
Internet Draft C. Adams (Entrust Technologies)
PKIX Working Group S. Farrell (SSE)
draft-ietf-pkix-ipki3cmp-02.txt
Expires in 6 months June 1997

Internet Public Key Infrastructure
Part III: Certificate Management Protocols

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of 6 months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference material
or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za(Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

Abstract

This is a draft of the Internet Public Key Infrastructure (X.509)
Certificate Management Protocols. Protocol messages are defined for all
relevant aspects of certificate creation and management.

1. Introduction

The layout of this draft is as follows:

- Section 1 contains an overview of PKI management;
- Section 2 contains discussion of assumptions and restrictions;
- Section 3 contains data structures used for PKI management messages;
- Section 4 defines the functions that are to be carried out in PKI
 management including those that must be supported by conforming
 implementations and those that are optional;
- Section 5 describes a simple protocol for transporting PKI messages;
- the Appendices specify profiles for conforming implementations and
 provide an ASN.1 module containing the syntax for all defined
 messages.

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki3cmp-02.txt

Adams, Farrell [Page 1]

INTERNET-DRAFT June 1997

1.1 PKI Management Overview

 The PKI must be structured to be consistent with the types of
individuals who must administer it. Providing such administrators with
unbounded choices not only complicates the software required but also
increases the chances that a subtle mistake by an administrator or
software developer will result in broader compromise. Similarly,
restricting administrators with cumbersome mechanisms will cause them
not to use the PKI.

 Management protocols are required to support on-line interactions
between Public Key Infrastructure (PKI) components. For example, a
management protocol might be used between a CA and a client system with
which a key pair is associated, or between two CAs which cross-certify
each other.

2.1 PKI Management Model

Before specifying particular message formats and procedures we first
define the entities involved in PKI management and their interactions
(in terms of the PKI management functions required). We then group
these functions in order to accommodate different identifiable types of
end entities.

1.2 Definitions of PKI Entities

 The entities involved in PKI management include the end entity (i.e.
the entity to be named in the subject field of a certificate) and the
certification authority (i.e. the entity named in the issuer field of a
certificate). A registration authority may also be involved in PKI
management.

1.2.1 Subjects and End Entities

The term "subject" is used here to refer to the entity named by the
subject field of a certificate; when we wish to distinguish the tools
and/or software used by the subject (e.g. a local certificate management
module) we will use the term "subject equipment". In general, we prefer
the term "end entity" rather than subject in order to avoid confusion
with the field name.

It is important to note that the end entities here will include not only
human users of applications, but also applications themselves (e.g. for
IP security). This factor influences the protocols which the PKI
management operations use; e.g., applications software is far more
likely to know exactly which certificate extensions are required than
are human users. PKI management entities are also end entities in the
sense that they are sometimes named in the subject field of a
certificate or cross-certificate. Where appropriate, the term "end-

entity" will be used to refer to end entities who are not PKI management
entities.

Adams, Farrell [Page 2]

INTERNET-DRAFT June 1997

All end entities require secure local access to some information -- at a
minimum, their own name and private key, the name of a CA which is
directly trusted by this subject and that CA's public key (or a
fingerprint of the public key where a self-certified version is
available elsewhere). Implementations may use secure local storage for
more than this minimum (e.g. the end entity's own certificate or
application-specific information). The form of storage will also vary --
from files to tamper resistant cryptographic tokens. Such local trusted
storage is referred to here as the end entity's Personal Security
Environment (PSE).

Though PSE formats are out of scope of this document (they are very
dependent on equipment, et cetera), a generic interchange format for
PSEs is defined here - a certification response message may be used.

1.2.2 Certification Authority

The certification authority (CA) may or may not actually be a real
"third party" from the end entity's point of view. Quite often, the CA
will actually belong to the same organisation as the end entities it
supports.

Again, we use the term CA to refer to the entity named in the issuer
field of a certificate; when it is necessary to distinguish the software
or hardware tools used by the CA we use the term "CA equipment".

The CA equipment will often include both an "off-line" component and an
"on-line" component, with the CA private key only available to the "off-
line" component. This is, however, a matter for implementers (though it
is also relevant as a policy issue).

We use the term "root CA" to indicate a CA which is directly trusted by
an end entity, that is, securely acquiring the value of a root CA public
key requires some out-of-band step(s). This term does not indicate that
a root CA is at the top of any hierarchy, simply that the CA in question
is trusted directly.

A subordinate CA is one which is not a root CA for the end entity in
question. Often, a subordinate CA will not be a root CA for any entity
but this is not mandatory.

1.2.3 Registration Authority

In addition to end entities and CAs, many environments call for the
existence of a registration authority (RA) separate from the
certification authority. The functions which the registration authority
may carry out will vary from case to case but may include personal
authentication, token distribution, revocation reporting, name
assignment, key generation, archival of key pairs, et cetera.

Adams, Farrell [Page 3]

INTERNET-DRAFT June 1997

This document views the RA as an optional component - when it is not
present the CA is assumed to be able to carry out the RA's functions so
that the PKI management protocols are the same from the end entity's
point of view.

Again, we distinguish, where necessary, between the RA and the tools
used (the "RA equipment").

Note that an RA is itself an end entity. We further assume that all RAs
are in fact certified end entities and that RA private keys are usable
for signing. How a particular CA equipment identifies some end entities
as RAs is an implementation issue (so there is no special RA
certification operation). We do not mandate that the RA is certified by
the CA with which it is interacting at the moment (so one RA may work
with more than one CA whilst only being certified once).

In some circumstances end entities will communicate directly with a CA
even where an RA is present. For example, for initial registration
and/or certification the subject may use its RA, but communicate
directly with the CA in order to refresh its certificate.

1.3 PKI Management Requirements

The protocols given here meet the following requirements on PKI
management.

1. PKI management must conform to ISO 9594-8 and the associated
amendments (certificate extensions)

2. PKI management must conform to the other parts of this series.

3. It must be possible to regularly update any key pair without
affecting any other key pair.

4. The use of confidentiality in PKI management protocols must be kept
to a minimum in order to ease regulatory problems.

5. PKI management protocols must allow the use of different industry-
standard cryptographic algorithms, (specifically including, RSA, DSA,
MD5, SHA-1) -- this means that any given CA, RA, or end entity may, in
principal, use whichever algorithms suit it for its own key pair(s).

6. PKI management protocols must not preclude the generation of key
pairs by the end entity concerned, by an RA, or by a CA -- key
generation may also occur elsewhere, but for the purposes of PKI
management we can regard key generation as occurring wherever the key is
first present at an end entity, RA or CA.

Adams, Farrell [Page 4]

INTERNET-DRAFT June 1997

7. PKI management protocols must support the publication of certificates
by the end entity concerned, by an RA or by a CA. Different
implementations and different environments may choose any of the above
approaches.

8. PKI management protocols must support the production of CRLs by
allowing certified end entities to make requests for the revocation of
certificates - this must be done in such a way that the denial-of-
service attacks which are possible are not made simpler.

9. PKI management protocols must be usable over a variety of "transport"
mechanisms, specifically including mail, http, TCP/IP and ftp.

10. Final authority for certification creation rests with the CA; no RA
or end entity equipment can assume that any certificate issued by a CA
will contain what was requested -- a CA may alter certificate field
values or may add, delete or alter extensions according to its operating
policy; the only exception to this is the public key, which the CA may
not modify (assuming that the CA was presented with the public key
value). In other words, all PKI entities (end entities, RAs and CAs)
must be capable of handling responses to requests for certificates in
which the actual certificate issued is different from that requested --
for example, a CA may shorten the validity period requested.

11. A graceful, scheduled change-over from one non-compromised CA key
pair to the next must be supported (CA key update). An end entity whose
PSE contains the new CA public key (following a CA key update) must also
be able to verify certificates verifiable using the old public key. End
entities who directly trust the old CA key pair must also be able to
verify certificates signed using the new CA private key. (Required for
situations where the old CA public key is "hardwired" into the end
entity's cryptographic equipment).

12. The Functions of an RA may, in some implementations or
environments, be carried out by the CA itself. The protocols must be
designed so that end entities will use the same protocol (but, of
course, not the same key!) regardless of whether the communication is
with an RA or CA.

13. Where an end entity requests a certificate containing a given public
key value, the end entity must be ready to demonstrate possession of the
corresponding private key value (if this is required by the CA/RA with
whom the end entity is communicating). This may be accomplished in
various ways, depending on the type of certification request. See the
section "Proof of Possession of Private Key" for details

Adams, Farrell [Page 5]

INTERNET-DRAFT June 1997

PKI Management Operations

 The following diagram shows the relationship between the entities
defined above in terms of the PKI management operations. The letters in
the diagram indicate "protocols" in the sense that a defined set of PKI
management messages can be sent along each of the lettered lines.

 cert. publish +------------+
 +---+ +------------ | End Entity | Operations
 | C | | g +------------+
 | e | <--------+ | ^ initial
 | r | a | | b registration/
 | t | PKI "users" | | certification
 | | | | key pair recovery
 | / | | | key pair update
 | | | | certificate update
 | C | V | revocation request
 | R | -------+-+-----+-+------+-+-----
 | L | PKI management | ^ | ^
 | | entities a | | b a | | b
 | | V | | | | |
 | R | g +------+ d | |
 | e | <------------ | RA | <-----+ | |
 | p | cert. | | ----+ | | |
 | o | publish +------+ c | | | |
 | s | | | | |
 | i | V | V |
 | t | h +------------+ i
 | o | <------------------------| CA |------->
 | r | +------------+ "out-of-band"
 | y | cert. publish | ^ publication
 | | CRL publish | |
 +---+ | | cross-certification
 e | | f cross-certificate
 | | update
 | |
 V |
 +------+
 | CA-2 |
 +------+

 Figure 1 - PKI Entities

At a high level the set of operations for which management messages are
defined can be grouped as follows.

