFIER

 Key purposes may be defined by any organization with a need. Object
 identifiers used to identify key purposes shall be assigned in
 accordance with ITU-T Rec. X.660 | ISO/IEC 9834-1.

 This extension may, at the option of the certificate issuer, be
 either critical or non-critical.

 If the extension is flagged critical, then the certificate shall be
 used only for one of the purposes indicated.

 If the extension is flagged non-critical, then it indicates the
 intended purpose or purposes of the key, and may be used in finding

Housley, Ford, Polk, & Solo [Page 32]

INTERNET DRAFT October 14, 1997

 the correct key/certificate of an entity that has multiple
 keys/certificates. It is an advisory field and does not imply that
 usage of the key is restricted by the certification authority to the
 purpose indicated. (Using applications may nevertheless require that
 a particular purpose be indicated in order for the certificate to be
 acceptable to that application.)

 If a certificate contains both a critical key usage field and a
 critical extended key usage field, then both fields shall be
 processed independently and the certificate shall only be used for a
 purpose consistent with both fields. If there is no purpose
 consistent with both fields, then the certificate shall not be used
 for any purpose.

 The following key usage purposes are defined by this profile:

 id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

 id-kp-serverAuth OBJECT IDENTIFIER ::= {id-kp 1}
 -- TLS Web server authentication
 -- Key usage bits that may be consistent: digitalSignature,
 -- keyEncipherment or keyAgreement
 --
 id-kp-clientAuth OBJECT IDENTIFIER ::= {id-kp 2}
 -- TLS Web client authentication
 -- Key usage bits that may be consistent: digitalSignature and/or
 -- keyAgreement
 --
 id-kp-codeSigning OBJECT IDENTIFIER ::= {id-kp 3}
 -- Signing of downloadable executable code
 -- Key usage bits that may be consistent: digitalSignature
 --
 id-kp-emailProtection OBJECT IDENTIFIER ::= {id-kp 4}
 -- E-mail protection
 -- Key usage bits that may be consistent: digitalSignature,
 -- nonRepudiation, and/or (keyEncipherment
 -- or keyAgreement)
 --
 id-kp-ipsecEndSystem OBJECT IDENTIFIER ::= {id-kp 5}
 -- IP security end system (host or router)
 -- Key usage bits that may be consistent: digitalSignature and/or
 -- (keyEncipherment or keyAgreement)
 --
 id-kp-ipsecTunnel OBJECT IDENTIFIER ::= {id-kp 6}
 -- IP security tunnel termination
 -- Key usage bits that may be consistent: digitalSignature and/or
 -- (keyEncipherment or keyAgreement)
 --

Housley, Ford, Polk, & Solo [Page 33]

INTERNET DRAFT October 14, 1997

 id-kp-ipsecUser OBJECT IDENTIFIER ::= {id-kp 7}
 -- IP security user
 -- Key usage bits that may be consistent: digitalSignature and/or
 -- (keyEncipherment or keyAgreement)
 id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }
 -- Binding the hash of an object to a time from an agreed-upon time
 -- source. Key usage bits that may be consistent: digitalSignature,
 -- nonRepudiation

4.2.2 Private Internet Extensions

 This section defines one new extension for use in the Internet Public
 Key Infrastructure. This extension may be used to direct
 applications to identify an on-line validation service supporting the
 issuing CA. As the information may be available in multiple forms,
 each extension is a sequence of IA5String values, each of which
 represents a URI. The URI implicitly specifies the location and
 format of the information and the method for obtaining the
 information.

 An object identifier is defined for the private extension. The
 object identifier associated with the private extension is defined
 under the arc id-pe within the id-pkix name space. Any future
 extensions defined for the Internet PKI will also be defined uder the
 arc id-pe.

 id-pkix OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) }

 id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }

4.2.2.1 Authority Information Access

 The authority information access extension indicates how to access CA
 information and services for the issuer of the certificate in which
 the extension appears. Information and services may include on-line
 validation services and CA policy data. (The location of CRLs is not
 specified in this extension; that information is provided by the
 cRLDistributionPoints extension.) This extension may be included in
 subject or CA certificates, and it is always non-critical.

 id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

 AuthorityInfoAccessSyntax ::=
 SEQUENCE SIZE (1..MAX) OF AccessDescription

 AccessDescription ::= SEQUENCE {

Housley, Ford, Polk, & Solo [Page 34]

INTERNET DRAFT October 14, 1997

 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

 id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

 id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }

 id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

 Each entry in the sequence AuthorityInfoAccessSyntax describes the
 format and location of additional information about the CA who issued
 the certificate in which this extension appears.

 This profile defines an object identifier for the On-line Certificate
 Status Protocol (OCSP) that will be defined in [PKIXOCSP]. When id-
 ad-ocsp appears as accessMethod, the accessLocation field describes
 the on-line status server and the access protocol to obtain current
 certificate status information for the certificate containing this
 extension.

 This profile defines an object identifier to obtain a description of
 the CAs that have issued certificates superior to the CA that issued
 the certificate containing this extension. The referenced CA Issuers
 description is intended to aid certificate users in the selection of
 a certification path that terminates at a point trusted by the
 certificate user. The syntax of the referenced CA Issuers
 description will be defined in [PKIXOCSP]. When id-ad-caIssuers
 appears as accessMethod, the accessLocation field describes the
 referenced description server and the access protocol to obtain
 referenced description.

 Additional access descriptors will likely be defined in the future.

 The authorityInfoAccess extension may be included in a PKCS 7
 encapsulation as an X.501 ATTRIBUTE. This attribute can then be used
 to locate certificates automatically rather than include the
 certificates directly. The intended effect is to reduce the size of
 the encapsulated message or object.

 PKCS 9 identifies attributes for inclusion in PKCS 7, referencing
 X.520 standard attributes and defining additional attributes unique
 to PKCS 9. The attributes defined in X.520 are based on the
 definition of ATTRIBUTE in ITU-T X.501 | ISO/IEC 9594-2.

 The following syntax defines authorityInfoAccess as an ATTRIBUTE
 suitable for inclusion in a PKCS #7 message:

 authorityInfoAccess ATTRIBUTE ::= {

Housley, Ford, Polk, & Solo [Page 35]

INTERNET DRAFT October 14, 1997

 WITH SYNTAX authorityInfoAccessSyntax,
 ID id-pe-authorityInfoAccess }

 Other parts of the PKIX specifications [PKIXOCSP] [PKIXLDAP]
 establish requirements on certificate retrieval mechanisms. It is
 expected that applications using the URI form of the authorityInfo
 field for such a purpose will:

 1. Prepend a suitable HTTP retrieval primitive to the URL (e.g.
 "GET").

 2. Append a filename to the URL.

 3. Use the result to retrieve a file containing the requested
 certificate.

 4. Use the authorityInfoAccess extension in that and subsequent
 certificates to complete a certificate path.

 The filename will be formed as the IA5string representation of
 SHA1(Issuer DN | certificate serial number) concatenated with ".cer."
 The IA5String representation will display the SHA1 result as a
 hexidecimal number using digits and the lowercase letters 'a' through
 'f.' The SignerInfo syntax of PKCS 7 provides the necessary
 information as issuerAndSerialNumber.

 The specified file will contain a single DER encoded certficate.

5 CRL and CRL Extensions Profile

 As described above, one goal of this X.509 v2 CRL profile is to
 foster the creation of an interoperable and reusable Internet PKI.
 To achieve this goal, guidelines for the use of extensions are
 specified, and some assumptions are made about the nature of
 information included in the CRL.

 CRLs may be used in a wide range of applications and environments
 covering a broad spectrum of interoperability goals and an even
 broader spectrum of operational and assurance requirements. This
 profile establishes a common baseline for generic applications
 requiring broad interoperability. Emphasis is placed on support for
 X.509 v2 CRLs. The profile defines a baseline set of information
 that can be expected in every CRL. Also, the profile defines common
 locations within the CRL for frequently used attributes, and common
 representations for these attributes.

 This profile does not define any private Internet CRL extensions or
 CRL entry extensions.

Housley, Ford, Polk, & Solo [Page 36]

INTERNET DRAFT October 14, 1997

 Environments with additional or special purpose requirements may
 build on this profile or may replace it.

 Conforming CAs are not required to issue CRLs if other revocation or
 status mechanisms are provided. Conforming CAs that issue CRLs are
 required to issue version 2 CRLs, and must include the date by which
 the next CRL will be issued in the nextUpdate field (Section

5.1.2.5). Conforming applications are required to process version 1
 and 2 CRLs.

5.1 CRL Fields

 The X.509 v2 CRL syntax is as follows. For signature calculation,
 the data that is to be signed is ASN.1 DER encoded. ASN.1 DER
 encoding is a tag, length, value encoding system for each element.

 CertificateList ::= SEQUENCE {
 tbsCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertList ::= SEQUENCE {
 version Version OPTIONAL,
 -- if present, must be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate Time,
 nextUpdate Time OPTIONAL,
 revokedCertificates SEQUENCE OF SEQUENCE {
 userCertificate CertificateSerialNumber,
 revocationDate Time,
 crlEntryExtensions Extensions OPTIONAL
 -- if present, must be v2
 } OPTIONAL,
 crlExtensions [0] EXPLICIT Extensions OPTIONAL
 -- if present, must be v2
 }

 -- Version, Time, CertificateSerialNumber and Extensions
 -- are all defined in the ASN.1 in section 4.1

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 -- contains a value of the type
 -- registered for use with the
 -- algorithm object identifier value

Housley, Ford, Polk, & Solo [Page 37]

INTERNET DRAFT October 14, 1997

 The following items describe the proposed use of the X.509 v2 CRL in
 the Internet PKI.

5.1.1 CertificateList Fields

 The CertificateList is a SEQUENCE of three required fields. The
 fields are are described in detail in the following subsections

5.1.1.1 tbsCertList

 The first field in the sequence is the tbsCertList. This field is
 itself a sequence containing the name of the issuer, issue date,
 issue date of the next list, the list of revoked certificates, and
 optional CRL extensions. Further, each entry on the revoked
 certificate list is defined by a sequence of user certificate serial
 number, revocation date, and optional CRL entry extensions.

5.1.1.2 signatureAlgorithm

 The signatureAlgorithm field contains the algorithm identifier for
 the algorithm used by the CA to sign the CertificateList. Section

7.2 lists the supported signature algorithms. Conforming CAs shall
 use the algorithm identifiers presented in Section 7.2 when signing
 with a supported signature algorithm.

5.1.1.3 signature

 The signature field contains a digital signature computed upon the
 ASN.1 DER encoded TBSCertList. The ASN.1 DER encoded TBSCertList is
 used as the input to a one-way hash function. The one-way hash
 function output value is encrypted (e.g., using RSA Encryption) to
 form the signed quantity. This signature value is then ASN.1 encoded
 as a BIT STRING and included in the CRL's signature field. The
 details of this process are specified for each of the supported
 algorithms in Section 7.2.

5.1.2 Certificate List "To Be Signed"

 The certificate list to be signed, or tBSCertList, is a SEQUENCE of
 required and optional fields. The required fields identify the CRL
 issuer, the algorithm used to sign the CRL, the date and time the CRL
 was issued, and the date and time by which the CA will issue the next
 CRL.

 Optional fields include lists of revoked certificates and CRL
 extensions. The revoked certificate list is optional to support the
 special case where a CA has not revoked any unexpired certificates it
 has issued. It is expected that nearly all CRLs issued in the

Housley, Ford, Polk, & Solo [Page 38]

INTERNET DRAFT October 14, 1997

 Internet PKI will contain one or more lists of revoked certificates.
 Similarly, the profile requires conforming CAs to use the CRL
 extension cRLNumber in all CRLs issued.

5.1.2.1 Version

 This optional field describes the version of the encoded CRL. When
 extensions are used, as expected in this profile, this field shall be
 present and shall specify version 2 (the integer value is 1). If
 neither CRL extensions nor CRL entry extensions are present, version
 1 CRLs are recommended. In this case, the field shall be ommitted.

5.1.2.2 Signature

 This field contains the algorithm identifier for the algorithm used
 to sign the CRL. Section 7.2 lists OIDs for the most popular
 signature algorithms used in the Internet PKI.

5.1.2.3 Issuer Name

 The issuer name identifies the entity who has signed (and issued the
 CRL). The issuer identity may be carried in the issuer name field
 and/or the issuerAltName extension. If identity information is
 present only in the issuerAltName extension, then the issuer name may
 be an empty sequence and the issuerAltName extension must be
 critical.

 Where it is non-null, the issuer name field shall contain an X.500
 distinguished name (DN). The issuer name field is defined as the
 X.501 type Name, and shall follow the encoding rules for the issuer
 name field in the certificate (see 4.1.2.4).

5.1.2.4 This Update

 This field indicates the issue date of this CRL. ThisUpdate may be
 encoded as UTCTime or GeneralizedTime.

 CAs conforming to this profile that issue CRLs shall encode
 thisUpdate as UTCTime for dates through the year 2049. CAs conforming
 to this profile that issue CRLs shall encode thisUpdate as
 GeneralizedTime for dates in the year 2050 or later.

 Where encoded as UTCTime, thisUpdate shall be specified and
 interpreted as defined in Section 4.1.2.5.1. Where encoded as
 GeneralizedTime, thisUpdate shall be specified and interpreted as
 defined in Section 4.1.2.5.2.

Housley, Ford, Polk, & Solo [Page 39]

INTERNET DRAFT October 14, 1997

5.1.2.5 Next Update

 This field indicates the date by which the next CRL will be issued.
 The next CRL could be issued before the indicated date, but it will
 not be issued any later than the indicated date. nextUpdate may be
 encoded as UTCTime or GeneralizedTime.

 This profile requires inclusion of nextUpdate in all CRLs issued by
 conforming CAs. Note that the ASN.1 syntax of TBSCertList describes
 this field as OPTIONAL, which is consistent with the ASN.1 structure
 defined in [X.509-AM]. The behavior of clients processing CRLs which
 omit nextUpdate is not specified by this profile.

 CAs conforming to this profile that issue CRLs shall encode
 nextUpdate as UTCTime for dates through the year 2049. CAs conforming
 to this profile that issue CRLs shall encode nextUpdate as
 GeneralizedTime for dates in the year 2050 or later.

 Where encoded as UTCTime, nextUpdate shall be specified and
 interpreted as defined in Section 4.1.2.5.1. Where encoded as
 GeneralizedTime, nextUpdate shall be specified and interpreted as
 defined in Section 4.1.2.5.2.

5.1.2.6 Revoked Certificates

 Revoked certificates are listed. The revoked certificates are named
 by their serial numbers. Certificates are uniquely identified by the
 combination of the issuer name or issuer alternative name along with
 the user certificate serial number. The date on which the revocation
 occurred is specified. The time for revocationDate shall be
 expressed as described in section 5.1.2.4. Additional information may
 be supplied in CRL entry extensions; CRL entry extensions are
 discussed in section 5.3.

5.1.2.7 Extensions

 This field may only appear if the version number is 2 (see 5.1.2.1).
 If present, this field is a SEQUENCE of one or more CRL extensions.
 CRL extensions are discussed in section 5.2.

5.2 CRL Extensions

 The extensions defined by ANSI X9 and ISO for X.509 v2 CRLs [X.509-
 AM] [X9.55] provide methods for associating additional attributes
 with CRLs. The X.509 v2 CRL format also allows communities to define
 private extensions to carry information unique to those communities.
 Each extension in a CRL may be designated as critical or non-
 critical. A CRL validation must fail if it encounters an critical

Housley, Ford, Polk, & Solo [Page 40]

INTERNET DRAFT October 14, 1997

 extension which it does not know how to process. However, an
 unrecognized non-critical extension may be ignored. The following
 presents those extensions used within Internet CRLs. Communities may
 elect to include extensions in CRLs which are not defined in this
 specification. However, caution should be exercised in adopting any
 critical extensions in CRLs which might be used in a general context.

 Conforming CAs that issue CRLs are required to support the CRL number
 extension (5.2.3), and include it in all CRLs issued. Conforming
 applications are required to support the critical and optionally
 critical CRL extensions issuer alternative name (5.2.2), issuing
 distribution point (5.2.4) and delta CRL indicator (5.2.5).