1 CA establishment: When establishing a new CA, certain steps are
required (e.g., production of initial CRLs, export of CA public

key).

Adams, Farrell [Page 6]

INTERNET-DRAFT June 1997

2 End entity initialisation: this includes importing a CA public key
and requesting information about the options supported by a PKI
management entity.

3 Certification: various operations result in the creation of new
certificates:

3.1 initial registration/certification: This is the process
whereby a subject first makes itself known to a CA or RA,
prior to the CA issuing a certificate or certificates for
that user. The end result of this process (when it is
successful) is that a CA issues a certificate for an end
entity's public key, and returns that certificate to the
subject and/or posts that certificate in a public
repository. This process may, and typically will, involve
multiple "steps", possibly including an initialization of
the end entity's equipment. For example, the subject
equipment must be securely initialized with the public key
of a CA, to be used in validating certificate paths.
Furthermore, a subject typically needs to be initialized
with its own key pair(s).

3.2 key pair update: Every key pair needs to be updated
regularly (i.e., replaced with a new key pair), and a new
certificate needs to be issued.

3.3 certificate update: As certificates expire they may be
"refreshed" if nothing relevant in the environment has
changed.

3.4 CA key pair update: As with end entities, CA key pairs need
to be updated regularly; however, different mechanisms are
required.

3.5 cross-certification: An initiating CA provides to a
responding CA the information necessary for the responding
CA to issue a cross-certificate. Note: this action may be
mutual, so that two cross-certificates are issued (one in
each direction).

3.6 cross-certificate update: Similar to a normal certificate
update but involving a cross-certificate.

4 Certificate/CRL discovery operations: some PKI management
operations result in the publication of certificates or CRLs

Adams, Farrell [Page 7]

INTERNET-DRAFT June 1997

4.1 certificate publication: Having gone to the trouble of
producing a certificate some means for publishing it is
needed. The "means" defined in PKIX may involve the
messages specified in Sections 3.3.13 - 3.3.16, or may
involve other methods (LDAP, for example) as described in
Part II of this series (see [PKIX-2]).

4.2 CRL publication: As for certificates.

5 Recovery operations: some PKI management operations are used when
an end entity has "lost" it s PSE

5.1 key pair recovery: As an option, user client key materials
(e.g., a user's private key used for decryption purposes)
may be backed up by a CA, an RA or a key backup system
associated with a CA or RA. If a subject needs to recover
these backed up key materials (e.g., as a result of a
forgotten password or a lost key chain file), a protocol
exchange may be needed to support such recovery.

6 Revocation operations: some PKI operations result in the creation
of new CRL entries and/or new CRLs

6.1 revocation request: An authorized person advises a CA of an
abnormal situation requiring certificate revocation.

7 PSE operations: whilst the definition of PSE operations (e.g.
moving a PSE, changing a PIN, etc.) are beyond the scope of this
specification, we do define a PKIMessage which can form the basis
of such operations.

Note that on-line protocols are not the only way of implementing the
above operations. For all operations there are off-line methods of
achieving the same result, and this specification does not mandate use
of on-line protocols. For example, when hardware tokens are used, many
of the operations may be achieved as part of the physical token
delivery.

Later sections define a set of standard protocols supporting the above
operations. The protocols for conveying these exchanges in different
environments (file based, on-line, E-mail, and WWW) may also be
specified.

Adams, Farrell [Page 8]

INTERNET-DRAFT June 1997

2. Assumptions and restrictions

2.1 End entity initialisation

The first step for and end entity in dealing with PKI management
entities is to request information about the PKI functions supported and
optionally to securely acquire a copy of the relevant root CA public
key(s).

2.2 Initial registration/certification

There are many schemes which can be used to achieve initial registration
and certification of end entities. No one method is suitable for all
situations due to the range of policies which a CA may implement and the
variation in the types of end entity which can occur.

We can however, classify the initial registration / certification
schemes which are supported by this specification. Note that the word
"initial", above, is crucial - we are dealing with the situation where
the end entity in question has had no previous contact with the PKI.
Where the end entity already possesses certified keys then some
simplifications/alternatives are possible.

Having classified the schemes which are supported by this specification
we can then specify some as mandatory and some as optional. The goal is
that the mandatory schemes cover a sufficient number of the cases which
will arise in real use, whilst the optional schemes are available for
special cases which arise less frequently. In this way we achieve a
balance between flexibility and ease of implementation.

We will now describe the classification of initial registration /
certification schemes.

2.2.1 Criteria used

2.2.1.1 Initiation of registration / certification

In terms of the PKI messages which are produced we can regard the
initiation of the initial registration / certification exchanges as
occurring wherever the first PKI message relating to the end entity is
produced. Note that the real world initiation of the registration /
certification procedure may occur elsewhere (e.g. a personnel department
may telephone an RA operator).

The possible locations are: at the end entity, an RA or a CA.

Adams, Farrell [Page 9]

INTERNET-DRAFT June 1997

2.2.1.2 End entity message origin authentication

The on-line messages produced by the end entity which requires a
certificate may be authenticated or not. The requirement here is to
authenticate the origin of any messages from the end entity to the PKI
(CA/RA).

In this specification, such authentication is achieved by the PKI
(CA/RA) issuing the end entity with a secret value (initial
authentication key) and reference value (used to identify the
transaction) via some out-of-band means. The initial authentication key
can then be used to protect relevant PKI messages.

We can thus classify the initial registration/certification scheme
according to whether or not the on-line end entity -> PKI messages are
authenticated or not.

Note 1: We do not discuss the authentication of the PKI -> end entity
messages here as this is always required. In any case, it can be
achieved simply once the root-CA public key has been installed at the
end entity s equipment or based on the initial authentication key.

Note 2: An initial registration / certification procedure can be secure
where the messages from the end entity are authenticated via some out-
of-band means (e.g. a subsequent visit).

2.2.1.3 Location of key generation

In this specification, key generation is regarded as occurring wherever
either the public or private component of a key pair first occurs in a
PKI message. Note that this does not preclude a centralised key
generation service - the actual key pair may have been generated
elsewhere and transported to the end entity, RA or CA.

There are thus three possibilities for the location of key generation:
the end entity, an RA or a CA.

2.2.1.4 Confirmation of successful certification

Following the creation of an initial certificate for an end entity,
additional assurance can be gained by having the end entity explicitly
confirm successful receipt of the message containing (or indicating the
creation of) the certificate. Naturally, this confirmation message must
be protected (based on the initial authentication key or other means).

This gives two further possibilities: confirmed or not.

Adams, Farrell [Page 10]

INTERNET-DRAFT June 1997

2.2.2 Mandatory schemes

The criteria above allow for a large number of initial registration /
certification schemes. This specification mandates that conforming RA/CA
equipment must support both of the schemes listed below. Conforming end
entity equipment must support one of the schemes listed below.

2.2.2.1 Centralised scheme

In terms of the classification above, this scheme is where:

- initiation occurs at the certifying CA;
- no on-line message authentication is required;
- key generation occurs at the certifying CA;
- no confirmation message is required.

In terms of message flow, this scheme means that the only message
required is sent from the CA to the end entity. The message must contain
the entire PSE for the end entity. Some out-of-band means must be
provided to allow the end entity to authenticate the message received.

2.2.2.2 Basic authenticated scheme

In terms of the classification above, this scheme is where:

- initiation occurs at the end entity
- message authentication is required
- key generation occurs at the end entity
- a confirmation message is required

In terms of message flow, the scheme is as follows:

 End entity CA
 ========== =============
 out-of-band distribution of
 initial authentication key and
 reference value
 Key generation
 Creation of certification request
 Protect request with IAK
 -->>--certification request-->>
 verify request
 process request
 create response
 --<<--certification response--<<--
 handle response
 create confirmation
 -->>--confirmation message-->>--
 verify confirmation

(Where verification of the confirmation message fails, the CA must
revoke the newly issued certificate if necessary.)

Adams, Farrell [Page 11]

INTERNET-DRAFT June 1997

2.3 Proof of Possession (POP) of Private Key

In order to prevent certain attacks and to allow a CA/RA to properly
check the validity of the binding between an end entity and a key pair,
the PKI management operations specified here make it possible for an end
entity to prove that it has possession of (i.e., is able to use) the
private key corresponding to the public key for which a certificate is
requested. A given CA/RA is free to choose whether or not to enforce
POP in its certification exchanges (i.e., this may be a policy issue).
However, it is STRONGLY RECOMMENDED that CAs/RAs enforce POP because
there are currently many non-PKIX operational protocols in use (various
electronic mail protocols are one example) which do not explicitly check
the binding between the end entity and the private key. Until
operational protocols which do verify the binding (for both signature
and encryption key pairs) exist, and are ubiquitous, this binding can
only be assumed to be verified by the CA/RA. Therefore, if the binding
is not verified by the CA/RA, certificates in the Internet Public-Key
Infrastructure end up being somewhat less meaningful.

POP is accomplished in different ways depending on the type of key for
which a certificate is requested. If a key can be used for multiple
purposes (e.g. an RSA key) then any of the methods may be used.

This specification explicitly allows for cases where an end entity
supplies the relevant proof to an RA and the RA subsequently attests to
the CA that the required proof has been received (and validated!). For
example, an end entity wishing to have a signing key certified could
send the appropriate signature to the RA which then simply notifies the
relevant CA that the end entity has supplied the required proof. Of
course, such a situation may be disallowed by some policies.

2.3.1 Signature Keys

For signature keys, the end entity can sign a value to prove possession
of the private key.

2.3.2 Encryption Keys

For encryption keys, the end entity can provide the private key to the
CA/RA, or can be required to decrypt a value in order to prove
possession of the private key (see Section 3.2.8). Decrypting a value
can be achieved either directly or indirectly.

The direct method is to issue a random challenge to which an immediate
response is required.

Adams, Farrell [Page 12]

INTERNET-DRAFT June 1997

The indirect method is to issue a certificate which is encrypted for the
end entity (and have the end entity demonstrate its ability to decrypt
this certificate in the confirmation message). This allows a CA to issue
a certificate in a form which can only be used by the intended end
entity.

This specification encourages the indirect method because this requires
no extra messages to be sent (i.e., the proof can be demonstrated using
the {request, response, confirmation} triple of messages).

2.3.3 Key Agreement Keys

For key agreement keys, the end entity and the PKI management entity
(i.e. CA or RA) must establish a shared secret key in order to prove
that the end entity has possession of the private key.

Note that this need not impose any restrictions on the keys which can be
certified by a given CA -- in particular, for Diffie-Hellman keys the
end entity may freely choose its algorithm parameters -- provided that
the CA can generate a short-term (or one-time) key pair with the
appropriate parameters when necessary.

2.4 Root CA key update

This discussion only applies to CAs which are a root CA for some end
entity.

The basis of the procedure described here is that the CA protects its
new public key using its previous private key and vice versa. Thus when
a CA updates its key pair it must generate two new cACertificate
attribute values if certificates are made available using an X.500
directory.

When a CA changes its key pair those entities who have acquired the old
CA public key via "out-of-band" means are most affected. It is these end
entities who will need access to the new CA public key protected with
the old CA private key. However, they will only require this for a
limited period (until they have acquired the new CA public key via the
"out-of-band" mechanism). This will typically be easily achieved when
these end entity's certificates expire.

The data structure used to protect the new and old CA public keys is a
standard certificate (which may also contain extensions). There are no
new data structures required.

 Notes:

1.This scheme does not make use of any of the X.509 v3 extensions as it
must be able to work even for version 1 certificates. The presence of

the KeyIdentifier extension would make for efficiency improvements.

Adams, Farrell [Page 13]

INTERNET-DRAFT June 1997

2.While the scheme could be generalized to cover cases where the CA
updates its key pair more than once during the validity period of one of
its end entity's certificates, this generalization seems of dubious
value. This means that the validity period of a CA key pair must be
greater than the validity period of any certificate issued by that CA
using that key pair.

3.This scheme forces end entities to acquire the new CA public key on
the expiry of the last certificate they owned which was signed with the
old CA private key (via the "out-of-band" means). Certificate and/or
key update operations occurring at other times do not necessarily
require this (depending on the end entity's equipment).

2.4.1 CA Operator actions

 To change the key of the CA, the CA operator does the following:

 1.Generate a new key pair.

 2.Create a certificate containing the old CA public key signed with
 the new private key (the "old with new" certificate).

 3.Create a certificate containing the new CA public key signed with
 the old private key (the "new with old" certificate).

 4.Create a certificate containing the new CA public key signed with
 the new private key (the "new with new" certificate).

 5.Publish these new certificates via the directory and/or other means.
 (A CAKeyUpdAnn message.)

 6.Export the new CA public key so that end entities may acquire it
 using the "out-of-band" mechanism.

The old CA private key is then no longer required. The old CA public key
will however remain in use for some time. The time when the old CA
public key is no longer required (other than for non-repudiation) will
be when all end entities of this CA have acquired the new CA public key
via "out-of-band" means.

The "old with new" certificate must have a validity period starting at
the generation time of the old key pair and ending at the time at which
the CA will next update its key pair.

The "new with old" certificate must have a validity period starting at
the generation time of the new key pair and ending at the time by which
all end entities of this CA will securely possess the new CA public key.

The "new with new" certificate must have a validity period starting at

the generation time of the new key pair and ending at the time at which
the CA will next update its key pair.

Adams, Farrell [Page 14]

INTERNET-DRAFT June 1997

2.4.2 Verifying Certificates.

Normally when verifying a signature the verifier verifies, among other
things, the certificate containing the public key of the signer.
However, once a CA is allowed to update its key there are a range of new
possibilities. These are shown in the table below.

 Repository contains NEW Repository contains only OLD
 and OLD public keys public key (due to e.g.
 delay in publication)

 PSE PSE Contains PSE Contains PSE Contains
 Contains OLD public NEW public OLD public
 NEW public key key key
 key

Signer's Case 1: Case 3: Case 5: Case 7:
certifi- This is In this case Although the In this case
cate is the the verifier CA operator the CA
protected standard must access has not operator has
using NEW case where the updated the not updated
public the directory in directory the the directory
key verifier order to get verifier can and so the
 can the value of verify the verification
 directly the NEW certificate will FAIL
 verify the public key directly -
 certificate this is thus
 without the same as
 using the case 1.
 directory

Signer's Case 2: Case 4: Case 6: Case 8:
certifi- In this In this case The verifier Although the
cate is case the the verifier thinks this CA operator
protected verifier can directly is the has not
using OLD must verify the situation of updated the
public access the certificate case 2 and directory the
key directory without will access verifier can
 in order using the the verify the
 to get the directory directory, certificate
 value of however the directly -
 the OLD verification this is thus
 public key will FAIL the same as
 case 4.

2.4.2.1 Verification in cases 1, 4, 5 and 8.

In these cases the verifier has a local copy of the CA public key which

can be used to verify the certificate directly. This is the same as the
situation where no key change has ever occurred.

Adams, Farrell [Page 15]

INTERNET-DRAFT June 1997

Note that case 8 may arise between the time when the CA operator has
generated the new key pair and the time when the CA operator stores the
updated attributes in the directory. Case 5 can only arise if the CA
operator has issued both the signer's and verifier's certificates during
this "gap" (the CA operator should avoid this as it leads to the failure
cases described below).

2.4.2.2 Verification in case 2.

In case 2 the verifier must get access to the old public key of the CA.
The verifier does the following:

1.Lookup the CACertificate attribute in the directory and pick the
appropriate value (based on validity periods)
2.Verify that this is correct using the new CA key (which the verifier
has locally).
3.If correct then check the signer's certificate using the old CA key.

Case 2 will arise when the CA operator has issued the signer's
certificate, then changed key and then issued the verifier's
certificate, so it is quite a typical case.

2.4.2.3 Verification in case 3.

In case 3 the verifier must get access to the new public key of the CA.
The verifier does the following:

1.Lookup the CACertificate attribute in the directory and pick the
appropriate value (based on validity periods).
2.Verify that this is correct using the old CA key (which the verifier
has stored locally).
3.If correct then check the signer's certificate using the new CA key.

Case 3 will arise when the CA operator has issued the verifier's
certificate, then changed key and then issued the signer's certificate,
so it is also quite a typical case.

2.4.2.4 Failure of verification in case 6.

In this case the CA has issued the verifier's PSE containing the new key
without updating the directory attributes. This means that the verifier
has no means to get a trustworthy version of the CA's old key and so
verification fails.

Note that the failure is the CA operator's fault.

2.4.2.5 Failure of verification in case 7.

In this case the CA has issued the signer's certificate protected with
the new key without updating the directory attributes. This means that

the verifier has no means to get a trustworthy version of the CA's new
key and so verification fails.

Note that the failure is again the CA operator's fault.

Adams, Farrell [Page 16]

INTERNET-DRAFT June 1997

2.4.3 Revocation - Change of CA key

As we saw above the verification of a certificate becomes more complex
once the CA is allowed to change its key. This is also true for
revocation checks as the CA may have signed the CRL using a newer
private key than the one that is within the user's PSE.

The analysis of the alternatives is as for certificate verification.

3. Data Structures
This section contains descriptions of the data structures required for
PKI management messages. Section 4 describes constraints on their values
and the sequence of events for each of the various PKI management
operations. Section 5 describes how these may be encapsulated in various
transport mechanisms.

3.1 Overall PKI Message

All of the messages used in PKI management use the following structure:

 PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE OF Certificate OPTIONAL
 }

The PKIHeader contains information which is common to many PKI messages.

The PKIBody contains message-specific information.

The PKIProtection, when used, contains bits which protect the PKI
message.

The extra certificates field can contain certificates which may be
useful to the recipient. For example, this can be used by a CA or RA to
present an end entity with certificates which it needs to verify it s
own new certificate (if the CA that issued the end entity s certificate
is not a root CA for the end entity).

Note also that this field does not necessarily contain a certification
path - the recipient may have to sort, select from, or otherwise process
the extra certificates in order to use them.

Adams, Farrell [Page 17]

INTERNET-DRAFT June 1997

3.1.1 PKI Message Header

All PKI messages require some header information for addressing and
transaction identification. Some of this information will also be
present in a transport-specific envelope; however, if the PKI message is
protected then this information is also protected (i.e. we make no
assumption about secure transport).

The following data structure is used to contain this information:

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { ietf-version1 (0) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable"; i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e. this will be the same in
 -- corresponding request, response and confirmation messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL
 -- this may be used to indicate context-specific
 -- instructions (this field is intended for human
 -- consumption)
 }

 PKIFreeText ::= CHOICE {
 iA5String [0] IA5String,
 bMPString [1] BMPString
 } -- note that the text included here would ideally be in the
 -- preferred language of the recipient

The pvno field is fixed for this version of IPKI.