5.2.1 Authority Key Identifier

 The authority key identifier extension provides a means of
 identifying the particular public key used to sign a CRL. The
 identification can be based on either the key identifier (the subject
 key identifier in the CRL signer's certificate) or on the issuer name
 and serial number. The key identifier method is recommended in this
 profile. This extension would be used where an issuer has multiple
 signing keys, either due to multiple concurrent key pairs or due to
 changeover. In general, this non-critical extension should be
 included in certificates.

 The syntax for this CRL extension is defined in Section 4.2.1.1.

5.2.2 Issuer Alternative Name

 The issuer alternative names extension allows additional identities
 to be associated with the issuer of the CRL. Defined options include
 an rfc822 name (electronic mail address), a DNS name, an IP address,
 and a URI. Multiple instances of a name and multiple name forms may
 be included. Whenever such identities are used, the issuer
 alternative name extension shall be used.

 Further, if the only issuer identity included in the CRL is an
 alternative name form (e.g., an electronic mail address), then the
 issuer distinguished name should be empty (an empty sequence), the
 issuerAltName extension should be used, and the issuerAltName
 extension must be marked critical.

 The object identifier and syntax for this CRL extension are defined
 in Section 4.2.1.8.

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 41]

INTERNET DRAFT October 14, 1997

5.2.3 CRL Number

 The CRL number is a non-critical CRL extension which conveys a
 monotonically increasing sequence number for each CRL issued by a
 given CA through a specific CA X.500 Directory entry or CRL
 distribution point. This extension allows users to easily determine
 when a particular CRL supersedes another CRL. CAs conforming to this
 profile shall include this extension in all CRLs.

 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 cRLNumber ::= INTEGER (0..MAX)

5.2.4 Issuing Distribution Point

 The issuing distribution point is a critical CRL extension that
 identifies the CRL distribution point for a particular CRL, and it
 indicates whether the CRL covers revocation for end entity
 certificates only, CA certificates only, or a limitied set of reason
 codes. Since this extension is critical, all certificate users must
 be prepared to receive CRLs with this extension.

 The CRL is signed using the CA's private key. CRL Distribution
 Points do not have their own key pairs. If the CRL is stored in the
 X.500 Directory, it is stored in the Directory entry corresponding to
 the CRL distribution point, which may be different than the Directory
 entry of the CA.

 CAs may use CRL distribution points to partition the CRL on the basis
 of compromise and routine revocation. In this case, the revocations
 with reason code keyCompromise (1) shall appear in one distribution
 point, and the revocations with other reason codes shall appear in
 another distribution point. The reason codes associated with a
 distribution point must be specified in onlySomeReasons. If
 onlySomeReasons does not appear, the distribution point must contain
 revocations for all reason codes.

 Where the issuingDistributionPoint extension contains a URL, the
 following semantics shall be assumed: the object is a pointer to the
 most current CRL issued by this CA. The URI schemes ftp, http,
 mailto [RFC1738] and ldap [RFC1778] are defined for this purpose.
 The URI must be an absolute, not relative, pathname and must specify
 the host.

 id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

 issuingDistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,

https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1778

Housley, Ford, Polk, & Solo [Page 42]

INTERNET DRAFT October 14, 1997

 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

5.2.5 Delta CRL Indicator

 The delta CRL indicator is a critical CRL extension that identifies a
 delta-CRL. The use of delta-CRLs can significantly improve
 processing time for applications which store revocation information
 in a format other than the CRL structure. This allows changes to be
 added to the local database while ignoring unchanged information that
 is already in the local database.

 When a delta-CRL is issued, the CAs shall also issue a complete CRL.

 The value of BaseCRLNumber identifies the CRL number of the base CRL
 that was used as the starting point in the generation of this delta-
 CRL. The delta-CRL contains the changes between the base CRL and the
 current CRL issued along with the delta-CRL. It is the decision of a
 CA as to whether to provide delta-CRLs. Again, a delta-CRL shall not
 be issued without a corresponding CRL. The value of CRLNumber for
 both the delta-CRL and the corresponding CRL shall be identical.

 A CRL user constructing a locally held CRL from delta-CRLs shall
 consider the constructed CRL incomplete and unusable if the CRLNumber
 of the received delta-CRL is more that one greater that the CRLnumber
 of the delta-CRL last processed.

 id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

 deltaCRLIndicator ::= BaseCRLNumber

 BaseCRLNumber ::= CRLNumber

5.2.6 Certificate Issuer

 This CRL entry extension identifies the certificate issuer associated
 with an entry in an indirect CRL, i.e. a CRL that has the indirectCRL
 indicator set in its issuing distribution point extension. If this
 extension is not present on the first entry in an indirect CRL, the
 certificate issuer defaults to the CRL issuer. On subsequent entries
 in an indirect CRL, if this extension is not present, the certificate
 issuer for the entry is the same as that for the preceding entry.
 This field is defined as follows:

 id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }

Housley, Ford, Polk, & Solo [Page 43]

INTERNET DRAFT October 14, 1997

 certificateIssuer ::= GeneralNames

 If used by conforming CAs that issue CRLs, this extension is always
 critical. Conforming applications if an implementation ignored this
 extension it could not correctly attribute CRL entries to
 certificates.

5.3 CRL Entry Extensions

 The CRL entry extensions already defined by ANSI X9 and ISO for X.509
 v2 CRLs [X.509-AM] [X9.55] provide methods for associating additional
 attributes with CRL entries. The X.509 v2 CRL format also allows
 communities to define private CRL entry extensions to carry
 information unique to those communities. Each extension in a CRL
 entry may be designated as critical or non-critical. A CRL
 validation must fail if it encounters a critical CRL entry extension
 which it does not know how to process. However, an unrecognized
 non-critical CRL entry extension may be ignored. The following
 presents recommended extensions used within Internet CRL entries and
 standard locations for information. Communities may elect to use
 additional CRL entry extensions; however, caution should be exercised
 in adopting any critical extensions in CRL entries which might be
 used in a general context.

 All CRL entry extensions are non-critical; support for these
 extensions is optional for conforming CAs and applications. However,
 CAs that issue CRLs are strongly encouraged to include reason codes
 (5.3.1) whenever this information is available.

5.3.1 Reason Code

 The reasonCode is a non-critical CRL entry extension that identifies
 the reason for the certificate revocation. CAs are strongly
 encouraged to include reason codes in CRL entries; however, the
 reason code CRL entry extension should be absent instead of using the
 unspecified (0) reasonCode value.

 id-ce-cRLReason OBJECT IDENTIFIER ::= { id-ce 21 }

 -- reasonCode ::= { CRLReason }

 CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),

Housley, Ford, Polk, & Solo [Page 44]

INTERNET DRAFT October 14, 1997

 certificateHold (6),
 removeFromCRL (8) }

5.3.2 Hold Instruction Code

 The hold instruction code is a non-critical CRL entry extension that
 provides a registered instruction identifier which indicates the
 action to be taken after encountering a certificate that has been
 placed on hold.

 id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

 holdInstructionCode ::= OBJECT IDENTIFIER

 The following instruction codes have been defined. Conforming
 applications that process this extension shall recognize the
 following instruction codes.

 holdInstruction OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) x9-57(10040) 2 }

 id-holdinstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1}
 id-holdinstruction-callissuer
 OBJECT IDENTIFIER ::= {holdInstruction 2}
 id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}

 Conforming applications which encounter a id-holdinstruction-
 callissuer must call the certificate issuer or reject the
 certificate. Conforming applications which encounter a id-
 holdinstruction-reject ID shall reject the transaction. id-
 holdinstruction-none is semantically equivalent to the absence of a
 holdInstructionCode. Its use is strongly deprecated for the Internet
 PKI.

5.3.3 Invalidity Date

 The invalidity date is a non-critical CRL entry extension that
 provides the date on which it is known or suspected that the private
 key was compromised or that the certificate otherwise became invalid.
 This date may be earlier than the revocation date in the CRL entry,
 but it must be later than the issue date of the previously issued
 CRL. Remember that the revocation date in the CRL entry specifies
 the date that the CA revoked the certificate. Whenever this
 information is available, CAs are strongly encouraged to share it
 with CRL users.

 The GeneralizedTime values included in this field shall be expressed
 in Greenwich Mean Time (Zulu), and shall be specified and interpreted

Housley, Ford, Polk, & Solo [Page 45]

INTERNET DRAFT October 14, 1997

 as defined in Section 4.1.2.5.2.

 id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

 invalidityDate ::= GeneralizedTime

6 Certificate Path Validation

 Certification path validation procedures for the Internet PKI are
 based on Section 12.4.3 of [X.509-AM]. Certification path processing
 verifies the binding between the subject distinguished name and
 subject public key. The binding is limited by constraints which are
 specified in the certificates which comprise the path. The basic
 constraints and policy constraints extensions allow the certification
 path processing logic to automate the decision making process.

 This section describes an algorithm for validating certification
 paths. Conforming implementations of this specification are not
 required to implement this algorithm, but shall be functionally
 equivalent to the external behaviour resulting from this procedure.
 Any algorithm may be used by a particular implementation so long as
 it derives the correct result.

 The following text assumes that all valid paths begin with the public
 key of a single "most-trusted CA". The "most-trusted CA" is a matter
 of policy: it could be a root CA in a hierarchical PKI; the CA that
 issued the verifier's own certificate(s); or any other CA in a
 network PKI. The path validation procedure is the same regardless of
 the choice of "most-trusted CA."

 The text assumes that this public key is contained in a "self-signed"
 certificate. This simplifies the description of the path processing
 procedure. Note that the signature on the self-signed certificate
 does not provide any security services. The public key it contains
 is trusted because of other procedures used to obtain and protect it.

 The goal of path validation is to verify the binding between a
 subject distinguished name and subject public key, as represented in
 the "end entity" certificate, based on the public key of the "most-
 trusted CA". This requires obtaining a sequence of certificates that
 support that binding. The procedures performed to obtain this
 sequence is outside the scope of this section.

 The following text also assumes that certificates do not use subject
 or unique identifier fields or private critical extensions, as
 recommended within this profile. However, if these components appear
 in certificates, they must be processed. Finally, policy qualifiers
 are also neglected for the sake of clarity.

Housley, Ford, Polk, & Solo [Page 46]

INTERNET DRAFT October 14, 1997

 A certification path is a sequence of n certificates where:

 * for all x in {1,(n-1)}, the subject of certificate x is the
 issuer of certificate x+1.
 * certificate x=1 is the the self-signed certificate, and
 * certificate x=n is the end entity certificate.

 This section assumes the following inputs are provided to the path
 processing logic:

 (a) a certification path of length n;

 (b) a set of initial policy identifiers (each comprising a
 sequence of policy element identifiers), which identifies one or
 more certificate policies, any one of which would be acceptable
 for the purposes of certification path processing; and

 (c) the current date/time (if not available internally to the
 certification path processing module).

 From the inputs, the procedure intializes five state variables:

 (a) acceptable policy set: A set of certificate policy
 identifiers comprising the policy or policies recognized by the
 public key user together with policies deemed equivalent through
 policy mapping. The initial value of the acceptable policy set is
 the set of initial policy identifiers.

 (b) constrained subtrees: A set of root names defining a set of
 subtrees within which all subject names in subsequent certificates
 in the certification path shall fall. The initial value is
 "unbounded".

 (c) excluded subtrees: A set of root names defining a set of
 subtrees within which no subject name in subsequent certificates
 in the certification path may fall. The initial value is "empty".

 (d) explicit policy: an integer which indicates if an explicit
 policy identifier is required. The integer indicates the first
 certificate in the path where this requirement is imposed. Once
 set, this variable may be decreased, but may not be increased.
 (That is, if a certificate in the path requires explicit policy
 identifiers, a later certificate can not remove this requirement.)
 The initial value is n+1.

 (e) policy mapping: an integer which indicates if policy mapping
 is permitted. The integer indicates the last certificate on which
 policy mapping may be applied. Once set, this variable may be

Housley, Ford, Polk, & Solo [Page 47]

INTERNET DRAFT October 14, 1997

 decreased, but may not be increased. (That is, if a certificate in
 the path specifies policy mapping is not permitted, it can not be
 overriden by a later certificate.) The initial value is n+1.

 The actions performed by the path processing software for each
 certificate i=1 through n are described below. The self-signed
 certificate is certificate i=1, the end entity certificate is i=n.
 The processing is performed sequentially, so that processing
 certificate i affects the state variables for processing certificate
 (i+1). Note that actions (f) through (i) are not applied to the end
 entity certificate (certificate n).

 The path processing actions to be performed are:

 (a) Verify the basic certificate information, including:

 (1) the certificate was signed using the subject public key
 from certificate i-1 (in the special case i=1, this step may be
 omitted; if not, use the subject public key from the same
 certificate),

 (2) the certificate is not expired, and (if present) the
 private key usage period is satisfied,

 (3) the certificate has not been revoked (this may be
 determined by obtaining current CRL, current status
 information, or by out-of-band mechanisms), and

 (4) the subject and issuer names chain correctly. (If the
 certificate has an empty sequence in the name field, name
 chaining will use the critical subjectAltNames and
 issuerAltNames fields.)

 (b) Verify that the subject name or critical subjectAltName
 extension is consistent with the constrained subtrees state
 variables; and

 (c) Verify that the subject name or critical subjectAltName
 extension is consistent with the excluded subtrees state
 variables.

 (d) Verify that policy information is consistent:

 (1) if the explicit policy state variable is less than or equal
 to i, an appropriate policy identifier must appear in the
 certificate; and
 (2) if the policy mapping variable is less than or equal to i,
 the policy identifier may not be mapped.

Housley, Ford, Polk, & Solo [Page 48]

INTERNET DRAFT October 14, 1997

 (e) Recognize and process any other critical extension present in
 the certificate.

 (f) Verify that the certificate is a CA certificate (as specified
 in a basicConstraints extension or as verified out-of-band).

 (g) If permittedSubtrees is present in the certificate, set the
 constrained subtrees state variable to the intersection of its
 previous value and the value indicated in the extension field.

 (h) If excludedSubtrees is present in the certificate, set the
 excluded subtrees state variable to the union of its previous
 value and the value indicated in the extension field.

 (i) If a policy constraints extension is included in the
 certificate, modify the explicit policy and policy mapping state
 variables as follows:

 (1) If requireExplicitPolicy is present and has value r, the
 explicit policy state variable is set to the minimum of (a) its
 current value and (b) the sum of r and i (the current
 certificate in the sequence).

 (2) If inhibitPolicyMapping is present and has value q, the
 policy mapping state variable is set to the minimum of (a) its
 current value and (b) the sum of q and i (the current
 certificate in the sequence).

 If any one of the above checks fail, the procedure terminates,
 returning a failure indication and an appropriate reason. If none of
 the above checks fail on the end-entity certificate, the procedure
 terminates, returning a success indication together with the set of
 all policy qualifier values encountered in the set of certificates.

 Notes: It is possible to specify an extended version of the above
 certification path processing procedure which results in default
 behaviour identical to the rules of Privacy Enhanced Mail [RFC 1422].
 In this extended version, additional inputs to the procedure are a
 list of one or more Policy Certification Authoritys (PCAs) names and
 an indicator of the position in the certification path where the PCA
 is expected. At the nominated PCA position, the CA name is compared
 against this list. If a recognized PCA name is found, then a
 constraint of SubordinateToCA is implicitly assumed for the remainder
 of the certification path and processing continues. If no valid PCA
 name is found, and if the certification path cannot be validated on
 the basis of identified policies, then the certification path is
 considered invalid.

https://datatracker.ietf.org/doc/html/rfc1422

Housley, Ford, Polk, & Solo [Page 49]

INTERNET DRAFT October 14, 1997

 This procedure may also be extended by providing a set of self-signed
 certificates to the validation module. In this case, a valid path
 could begin with any one of the self-signed certificates. These
 self-signed certificates permit the path validation module to
 automatically incorporate local security policy and requirements.

7 Algorithm Support

 This section describes cryptographic algorithms which may be used
 with this standard. The section describes one-way hash functions and
 digital signature algorithms which may be used to sign certificates
 and CRLs, and identifies object identifiers for public keys contained
 in a certificate.

 Conforming CAs and applications are not required to support the
 algorithms or algorithm identifiers described in this section.
 However, this profile requires conforming CAs and applications to
 conform when they use the algorithms identified here.