Adams, Farrell [Page 18]

INTERNET-DRAFT June 1997

The sender field contains the name of the sender of the PKIMessage. This
name (in conjunction with senderKID, if supplied) should be usable to
verify the protection on the message. If nothing about the sender is
known to the sending entity (e.g., in the InitReqContent message, where
the end entity may not know its own DN, e-mail name, IP address, etc.),
then the "sender" field must contain a "NULL" value; that is, the
SEQUENCE OF relative distinguished names is of zero length. In such a
case the senderKID field must hold an identifier (i.e., a reference
number) which indicates to the receiver the appropriate shared secret
information to use to verify the message.

The recipient field contains the name of the recipient of the
PKIMessage. This name (in conjunction with recipKID, if supplied) should
be usable to verify the protection on the message.

The protectionAlg field specifies the algorithm used to protect the
message. If no protection bits are supplied (PKIProtection is optional)
then this field must be omitted; if protection bits are supplied then
this field must be supplied.

senderKID and recipKID are usable to indicate which keys have been used
to protect the message (recipKID will normally only be required where
protection of the message uses DH keys).

The transactionID field within the message header is required so that
the recipient of a response message can correlate this with a previously
issued request. For example, in the case of an RA there may be many
requests "outstanding" at a given moment.

The senderNonce and recipNonce fields protect the PKIMessage against
replay attacks.

The messageTime field contains the time at which the sender created the
message. This may be useful to allow end entities to correct their local
time to be consistent with the time on a central system.

The freeText field may be used to send a human-readable message to the
recipient.

Adams, Farrell [Page 19]

INTERNET-DRAFT June 1997

3.1.2 PKI Message Body

 PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] InitReqContent,
 ip [1] InitRepContent,
 cr [2] CertReqContent,
 cp [3] CertRepContent,
 p10cr [4] PKCS10CertReqContent,
 popdecc [5] POPODecKeyChallContent,
 popdecr [6] POPODecKeyRespContent,
 kur [7] KeyUpdReqContent,
 kup [8] KeyUpdRepContent,
 krr [9] KeyRecReqContent,
 krp [10] KeyRecRepContent,
 rr [11] RevReqContent,
 rp [12] RevRepContent,
 ccr [13] CrossCertReqContent,
 ccp [14] CrossCertRepContent,
 ckuann [15] CAKeyUpdAnnContent,
 cann [16] CertAnnContent,
 rann [17] RevAnnContent,
 crlann [18] CRLAnnContent,
 conf [19] PKIConfirmContent,
 nested [20] NestedMessageContent,
 infor [21] PKIInfoReqContent,
 infop [22] PKIInfoRepContent,
 error [23] ErrorMsgContent
 }

The specific types are described in section 3.3 below.

3.1.3 PKI Message Protection

Some PKI messages will be protected for integrity. (Note that if an
asymmetric algorithm is used to protect a message and the relevant
public component has been certified already, then the origin of message
can also be authenticated. On the other hand, if the public component
is uncertified then the message origin cannot be automatically
authenticated, but may be authenticated via out-of-band means.)

When protection is applied the following structure is used:

 PKIProtection ::= BIT STRING

The input to the calculation of the protectionBits is the DER encoding
of the following data structure:

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,

 body PKIBody
 }

Adams, Farrell [Page 20]

INTERNET-DRAFT June 1997

There may be cases in which the PKIProtection BIT STRING is deliberately
not used to protect a message (i.e., this OPTIONAL field is omitted)
because other protection, external to PKIX, will instead be applied.
Such a choice is explicitly allowed in this specification. Examples of
such external protection include PKCS #7 [PKCS7] and Security Multiparts
[RFC1847] encapsulation of the PKIMessage. It is noted, however, that
many such external mechanisms require that the end entity already
possesses a public-key certificate, and/or a unique Distinguished Name,
and/or other such infrastructure-related information. Thus, they may
not be appropriate for initial registration, key-recovery, or any other
process with "boot-strapping" characteristics. For those cases it may
be necessary that the PKIProtection parameter be used. In the future,
if/when external mechanisms are modified to accommodate boot-strapping
scenarios, the use of the PKIProtection parameter may become rare or
non-existent.

Depending on the circumstances the PKIProtection bits may contain a MAC
or signature. Only the following cases can occur:

- shared secret information

In this case the sender and recipient share secret information
(established via out-of-band means or from a previous PKI management
operation). The protection bits will typically contain a MAC value and
the protectionAlg will be the following:

 PasswordBasedMac ::= OBJECT IDENTIFIER

 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])
 }

In the above protectionAlg the salt value is appended to the shared
secret input. The OWF is then applied iterationCount times, where the
salted secret is the input to the first iteration and, for each
successive iteration, the input is set to be the output of the previous
iteration. The output of the final iteration (called "BASEKEY" for ease
of reference, with a size of "H") is what is used to form the symmetric
key. If the MAC algorithm requires a K-bit key and K <= H, then the most
significant K bits of BASEKEY are used. If K > H, then all of BASEKEY is
used for the most significant H bits of the key, OWF("1" || BASEKEY) is

https://datatracker.ietf.org/doc/html/rfc1847

used for the next most significant H bits of the key, OWF("2" ||
BASEKEY) is used for the next most significant H bits of the key, and so
on, until all K bits have been derived. [Here "N" is the ASCII byte
encoding the number N and "||" represents concatenation.]

Adams, Farrell [Page 21]

INTERNET-DRAFT June 1997

- DH key pairs

Where the sender and receiver possess Diffie-Hellman certificates with
compatible DH parameters, then in order to protect the message the end
entity must generate a symmetric key based on its private DH key value
and the DH public key of the recipient of the PKI message. The
protection bits will typically contain a MAC value keyed with this
derived symmetric key and the protectionAlg will be the following:.

 DHBasedMac ::= OBJECT IDENTIFIER

 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])
 }

In the above protectionAlg OWF is applied to the result of the Diffie-
Hellman computation. The OWF output (called "BASEKEY" for ease of
reference, with a size of "H") is what is used to form the symmetric
key. If the MAC algorithm requires a K-bit key and K <= H, then the most
significant K bits of BASEKEY are used. If K > H, then all of BASEKEY is
used for the most significant H bits of the key, OWF("1" || BASEKEY) is
used for the next most significant H bits of the key, OWF("2" ||
BASEKEY) is used for the next most significant H bits of the key, and so
on, until all K bits have been derived. [Here "N" is the ASCII byte
encoding the number N and "||" represents concatenation.]

- signature

Where the sender possesses a signature key pair it may simply sign the
PKI message. The protection bits will contain a signature value and the
protectionAlg will be an AlgorithmIdentifier for a digital signature
(e.g., md5WithRSAEncryption or dsaWithSha-1).

- multiple protection

In cases where an end entity sends a protected PKI message to an RA, the
RA may forward that message to a CA, attaching it s own protection. This
is accomplished by nesting the entire message sent by the end entity
within a new PKI message. The structure used is as follows.

 NestedMessageContent ::= ANY
 -- This will be a PKIMessage

Adams, Farrell [Page 22]

INTERNET-DRAFT June 1997

3.2 Common Data Structures

Before specifying the specific types which may be placed in a PKIBody we
define some useful data structures which are used in more than one case.

3.2.1 Requested Certificate Contents

Various PKI management messages require that the originator of the
message indicate some of the fields which are required to be present in
a certificate. The CertTemplate structure allows an end entity or RA to
specify as much as they wish about the certificate it requires.
ReqCertContent is basically the same as a Certificate but with all
fields optional.

Note that even if the originator completely specifies the contents of a
certificate it requires, a CA is free to modify fields within the
certificate actually issued.

 CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 -- used to ask for a particular syntax version
 serial [1] INTEGER OPTIONAL,
 -- used to ask for a particular serial number
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 -- used to ask the CA to use this alg. for signing the cert
 subject [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 issuer [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL,
 subjectUID [8] UniqueIdentifier OPTIONAL,
 extensions [9] Extensions OPTIONAL
 -- the extensions which the requester would like in the cert.
 }

 OptionalValidity ::= SEQUENCE {
 notBefore [0] UTCTime OPTIONAL,
 notAfter [1] UTCTime OPTIONAL
 }

3.2.2 Encrypted Values

Where encrypted values (restricted, in this specification, to be either
private keys or certificates) are sent in PKI messages the following
data structure is used.

Adams, Farrell [Page 23]

INTERNET-DRAFT June 1997

 EncryptedValue ::= SEQUENCE {
 encValue BIT STRING,
 -- the encrypted value itself
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL
 -- algorithm used to encrypt the symmetric key
 }

Use of this data structure requires that the creator and intended
recipient are respectively able to encrypt and decrypt. Typically, this
will mean that the sender and recipient have, or are able to generate, a
shared secret key.

If the recipient of the PKIMessage already possesses a private key
usable for decryption, then the encSymmKey field may contain a session
key encrypted using the recipient's public key.

3.2.3 Status codes and Failure Information for PKI messages

All response messages will include some status information. The
following values are defined.

 PKIStatus ::= INTEGER {
 granted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- FullCertTemplate
 }

Adams, Farrell [Page 24]

INTERNET-DRAFT June 1997

Responders may use the following syntax to provide more information
about failure cases.

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)
 missingTimeStamp (8)
 -- when the timestamp is missing but should be there (by policy)
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

3.2.4 Certificate Identification

In order to identify particular certificates the following data
structure is used.

 CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER
 }

3.2.5 "Out-of-band" root CA public key

Each root CA must be able to publish its current public key via some
"out-of-band" means. While such mechanisms are beyond the scope of this

document, we define data structures which can support such mechanisms.

Adams, Farrell [Page 25]

INTERNET-DRAFT June 1997

There are generally two methods available; either the CA directly
publishes its self-signed certificate, or this information is available
via the Directory (or equivalent) and the CA publishes a hash of this
value to allow verification of its integrity before use.

 OOBCert ::= Certificate

The fields within this certificate are restricted as follows:

- The certificate must be self-signed, i.e. the signature must be
 verifiable using the subjectPublicKey field.
- The subject and issuer fields should be identical.
- If the subject field is NULL then both subjectAltNames and
 issuerAltNames extensions must be present and have exactly the same
 value.
- The values of all other extensions must be suitable for a self-
 certificate (e.g. key identifiers for subject and issuer must be the
 same).

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over the self-signed
 -- certificate with the identifier certID.
 }

The intention of the hash value here is that anyone who has securely
gotten the hash value (via the out-of-band means) can verify a self-
signed certificate for that CA.

3.2.6 Archival Options

Requesters may indicate that they wish the PKI to archive a private key
value using the following structure:

 PKIArchiveOptions ::= CHOICE {
 encryptedPrivKey [0] EncryptedValue,
 -- the actual value of the private key
 keyGenParameters [1] KeyGenParameters,
 -- parameters which allow the private key to be re-generated
 archiveRemGenPrivKey [2] BOOLEAN
 -- set to TRUE if sender wishes receiver to archive the private
 -- key of a key pair which the receiver generates in response to
 -- this request; set to FALSE if no archival is desired.
 }

Adams, Farrell [Page 26]

INTERNET-DRAFT June 1997

 KeyGenParameters ::= OCTET STRING
 -- an alternative to sending the key is to send the information
 -- about how to re-generate the key (e.g. for many RSA
 -- implementations one could send the first random numbers tested
 -- for primality).
 -- The actual syntax for this parameter may be defined in a
 -- subsequent version of this document or in another standard.

3.2.7 Publication Information
Requesters may indicate that they wish the PKI to publish a certificate
using the structure below.

If the dontPublish option is chosen, the requester indicates that the
PKI should not publish the certificate (this may indicate that the
requester intends to publish the certificate him/herself).

If the dontCare method is chosen, the requester indicates that the PKI
may publish the certificate using whatever means it chooses.

The pubLocation field, if supplied, indicates where the requester would
like the certificate to be found (note that the CHOICE within
GeneralName includes a URL and an IP address, for example).

 PKIPublicationInfo ::= SEQUENCE {
 action INTEGER {
 dontPublish (0),
 pleasePublish (1)
 },
 pubInfos SEQUENCE OF SinglePubInfo OPTIONAL
 -- pubInfos must not be present if action is "dontPublish"
 -- (if action is "pleasePublish" and pubInfos is omitted,
 -- "dontCare" is assumed)
 }

 SinglePubInfo ::= SEQUENCE {
 pubMethod INTEGER {
 dontCare (0),
 x500 (1),
 web (2)
 },
 pubLocation GeneralName OPTIONAL
 }

3.2.8 "Full" Request Template

The following structure groups together the fields which may be sent as
part of a certification request:

 FullCertTemplates ::= SEQUENCE OF FullCertTemplate

Adams, Farrell [Page 27]

INTERNET-DRAFT June 1997

 FullCertTemplate ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this request with corresponding response
 -- (note: must be unique over all FullCertReqs in this message)
 certTemplate CertTemplate,
 popoPrivKeyVerified BOOLEAN DEFAULT FALSE,
 popoSigningKey [0] POPOSigningKey OPTIONAL,
 archiveOptions [1] PKIArchiveOptions OPTIONAL,
 publicationInfo [2] PKIPublicationInfo OPTIONAL,
 oldCertId [3] CertId OPTIONAL
 -- id. of cert. which is being updated by this one
 }

When the certification request is made by an RA on behalf of some other
end entity, then the RA may indicate to the CA that it has already
verified proof-of-possession (of the private key corresponding to the
public key for which a certificate is being requested) by setting
popoPrivKeyVerified to TRUE. If the proof-of-possession has not yet
been verified, or if the request is not being made by an RA, then the
popoPrivKeyVerified field is omitted (defaulting to FALSE) and the
popoSigningKey field or the challenge-response protocol described below
may be used to prove possession (depending on the type of key involved).

If the certification request is for a signing key pair (i.e., a request
for a verification certificate), then the proof of possession of the
private signing key is demonstrated through use of the POPOSigningKey
structure.

 POPOSigningKey ::= SEQUENCE {
 poposkInput POPOSKInput,
 alg AlgorithmIdentifier,
 signature BIT STRING
 -- the signature (using "alg") on the DER-encoded
 -- value of poposkInput
 }

 POPOSKInput ::= CHOICE {
 popoSigningKeyInput [0] POPOSigningKeyInput,
 certificationRequestInfo CertificationRequestInfo
 -- imported from [PKCS10] (note that if this choice is used,
 -- POPOSigningKey is simply a standard PKCS #10 request; this
 -- allows a bare PKCS #10 request to be augmented with other
 -- desired information in the FullCertTemplate before being
 -- sent to the CA/RA)
 }

Adams, Farrell [Page 28]

INTERNET-DRAFT June 1997

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 -- from PKIHeader (used only if an authenticated identity
 -- has been established for the sender (e.g., a DN from a
 -- previously-issued and currently-valid certificate)
 publicKeyMAC [1] BIT STRING
 -- used if no authenticated GeneralName currently exists for
 -- the sender; publicKeyMAC contains a password-based MAC
 -- (using the protectionAlg AlgId from PKIHeader) on the
 -- DER-encoded value of publicKey
 },
 publicKey SubjectPublicKeyInfo -- from CertTemplate
 }

On the other hand, if the certification request is for an encryption key
pair (i.e., a request for an encryption certificate), then the proof of
possession of the private decryption key may be demonstrated in one of
three ways.

1) By the inclusion of the private key (encrypted) in the
FullCertTemplate (in the PKIArchivalOptions structure).

2) By having the CA return not the certificate, but an encrypted
certificate (i.e., the certificate encrypted under a randomly-generated
symmetric key, and the symmetric key encrypted under the public key for
which the certification request is being made). The end entity proves
knowledge of the private decryption key to the CA by MACing the
PKIConfirm message using a key derived from this symmetric key. [Note
that if several FullCertTemplates are included in the PKIMessage, then
the CA uses a different symmetric key for each FullCertTemplate and the
MAC uses a key derived from the concatenation of all these keys.] The
MACing procedure uses the PasswordBasedMac AlgId defined in Section 3.1.

3) By having the end entity engage in a challenge-response protocol
(using the messages POPODecKeyChallContent and POPODecKeyRespContent)
between the CertReq and CertRep messages. [This method would typically
be used in an environment in which an RA verifies POP and then makes a
certification request to the CA on behalf of the end entity. In such a
scenario, the CA trusts the RA to have done POP correctly before the RA
requests a certificate for the end entity.] The complete protocol then
looks as follows (note that req' does not necessarily encapsulate req as
a nested message):

Adams, Farrell [Page 29]

INTERNET-DRAFT June 1997

 EE RA CA
 ---- req ---->
 <--- chall ---
 ---- resp --->
 ---- req' --->
 <--- rep -----
 ---- conf --->
 <--- rep -----
 ---- conf --->

This protocol is obviously much longer than the 3-way exchange given in
choice (2) above, but allows a local Registration Authority to be
involved and has the property that the certificate itself is not
actually created until the proof of possession is complete.

3.3 Operation-Specific Data Structures

3.3.1 Initialization Request

An Initialization request message (InitReq) contains an InitReqContent
data structure which specifies the requested certificate(s). Typically,
SubjectPublicKeyInfo, KeyId, and Validity are the template fields which
may be supplied for each certificate requested (see Appendix B profiles
for further information).

 InitReqContent ::= SEQUENCE {
 protocolEncKey [0] SubjectPublicKeyInfo OPTIONAL,
 fullCertTemplates FullCertTemplates
 }

3.3.2 Initialization Response

An Initialization response message (InitRep) contains an InitRepContent
data structure which has for each certificate requested a PKIStatusInfo
field, a subject certificate, and possibly a private key (normally
encrypted with a session key, which is itself encrypted with the
protocolEncKey).

 InitRepContent ::= CertRepContent

3.3.3 Registration/Certification Request

A Registration/Certification request message (CertReq) contains a
CertReqContent data structure which specifies the requested
FullCertTemplates.

Alternatively, for the cases in which it can be used, the CertReq may
contain a PKCS10CertReqContent. This structure is fully specified by
the ASN.1 structure CertificationRequest given in [PKCS10].

Adams, Farrell [Page 30]

INTERNET-DRAFT June 1997

 CertReqContent ::= CHOICE {
 fullCertTemplates [0] FullCertTemplates,
 pkcs10CertReqContent [1] PKCS10CertReqContent
 }

The challenge-response messages for proof of possession of a private
decryption key are specified as follows (see [MvOV97, p.404], for
details). Note that this challenge-response exchange is associated with
the preceding cert. request message (and subsequent cert. response and
confirmation messages) by the nonces used in the PKIHeader and by the
protection (MACing or signing) applied to the PKIMessage.