7.1 One-way Hash Functions

 This section identifies one-way hash functions for use in the
 Internet PKI. One-way hash functions are also called message digest
 algorithms. SHA-1 is the preferred one-way hash function for the
 Internet PKI. However, PEM uses MD2 for certificates [RFC 1422] [RFC
 1423] and MD5 is used in other legacy applications. For this reason,
 MD2 and MD5 are included in this profile.

7.1.1 MD2 One-way Hash Function

 MD2 was developed by Ron Rivest, but RSA Data Security has not placed
 the MD2 algorithm in the public domain. Rather, RSA Data Security
 has granted license to use MD2 for non-commercial Internet Privacy-
 Enhanced Mail. For this reason, MD2 may continue to be used with PEM
 certificates, but SHA-1 is preferred. MD2 is fully described in RFC

1319 [RFC 1319].

 At the Selected Areas in Cryptography '95 conference in May 1995,
 Rogier and Chauvaud presented an attack on MD2 that can nearly find
 collisions [RC95]. Collisions occur when one can find two different
 messages that generate the same message digest. A checksum operation
 in MD2 is the only remaining obstacle to the success of the attack.
 For this reason, the use of MD2 for new applications is discouraged.
 It is still reasonable to use MD2 to verify existing signatures, as
 the ability to find collisions in MD2 does not enable an attacker to
 find new messages having a previously computed hash value.

 << More information on the attack and its implications can be

https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1319

Housley, Ford, Polk, & Solo [Page 50]

INTERNET DRAFT October 14, 1997

 obtained from a RSA Laboratories security bulletin. These bulletins
 are available from <http://www.rsa.com/>. >>

7.1.2 MD5 One-way Hash Function

 MD5 was developed by Ron Rivest in 1991. The algorithm takes as
 input a message of arbitrary length and produces as output a 128-bit
 "fingerprint" or "message digest" of the input. The MD5 message
 digest algorithm is specified by RFC 1321, "The MD5 Message-Digest
 Algorithm"[RFC1321].

 Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5,
 but there are no other known cryptanalytic results. The use of MD5
 for new applications is discouraged. It is still reasonable to use
 MD5 to verify existing signatures.

7.1.2 SHA-1 One-way Hash Function

 SHA-1 was developed by the U.S. Government. The algorithm takes as
 input a message of arbitrary length and produces as output a 160-bit
 "hash" of the input. SHA-1 is fully described in FIPS 180-1 [FIPS
 180-1].

 SHA-1 is the one-way hash function of choice for use with both the
 RSA and DSA signature algorithms (see Section 7.2).

7.2 Signature Algorithms

 Certificates and CRLs described by this standard may be signed with
 any public key signature algorithm. The certificate or CRL indicates
 the algorithm through an algorithmidentifier which appears in the
 signatureAlgorithm field in a Certificate or CertificateList. This
 algorithmidentfier is an OID and has optionally associated
 parameters. This section identifies algorithm identifiers and
 parameters that shall be used in the signatureAlgorithm field in a
 Certificate or CertificateList.

 RSA and DSA are the most popular signature algorithms used in the
 Internet. Signature algorithms are always used in conjunction with a
 one-way hash function identified in Section 7.1.

 The signature algorithm (and one-way hash function) used to sign a
 certificate or CRL is indicated by use of an algorithm identifier.
 An algorithm identifier is an object identifier, and may include
 associated parameters. This section identifies OIDS for RSA and DSA
 and the corresponding parameters.

 The data to be signed (e.g., the one-way hash function output value)

http://www.rsa.com/
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

Housley, Ford, Polk, & Solo [Page 51]

INTERNET DRAFT October 14, 1997

 is formatted for the signature algorithm to be used. Then, a private
 key operation (e.g., RSA encryption) is performed to generate the
 signature value. This signature value is then ASN.1 encoded as a BIT
 STRING and included in the Certificate or CertificateList (in the
 signature field).

7.2.1 RSA Signature Algorithm

 A patent statement regarding the RSA algorithm can be found at the
 end of this profile.

 The RSA algorithm is named for its inventors: Rivest, Shamir, and
 Adleman. This profile includes three signature algorithms based on
 the RSA asymmetric encryption algorithm. The signature algorithms
 combine RSA with either the MD2, MD5, or the SHA-1 one-way hash
 functions.

 The signature algorithm with MD2 and the RSA encryption algorithm is
 defined in PKCS #1 [PKCS#1]. As defined in PKCS #1, the ASN.1 object
 identifier used to identify this signature algorithm is:

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 The signature algorithm with MD5 and the RSA encryption algorithm is
 defined in PKCS #1 [PKCS#1]. As defined in PKCS #1, the ASN.1 object
 identifier used to identify this signature algorithm is:

 md5WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 4 }

 The signature algorithm with SHA-1 and the RSA encryption algorithm
 is defined in by the OSI Interoperability Workshop in [OIW]. Padding
 conventions described in PKCS #1, section 8.1, must be used. As
 defined in [OIW], the ASN.1 object identifier used to identify this
 signature algorithm is:

 sha1WithRSASignature OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14)
 secsig(3) algorithm(2) 29 }

 When any of these three object identifiers appears within the ASN.1
 type AlgorithmIdentifier, the parameters component of that type shall
 be the ASN.1 type NULL.

 The data to be signed (e.g., the one-way hash function output value)

Housley, Ford, Polk, & Solo [Page 52]

INTERNET DRAFT October 14, 1997

 is first ASN.1 encoded as an OCTET STRING and the result is encrypted
 (e.g., using RSA Encryption) to form the signed quantity. When
 signing, the RSA algorithm generates an integer y. This signature
 value is then ASN.1 encoded as a BIT STRING, such that the most
 significant bit in y is the first bit in the bit string and the least
 significant bit in y is the last bit in the bit string, and included
 in the Certificate or CertificateList (in the signature field).

 (In general the conversion to a bit string occurs in two steps. The
 integer y is converted to an octet string such that the first octet
 has the most significance and the last octet has the least
 significance. The octet string is converted into a bit string such
 that the most significant bit of the first octet shall become the
 first bit in the bit string, and the least significant bit of the
 last octet is the last bit in the BIT STRING.)

7.2.2 DSA Signature Algorithm

 A patent statement regarding the DSA can be found at the end of this
 profile.

 The Digital Signature Algorithm (DSA) is also called the Digital
 Signature Standard (DSS). DSA was developed by the U.S. Government,
 and DSA is used in conjunction with the the SHA-1 one-way hash
 function. DSA is fully described in FIPS 186 [FIPS 186]. The ASN.1
 object identifiers used to identify this signature algorithm are:

 id-dsa-with-sha1 ID ::= {
 iso(1) member-body(2) us(840) x9-57 (10040)
 x9cm(4) 3 }

 The id-dsa-with-sha1 algorithm syntax has NULL parameters. The DSA
 parameters in the subjectPublicKeyInfo field of the certificate of
 the issuer shall apply to the verification of the signature.

 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject certificate using DSA, then
 the certificate issuer's parameters apply to the subject's DSA key.
 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject with a signature algorithm
 other than DSA, then clients shall not validate the certificate.

 When signing, the DSA algorithm generates two values. These values
 are commonly referred to as r and s. To easily transfer these two
 values as one signature, they shall be ASN.1 encoded using the
 following ASN.1 structure:

 Dss-Sig-Value ::= SEQUENCE {

Housley, Ford, Polk, & Solo [Page 53]

INTERNET DRAFT October 14, 1997

 r INTEGER,
 s INTEGER }

7.3 Subject Public Key Algorithms

 Certificates described by this standard may convey a public key for
 any public key algorithm. The certificate indicates the algorithm
 through an algorithmidentifier. This algorithm identfieier is an OID
 and optionally associated parameters.

 This section identifies preferred OIDs and parameters for the RSA,
 DSA, and Diffie-Hellman algorithms. Conforming CAs shall use the
 identified OIDs when issuing certificates containing public keys for
 these algorithms. Conforming applications supporting any of these
 algorithms shall, at a minimum, recognize the OID identified in this
 section.

7.3.1 RSA Keys

 The object identifier rsaEncryption identifies RSA public keys.

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) 1 }

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

 The rsaEncryption object identifier is intended to be used in the
 algorithm field of a value of type AlgorithmIdentifier. The
 parameters field shall have ASN.1 type NULL for this algorithm
 identifier.

 The rsa public key shall be encoded using the ASN.1 type
 RSAPublicKey:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
 }

 where modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is the value of the BIT
 STRING subjectPubliKey.

 This object identifier is used in public key certificates for both
 RSA signature keys and RSA encryption keys. The intended application
 for the key may be indicated in the key usage field (see Section

4.2.1.3). The use of a single key for both signature and encryption
 purposes is not recommended, but is not forbidden.

Housley, Ford, Polk, & Solo [Page 54]

INTERNET DRAFT October 14, 1997

 If the keyUsage extension is present in an end entity certificate
 which conveys an RSA public key, any combination of the following
 values may be present:

 digitalSignature;
 nonRepudiation;
 keyEncipherment; and
 dataEncipherment.

 If the keyUsage extension is present in a CA certificate which
 conveys an RSA public key, any combination of the following values
 may be present:

 digitalSignature;
 nonRepudiation;
 keyEncipherment;
 dataEncipherment;
 keyCertSign; and
 cRLSign.
 However, this specification recommends that if keyCertSign or cRLSign
 is present, both keyEncipherment and dataEncipherment should not be
 present.

7.3.2 Diffie-Hellman Key Exchange Key

 This diffie-hellman object identifier supported by this standard is
 defined by ANSI X9.42.

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x942(10046) number-type(2) 1 }

 The dhpublicnumber object identifier is intended to be used in the
 algorithm field of a value of type AlgorithmIdentifier. The
 parameters field of that type, which has the algorithm-specific
 syntax ANY DEFINED BY algorithm, would have ASN.1 type DHParameter
 for this algorithm.

 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER, -- g }

 The fields of type DHParameter have the following meanings:

 prime is the prime p.

 base is the base g.

 The Diffie-Hellman public key (an INTEGER) is mapped to a

Housley, Ford, Polk, & Solo [Page 55]

INTERNET DRAFT October 14, 1997

 subjectPublicKey (a BIT STRING) as follows: the most significant bit
 (MSB) of the INTEGER becomes the MSB of the BIT STRING; the least
 significant bit (LSB) of the INTEGER becomes the LSB of the BIT
 STRING.

 If the keyUsage extension is present in a certificate which conveys a
 DH public key, the following values may be present:

 keyAgreement;
 encipherOnly; and
 decipherOnly.

 At most one of encipherOnly and decipherOnly shall be asserted in
 keyUsage extension.

7.3.3 DSA Signature Keys

 The object identifier supported by this standard is

 id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040)
 x9cm(4) 1 }

 The id-dsa algorithm syntax includes optional parameters. These
 parameters are commonly referred to as p, q, and g. If the DSA
 algorithm parameters are absent from the subjectPublicKeyInfo
 AlgorithmIdentifier and the CA signed the subject certificate using
 DSA, then the certificate issuer's DSA parameters apply to the
 subject's DSA key. If the DSA algorithm parameters are absent from
 the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
 subject certificate using a signature algorithm other than DSA, then
 the subject's DSA parameters are distributed by other means. The
 parameters are included using the following ASN.1 structure:

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject certificate using DSA, then
 the certificate issuer's parameters apply to the subject's DSA key.
 If the subjectPublicKeyInfo AlgorithmIdentifier field has NULL
 parameters and the CA signed the subject with a signature algorithm
 other than DSA, then clients shall not validate the certificate.

 When signing, DSA algorithm generates two values. These values are
 commonly referred to as r and s. To easily transfer these two values
 as one signature, they are ASN.1 encoded using the following ASN.1

Housley, Ford, Polk, & Solo [Page 56]

INTERNET DRAFT October 14, 1997

 structure:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 The encoded signature is conveyed as the value of the BIT STRING
 signature in a Certificate or CertificateList.

 The DSA public key shall be ASN.1 encoded as an INTEGER; this
 encoding shall be used as the contents (i.e., the value) of the
 subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
 data element.

 DSAPublicKey ::= INTEGER -- public key Y

 If the keyUsage extension is present in an end entity certificate
 which conveys a DSA public key, any combination of the following
 values may be present:

 digitalSignature; and
 nonRepudiation.

 If the keyUsage extension is present in an CA certificate which
 conveys a DSA public key, any combination of the following values may
 be present:

 digitalSignature;
 nonRepudiation;
 keyCertSign; and
 cRLSign.

References

 [COR95] ISO/IEC JTC 1/SC 21, Technical Corrigendum 2 to ISO/IEC
 9594-8: 1990 & 1993 (1995:E), July 1995.

 [FIPS 180-1] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995.
 [Supersedes FIPS PUB 180 dated 11 May 1993.]

 [FIPS 186] Federal Information Processing Standards Publication
 (FIPS PUB) 186, Digital Signature Standard, 18 May 1994.

 [OIW] Stable Implementation Agreements for Open Systems
 Interconnection Protocols: Part 12 - OS Security,
 Output from the June 1995 Open Systems Environment

Housley, Ford, Polk, & Solo [Page 57]

INTERNET DRAFT October 14, 1997

 Implementors' Workshop (OIW).

 [PKCS#1] PKCS #1: RSA Encryption Standard, Version 1.4, RSA Data
 Security, Inc., 3 June 1991.

 [RC95] Rogier, N. and Chauvaud, P., "The compression function of
 MD2 is not collision free," Presented at Selected Areas in
 Cryptography '95, Carleton University, Ottawa, Canada,
 18-19 May 1995.

 [RFC 791] J. Postel, "Internet Protocol", September 1981.

 [RFC 1319] Kaliski, B., "The MD2 Message-Digest Algorithm," RFC 1319,
 RSA Laboratories, April 1992.

 [RFC 1422] Kent, S., "Privacy Enhancement for Internet Electronic
 Mail: Part II: Certificate-Based Key Management," RFC

1422, BBN Communications, February 1993.

 [RFC 1423] Balenson, D., "Privacy Enhancement for Internet Electronic
 Mail: Part III: Algorithms, Modes, and Identifiers,"

RFC 1423, Trusted Information Systems, February 1993.

 [RFC 1738] T. Berners-Lee, L. Masinter & M. McCahill, "Uniform
 Resource Locators (URL)," December 1994.

 [RFC 1777] W. Yeong, T. Howes & S. Kille, "Lightweight Directory
 Access Protocol," March 1995.

 [RFC 1778] T. Howes, S. Kille, W. Yeong, C. Robbins, "The String
 Representation of Standard Attribute Syntaxes", March 1995.

 [RFC 1883] S. Deering, R. Hinden, "Internet Protocol, Version 6
 (IPv6)," December 1995.

 [RFC 1959] T. Howes, M. Smith, "An LDAP URL Format", RFC 1959,
 June 1996.

 [PKIXMGMT] C. Adams, S. Farrell, "Internet Public Key Infrastructure
 Certificate Management Protocols",

draft-ietf-pkix-ipki3cmp-04.txt, September 1997

 [PKIXLDAP] S. Boyeun, T. Howes and P. Richard "Internet Public Key
 Infrastructure Operational Protocols - LDAP",

draft-ietf-pkix-ipki2opp-03.txt, September 1997.

 [PKIXOCSP] M. Myers, in "Internet Public Key Infrastructure Part 2:
 Operational Protocols", draft-ietf-pkix-ipki2opp-02.txt,

https://datatracker.ietf.org/doc/html/rfc1319
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1422
https://datatracker.ietf.org/doc/html/rfc1423
https://datatracker.ietf.org/doc/html/rfc1959
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki3cmp-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki2opp-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki2opp-02.txt

Housley, Ford, Polk, & Solo [Page 58]

INTERNET DRAFT October 14, 1997

 July 1997.

 [PKIXFTP] R. Housley, "Internet Public Key Infrastructure Operational
 Protocols: FTP and HTTP", draft-ietf-pkix-opp-ftp-http-00.txt,
 September 1997.

 [SDN.701R] SDN.701, "Message Security Protocol", Revision 4.0
 1996-06-07 with "Corrections to Message Security Protocol,
 SDN.701, Rev 4.0, 96-06-07." August 30, 1996.

 [X.208] CCITT Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1), 1988.