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- must be present in the first Challenge; may be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER must be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

3.3.4 Registration/Certification Response

A registration response message (CertRep) contains a CertRepContent data
structure which has a CA public key, a status value and optionally

failure information, a subject certificate, and an encrypted private
key.

Adams, Farrell [Page 31]

INTERNET-DRAFT June 1997

 CertRepContent ::= SEQUENCE {
 caPub [1] Certificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL
 }

 CertifiedKeyPair ::= SEQUENCE {
 certificate [0] Certificate OPTIONAL,
 encryptedCert [1] EncryptedValue OPTIONAL,
 privateKey [2] EncryptedValue OPTIONAL,
 publicationInfo [3] PKIPublicationInfo OPTIONAL
 }

Only one of the failInfo (in PKIStatusInfo) and certificate (in
CertifiedKeyPair) fields can be present in each CertResponse (depending
on the status). For some status values (e.g., waiting) neither of the
optional fields will be present.

The CertifiedKeyPair structure must contain either a Certificate or an
EncryptedCert, and an optional EncryptedPrivateKey (i.e. not both a
Certificate and EncryptedCert).

Given an EncryptedCert and the relevant decryption key the certificate
may be obtained. The purpose of this is to allow a CA to return the
value of a certificate, but with the constraint that only the intended
recipient can obtain the actual certificate. The benefit of this
approach is that a CA may reply with a certificate even in the absence
of a proof that the requester is the end entity which can use the
relevant private key (note that the proof is not obtained until the
PKIConfirm message is received by the CA). Thus the CA will not have to
revoke that certificate in the event that something goes wrong with the
proof of possession.

3.3.5 Key update request content

For key update requests the following syntax is used. Typically,
SubjectPublicKeyInfo, KeyId, and Validity are the template fields which
may be supplied for each key to be updated.

 KeyUpdReqContent ::= SEQUENCE {
 protocolEncKey [0] SubjectPublicKeyInfo OPTIONAL,
 fullCertTemplates [1] FullCertTemplates OPTIONAL

 }

Adams, Farrell [Page 32]

INTERNET-DRAFT June 1997

3.3.6 Key Update response content

For key update responses the syntax used is identical to the
initialization response.

 KeyUpdRepContent ::= InitRepContent

3.3.7 Key Recovery Request content

For key recovery requests the syntax used is identical to the
initialization request InitReqContent. Typically, SubjectPublicKeyInfo
and KeyId are the template fields which may be used to supply a
signature public key for which a certificate is required (see Appendix B
profiles for further information).

 KeyRecReqContent ::= InitReqContent

3.3.8 Key recovery response content

For key recovery responses the following syntax is used. For some
status values (e.g., waiting) none of the optional fields will be
present.

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE OF Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE OF CertifiedKeyPair OPTIONAL
 }

3.3.9 Revocation Request Content

When requesting revocation of a certificate (or several certificates)
the following data structure is used. The name of the requester is
present in the PKIHeader structure.

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g. for cases in which serialNumber is not available)
 revocationReason ReasonFlags,
 -- from the DAM, so that CA knows which Dist. point to use
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions
 -- requested crlEntryExtensions

 }

Adams, Farrell [Page 33]

INTERNET-DRAFT June 1997

3.3.10 Revocation Response Content

The response to the above message. If produced, this is sent to the
requester of the revocation. (A separate revocation announcement message
may be sent to the subject of the certificate for which revocation was
requested.)

 RevRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 revCerts [0] SEQUENCE OF CertId OPTIONAL,
 -- identifies the certs for which revocation was requested
 crls [1] SEQUENCE OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
 }

3.3.11 Cross certification request content

Cross certification requests use the same syntax as for normal
certification requests with the restriction that the key pair must have
been generated by the requesting CA and the private key must not be sent
to the responding CA.

 CrossCertReqContent ::= CertReqContent

3.3.12 Cross certification response content

Cross certification responses use the same syntax as for normal
certification responses with the restriction that no encrypted private
key can be sent.

 CrossCertRepContent ::= CertRepContent

3.3.13 CA Key Update Announcement content

When a CA updates its own key pair the following data structure may be
used to announce this event.

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

3.3.14 Certificate Announcement

This data structure may be used to announce the existence of
certificates.

Note that this structure (and the CertAnn message itself) is intended to

be used for those cases (if any) where there is no pre-existing method
for publication of certificates; it is not intended to be used where,
for example, X.500 is the method for publication of certificates.

Adams, Farrell [Page 34]

INTERNET-DRAFT June 1997

 CertAnnContent ::= Certificate

3.3.15 Revocation Announcement

When a CA has revoked, or is about to revoke, a particular certificate
it may issue an announcement of this (possibly upcoming) event.

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
}

A CA may use such an announcement to warn (or notify) a subject that its
certificate is about to be (or has been) revoked. This would typically
be used where the request for revocation did not come from the subject
concerned.

The willBeRevokedAt field contains the time at which a new entry will be
added to the relevant CRLs.

3.3.16 CRL Announcement

When a CA issues a new CRL (or set of CRLs) the following data structure
may be used to announce this event.

 CRLAnnContent ::= SEQUENCE OF CertificateList

3.3.17 PKI Confirmation content

This data structure is used in three-way protocols as the final
PKIMessage. Its content is the same in all cases - actually there is no
content since the PKIHeader carries all the required information.

 PKIConfirmContent ::= NULL

3.3.18 PKI Information Request content

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- Example InfoTypeAndValue contents include, but are not limited to:
 -- { CAProtEncCert = { xx }, Certificate }
 -- { SignKeyPairTypes = { xx }, SEQUENCE OF AlgorithmIdentifier }
 -- { EncKeyPairTypes = { xx }, SEQUENCE OF AlgorithmIdentifier }

 -- { PreferredSymmAlg = { xx }, AlgorithmIdentifier }
 -- { CAKeyUpdateInfo = { xx }, CAKeyUpdAnnContent }
 -- { CurrentCRL = { xx }, CertificateList }

Adams, Farrell [Page 35]

INTERNET-DRAFT June 1997

 PKIInfoReqContent ::= SET OF InfoTypeAndValue
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue is unused.
 -- The CA is free to ignore any contained OBJ. IDs that it does not
 -- recognize.
 -- The empty set indicates that the CA may send any/all information
 -- that it wishes.

3.3.19 PKI Information Response content

 PKIInfoRepContent ::= SET OF InfoTypeAndValue
 -- The end entity is free to ignore any contained OBJ. IDs that it
 -- does not recognize.

3.3.20 Error Message content

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

4. PKI Management functions

The PKI management functions outlined in section 1 above are described
in this section.

This section is split into two, the first part dealing with functions
which are "mandatory" in the sense that all end entity and CA/RA
implementations must be able to provide functionality described via one
of the transport mechanisms defined in section 5. This part is
effectively the profile of the PKI management functionality which must
be supported.

The second part defines "additional" functions.

Note that not all PKI management functions result in the creation of a
PKI message.

4.1 Mandatory Functions

4.1.1 Root CA initialisation

A newly created root CA must produce a "self-certificate" which is a
Certificate structure with the profile defined for the "newWithNew"
certificate issued following a root CA key update.

Adams, Farrell [Page 36]

INTERNET-DRAFT June 1997

In order to make the CA s self certificate useful to end entities which
do not acquire this information via "out-of-band" means, the CA must
also produce a fingerprint for its public key. End entities which
acquire this value securely via some "out-of-band" means can then verify
the CA s self-certificate and hence the other attributes contained
therein.

The data structure used to carry the fingerprint is the OOBCertHash.

The root CA must also produce an initial revocation list.

4.1.2 Root CA key update

4.1.3 Subordinate CA initialisation

From the perspective of PKI management protocols the initialisation of a
subordinate CA is the same as the initialisation of an end entity. The
only difference is that the subordinate CA must also produce an initial
revocation list.

4.1.4 CRL production

Before issuing any certificates a newly established CA (which issues
CRLs) must produce "empty" versions of each CRL which is to be
periodically produced.

4.1.5 PKI information request

The above operations produce various data structures which are used in
PKI management protocols.

When a PKI entity wishes to acquire information about the current status
of a CA it may send that CA a PKIInfoReq PKIMessage. The response will
be a PKIInfoRep message.

The CA must respond to the request with a response providing (at least)
all of the information requested by the requester. If some of the
information cannot be provided then an error message must be returned.

The PKIInfoReq and PKIInfoRep messages are protected using a MAC based
on shared secret information (i.e., PasswordBasedMAC) or any other
authenticated means (if the end entity has an existing certificate).

4.1.6 Cross certification

The initiating CA is the CA which will become the subject of the cross-
certificate, the responding CA will become the issuer of the cross-
certificate.

The initiating CA must be "up and running" before initiating the cross-
certification operation.

As with registration/certification there are a few possibilities here.

Adams, Farrell [Page 37]

INTERNET-DRAFT June 1997

4.1.6.1 One-way request-response scheme:

The cross-certification scheme is essentially a one way operation; that
is, when successful, this operation results in the creation of one new
cross-certificate. If the requirement is that cross- certificates be
created in "both directions" then each CA in turn must initiate a cross-
certification operation (or use another scheme).

This scheme is suitable where the two CAs in question can already verify
each other s signatures (they have some common points of trust) or where
there is an out-of-band verification of the origin of the certification
request.