 [X.509-AM] ISO/IEC JTC1/SC 21, Draft Amendments DAM 4 to ISO/IEC
 9594-2, DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7,
 and DAM 1 to ISO/IEC 9594-8 on Certificate Extensions,
 1 December, 1996.

 [X9.55] ANSI X9.55-1995, Public Key Cryptography For The Financial
 Services Industry: Extensions To Public Key Certificates
 And Certificate Revocation Lists, 8 December, 1995.

 [X9.57] ANSI X9.57-199x, Public Key Cryptography For The Financial
 Services Industry: Certificate Management (Working Draft),
 21 June, 1996.

Patent Statements

 The Internet PKI relies on the use of patented public key technology
 and secure hash technology for digital signature services. This
 specification also references public key encryption technology for
 provisioning key exchange services.

 The Internet Standards Process as defined in RFC 1310 requires a
 written statement from the Patent holder that a license will be made
 available to applicants under reasonable terms and conditions prior
 to approving a specification as a Proposed, Draft or Internet
 Standard.

 Patent statements for DSA, RSA, and Diffie-Hellman follow. These
 statements have been supplied by the patent holders, not the authors
 of this profile.

 The Internet Society, Internet Architecture Board, Internet
 Engineering Steering Group and the Corporation for National Research
 Initiatives take no position on the validity or scope of the
 following patents and patent applications, nor on the appropriateness
 of the terms of the assurance. The Internet Society and other groups

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-opp-ftp-http-00.txt
https://datatracker.ietf.org/doc/html/rfc1310

Housley, Ford, Polk, & Solo [Page 59]

INTERNET DRAFT October 14, 1997

 mentioned above have not made any determination as to any other
 intellectual property rights which may apply to the practice of this
 standard. Any further consideration of these matters is the user's
 own responsibility.

 Digital Signature Algorithm (DSA)

 The U.S. Government holds patent 5,231,668 on the Digital
 Signature Algorithm (DSA), which has been incorporated into
 Federal Information Processing Standard (FIPS) 186. The patent
 was issued on July 27, 1993.

 The National Institute of Standards and Technology (NIST) has a
 long tradition of supplying U.S. Government-developed techniques
 to committees and working groups for inclusion into standards on a
 royalty-free basis. NIST has made the DSA patent available
 royalty-free to users worldwide.

 Regarding patent infringement, FIPS 186 summarizes our position;
 the Department of Commerce is not aware of any patents that would
 be infringed by the DSA. Questions regarding this matter may be
 directed to the Deputy Chief Counsel for NIST.

 RSA Signature and Encryption

 The Massachusetts Institute of Technology has granted RSA Data
 Security, Inc., exclusive sub-licensing rights to the following
 patent issued in the United States:

 Cryptographic Communications System and Method ("RSA"), No.
 4,405,829

 RSA Data Security, Inc. has provided the following statement with
 regard to this patent:

 It is our understanding that the proposed PKIX Certificate
 Profile (PKIX-1) standard currently under review contemplates
 the use of U.S Patent 4,405,829 entitled "Cryptographic
 Communication System and Method" (the "RSA patent") which
 patent is controlled by RSA.

 It is RSA's business practice to make licenses to its patents
 available on reasonable and nondiscriminatory terms.
 Accordingly, if the foregoing identified IETF standard is
 adopted, RSA is willing, upon request, to grant non-exclusive
 licenses to such patent on reasonable and non-discriminatory
 terms and conditions to those who respect RSA's intellectual
 property rights and subject to RSA's then current royalty rate

Housley, Ford, Polk, & Solo [Page 60]

INTERNET DRAFT October 14, 1997

 for the patent licensed. The royalty rate for the RSA patent is
 presently set at 2% of the licensee's selling price for each
 product covered by the patent. Any requests for license
 information may be directed to:

 Director of Licensing RSA Data Security, Inc. 100 Marine
 Parkway, Suite 500 Redwood City, CA 94065

 A license under RSA's patent(s) does not include any rights to
 know-how or other technical information or license under other
 intellectual property rights. Such license does not extend to
 any activities which constitute infringement or inducement
 thereto. A licensee must make his own determination as to
 whether a license is necessary under patents of others.

 Diffie-Hellman Key Agreement and Hellman-Merkle Public Key
 Cryptography

 Patent No. 4,200,770: Cryptographic Apparatus and Method ("Diffie-
 Hellman") expired on August 19, 1997. Patent No. 4,218,582: Public
 Key Cryptographic Apparatus and Method ("Hellman-Merkle") expired on
 April 29, 1997.

Appendix A. ASN.1 Structures and OIDs

PKIX1 DEFINITIONS IMPLICIT TAGS::=

BEGIN

-- UNIVERSAL Types defined in '93 ASN.1
-- but required by this specification

UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING
 -- UniversalString is defined in ASN.1:1993

BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING
 -- BMPString is the subtype of
 -- UniversalString and models the Basic Multilingual Plane
 -- of ISO/IEC 10646-1
--
-- Proposed PKIX OIDs
id-pkix OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) }

-- PKIX arcs
-- arc for private certificate extensions

Housley, Ford, Polk, & Solo [Page 61]

INTERNET DRAFT October 14, 1997

id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
 -- arc for policy qualifier types
id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }
-- arc for extended key purpose OIDS
id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
-- arc for access descriptors
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

-- pkix private extensions
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

-- policyQualifierIds for Internet policy qualifiers
id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 }
id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }

-- extended key purpose OIDs
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 }
id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 }
id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 }
id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
id-kp-ipsecEndSystem OBJECT IDENTIFIER ::= { id-kp 5 }
id-kp-ipsecTunnel OBJECT IDENTIFIER ::= { id-kp 6 }
id-kp-ipsecUser OBJECT IDENTIFIER ::= { id-kp 7 }
id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }

-- access descriptors for authority info access extension
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }
id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

-- attribute data types --

Attribute ::= SEQUENCE {
 type AttributeValue,
 values SET OF AttributeValue
 -- at least one value is required -- }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

-- naming data types --

Name ::= CHOICE { -- only one possibility for now --
 rdnSequence RDNSequence }

Housley, Ford, Polk, & Solo [Page 62]

INTERNET DRAFT October 14, 1997

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::=
 SET SIZE (1 .. MAX) OF AttributeTypeAndValue

-- Directory string type --

DirectoryString ::= CHOICE {
 teletexString TeletexString (SIZE (1..maxSize)),
 printableString PrintableString (SIZE (1..maxSize)),
 universalString UniversalString (SIZE (1..maxSize)),
 bmpString BMPString (SIZE(1..maxSIZE))
 }

-- certificate and CRL specific structures begin here

Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] EXPLICIT Extensions OPTIONAL
 -- If present, version must be v3
 }

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
 notBefore Time,
 notAfter Time }

Time ::= CHOICE {

Housley, Ford, Polk, & Solo [Page 63]

INTERNET DRAFT October 14, 1997

 utcTime UTCTime,
 generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

-- Extension ::= { {id-ce 15}, ... , keyUsage }

ID ::= OBJECT IDENTIFIER
joint-iso-ccitt ID ::= { 2 }
ds ID ::= {joint-iso-ccitt 5}
id-ce ID ::= {ds 29}

AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 authorityCertIssuer [1] GeneralNames OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL
 }
 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,
 authorityCertSerialNumber PRESENT} |
 WITH COMPONENTS {..., authorityCertIssuer ABSENT,
 authorityCertSerialNumber ABSENT})

KeyIdentifier ::= OCTET STRING

-- subjectKeyIdentifier ::= KeyIdentifier

KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6) }

id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

Housley, Ford, Polk, & Solo [Page 64]

INTERNET DRAFT October 14, 1997

PrivateKeyUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }
 (WITH COMPONENTS {..., notBefore PRESENT} |
 WITH COMPONENTS {..., notAfter PRESENT})

id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId PolicyQualifierId,
 qualifier ANY DEFINED BY policyQualifierId }

PolicyQualifierId ::= OBJECT IDENTIFIER

id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }

PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
-- OTHER-NAME ::= TYPE-IDENTIFIER note: not supported in '88 ASN.1
 otherName [0] AnotherName,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER }

AnotherName ::= SEQUENCE {

Housley, Ford, Polk, & Solo [Page 65]

INTERNET DRAFT October 14, 1997

 type-id OBJECT IDENTIFIER,
 value [0] EXPLICIT ANY DEFINED BY type-id
 }

EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString }

id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

IssuerAltName ::= GeneralNames

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= { id-ce 9 }

SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

BasicConstraints ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }

NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }

PolicyConstraints ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

-- cRLDistributionPoints CRLDistPointsSyntax ::=
-- SEQUENCE SIZE (1..MAX) OF DistributionPoint

Housley, Ford, Polk, & Solo [Page 66]

INTERNET DRAFT October 14, 1997

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

KeyPurposeId ::= OBJECT IDENTIFIER

AuthorityInfoAccessSyntax ::=
 SEQUENCE SIZE (1..MAX) OF AccessDescription

AccessDescription ::= SEQUENCE {
 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

-- CRL structures

CertificateList ::= SEQUENCE {
 tbsCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

TBSCertList ::= SEQUENCE {
 version Version OPTIONAL,
 -- if present, must be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate Time,
 nextUpdate Time OPTIONAL,
 revokedCertificates SEQUENCE OF SEQUENCE {

Housley, Ford, Polk, & Solo [Page 67]

INTERNET DRAFT October 14, 1997

 userCertificate CertificateSerialNumber,
 revocationDate Time,
 crlEntryExtensions Extensions OPTIONAL
 -- if present, must be v2
 } OPTIONAL,
 crlExtensions [0] EXPLICIT Extensions OPTIONAL
 -- if present, must be v2
 }

-- Version, Time, CertificateSerialNumber, and Extensions were
-- defined earlier for use in the certificate structure

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 -- contains a value of the type
 -- registered for use with the
 -- algorithm object identifier value

id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

CRLNumber ::= INTEGER (0..MAX)

id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

IssuingDistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

-- deltaCRLIndicator ::= BaseCRLNumber

id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

BaseCRLNumber ::= CRLNumber

id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }

CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),

Housley, Ford, Polk, & Solo [Page 68]

INTERNET DRAFT October 14, 1997

 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8) }

id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }

CertificateIssuer ::= GeneralNames

id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

HoldInstructionCode ::= OBJECT IDENTIFIER

-- ANSI x9 arc holdinstruction arc

member-body ID ::= { iso 2 }
us ID ::= { member-body 840 }
x9cm ID ::= { us 10040 }
holdInstruction ID ::= {x9cm 2}

-- ANSI X9 holdinstructions referenced by this standard

id-holdinstruction-none ID ::= {holdInstruction 1}
id-holdinstruction-callissuer ID ::= {holdInstruction 2}
id-holdinstruction-reject ID ::= {holdInstruction 3}

id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

InvalidityDate ::= GeneralizedTime

-- Algorithm structures

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 md5WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 4 }

 sha1WithRSASignature OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithm(2) 29 }

 id-dsa-with-sha1 ID ::= {
 iso(1) member-body(2) us(840) x9-57 (10040)
 x9algorithm(4) 3 }

Housley, Ford, Polk, & Solo [Page 69]

INTERNET DRAFT October 14, 1997

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) 1 }

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x942(10046) number-type(2) 1 }

 DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER -- g
 }

 id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040)
 x9algorithm(4) 1 }

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

 id-keyEncryptionAlgorithm OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 1 22 }

 KEA-Parms-Id ::= OCTET STRING

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

CPSuri ::= IA5String

UserNotice ::= CHOICE {
 visibleString VisibleString,
 bmpString BMPString
 }

PresentationAddress ::= SEQUENCE {
 pSelector [0] EXPLICIT OCTET STRING OPTIONAL,
 sSelector [1] EXPLICIT OCTET STRING OPTIONAL,
 tSelector [2] EXPLICIT OCTET STRING OPTIONAL,
 nAddresses [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING}

-- x400 address syntax starts here

Housley, Ford, Polk, & Solo [Page 70]

INTERNET DRAFT October 14, 1997

-- OR Names

ORAddressAndOrDirectoryName ::= ORName

ORAddressAndOptionalDirectoryName ::= ORName

ORName ::= [APPLICATION 0] SEQUENCE {
 -- address -- COMPONENTS OF ORAddress,
 directory-name [0] Name OPTIONAL }

ORAddress ::= SEQUENCE {
 built-in-standard-attributes BuiltInStandardAttributes,
 built-in-domain-defined-attributes
 BuiltInDomainDefinedAttributes OPTIONAL,
 -- see also teletex-domain-defined-attributes
 extension-attributes ExtensionAttributes OPTIONAL }
-- The OR-address is semantically absent from the OR-name if the
-- built-in-standard-attribute sequence is empty and the
-- built-in-domain-defined-attributes and extension-attributes are
-- both omitted.

-- Built-in Standard Attributes
BuiltInStandardAttributes ::= SEQUENCE {
 country-name CountryName OPTIONAL,
 administration-domain-name AdministrationDomainName OPTIONAL,
 network-address [0] NetworkAddress OPTIONAL,
 -- see also extended-network-address
 terminal-identifier [1] TerminalIdentifier OPTIONAL,
 private-domain-name [2] PrivateDomainName OPTIONAL,
 organization-name [3] OrganizationName OPTIONAL,
 -- see also teletex-organization-name
 numeric-user-identifier [4] NumericUserIdentifier OPTIONAL,
 personal-name [5] PersonalName OPTIONAL,
 -- see also teletex-personal-name
 organizational-unit-names [6] OrganizationalUnitNames OPTIONAL
 -- see also teletex-organizational-unit-names -- }

CountryName ::= [APPLICATION 1] CHOICE {
 x121-dcc-code NumericString
 (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

AdministrationDomainName ::= [APPLICATION 2] CHOICE {
 numeric NumericString (SIZE (0..ub-domain-name-length)),
 printable PrintableString (SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address

Housley, Ford, Polk, & Solo [Page 71]

INTERNET DRAFT October 14, 1997

-- see also extended-network-address

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

PrivateDomainName ::= CHOICE {
 numeric NumericString (SIZE (1..ub-domain-name-length)),
 printable PrintableString (SIZE (1..ub-domain-name-length)) }

OrganizationName ::= PrintableString
 (SIZE (1..ub-organization-name-length))
-- see also teletex-organization-name

NumericUserIdentifier ::= NumericString
 (SIZE (1..ub-numeric-user-id-length))

PersonalName ::= SET {
 surname [0] PrintableString (SIZE (1..ub-surname-length)),
 given-name [1] PrintableString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] PrintableString (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] PrintableString
 (SIZE (1..ub-generation-qualifier-length)) OPTIONAL}
-- see also teletex-personal-name

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)
 OF OrganizationalUnitName
-- see also teletex-organizational-unit-names

OrganizationalUnitName ::= PrintableString (SIZE
 (1..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes
BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE
 (1..ub-domain-defined-attributes) OF
 BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {
 type PrintableString (SIZE
 (1..ub-domain-defined-attribute-type-length)),
 value PrintableString (SIZE
 (1..ub-domain-defined-attribute-value-length))}

-- Extension Attributes
ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF
 ExtensionAttribute
ExtensionAttribute ::= EXTENSION-ATTRIBUTE

Housley, Ford, Polk, & Solo [Page 72]

INTERNET DRAFT October 14, 1997

EXTENSION-ATTRIBUTE ::= SEQUENCE {
 extension-attribute-type [0] INTEGER (0..ub-extension-attributes),
 extension-attribute-value [1] ANY DEFINED BY extension-attribute-type
 }

extensionAttributeTable EXTENSION-ATTRIBUTE ::= {
 common-name |
 teletex-common-name |
 teletex-organization-name |
 teletex-personal-name |
 teletex-organizational-unit-names |
 teletex-domain-defined-attributes |
 pds-name |
 physical-delivery-country-name |
 postal-code |
 physical-delivery-office-name |
 physical-delivery-office-number |
 extension-OR-address-components |
 physical-delivery-personal-name |
 physical-delivery-organization-name |
 extension-physical-delivery-address-components |
 unformatted-postal-address |
 street-address |
 post-office-box-address |
 poste-restante-address |
 unique-postal-name |
 local-postal-attributes |
 extended-network-address |
 terminal-type }