The followings steps occur:

1.The initiating CA gathers the information required for the cross
 certification request;
2.The initiating CA creates the cross-certification request message
 (CrossCertReq);
3.The CrossCertReq message is transported to the responding CA;
4.The responding CA processes the CrossCertReq -- this results in the
 creation of a cross-certification response (CrossCertRep) message;
5.The CrossCertRep message is transported to the initiating CA;
6.The initiating CA processes the CrossCertRep (depending on its content
 some looping may be required; that is, the initiating CA may have to
 await further responses or generate a new CrossCertReq for the
 responding CA);
7.The initiating CA creates a PKIConfirm message and transports it to
 the responding CA.

Notes:

1.The CrossCertReq must contain a "complete" certification request, that
 is, all fields (including e.g. a BasicConstraints extension) must be
 specified by the initiating CA.
2.The CrossCertRep message should contain the verification certificate
 of the responding CA - if present, the initiating CA must then verify
 this certificate (for example, via the "out-of-band" mechanism).

4.1.7 End entity initialisation

As with CAs, end entity s must be initialised. Initialisation of end
entities requires at least two steps:

 - acquisition of PKI information
 - out-of-band verification of one root-CA public key

(other possible steps include the retrieval of trust condition
information and/or out-of-band verification of other CA public keys).

Adams, Farrell [Page 38]

INTERNET-DRAFT June 1997

4.1.7.1 Acquisition of PKI information

The information required is:

- the current root-CA public key
- (if the certifying CA is not a root-CA) the certification path from
the root CA to the certifying CA together with appropriate revocation
lists
- the algorithms and algorithm parameters which the certifying CA
supports for each relevant usage

Additional information could be required (e.g. supported extensions
or CA policy information) in order to produce a certification request
which will be successful. However, for simplicity we do not mandate that
the end entity acquires this information via the PKI messages. The end
result is simply that some certification requests may fail (e.g., if the
end entity wants to generate its own encryption key but the CA doesn t
allow that).

The required information is acquired as follows (see Section 3.3.18):

 - the end entity sends a pKIInfoReq to the certifying CA requesting
the information it requires;

 - the certifying CA responds with a pKIInfoRep message which contains
the requested information.

4.1.8 Certificate Update

When a certificate is due to expire the relevant end entity may request
that the CA update the certificate - that is, that the CA issue a new
certificate which differs from the previous one only in terms of PKI
attributes (serialNumber, validity, some extensions) and is otherwise
identical.

Two options must be catered for here, where the end entity initiates
this operation, and where the CA initiates the operation and then
creates a message informing the end entity of the existence of the new
certificate.

4.2 Additional Functions

4.2.1 Cross certification

4.2.1.1 Two-way request-response scheme:

4.2.1.1.1 Overview of Exchange

This cross certification exchange allows two CAs to simultaneously

certify each other. This means that each CA will create a certificate
that contains the CA verification key of the other CA.

Adams, Farrell [Page 39]

INTERNET-DRAFT June 1997

Cross certification is initiated at one CA known as the responder. The
CA administrator for the responder identifies the CA it wants to cross
certify and the responder CA equipment generates an authorization code.
The responder CA administrator passes this authorization code by out-of-
band means to the requester CA administrator. The requester CA
administrator enters the authorization code at the requester CA in order
to initiate the on-line exchange.

The authorization code is used for authentication and integrity
purposes. This is done by generating a symmetric key based on the
authorization code and using the symmetric key for generating Message
Authentication Codes (MACs) on all messages exchanged.

Serial numbers and protocol version are used in the same manner as in
the above CA-client exchanges.

4.2.1.1.2 Detailed Description

The requester CA initiates the exchange by generating a random number
(requester random number). The requester CA then sends the responder CA
the message CrossReq. The fields in this message are protected from
modification with a MAC based on the authorization code.

Upon receipt of the CrossReq message, the responder CA checks the
protocol version, saves the requester random number, generates its own
random number (responder random number) and validates the MAC. It then
generates and archives a new requester certificate which contains the
requester CA public key and is signed with the responder CA signature
private key. The responder CA responds with the message CrossRep. The
fields in this message are protected from modification with a MAC based
on the authorization code.

Upon receipt of the CrossRep message, the requester CA checks that its
own system time is close to the responder CA system time, checks the
received random numbers and validates the MAC. It then generates and
archives a new responder certificate which contains the responder CA
public key and is signed by the requester CA signature private key. The
requester CA responds with the message PKIConfirm. The fields in this
message are protected from modification with a MAC based on the
authorization code.

Upon receipt of the PKIConfirm message, the responder CA checks the
random numbers, archives the responder certificate, and validates the
MAC. It writes both the request and responder certificates to the
Directory. It then responds with its own PKIConfirm message. The fields
in this message are protected from modification with a MAC based on the
authorization code.

Upon receipt of the PKIConfirm message, the requester CA checks the

random numbers and validates the MAC. The requester CA writes both the
requester and responder certificates to the Directory.

Adams, Farrell [Page 40]

INTERNET-DRAFT June 1997

4.2.2 End entity initialisation

As with CAs, end entities must be initialised. Initialisation of end
entities requires two steps:

 - acquisition of PKI information
 - out-of-band verification of root-CA public key

4.2.2.1 Acquisition of PKI information

See previous section.

4.2.2.2 Import of CA key fingerprint

An end entity must securely possess the public key of its root CA. One
method to achieve this is to provide the end entity with the CA s self-
certificate fingerprint via some secure "out-of-band" means. The end
entity can then securely use the CA s self-certificate.

The data structure used is the OOBcertHash

5. Transports

The transport protocols specified below allow end entities, RAs and CAs
to pass PKI messages between them. There is no requirement for specific
security mechanisms to be applied at this level if the PKI messages are
suitably protected (that is, if the optional PKIProtection parameter is
used as specified for each message).

5.1 File based protocol

A file containing a PKI message must contain only the DER encoding of
one PKI message, i.e. there must be no extraneous header or trailer
information in the file.

Such files can be used to transport PKI messages using e.g. FTP.

5.2 Socket based Management Protocol

The following simple socket based protocol is to be used for transport
of PKI messages. This protocol is suitable for cases where an end entity
(or an RA) initiates a transaction and can poll to pick up the results.

If a transaction is initiated by a PKI entity (RA or CA) then an end
entity must either supply a listener process or be supplied with a
polling reference (see below) in order to allow it to pick up the PKI
message from the PKI management component.

Adams, Farrell [Page 41]

INTERNET-DRAFT June 1997

The protocol basically assumes a listener process on an RA or CA which
can accept PKI messages on a well-defined port (port number 829).
Typically an initiator binds to this port and submits the initial PKI
message for a given transaction ID. The responder replies with a PKI
message and/or with a reference number to be used later when polling for
the actual PKI message response.

If a number of PKI response messages are to be produced for a given
request (say if some part of the request is handled more quickly than
another) then a new polling reference is also returned.

When the final PKI response message has been picked up by the initiator
then no new polling reference is supplied.

The initiator of a transaction sends a "socket PKI message" to the
recipient. The recipient responds with a similar message.

A "socket PKI message" consists of:

 length (32-bits), flag (8-bits), value (defined below)

The length field contains the number of octets of the remainder of the
message (i.e., number of octets of "value" plus one).

 Message name flag value

 msgReq 00 H DER-encoded PKI message
 -- PKI message from initiator
 pollRep 01 H polling reference (32 bits),
 time-to-check-back (32 bits)
 -- poll response where no PKI message response ready; use polling
 -- reference value (and estimated time value) for later polling
 pollReq 02 H polling reference (32 bits)
 -- request for a PKI message response to initial message
 negPollRep 03 H 00 H
 -- no further polling responses (i.e., transaction complete)
 partialMsgRep 04 H next polling reference (32 bits),
 time-to-check-back (32 bits),
 DER-encoded PKI message
 -- partial response to initial message plus new polling reference
 -- (and estimated time value) to use to get next part of response
 finalMsgRep 05 H DER-encoded PKI message
 -- final (and possibly sole) response to initial message
 errorMsgRep 06 H human readable error message
 -- produced when an error is detected (e.g., a polling reference is
 -- received which doesn t exist or is finished with)

Where a PKIConfirm message is to be transported (always from the

initiator to the responder) then a msgReq message is sent and a
negPollRep is returned.

Adams, Farrell [Page 42]

INTERNET-DRAFT June 1997

The sequence of messages which can occur is then:

a) end entity sends msgReq and receives one of pollRep, negPollRep,
partialMsgRep or finalMsgRep in response.
b) end entity sends pollReq message and receives one of negPollRep,
partialMsgRep, finalMsgRep or ErrorMsgRep in response.

The "time-to-check-back" parameter is a 32-bit integer, defined to be
the number of seconds which have elapsed since midnight, January 1,
1970, coordinated universal time. It provides an estimate of the time
that the end entity should send its next pollReq.

5.3 Management Protocol via E-mail

This subsection specifies a means for conveying ASN.1-encoded messages
for the protocol exchanges described in Section 4 via Internet mail.

A simple MIME object is specified as follows.

 Content-Type: application/x-pkix3
 Content-Transfer-Encoding: base64

 <<the ASN.1 DER-encoded PKIX-3 message, base64-encoded>>

This MIME object can be sent and received using common MIME processing
engines and provides a simple Internet mail transport for PKIX-3
messages.

5.4 Management Protocol via HTTP

This subsection specifies a means for conveying ASN.1-encoded messages
for the protocol exchanges described in Section 4 via the HyperText
Transfer Protocol.

A simple MIME object is specified as follows.

 Content-Type: application/x-pkix3

 <<the ASN.1 DER-encoded PKIX-3 message>>

This MIME object can be sent and received using common HTTP processing
engines over WWW links and provides a simple browser-server transport
for PKIX-3 messages.