-- Extension Standard Attributes

common-name EXTENSION-ATTRIBUTE ::= {CommonName IDENTIFIED BY 1}

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))

teletex-common-name EXTENSION-ATTRIBUTE ::=
 {TeletexCommonName IDENTIFIED BY 2}

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

teletex-organization-name EXTENSION-ATTRIBUTE ::=
 {TeletexOrganizationName IDENTIFIED BY 3}

TeletexOrganizationName ::=
 TeletexString (SIZE (1..ub-organization-name-length))

teletex-personal-name EXTENSION-ATTRIBUTE ::=

Housley, Ford, Polk, & Solo [Page 73]

INTERNET DRAFT October 14, 1997

 {TeletexPersonalName IDENTIFIED BY 4}

TeletexPersonalName ::= SET {
 surname [0] TeletexString (SIZE (1..ub-surname-length)),
 given-name [1] TeletexString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] TeletexString (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] TeletexString (SIZE
 (1..ub-generation-qualifier-length)) OPTIONAL }

teletex-organizational-unit-names EXTENSION-ATTRIBUTE ::=
 {TeletexOrganizationalUnitNames IDENTIFIED BY 5}

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE
 (1..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::= TeletexString
 (SIZE (1..ub-organizational-unit-name-length))

pds-name EXTENSION-ATTRIBUTE ::= {PDSName IDENTIFIED BY 7}

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

physical-delivery-country-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryCountryName IDENTIFIED BY 8}

PhysicalDeliveryCountryName ::= CHOICE {
 x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

postal-code EXTENSION-ATTRIBUTE ::= {PostalCode IDENTIFIED BY 9}

PostalCode ::= CHOICE {
 numeric-code NumericString (SIZE (1..ub-postal-code-length)),
 printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

physical-delivery-office-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOfficeName IDENTIFIED BY 10}

PhysicalDeliveryOfficeName ::= PDSParameter

physical-delivery-office-number EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOfficeNumber IDENTIFIED BY 11}

PhysicalDeliveryOfficeNumber ::= PDSParameter

extension-OR-address-components EXTENSION-ATTRIBUTE ::=

Housley, Ford, Polk, & Solo [Page 74]

INTERNET DRAFT October 14, 1997

 {ExtensionORAddressComponents IDENTIFIED BY 12}

ExtensionORAddressComponents ::= PDSParameter

physical-delivery-personal-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryPersonalName IDENTIFIED BY 13}

PhysicalDeliveryPersonalName ::= PDSParameter

physical-delivery-organization-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOrganizationName IDENTIFIED BY 14}

PhysicalDeliveryOrganizationName ::= PDSParameter

extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::=
 {ExtensionPhysicalDeliveryAddressComponents IDENTIFIED BY 15}

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

unformatted-postal-address EXTENSION-ATTRIBUTE ::=
 {UnformattedPostalAddress IDENTIFIED BY 16}

UnformattedPostalAddress ::= SET {
 printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF
 PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString (SIZE
 (1..ub-unformatted-address-length)) OPTIONAL }

street-address EXTENSION-ATTRIBUTE ::=
 {StreetAddress IDENTIFIED BY 17}

StreetAddress ::= PDSParameter

post-office-box-address EXTENSION-ATTRIBUTE ::=
 {PostOfficeBoxAddress IDENTIFIED BY 18}

PostOfficeBoxAddress ::= PDSParameter

poste-restante-address EXTENSION-ATTRIBUTE ::=
 {PosteRestanteAddress IDENTIFIED BY 19}

PosteRestanteAddress ::= PDSParameter

unique-postal-name EXTENSION-ATTRIBUTE ::=
 {UniquePostalName IDENTIFIED BY 20}

UniquePostalName ::= PDSParameter

Housley, Ford, Polk, & Solo [Page 75]

INTERNET DRAFT October 14, 1997

local-postal-attributes EXTENSION-ATTRIBUTE ::=
 {LocalPostalAttributes IDENTIFIED BY 21}

LocalPostalAttributes ::= PDSParameter

PDSParameter ::= SET {
 printable-string PrintableString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

extended-network-address EXTENSION-ATTRIBUTE ::=
 {ExtendedNetworkAddress IDENTIFIED BY 22}

ExtendedNetworkAddress ::= CHOICE {

 e163-4-address SEQUENCE {
 number [0] NumericString (SIZE (1..ub-e163-4-number-length)),
 sub-address [1] NumericString
 (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL },
 psap-address [0] PresentationAddress }

terminal-type EXTENSION-ATTRIBUTE ::= {TerminalType IDENTIFIED BY 23}

TerminalType ::= INTEGER {
 telex (3),
 teletex (4),
 g3-facsimile (5),
 g4-facsimile (6),
 ia5-terminal (7),
 videotex (8) } (0..ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes EXTENSION-ATTRIBUTE ::=
 {TeletexDomainDefinedAttributes IDENTIFIED BY 6}

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE
 (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {
 type TeletexString
 (SIZE (1..ub-domain-defined-attribute-type-length)),
 value TeletexString
 (SIZE (1..ub-domain-defined-attribute-value-length)) }

-- specifications of Upper Bounds
-- must be regarded as mandatory

Housley, Ford, Polk, & Solo [Page 76]

INTERNET DRAFT October 14, 1997

-- from Annex B of ITU-T X.411
-- Reference Definition of MTS Parameter Upper Bounds

-- Upper Bounds
ub-common-name-length INTEGER ::= 64
ub-country-name-alpha-length INTEGER ::= 2
ub-country-name-numeric-length INTEGER ::= 3
ub-domain-defined-attributes INTEGER ::= 4
ub-domain-defined-attribute-type-length INTEGER ::= 8
ub-domain-defined-attribute-value-length INTEGER ::= 128
ub-domain-name-length INTEGER ::= 16
ub-extension-attributes INTEGER ::= 256
ub-e163-4-number-length INTEGER ::= 15
ub-e163-4-sub-address-length INTEGER ::= 40
ub-generation-qualifier-length INTEGER ::= 3
ub-given-name-length INTEGER ::= 16
ub-initials-length INTEGER ::= 5
ub-integer-options INTEGER ::= 256
ub-numeric-user-id-length INTEGER ::= 32
ub-organization-name-length INTEGER ::= 64
ub-organizational-unit-name-length INTEGER ::= 32
ub-organizational-units INTEGER ::= 4
ub-pds-name-length INTEGER ::= 16
ub-pds-parameter-length INTEGER ::= 30
ub-pds-physical-address-lines INTEGER ::= 6
ub-postal-code-length INTEGER ::= 16
ub-surname-length INTEGER ::= 40
ub-terminal-id-length INTEGER ::= 24
ub-unformatted-address-length INTEGER ::= 180
ub-x121-address-length INTEGER ::= 16

-- Note - upper bounds on TeletexString are measured in characters.
-- A significantly greater number of octets will be required to hold
-- such a value. As a minimum, 16 octets, or twice the specified upper
-- bound, whichever is the larger, should be allowed.

END

Appendix B. 1993 ASN.1 Structures and OIDs

PKIX1 DEFINITIONS IMPLICIT TAGS::=

BEGIN

--
-- Proposed PKIX OIDs
id-pkix OBJECT IDENTIFIER ::=

Housley, Ford, Polk, & Solo [Page 77]

INTERNET DRAFT October 14, 1997

 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) }

-- PKIX arcs
-- arc for private certificate extensions
id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
 -- arc for policy qualifier types
id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }
-- arc for extended key purpose OIDS
id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
-- arc for access descriptors
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

-- pkix private extensions
id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

-- policyQualifierIds for Internet policy qualifiers
id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 }
id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }

-- extended key purpose OIDs
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 }
id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 }
id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 }
id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
id-kp-ipsecEndSystem OBJECT IDENTIFIER ::= { id-kp 5 }
id-kp-ipsecTunnel OBJECT IDENTIFIER ::= { id-kp 6 }
id-kp-ipsecUser OBJECT IDENTIFIER ::= { id-kp 7 }
id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }

-- access descriptors for authority info access extension
id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }
id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

-- attribute data types --

Attribute ::= SEQUENCE {
 type AttributeValue,
 values SET OF AttributeValue
 -- at least one value is required -- }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

Housley, Ford, Polk, & Solo [Page 78]

INTERNET DRAFT October 14, 1997

AttributeValueAssertion ::= SEQUENCE {AttributeType, AttributeValue}

-- naming data types --

Name ::= CHOICE { -- only one possibility for now --
 rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET SIZE (1 .. MAX) OF
 AttributeTypeAndValue

-- Directory string type --

DirectoryString ::= CHOICE {
 teletexString TeletexString (SIZE (1..maxSize)),
 printableString PrintableString (SIZE (1..maxSize)),
 universalString UniversalString (SIZE (1..maxSize)),
 bmpString BMPString (SIZE(1..maxSIZE))
 }

-- from AuthenticationFramework
-- {joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) 2}
-- note this module was defined with EXPLICIT TAGS

-- types --

Certificate ::= EXPLICIT SIGNED {SEQUENCE{
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo}
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
 ---if present, version must be v1 or v2--
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
 ---if present, version must be v1 or v2--
extensions [3] Extensions Optional
 --if present, version must be v3--} }

Version ::= INTEGER {v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Housley, Ford, Polk, & Solo [Page 79]

INTERNET DRAFT October 14, 1997

Algorithmidentifier ::= SEQUENCE{
algorithm ALGORITHM.&id({SupportedAlgorithms}),
parameters ALGORITHM.&Type({SupportedAlgorithms}
 { @algorithm}) OPTIONAL }

-- Definition of the following information object is deferred.
-- SupportedAlgorithms ALGORITHM ::= { ...|... }

Validity ::= SEQUENCE{
notBefore Time,
notAfter Time }

Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

SubjectPublicKeyInfo ::= SEQUENCE{
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING}

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
 -- contains a DER encoding of a value of type
 -- &ExtnType for the
 -- extension object identified by extnId --

-- Definition of the following information object set is deferred,
-- The set is required to specify a table constraint on the critical
-- component of Extension.
-- ExtensionSet EXTENSION ::= { ... | ... }

EXTENSION ::= CLASS
{
&id OBJECT IDENTIFIER UNIQUE,
&ExtnType
}
WITH SYNTAX
{
SYNTAX &ExtnType
IDENTIFIED BY &id
}

CertificateList ::= EXPLICIT SIGNED { SEQUENCE {

Housley, Ford, Polk, & Solo [Page 80]

INTERNET DRAFT October 14, 1997

version Version OPTIONAL, -- if present, must be v2
signature AlgorithmIdentifier,
issuer Name,
thisUpdate Time,
nextUpdate Time OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {
userCertificate CertificateSerialNumber,
revocationDate Time,
crlEntryExtensions Extensions OPTIONAL } OPTIONAL,
crlExtensions [0] Extensions OPTIONAL }}

-- information object classes --

ALGORITHM ::= TYPE-IDENTIFIER

-- Parameterized Types --
HASHED {ToBeHashed} ::= OCTET STRING (CONSTRAINED-BY {
 --must be the result of applying a hashing procedure to the --
 --DER-encoded octets of a value of -- ToBeHashed })

ENCRYPTED { ToBeEnciphered} := BIT STRING (CONSTRAINED BY {
 --must be the result of applying an encipherment procedure to the --
 --BER-encoded octets of a value of -- ToBeEnciphered })

SIGNED { ToBeSigned } ::= SEQUENCE{
 ToBeSigned,
 COMPONENTS OF SIGNATURE { ToBeSigned }),

SIGNATURE { OfSignature } ::= SEQUENCE {
 AlgorithmIdentifier,
 ENCRYPTED { HASHED { OfSignature }}}

-- Key and policy information extensions --

authorityKeyIdentifier EXTENSION ::= {
 SYNTAX AuthorityKeyIdentifier
 IDENTIFIED BY { id-ce 35 } }

AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 authorityCertIssuer [1] GeneralNames OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,
 authorityCertSerialNumber PRESENT} |
 WITH COMPONENTS {..., authorityCertIssuer ABSENT,
 authorityCertSerialNumber ABSENT})

Housley, Ford, Polk, & Solo [Page 81]

INTERNET DRAFT October 14, 1997

KeyIdentifier ::= OCTET STRING

subjectKeyIdentifier EXTENSION ::= {
 SYNTAX SubjectKeyIdentifier
 IDENTIFIED BY { id-ce 14 } }

SubjectKeyIdentifier ::= KeyIdentifier

keyUsage EXTENSION ::= {
 SYNTAX KeyUsage
 IDENTIFIED BY { id-ce 15 } }

KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6) }

privateKeyUsagePeriod EXTENSION ::= {
 SYNTAX PrivateKeyUsagePeriod
 IDENTIFIED BY { id-ce 16 } }

PrivateKeyUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL }
 (WITH COMPONENTS {..., notBefore PRESENT} |
 WITH COMPONENTS {..., notAfter PRESENT})

certificatePolicies EXTENSION ::= {
 SYNTAX CertificatePoliciesSyntax
 IDENTIFIED BY { id-ce 32 } }

CertificatePoliciesSyntax ::=
 SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId CERT-POLICY-QUALIFIER.&id
 ({SupportedPolicyQualifiers}),

Housley, Ford, Polk, & Solo [Page 82]

INTERNET DRAFT October 14, 1997

 qualifier CERT-POLICY-QUALIFIER.&Qualifier
 ({SupportedPolicyQualifiers}
 {@policyQualifierId})OPTIONAL }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ... }

CERT-POLICY-QUALIFIER ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Qualifier OPTIONAL }
WITH SYNTAX {
 POLICY-QUALIFIER-ID &id
 [QUALIFIER-TYPE &Qualifier] }

policyMappings EXTENSION ::= {
 SYNTAX PolicyMappingsSyntax
 IDENTIFIED BY { id-ce 33 } }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 issuerDomainPolicy CertPolicyId,
 subjectDomainPolicy CertPolicyId }

supportedAlgorithms ATTRIBUTE ::= {
 WITH SYNTAX SupportedAlgorithm
 EQUALITY MATCHING RULE algorithmIdentifierMatch
 ID { id-at 52 } }

SupportedAlgorithm ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,
 intendedUsage [0] KeyUsage OPTIONAL,
 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL }

-- Certificate subject and certificate issuer attributes extensions --

subjectAltName EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 17 } }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
 otherName [0] INSTANCE OF OTHER-NAME,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,

Housley, Ford, Polk, & Solo [Page 83]

INTERNET DRAFT October 14, 1997

 registeredID [8] OBJECT IDENTIFIER }

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString {ub-name} OPTIONAL,
 partyName [1] DirectoryString {ub-name} }

issuerAltName EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 18 } }

subjectDirectoryAttributes EXTENSION ::= {
 SYNTAX AttributesSyntax
 IDENTIFIED BY { id-ce 9 } }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

-- Certification path constraints extensions --

basicConstraints EXTENSION ::= {
 SYNTAX BasicConstraintsSyntax
 IDENTIFIED BY { id-ce 19 } }

BasicConstraintsSyntax ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

nameConstraints EXTENSION ::= {
 SYNTAX NameConstraintsSyntax
 IDENTIFIED BY { id-ce 30 } }

NameConstraintsSyntax ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

policyConstraints EXTENSION ::= {
 SYNTAX PolicyConstraintsSyntax

Housley, Ford, Polk, & Solo [Page 84]

INTERNET DRAFT October 14, 1997

 IDENTIFIED BY { id-ce 36 } }

PolicyConstraints Syntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

-- Basic CRL extensions --

cRLNumber EXTENSION ::= {
 SYNTAX CRLNumber
 IDENTIFIED BY { id-ce 20 } }

CRLNumber ::= INTEGER (0..MAX)

reasonCode EXTENSION ::= {
 SYNTAX CRLReason
 IDENTIFIED BY { id-ce 21 } }

CRLReason ::= ENUMERATED {
 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8) }

instructionCode EXTENSION ::= {
 SYNTAX HoldInstruction
 IDENTIFIED BY { id-ce 23 } }

HoldInstruction ::= OBJECT IDENTIFIER

invalidityDate EXTENSION ::= {
 SYNTAX GeneralizedTime
 IDENTIFIED BY { id-ce 24 } }

-- CRL distribution points and delta-CRL extensions --

cRLDistributionPoints EXTENSION ::= {
 SYNTAX CRLDistPointsSyntax
 IDENTIFIED BY { id-ce 31 } }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

Housley, Ford, Polk, & Solo [Page 85]

INTERNET DRAFT October 14, 1997

DistributionPoint ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 reasons [1] ReasonFlags OPTIONAL,
 cRLIssuer [2] GeneralNames OPTIONAL }

DistributionPointName ::= CHOICE {
 fullName [0] GeneralNames,
 nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

ReasonFlags ::= BIT STRING {
 unused (0),
 keyCompromise (1),
 caCompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6) }

issuingDistributionPoint EXTENSION ::= {
 SYNTAX IssuingDistPointSyntax
 IDENTIFIED BY { id-ce 28 } }

IssuingDistPointSyntax ::= SEQUENCE {
 distributionPoint [0] DistributionPointName OPTIONAL,
 onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,
 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
 onlySomeReasons [3] ReasonFlags OPTIONAL,
 indirectCRL [4] BOOLEAN DEFAULT FALSE }

certificateIssuer EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY { id-ce 29 } }

deltaCRLIndicator EXTENSION ::= {
 SYNTAX BaseCRLNumber
 IDENTIFIED BY { id-ce 27 } }

BaseCRLNumber ::= CRLNumber

deltaRevocationList ATTRIBUTE ::= {
 WITH SYNTAX CertificateList
 EQUALITY MATCHING RULE certificateListExactMatch
 ID {id-at 53 } }

-- Object identifier assignments --

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9}

Housley, Ford, Polk, & Solo [Page 86]

INTERNET DRAFT October 14, 1997

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14}
id-ce-keyUsage OBJECT IDENTIFIER ::= {id-ce 15}
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16}
id-ce-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17}
id-ce-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18}
id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19}
id-ce-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20}
id-ce-reasonCode OBJECT IDENTIFIER ::= {id-ce 21}
id-ce-instructionCode OBJECT IDENTIFIER ::= {id-ce 23}
id-ce-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24}
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27}
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28}
id-ce-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29}
id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32}
id-ce-policyMappings OBJECT IDENTIFIER ::= {id-ce 33}
id-ce-policyConstraints OBJECT IDENTIFIER ::= {id-ce 36}
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35}

-- PKIX 1 extensions

id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

AuthorityInfoAccessSyntax ::=
 SEQUENCE SIZE (1..MAX) OF AccessDescription

AccessDescription ::= SEQUENCE {
 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

CPSuri ::= IA5String

UserNotice ::= CHOICE {
 visibleString VisibleString,
 bmpString BMPString
 }

-- misc missing ASN.1

PresentationAddress ::= SEQUENCE {
 pSelector [0] EXPLICIT OCTET STRING OPTIONAL,
 sSelector [1] EXPLICIT OCTET STRING OPTIONAL,
 tSelector [2] EXPLICIT OCTET STRING OPTIONAL,
 nAddresses [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING}

-- The following OBJECT IDENTIFIERS are not used by this specification:

Housley, Ford, Polk, & Solo [Page 87]

INTERNET DRAFT October 14, 1997

-- {id-ce 2}, {id-ce 3}, {id-ce 4}, {id-ce 5}, {id-ce 6}, {id-ce 7},
-- {id-ce 8}, {id-ce 10}, {id-ce 11}, {id-ce 12}, {id-ce 13},
-- {id-ce 22}, {id-ce 25}, {id-ce 26}

-- X.400, Algorithm Identifier, and maximum values Module

ORAddressAndOrDirectoryName ::= ORName

ORAddressAndOptionalDirectoryName ::= ORName

ORName ::= [APPLICATION 0] SEQUENCE {
 -- address -- COMPONENTS OF ORAddress,
 directory-name [0] Name OPTIONAL }

ORAddress ::= SEQUENCE {
 built-in-standard-attributes BuiltInStandardAttributes,
 built-in-domain-defined-attributes
 BuiltInDomainDefinedAttributes OPTIONAL,
 -- see also teletex-domain-defined-attributes
 extension-attributes ExtensionAttributes OPTIONAL }

-- The OR-address is semantically absent from the OR-name if the
-- built-in-standard-attribute sequence is empty and the
-- built-in-domain-defined-attributes and extension-attributes are
-- both omitted.

-- Built-in Standard Attributes

BuiltInStandardAttributes ::= SEQUENCE {
 country-name CountryName OPTIONAL,
 administration-domain-name AdministrationDomainName OPTIONAL,
 network-address [0] NetworkAddress OPTIONAL,
 -- see also extended-network-address
 terminal-identifier [1] TerminalIdentifier OPTIONAL,
 private-domain-name [2] PrivateDomainName OPTIONAL,
 organization-name [3] OrganizationName OPTIONAL,
 -- see also teletex-organization-name
 numeric-user-identifier [4] NumericUserIdentifier OPTIONAL,
 personal-name [5] PersonalName OPTIONAL,
 -- see also teletex-personal-name
 organizational-unit-names [6] OrganizationalUnitNames OPTIONAL
 -- see also teletex-organizational-unit-names -- }

CountryName ::= [APPLICATION 1] CHOICE {
 x121-dcc-code NumericString
 (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

Housley, Ford, Polk, & Solo [Page 88]

INTERNET DRAFT October 14, 1997

AdministrationDomainName ::= [APPLICATION 2] CHOICE {
 numeric NumericString (SIZE (0..ub-domain-name-length)),
 printable PrintableString (SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address
-- see also extended-network-address

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

PrivateDomainName ::= CHOICE {
 numeric NumericString (SIZE (1..ub-domain-name-length)),
 printable PrintableString (SIZE (1..ub-domain-name-length)) }

OrganizationName ::= PrintableString
 (SIZE (1..ub-organization-name-length))
-- see also teletex-organization-name

NumericUserIdentifier ::= NumericString
 (SIZE (1..ub-numeric-user-id-length))

PersonalName ::= SET {
 surname [0] PrintableString (SIZE (1..ub-surname-length)),
 given-name [1] PrintableString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] PrintableString
 (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] PrintableString
 (SIZE (1..ub-generation-qualifier-length)) OPTIONAL}
-- see also teletex-personal-name

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)
 OF OrganizationalUnitName
-- see also teletex-organizational-unit-names

OrganizationalUnitName ::= PrintableString (SIZE
 (1..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes
BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE
 (1..ub-domain-defined-attributes) OF
 BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {
 type PrintableString (SIZE
 (1..ub-domain-defined-attribute-type-length)),
 value PrintableString (SIZE

Housley, Ford, Polk, & Solo [Page 89]

INTERNET DRAFT October 14, 1997

 (1..ub-domain-defined-attribute-value-length)) }

-- Extension Attributes

ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes)
 OF ExtensionAttribute
ExtensionAttribute ::= SEQUENCE {
 extension-attribute-type [0] EXTENSION-ATTRIBUTE.&id
 ({ExtensionAttributeTable}),
 extension-attribute-value [1] EXTENSION-ATTRIBUTE.&Type
 ({ExtensionAttributeTable} {@extension-attribute-type}) }

EXTENSION-ATTRIBUTE ::= CLASS {
 &id INTEGER (0..ub-extension-attributes) UNIQUE,
 &Type }
WITH SYNTAX {&Type IDENTIFIED BY &id}

ExtensionAttributeTable EXTENSION-ATTRIBUTE ::= {
 common-name |
 teletex-common-name |
 teletex-organization-name |
 teletex-personal-name |
 teletex-organizational-unit-names |
 teletex-domain-defined-attributes |
 pds-name |
 physical-delivery-country-name |
 postal-code |
 physical-delivery-office-name |
 physical-delivery-office-number |
 extension-OR-address-components |
 physical-delivery-personal-name |
 physical-delivery-organization-name |
 extension-physical-delivery-address-components |
 unformatted-postal-address |
 street-address |
 post-office-box-address |
 poste-restante-address |
 unique-postal-name |
 local-postal-attributes |
 extended-network-address |
 terminal-type }

-- Extension Standard Attributes

common-name EXTENSION-ATTRIBUTE ::= {CommonName IDENTIFIED BY 1}

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))

Housley, Ford, Polk, & Solo [Page 90]

INTERNET DRAFT October 14, 1997

teletex-common-name EXTENSION-ATTRIBUTE ::=
 {TeletexCommonName IDENTIFIED BY 2}

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

teletex-organization-name EXTENSION-ATTRIBUTE ::=
 {TeletexOrganizationName IDENTIFIED BY 3}

TeletexOrganizationName ::=
 TeletexString (SIZE (1..ub-organization-name-length))

teletex-personal-name EXTENSION-ATTRIBUTE ::=
 {TeletexPersonalName IDENTIFIED BY 4}

TeletexPersonalName ::= SET {
 surname [0] TeletexString (SIZE (1..ub-surname-length)),
 given-name [1] TeletexString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] TeletexString (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] TeletexString (SIZE
 (1..ub-generation-qualifier-length)) OPTIONAL }

teletex-organizational-unit-names EXTENSION-ATTRIBUTE ::=
 {TeletexOrganizationalUnitNames IDENTIFIED BY 5}

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE
 (1..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::= TeletexString
 (SIZE (1..ub-organizational-unit-name-length))

pds-name EXTENSION-ATTRIBUTE ::= {PDSName IDENTIFIED BY 7}

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

physical-delivery-country-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryCountryName IDENTIFIED BY 8}

PhysicalDeliveryCountryName ::= CHOICE {
 x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

postal-code EXTENSION-ATTRIBUTE ::= {PostalCode IDENTIFIED BY 9}

PostalCode ::= CHOICE {
 numeric-code NumericString (SIZE (1..ub-postal-code-length)),
 printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

Housley, Ford, Polk, & Solo [Page 91]

INTERNET DRAFT October 14, 1997

physical-delivery-office-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOfficeName IDENTIFIED BY 10}

PhysicalDeliveryOfficeName ::= PDSParameter

physical-delivery-office-number EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOfficeNumber IDENTIFIED BY 11}

PhysicalDeliveryOfficeNumber ::= PDSParameter

extension-OR-address-components EXTENSION-ATTRIBUTE ::=
 {ExtensionORAddressComponents IDENTIFIED BY 12}

ExtensionORAddressComponents ::= PDSParameter

physical-delivery-personal-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryPersonalName IDENTIFIED BY 13}

PhysicalDeliveryPersonalName ::= PDSParameter

physical-delivery-organization-name EXTENSION-ATTRIBUTE ::=
 {PhysicalDeliveryOrganizationName IDENTIFIED BY 14}

PhysicalDeliveryOrganizationName ::= PDSParameter

extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::=
 {ExtensionPhysicalDeliveryAddressComponents IDENTIFIED BY 15}

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

unformatted-postal-address EXTENSION-ATTRIBUTE ::=
 {UnformattedPostalAddress IDENTIFIED BY 16}

UnformattedPostalAddress ::= SET {
 printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF
 PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString (SIZE
 (1..ub-unformatted-address-length)) OPTIONAL }

street-address EXTENSION-ATTRIBUTE ::=
 {StreetAddress IDENTIFIED BY 17}

StreetAddress ::= PDSParameter

post-office-box-address EXTENSION-ATTRIBUTE ::=
 {PostOfficeBoxAddress IDENTIFIED BY 18}

PostOfficeBoxAddress ::= PDSParameter

Housley, Ford, Polk, & Solo [Page 92]

INTERNET DRAFT October 14, 1997

poste-restante-address EXTENSION-ATTRIBUTE ::=
 {PosteRestanteAddress IDENTIFIED BY 19}

PosteRestanteAddress ::= PDSParameter

unique-postal-name EXTENSION-ATTRIBUTE ::=
 {UniquePostalName IDENTIFIED BY 20}

UniquePostalName ::= PDSParameter

local-postal-attributes EXTENSION-ATTRIBUTE ::=
 {LocalPostalAttributes IDENTIFIED BY 21}

LocalPostalAttributes ::= PDSParameter

PDSParameter ::= SET {
 printable-string PrintableString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

extended-network-address EXTENSION-ATTRIBUTE ::=
 {ExtendedNetworkAddress IDENTIFIED BY 22}

ExtendedNetworkAddress ::= CHOICE {
 e163-4-address SEQUENCE {
 number [0] NumericString
 (SIZE (1..ub-e163-4-number-length)),
 sub-address [1] NumericString
 (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL},
 psap-address [0] PresentationAddress }

terminal-type EXTENSION-ATTRIBUTE ::= {TerminalType IDENTIFIED BY 23}

TerminalType ::= INTEGER {
 telex (3),
 teletex (4),
 g3-facsimile (5),
 g4-facsimile (6),
 ia5-terminal (7),
 videotex (8) } (0..ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes EXTENSION-ATTRIBUTE ::=
 {TeletexDomainDefinedAttributes IDENTIFIED BY 6}

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE

Housley, Ford, Polk, & Solo [Page 93]

INTERNET DRAFT October 14, 1997

 (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {
 type TeletexString
 (SIZE (1..ub-domain-defined-attribute-type-length)),
 value TeletexString
 (SIZE (1..ub-domain-defined-attribute-value-length)) }

-- specifications of Upper Bounds
-- must be regarded as mandatory
-- from Annex B of ITU-T X.411
-- Reference Definition of MTS Parameter Upper Bounds

-- Upper Bounds
ub-common-name-length INTEGER ::= 64
ub-country-name-alpha-length INTEGER ::= 2
ub-country-name-numeric-length INTEGER ::= 3
ub-domain-defined-attributes INTEGER ::= 4
ub-domain-defined-attribute-type-length INTEGER ::= 8
ub-domain-defined-attribute-value-length INTEGER ::= 128
ub-domain-name-length INTEGER ::= 16
ub-extension-attributes INTEGER ::= 256
ub-e163-4-number-length INTEGER ::= 15
ub-e163-4-sub-address-length INTEGER ::= 40
ub-generation-qualifier-length INTEGER ::= 3
ub-given-name-length INTEGER ::= 16
ub-initials-length INTEGER ::= 5
ub-integer-options INTEGER ::= 256
ub-numeric-user-id-length INTEGER ::= 32
ub-organization-name-length INTEGER ::= 64
ub-organizational-unit-name-length INTEGER ::= 32
ub-organizational-units INTEGER ::= 4
ub-pds-name-length INTEGER ::= 16
ub-pds-parameter-length INTEGER ::= 30
ub-pds-physical-address-lines INTEGER ::= 6
ub-postal-code-length INTEGER ::= 16
ub-surname-length INTEGER ::= 40
ub-terminal-id-length INTEGER ::= 24
ub-unformatted-address-length INTEGER ::= 180
ub-x121-address-length INTEGER ::= 16

-- Note - upper bounds on TeletexString are measured in characters.
-- A significantly greater number of octets will be required to hold
-- such a value. As a minimum, 16 octets, or twice the specified upper
-- bound, whichever is the larger, should be allowed.

END

Housley, Ford, Polk, & Solo [Page 94]

INTERNET DRAFT October 14, 1997

Appendix C. ASN.1 Notes

The construct

 SEQUENCE SIZE (1..MAX) OF

appears in several ASN.1 constructs. A valid ASN.1 sequence will have
zero or more entries. The SIZE (1..MAX) construct constrains the
sequence to have at least one entry. MAX indicates the upper bound is
unspecified. Implementations are free to choose an upper bound that
suits their environment.

The construct

 positiveInt ::= INTEGER (0..MAX)

defines positiveInt as a subtype of INTEGER containing integers greater
than or equal to zero. The upper bound is unspecified. Implementations
are free to select an upper bound that suits their environment.

 The character string type PrintableString supports a very basic Latin
 character set: the lower case letters 'a' through 'z', upper case
 letters 'A' through 'Z', the digits '0' through '9', eleven special
 characters ' " () + , - . / : ? and space.

 The character string type TeletexString is a superset of
 PrintableString. TeletexString supports a fairly standard (ascii-
 like) Latin character set, Latin characters with non-spacing accents
 and Japanese characters.

 The character string type UniversalString supports any of the
 characters allowed by ISO 10646-1. ISO 10646 is the Universal
 multiple-octet coded Character Set (UCS). ISO 10646-1 specifes the
 architecture and the "basic multilingual plane" - a large standard
 character set which includes all major world character standards.

Appendix D. Examples

 This section contains four examples; three certificates and a CRL.
 The first two certificates and the CRL comprise a minimal
 certification path.

 Section D.1 contains two annotated hex dumps of a "self-signed"
 certificate issued by a CA whose distinguished name is
 cn=us,o=gov,ou=nist. The certificate contains a DSA public key with
 parameters, and is signed by the corresponding DSA private key. The
 first hex dump is a basic dump of the ASN.1 encoding and does not not
 reflect the fact that the object is a certificate. The second dump

Housley, Ford, Polk, & Solo [Page 95]

INTERNET DRAFT October 14, 1997

 identfies the values of the various certificate fields.

 Section D.2 contains an annotated hex dump of an end-entity
 certificate. The end entity certificate contains a DSA public key,
 and is signed by the private key corresponding to the "self-signed"
 certificate in section D.1. The first hex dump is a basic dump of
 the ASN.1 encoding and does not not reflect the fact that the object
 is a certificate. The second dump identfies the values of the various
 certificate fields.

 Section D.3 contains a dump of an end entity certificate which
 contains an RSA public key and is signed with RSA and MD5. (This
 certificate is not part of the minimal certification path.)

 Section D.4 contains an annotated hex dump of a CRL. The CRL is
 issued by the CA whose distinguished name is cn=us,o=gov,ou=nist and
 the list of revoked certifcates includes the end entity certificate
 presented in D.2. The hex dump is a basic dump of the ASN.1
 encoding.

D.1 Certificate

 This section contains an annotated hex dump of a 662 byte version 3
 certificate. The certificate contains the following information:
 (a) the serial number is 17 (11 hex);
 (b) the certificate is signed with DSA and the SHA-1 hash algorithm;
 (c) the issuer's distinguished name is OU=nist;O=gov;C=US
 (d) and the subject's distinguished name is OU=nist;O=gov;C=US
 (e) the certificate was issued on June 30, 1997 and will expire on
 December 31, 1997;
 (f) the certificate contains a 1024 bit DSA public key; and
 (g) the certificate is a CA certificate (as indicated through the
 basic constraints extension.)

D.1.1 ASN.1 Dump of "Self-Signed" Certificate

get 0, len=662 (662 bytes in file)
0000 30 82 02 92 658: SEQUENCE
0004 30 82 02 52 594: . SEQUENCE
0008 a0 03 3: . . [0]
0010 02 01 1: . . . INTEGER 2
0013 02 01 1: . . INTEGER 17
0016 30 09 9: . . SEQUENCE
0018 06 07 7: . . . OID 1.2.840.10040.4.3: dsa-with-sha
0027 30 2a 42: . . SEQUENCE
0029 31 0b 11: . . . SET
0031 30 09 9: SEQUENCE
0033 06 03 3: OID 2.5.4.6: C

Housley, Ford, Polk, & Solo [Page 96]

INTERNET DRAFT October 14, 1997

0038 13 02 2: PrintableString 'US'
0042 31 0c 12: . . . SET
0044 30 0a 10: SEQUENCE
0046 06 03 3: OID 2.5.4.10: O
0051 13 03 3: PrintableString 'gov'
0056 31 0d 13: . . . SET
0058 30 0b 11: SEQUENCE
0060 06 03 3: OID 2.5.4.11: OU
0065 13 04 4: PrintableString 'nist'
0071 30 1e 30: . . SEQUENCE
0073 17 0d 13: . . . UTCTime '970630000000Z'
0088 17 0d 13: . . . UTCTime '971231000000Z'
0103 30 2a 42: . . SEQUENCE
0105 31 0b 11: . . . SET
0107 30 09 9: SEQUENCE
0109 06 03 3: OID 2.5.4.6: C
0114 13 02 2: PrintableString 'US'
0118 31 0c 12: . . . SET
0120 30 0a 10: SEQUENCE
0122 06 03 3: OID 2.5.4.10: O
0127 13 03 3: PrintableString 'gov'
0132 31 0d 13: . . . SET
0134 30 0b 11: SEQUENCE
0136 06 03 3: OID 2.5.4.11: OU
0141 13 04 4: PrintableString 'nist'
0147 30 82 01 b4 436: . . SEQUENCE
0151 30 82 01 29 297: . . . SEQUENCE
0155 06 07 7: OID 1.2.840.10040.4.1: dsa
0164 30 82 01 1c 284: SEQUENCE
0168 02 81 80 128: INTEGER
 : d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59 63 55 d3
 : 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4 62 b4 d2
 : 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86 83 3d 03
 : 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a f7 e2 a6
 : 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b 5a f7 0a
 : 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd 31 23 be
 : 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44 9c eb 4d
 : f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b 7d 57 8d
0299 02 14 20: INTEGER
 : a7 83 9b f3 bd 2c 20 07 fc 4c e7 e8 9f f3 39 83
 : 51 0d dc dd
0321 02 81 80 128: INTEGER
 : 0e 3b 46 31 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca
 : 90 88 57 64 9f 01 21 e0 15 05 94 24 82 e2 10 90
 : d9 e1 4e 10 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5
 : a1 7d b5 07 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb
 : ac fa 4e 76 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d
 : a6 97 59 c5 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42

Housley, Ford, Polk, & Solo [Page 97]

INTERNET DRAFT October 14, 1997

 : 87 62 3f f1 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90
 : cf 67 db de 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d
0452 03 81 84 132: . . . BIT STRING (0 unused bits)
 : 02 81 80 aa 98 ea 13 94 a2 db f1 5b 7f 98 2f 78
 : e7 d8 e3 b9 71 86 f6 80 2f 40 39 c3 da 3b 4b 13
 : 46 26 ee 0d 56 c5 a3 3a 39 b7 7d 33 c2 6b 5c 77
 : 92 f2 55 65 90 39 cd 1a 3c 86 e1 32 eb 25 bc 91
 : c4 ff 80 4f 36 61 bd cc e2 61 04 e0 7e 60 13 ca
 : c0 9c dd e0 ea 41 de 33 c1 f1 44 a9 bc 71 de cf
 : 59 d4 6e da 44 99 3c 21 64 e4 78 54 9d d0 7b ba
 : 4e f5 18 4d 5e 39 30 bf e0 d1 f6 f4 83 25 4f 14
 : aa 71 e1
0587 a3 0d 13: . . [3]
0589 30 0b 11: . . . SEQUENCE
0591 30 09 9: SEQUENCE
0593 06 03 3: OID 2.5.29.19: basicConstraints
0598 04 02 2: OCTET STRING
 : 30 00
0602 30 09 9: . SEQUENCE
0604 06 07 7: . . OID 1.2.840.10040.4.3: dsa-with-sha
0613 03 2f 47: . BIT STRING (0 unused bits)
 : 30 2c 02 14 a0 66 c1 76 33 99 13 51 8d 93 64 2f
 : ca 13 73 de 79 1a 7d 33 02 14 5d 90 f6 ce 92 4a
 : bf 29 11 24 80 28 a6 5a 8e 73 b6 76 02 68

------- extensions ----------

printber -s 456 pkix-ex1.ber
get 0, len=131 (662 bytes in file)
0000 02 81 80 128: INTEGER
 : aa 98 ea 13 94 a2 db f1 5b 7f 98 2f 78 e7 d8 e3
 : b9 71 86 f6 80 2f 40 39 c3 da 3b 4b 13 46 26 ee
 : 0d 56 c5 a3 3a 39 b7 7d 33 c2 6b 5c 77 92 f2 55
 : 65 90 39 cd 1a 3c 86 e1 32 eb 25 bc 91 c4 ff 80
 : 4f 36 61 bd cc e2 61 04 e0 7e 60 13 ca c0 9c dd
 : e0 ea 41 de 33 c1 f1 44 a9 bc 71 de cf 59 d4 6e
 : da 44 99 3c 21 64 e4 78 54 9d d0 7b ba 4e f5 18
 : 4d 5e 39 30 bf e0 d1 f6 f4 83 25 4f 14 aa 71 e1

D.1.2 Pretty Print of "Self-Signed" Certificate

decode: 0-OK, len=662 (662 bytes in file)

 Version: v3
Serial Number: 17

Housley, Ford, Polk, & Solo [Page 98]

INTERNET DRAFT October 14, 1997

Signature Alg: dsa-with-sha (1.2.840.10040.4.3)
 Issuer: C=US, O=gov, OU=nist
 Validity: from 970630000000Z
 to 971231000000Z
 Subject: OU=nist, O=gov, C=US
SubjectPKInfo: dsa (1.2.840.10040.4.1)
 params:
 02 81 80 d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59
 63 55 d3 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4
 62 b4 d2 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86
 83 3d 03 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a
 f7 e2 a6 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b
 5a f7 0a 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd
 31 23 be 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44
 9c eb 4d f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b
 7d 57 8d 02 14 a7 83 9b f3 bd 2c 20 07 fc 4c e7
 e8 9f f3 39 83 51 0d dc dd 02 81 80 0e 3b 46 31
 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca 90 88 57 64
 9f 01 21 e0 15 05 94 24 82 e2 10 90 d9 e1 4e 10
 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5 a1 7d b5 07
 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb ac fa 4e 76
 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d a6 97 59 c5
 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42 87 62 3f f1
 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90 cf 67 db de
 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d
 Public Key:
 00 02 81 80 aa 98 ea 13 94 a2 db f1 5b 7f 98 2f
 78 e7 d8 e3 b9 71 86 f6 80 2f 40 39 c3 da 3b 4b
 13 46 26 ee 0d 56 c5 a3 3a 39 b7 7d 33 c2 6b 5c
 77 92 f2 55 65 90 39 cd 1a 3c 86 e1 32 eb 25 bc
 91 c4 ff 80 4f 36 61 bd cc e2 61 04 e0 7e 60 13
 ca c0 9c dd e0 ea 41 de 33 c1 f1 44 a9 bc 71 de
 cf 59 d4 6e da 44 99 3c 21 64 e4 78 54 9d d0 7b
 ba 4e f5 18 4d 5e 39 30 bf e0 d1 f6 f4 83 25 4f
 14 aa 71 e1
 issuerUID:
 subjectUID:
 1 extensions:
 Exten 1: basicConstraints (2.5.29.19)
 30 00
Signature Alg: dsa-with-sha (1.2.840.10040.4.3)
 Sig Value: 368 bits:
 30 2c 02 14 a0 66 c1 76 33 99 13 51 8d 93 64 2f
 ca 13 73 de 79 1a 7d 33 02 14 5d 90 f6 ce 92 4a
 bf 29 11 24 80 28 a6 5a 8e 73 b6 76 02 68

------- extensions ----------

Housley, Ford, Polk, & Solo [Page 99]

INTERNET DRAFT October 14, 1997

printber -s 616 pkix-ex1.ber
get 0, len=46 (662 bytes in file)
0000 30 2c 44: SEQUENCE
0002 02 14 20: . INTEGER
 : 9d 2d 0c 75 ec ce 01 79 25 4c cd 7b dc fc 17 0e
 : 0f 2a 22 ef
0024 02 14 20: . INTEGER
 : 80 61 6f fb dc 71 cf 3f 09 62 b4 aa ad 4b 8c 28
 : 68 d7 60 fe

D.2 Certificate

 This section contains an annotated hex dump of a xxx byte version 3
 certificate. The certificate contains the following information:
 (a) the serial number is 18 (12 hex);
 (b) the certificate is signed with DSA and the SHA-1 hash algorithm;
 (c) the issuer's distinguished name is OU=nist;O=gov;C=US
 (d) and the subject's distinguished name is CN=Tim
 Polk;OU=nist;O=gov;C=US
 (e) the certificate was valid from July 30, 1997 and will expire on
 December 1, 1997;
 (f) the certificate contains a 1024 bit DSA public key;
 (g) the certificate is an end entity certificate unless external
 information is provided, as the basic constraints extension is not
 present;
 (h) the certificate includes one alternative name - an RFC 822
 address.

D.2.1 Basic ASN.1 Dump of "End Entity" Certificate

get 0, len=697 (697 bytes in file)
0000 30 82 02 b5 693: SEQUENCE
0004 30 82 02 75 629: . SEQUENCE
0008 a0 03 3: . . [0]
0010 02 01 1: . . . INTEGER 2
0013 02 01 1: . . INTEGER 18
0016 30 09 9: . . SEQUENCE
0018 06 07 7: . . . OID 1.2.840.10040.4.3: dsa-with-sha
0027 30 2a 42: . . SEQUENCE
0029 31 0b 11: . . . SET
0031 30 09 9: SEQUENCE
0033 06 03 3: OID 2.5.4.6: C
0038 13 02 2: PrintableString 'US'

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 100]

INTERNET DRAFT October 14, 1997

0042 31 0c 12: . . . SET
0044 30 0a 10: SEQUENCE
0046 06 03 3: OID 2.5.4.10: O
0051 13 03 3: PrintableString 'gov'
0056 31 0d 13: . . . SET
0058 30 0b 11: SEQUENCE
0060 06 03 3: OID 2.5.4.11: OU
0065 13 04 4: PrintableString 'nist'
0071 30 1e 30: . . SEQUENCE
0073 17 0d 13: . . . UTCTime '970730000000Z'
0088 17 0d 13: . . . UTCTime '971201000000Z'
0103 30 3d 61: . . SEQUENCE
0105 31 0b 11: . . . SET
0107 30 09 9: SEQUENCE
0109 06 03 3: OID 2.5.4.6: C
0114 13 02 2: PrintableString 'US'
0118 31 0c 12: . . . SET
0120 30 0a 10: SEQUENCE
0122 06 03 3: OID 2.5.4.10: O
0127 13 03 3: PrintableString 'gov'
0132 31 0d 13: . . . SET
0134 30 0b 11: SEQUENCE
0136 06 03 3: OID 2.5.4.11: OU
0141 13 04 4: PrintableString 'nist'
0147 31 11 17: . . . SET
0149 30 0f 15: SEQUENCE
0151 06 03 3: OID 2.5.4.3: CN
0156 13 08 8: PrintableString 'Tim Polk'
0166 30 82 01 b4 436: . . SEQUENCE
0170 30 82 01 29 297: . . . SEQUENCE
0174 06 07 7: OID 1.2.840.10040.4.1: dsa
0183 30 82 01 1c 284: SEQUENCE
0187 02 81 80 128: INTEGER
 : d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59 63 55 d3
 : 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4 62 b4 d2
 : 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86 83 3d 03
 : 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a f7 e2 a6
 : 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b 5a f7 0a
 : 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd 31 23 be
 : 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44 9c eb 4d
 : f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b 7d 57 8d
0318 02 14 20: INTEGER
 : a7 83 9b f3 bd 2c 20 07 fc 4c e7 e8 9f f3 39 83
 : 51 0d dc dd
0340 02 81 80 128: INTEGER
 : 0e 3b 46 31 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca
 : 90 88 57 64 9f 01 21 e0 15 05 94 24 82 e2 10 90
 : d9 e1 4e 10 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5

Housley, Ford, Polk, & Solo [Page 101]

INTERNET DRAFT October 14, 1997

 : a1 7d b5 07 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb
 : ac fa 4e 76 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d
 : a6 97 59 c5 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42
 : 87 62 3f f1 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90
 : cf 67 db de 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d
0471 03 81 84 132: . . . BIT STRING (0 unused bits)
 : 02 81 80 a8 63 b1 60 70 94 7e 0b 86 08 93 0c 0d
 : 08 12 4a 58 a9 af 9a 09 38 54 3b 46 82 fb 85 0d
 : 18 8b 2a 77 f7 58 e8 f0 1d d2 18 df fe e7 e9 35
 : c8 a6 1a db 8d 3d 3d f8 73 14 a9 0b 39 c7 95 f6
 : 52 7d 2d 13 8c ae 03 29 3c 4e 8c b0 26 18 b6 d8
 : 11 1f d4 12 0c 13 ce 3f f1 c7 05 4e df e1 fc 44
 : fd 25 34 19 4a 81 0d dd 98 42 ac d3 b6 91 0c 7f
 : 16 72 a3 a0 8a d7 01 7f fb 9c 93 e8 99 92 c8 42
 : 47 c6 43
0606 a3 1d 29: . . [3]
0608 30 1b 27: . . . SEQUENCE
0610 30 19 25: SEQUENCE
0612 06 03 3: OID 2.5.29.17: subjectAltName
0617 04 12 18: OCTET STRING
 : 30 10 81 0e 77 70 6f 6c 6b 40 6e 69 73 74 2e 67
 : 6f 76
0637 30 09 9: . SEQUENCE
0639 06 07 7: . . OID 1.2.840.10040.4.3: dsa-with-sha
0648 03 2f 47: . BIT STRING (0 unused bits)
 : 30 2c 02 14 3c 02 e0 ab d9 5d 05 77 75 15 71 58
 : 92 29 48 c4 1c 54 df fc 02 14 5b da 53 98 7f c5
 : 33 df c6 09 b2 7a e3 6f 97 70 1e 14 ed 94

-------- extensions ----------

printber -s 475 pkix-ex2.ber
get 0, len=131 (697 bytes in file)
0000 02 81 80 128: INTEGER
 : a8 63 b1 60 70 94 7e 0b 86 08 93 0c 0d 08 12 4a
 : 58 a9 af 9a 09 38 54 3b 46 82 fb 85 0d 18 8b 2a
 : 77 f7 58 e8 f0 1d d2 18 df fe e7 e9 35 c8 a6 1a
 : db 8d 3d 3d f8 73 14 a9 0b 39 c7 95 f6 52 7d 2d
 : 13 8c ae 03 29 3c 4e 8c b0 26 18 b6 d8 11 1f d4
 : 12 0c 13 ce 3f f1 c7 05 4e df e1 fc 44 fd 25 34
 : 19 4a 81 0d dd 98 42 ac d3 b6 91 0c 7f 16 72 a3
 : a0 8a d7 01 7f fb 9c 93 e8 99 92 c8 42 47 c6 43

D.2.2 Pretty Print of "End Entity" Certificate

decode: 0-OK, len=697 (697 bytes in file)

Housley, Ford, Polk, & Solo [Page 102]

INTERNET DRAFT October 14, 1997

 Version: v3
Serial Number: 18
Signature Alg: dsa-with-sha (1.2.840.10040.4.3)
 Issuer: C=US, O=gov, OU=nist
 Validity: from 970730000000Z
 to 971201000000Z
 Subject: CN=Tim Polk, OU=nist, O=gov, C=US
SubjectPKInfo: dsa (1.2.840.10040.4.1)
 params:
 02 81 80 d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59
 63 55 d3 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4
 62 b4 d2 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86
 83 3d 03 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a
 f7 e2 a6 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b
 5a f7 0a 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd
 31 23 be 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44
 9c eb 4d f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b
 7d 57 8d 02 14 a7 83 9b f3 bd 2c 20 07 fc 4c e7
 e8 9f f3 39 83 51 0d dc dd 02 81 80 0e 3b 46 31
 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca 90 88 57 64
 9f 01 21 e0 15 05 94 24 82 e2 10 90 d9 e1 4e 10
 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5 a1 7d b5 07
 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb ac fa 4e 76
 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d a6 97 59 c5
 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42 87 62 3f f1
 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90 cf 67 db de
 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d
 Public Key:
 00 02 81 80 a8 63 b1 60 70 94 7e 0b 86 08 93 0c
 0d 08 12 4a 58 a9 af 9a 09 38 54 3b 46 82 fb 85
 0d 18 8b 2a 77 f7 58 e8 f0 1d d2 18 df fe e7 e9
 35 c8 a6 1a db 8d 3d 3d f8 73 14 a9 0b 39 c7 95
 f6 52 7d 2d 13 8c ae 03 29 3c 4e 8c b0 26 18 b6
 d8 11 1f d4 12 0c 13 ce 3f f1 c7 05 4e df e1 fc
 44 fd 25 34 19 4a 81 0d dd 98 42 ac d3 b6 91 0c
 7f 16 72 a3 a0 8a d7 01 7f fb 9c 93 e8 99 92 c8
 42 47 c6 43
 issuerUID:
 subjectUID:
 1 extensions:
 Exten 1: subjectAltName (2.5.29.17)
 30 10 81 0e 77 70 6f 6c 6b 40 6e 69 73 74 2e 67
 6f 76
Signature Alg: dsa-with-sha (1.2.840.10040.4.3)
 Sig Value: 368 bits:
 30 2c 02 14 3c 02 e0 ab d9 5d 05 77 75 15 71 58
 92 29 48 c4 1c 54 df fc 02 14 5b da 53 98 7f c5
 33 df c6 09 b2 7a e3 6f 97 70 1e 14 ed 94

Housley, Ford, Polk, & Solo [Page 103]

INTERNET DRAFT October 14, 1997

-------- extensions ----------

printber -s 619 pkix-ex2.ber
get 0, len=18 (697 bytes in file)
0000 30 10 16: SEQUENCE
0002 81 0e 14: . [1]
 : 77 70 6f 6c 6b 40 6e 69 73 74 2e 67 6f 76
Note: This subjectAltName data is IMPLICIT TAGS - is that correct?

printber -s 651 pkix-ex2.ber
get 0, len=46 (697 bytes in file)
0000 30 2c 44: SEQUENCE
0002 02 14 20: . INTEGER
 : 2b 82 c9 2d 79 9c a4 16 97 22 b1 48 16 03 c2 ed
 : 31 65 99 d5
0024 02 14 20: . INTEGER
 : 3f 90 79 17 f8 9d 50 fb f3 5d 70 b7 40 31 a3 74
 : 31 d7 b1 30

D.3 End-Entity Certificate Using RSA

 This section contains an annotated hex dump of a 675 byte version 3
 certificate. The certificate contains the following information:
 (a) the serial number is 2;
 (b) the certificate is signed with RSA and the MD5 hash algorithm;
 (c) the issuer's distinguished name is OU=esCert-
 UPC;O=UPC;L=Barcelona;STREET=Catalunya;C=ES
 (d) and the subject's distinguished name is
 CN=escert.upc.es;OU=esCert-
 UPC;O=UPC;L=Barcelona;STREET=Catalunya;C=ES
 (e) the certificate was issued on May 21, 1996 and will expire on May
 21, 1997;
 (f) the certificate contains a 768 bit RSA public key which is
 intended for generation of digital signatures;
 (g) the certificate is an end entity certificate (not a CA
 certificate);
 (h) the certificate includes two alternative names - an RFC 822
 address, and a URL.

 sequence length 029f=671 bytes
 30 82 02 9f
 sequence length 0208h=520 bytes
 30 82 02 08
 explicit tag 00 "Version"
 a0 03
 integer length 1 value 2 [version is 3]
 02 01 02
 integer length 1 value 2 [serial number 2]

https://datatracker.ietf.org/doc/html/rfc822

Housley, Ford, Polk, & Solo [Page 104]

INTERNET DRAFT October 14, 1997

 02 01 02
 sequence length 13 [signature]
 30 0d
 object identifier length 9 {1 2 840 113549 1 1 4}
 {iso(1) member-body(2) us(840) etc.}
 06 09 2a 86 48 86 f7 0d 01 01 04
 null [null parameters]
 05 00
 sequence length 88 [issuer]
 30 58
 RDN length 11
 31 0b
 sequence length 9
 30 09
 object identifier length 3 { 2 5 4 6 }
 06 03 55 04 06
 printable string length 2 "ES"
 13 02 45 53
 RDN length 18
 31 12
 sequence length 16
 30 10
 object identifier length 3 { 2 5 4 9 }
 06 03 55 04 09
 printable string length 9 "Catalunya"
 13 09 43 61 74 61 6c 75 6e 79 61
 RDN length 18
 31 12
 sequence length 16
 30 10
 object identifier length 3 { 2 5 4 7 }
 06 03 55 04 07
 printable string length 9 "Barcelona"
 13 09 42 61 72 63 65 6c 6f 6e 61
 RDN length 12
 31 0c
 sequence length 10
 30 0a
 object identifier {2 5 4 10 }
 06 03 55 04 0a
 printable string length 3 "UPC"
 13 03 55 50 43
 RDN length 19
 31 13
 sequence length 17
 30 11
 object identifier {2 5 4 13 }
 06 03 55 04 0b

Housley, Ford, Polk, & Solo [Page 105]

INTERNET DRAFT October 14, 1997

 printable string length 10 "esCERT-UPC"
 13 0a 65 73 43 45 52 54 2d 55 50 43
 sequence length 0x1e= 30
 30 1e
 UTCTime "960521095826Z"
 17 0d 39 36 30 35 32 31 30 39 35 38 32 36 5a
 UTCTime "979521095826Z"
 17 0d 39 37 30 35 32 31 30 39 35 38 32 36 5a
 sequence length
 30 70
 31 0b
 30 09
 { 2 5 4 6 }
 06 03 55 04 06
 "ES"
 13 02 45 53
 RDN
 31 12
 30 10
 { 2 5 4 9 }
 06 03 55 04 09
 "Catalunya"
 13 09 43 61 74 61 6c 75 6e 7961
 RDN
 31 12
 30 10
 { 2 5 4 7 }
 06 03 55 04 07
 "Barcelona"
 13 09 42 61 72 63 65 6c 6f 6e 61
 RDN
 31 0c
 30 0a
 { 2 5 4 10 }
 06 03 55 04 0a
 "UPC"
 13 03 55 50 43
 RDN
 31 13
 30 11
 { 2 5 4 11 }
 06 03 55 04 0b
 "esCERT-UPC"
 13 0a 65 73 43 45 52 54 2d 55 50 43
 RDN
 31 16
 30 14
 { 2 5 4 3 }

Housley, Ford, Polk, & Solo [Page 106]

INTERNET DRAFT October 14, 1997

 06 03 55 04 03
 "escert.upc.es"
 13 0d 65 73 63 65 72 74 2e 75 70 63 2e 65 73
 subjectPublicKeyInfo
 30 7c
 algorithmIdentifier
 30 0d
 { 1 2 840 113549 1 1 1}
 06 09 2a 86 48 86 f7 0d 01 01 01
 null parameters
 05 00
 { subject's public key }
 03 6b BIT STRING length 107 bytes (856 bits)
 0030 6802 6100 beaa 8b77 54a3 afca 779f
 2fb0 cf43 88ff a66d 7955 5b61 8c68 ec48
 1e8a 8638 a4fe 19b8 6217 1d9d 0f47 2cff
 638f 2991 04d1 52bc 7f67 b6b2 8f74 55c1
 3321 6c8f ab01 9524 c8b2 7393 9d22 6150
 a935 fb9d 5750 32ef 5652 5093 abb1 8894
 7856 15c6 1c8b 0203 0100 01
 explicit tag 3 "extensions" length 0x84=132
 a3 81 84
 sequence 129 bytes
 30 81 81
 sequence 12 bytes
 30 0b
 id-ce-keyUsage = { 2 5 29 15 }
 06 03 55 1d 0f
 by default, critical = FALSE
 octet string
 04 04 03 02 07 80
 30 09
 id-ce-basicConstraints = { 2 5 29 19 }
 06 03 55 1d 13
 by default, critical = FALSE
 octet string
 04 02
 null sequence - by default, subject is end entity
 30 00
 30 3d
 id-ce-subjectAltName = { 2 5 29 17 }
 06 03 55 1d 11
 by default, critical = FALSE
 octet string
 04 36
 30 34
 rfc822name
 a1 1a

Housley, Ford, Polk, & Solo [Page 107]

INTERNET DRAFT October 14, 1997

 IA5String "escert-upc@escert.upc.es"
 16 18 65 73 63 65 72 74 2d 75 70 63 40 65 73 63
 65 72 74 2e 75 70 63 2e 65 73
 uniformResourceIdentifier
 a6 16
 IA5String "http://escert.upc.es"
 16 14 68 74 74 70 3a 2f 2f 65 73 63 65 72 74 2e
 75 70 63 2e 65 73
 30 28
 id-ce-certificatePolicies = { 2 5 29 32 }
 06 03 55 1d 20
 by default, critical = FALSE
 octet string
 04 21
 30 1f
 30 1d
 06 04 2a 84 80 00
 { 2 2 32768 }
 30 15
 30 07
 { 2 2 32768 1 }
 06 05 2a 84 80 00 01
 30 0a
 { 2 2 32768 2 }
 06 05 2a 84 80 00 02
 02 01 0a
 sequence
 30 0d
 { 1 2 840 113549 1 1 4 }
 06 09 2a 86 48 86 f7 0d 01 01 04
 null parameters
 05 00
 bit string length 129 (signature)
 03 81 81 005b fdc2 a704 d483 4e17 6da6 fa27 e7c6
 f8ab b95d 9fd0 a1df d797 9fe0 20a6 c57a
 64cd 522f e9ae dabe 9ce4 d597 edf1 84c0
 d0fe 9bef 54b1 80e5 bf3c c9ed 9320 2d52
 21e9 bcb9 e34f ac11 650e 8fa1 6899 6347
 e53d e442 7313 fac5 c834 8cc0 4118 89d5
 e6a0 185b 5d86 1c1e c670 d80e 8964 9483
 8e3b 407c 59cf 2b2f b7ce 9798 1215 ef13
 d4

D.4 Certificate Revocation List

 This section contains an annotated hex dump of a version 2 CRL with
 one extension (cRLNumber). The CRL was issued by OU=nist;O=gov;C=us

Housley, Ford, Polk, & Solo [Page 108]

INTERNET DRAFT October 14, 1997

 on July 7, 1996; the next scheduled issuance was August 7, 1996. The
 CRL includes one revoked certificates: serial number 18 (12 hex).
 The CRL itself is number 18, and it was signed with DSA.

printber pkix-crl.ber
get 0, len=189 (189 bytes in file)
0000 30 81 ba 186: SEQUENCE
0003 30 7c 124: . SEQUENCE
0005 02 01 1: . . INTEGER 1
0008 30 09 9: . . SEQUENCE
0010 06 07 7: . . . OID 1.2.840.10040.4.3: dsa-with-sha
0019 30 2a 42: . . SEQUENCE
0021 31 0b 11: . . . SET
0023 30 09 9: SEQUENCE
0025 06 03 3: OID 2.5.4.6: C
0030 13 02 2: PrintableString 'US'
0034 31 0c 12: . . . SET
0036 30 0a 10: SEQUENCE
0038 06 03 3: OID 2.5.4.10: O
0043 13 03 3: PrintableString 'gov'
0048 31 0d 13: . . . SET
0050 30 0b 11: SEQUENCE
0052 06 03 3: OID 2.5.4.11: OU
0057 13 04 4: PrintableString 'nist'
0063 17 0d 13: . . UTCTime '970801000000Z'
0078 17 0d 13: . . UTCTime '970808000000Z'
0093 30 22 34: . . SEQUENCE
0095 30 20 32: . . . SEQUENCE
0097 02 01 1: INTEGER 18
0100 17 0d 13: UTCTime '970731000000Z'
0115 30 0c 12: SEQUENCE
0117 30 0a 10: SEQUENCE
0119 06 03 3: OID 2.5.29.21: reasonCode
0124 04 03 3: OCTET STRING
 : 0a 01 01
0129 30 09 9: . SEQUENCE
0131 06 07 7: . . OID 1.2.840.10040.4.3: dsa-with-sha
0140 03 2f 47: . BIT STRING (0 unused bits)
 : 30 2c 02 14 9e d8 6b c1 7d c2 c4 02 f5 17 84 f9
 : 9f 46 7a ca cf b7 05 8a 02 14 9e 43 39 85 dc ea
 : 14 13 72 93 54 5d 44 44 e5 05 fe 73 9a b2

printber -s 143 pkix-crl.ber
get 0, len=46 (189 bytes in file)
0000 30 2c 44: SEQUENCE
0002 02 14 20: . INTEGER
 : 9e d8 6b c1 7d c2 c4 02 f5 17 84 f9 9f 46 7a ca

Housley, Ford, Polk, & Solo [Page 109]

INTERNET DRAFT October 14, 1997

 : cf b7 05 8a
0024 02 14 20: . INTEGER
 : 9e 43 39 85 dc ea 14 13 72 93 54 5d 44 44 e5 05
 : fe 73 9a b2

Security Considerations

 This entire memo is about security mechanisms.

Author Addresses:

 Russell Housley
 SPYRUS
 PO Box 1198
 Herndon, VA 20172
 USA
 housley@spyrus.com

 Warwick Ford
 VeriSign, Inc.
 One Alewife Center
 Cambridge, MA 02140
 USA
 wford@verisign.com

 Tim Polk
 NIST
 Building 820, Room 426
 Gaithersburg, MD 20899
 USA
 wpolk@nist.gov

 David Solo
 BBN
 150 CambridgePark Drive
 Cambridge, MA 02140
 USA
 solo@bbn.com

Housley, Ford, Polk, & Solo [Page 110]