Adams, Farrell [Page 43]

INTERNET-DRAFT June 1997

SECURITY CONSIDERATIONS

 This entire memo is about security mechanisms.

One cryptographic consideration is worth explicitly spelling out. In
the protocols specified above, when an end entity is required to
prove possession of a decryption key, it is effectively challenged
to decrypt something (its own certificate). This scheme (and many
others!) could be vulnerable to an attack if the possessor of the
decryption key in question could be fooled into decrypting an
arbitrary challenge and returning the cleartext to an attacker.
Although in this specification a number of other failures in
security are required in order for this attack to succeed, it is
conceivable that some future services (e.g., notary, trusted time)
could potentially be vulnerable to such attacks. For this reason we
re-iterate the general rule that implementations should be very
careful about decrypting arbitrary "ciphertext" and revealing
recovered "plaintext" since such a practice can lead to serious
security vulnerabilities.

References

 [MvOV97] A. Menezes, P. van Oorschot, S. Vanstone, "Handbook of
 Applied Cryptography", CRC Press, 1997.

 [PKCS7] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS10] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS11] RSA Laboratories, "The Public-Key Cryptography Standards -
 PKCS #11: Cryptographic token interface standard", RSA
 Data Security Inc., Redwood City, California, April 28,
 1995.

 [PKIX-2] S. Boeyen, R. Housley, T. Howes, M. Myers, P. Richard,
 "Internet Public Key Infrastructure Part 2: Operational
 Protocols", Internet Draft draft-ietf-pkix-ipki2opp-0x.txt
 (work in progress).

 [RFC1847] J. Galvin, S. Murphy, S. Crocker, N. Freed, "Security
 Multiparts for MIME: Multipart/Signed and Multipart/

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki2opp-0x.txt

 Encrypted", Internet Request for Comments 1847, October
 1995.

Adams, Farrell [Page 44]

INTERNET-DRAFT June 1997

Authors' Addresses

 Carlisle Adams
 Entrust Technologies
 750 Heron Road
 Ottawa, Ontario
 Canada K1V 1A7
 cadams@entrust.com

 Stephen Farrell
 Software and Systems Engineering Ltd.
 Fitzwilliam Court
 Leeson Close
 Dublin 2
 IRELAND
 stephen.farrell@sse.ie

Adams, Farrell [Page 45]

INTERNET-DRAFT June 1997

APPENDIX A: Reasons for the presence of RAs

The reasons which justify the presence of an RA can be split into those
which are due to technical factors and those which are organizational in
nature. Technical reasons include the following.

 -If hardware tokens are in use, then not all end entities will have
 the equipment needed to initialize these; the RA equipment can include
 the necessary functionality (this may also be a matter of policy).

 -Some end entities may not have the capability to publish
 certificates; again, the RA may be suitably placed for this.

 -The RA will be able to issue signed revocation requests on behalf of
 end entities associated with it, whereas the end entity may not be able
 to do this (if the key pair is completely lost).

 Some of the organisational reasons which argue for the presence of an
RA are the following.

 -It may be more cost effective to concentrate functionality in the RA
 equipment than to supply functionality to all end entities (especially
 if special token initialization equipment is to be used).

 -Establishing RAs within an organization can reduce the number of CAs
 required, which is sometimes desirable.

 -RAs may be better placed to identify people with their "electronic"
 names, especially if the CA is physically remote from the end entity.

 -For many applications there will already be in place some
 administrative structure so that candidates for the role of RA are easy
 to find (which may not be true of the CA).

Adams, Farrell [Page 46]

INTERNET-DRAFT June 1997

Appendix B. PKI management message profiles.

This appendix contains detailed profiles for those PKIMessages which
must be supported by conforming implementations.

Profiles for the PKIMessages used in the following PKI management
operations are provided:

- root CA key update
- information request/reponse
- cross-certification (1-way)
- initial registration and certification
 - centralised scheme
 - basic authenticated scheme

<<Later revisions will extend the above to include profiles for the
operations listed below>>

- certificate update
 - end entity initiated
 - PKI initiated
- key update
- revocation request
- certificate publication
- CRL publication

B1. General Rules for interpretation of these profiles.

1. Where OPTIONAL or DEFAULT fields are not mentioned in individual
 profiles, they should be absent from the relevant message.
 Mandatory fields are not mentioned if they have an obvious value
 (e.g., pvno).
2. Where structures occur in more than one message, they are
 separately profiled as appropriate.
3. The algorithmIdentifiers from PKIMessage structures are profiled
 separately.
4. A "special" X.500 DN is called the "NULL-DN"; this means a DN
 containing a zero-length SEQUENCE OF rdns (it s DER encoding is
 then 3000 H).
5. Where a GeneralName is required for a field but no suitable
 value is available (e.g. an end entity produces a request before
 knowing its name) then the GeneralName is to be an X.500 NULL-DN
 (i.e., the Name field of the CHOICE is to contain a NULL-DN).
 This special value can be called a "NULL-GeneralName".
6. Where a profile omits to specify the value for a GeneralName
 then the NULL-GeneralName value is to be present in the relevant
 PKIMessage field. This occurs with the sender field of the
 PKIHeader for some messages.
7. Where any ambiguity arises due to naming of fields, the profile

 names these using a "dot" notation (e.g., "certTemplate.subject"
 means the subject field within a field called certTemplate).

Adams, Farrell [Page 47]

INTERNET-DRAFT June 1997

8. Where a "SEQUENCE OF types" is part of a message, a zero-based
 array notation is used to describe fields within the SEQUENCE OF
 (e.g., FullCertTemplates[0].certTemplate.subject refers to a
 subfield of the first FullCertTemplate contained in a request
 message).
9. All PKI message exchanges (other than the centralised initial
 registration/certification scheme) require a PKIConfirm message
 to be sent by the initiating entity. This message is not
 included in many of the profiles given below since its body is
 NULL and its header contents are clear from the context. Any
 authenticated means can be used for the protectionAlg (e.g.,
 password-based MAC, if shared secret information is known, or
 signature).

B2. Algorithm Use Profile

The following table contains definitions of algorithm uses within PKI
management protocols.

The columns in the table are:

Name: an identifier used for message profiles
Use: description of where and for what the algorithm is used
Mandatory: an AlgorithmIdentifier which must be supported by
 conforming implementations
Others: alternatives to the mandatory AlgorithmIdentifier

 Name Use Mandatory Others

 CA_FP_ALG Calculation of root CA SHA-1 + ASCII MD5,...
 public key fingerprint mapping
 MSG_SIG_ALG Protection of PKI RSA/SHA-1 RSA/MD5...
 messages using signature
 MSG_MAC_ALG protection of PKI HMAC X9.9...
 messages using MACing
 SYM_PENC_ALG symmetric encryption of 3-DES (3-key- RC5,CAST...
 an end entity s private EDE, CBC mode)
 key where symmetric
 key is distributed
 out-of-band
 PROT_ENC_ALG asymmetric algorithm RSA D-H
 used for encryption of
 (symmetric keys for
 encryption of) private
 keys transported in
 PKIMessages
 PROT_SYM_ALG symmetric encryption 3-DES (3-key- RC5,CAST...
 algorithm used for EDE, CBC mode)

 encryption of private
 key bits (a key of this
 type is encrypted using
 PROT_ENC_ALG)

Adams, Farrell [Page 48]

INTERNET-DRAFT June 1997

B3. "Self-signed" certificates

Profile of how a Certificate structure may be "self-signed". These
strucures are used for distribution of "root" CA public keys. This can
occur in one of three ways (see section 2.4 above for a description of
the use of these structures):

 Type Function

 newWithNew a true "self-signed" certificate; the contained public
 key must be usable to verify the signature (though this
 provides only integrity and no authentication whatsoever)
 oldWithNew previous root CA public key signed with new private key
 newWithOld new root CA public key signed with previous private key

<<profile of certificate in such cases including relevant extensions,
e.g. when present subjectAltName must be identical to issuerAltName,
keyIdentifiers if present must contain appropriate values, etc.>>

B4. Proof of Possession Profile

"popo" fields for use when proving possession of a private signing key
which corresponds to a public verification key for which a certificate
has been requested.

 Field Value Comment

 alg MSG_SIG_ALG only signature protection is
 allowed for this proof
 signature present bits calculated using MSG_SIG_ALG

<<Proof of possession of a private decryption key which corresponds to a
public encryption key for which a certificate has been requested does
not use this profile; instead the method given in protectionAlg for
PKIConfirm in Section B.8.2 is used.>>

Not every CA/RA will require Proof-of-Possession (of signing key or of
decryption key) in the certification request protocol. Although this
specification STRONGLY RECOMMENDS that POP be verified by the CA/RA
(because created certificates become less meaningful in the PKI
otherwise; see Section 2.3), this may ultimately be a policy issue which
is made explicit for any given CA in its publicized Policy OID and
Certification Practice Statement. All end entities must be prepared to

provide POP (i.e., these components of the PKIX-3 protocol must be
supported).

Adams, Farrell [Page 49]

INTERNET-DRAFT June 1997

CAs/RAs may therefore conceptually be divided into two classes (those
which require POP as a condition of certificate creation and those which
do not). End entities may choose to make verification decisions (as one
step in certificate chain processing) at least partly by considering
which classes of CAs (as indicated, for example, by their policy OIDs or
Certification Practice Statements) have created the certificates
included in the chain.

B5. Root CA Key upate

A root CA updates its key pair. It then produces a CA key update
announcement message which can be made available (via one of the
transport mechanisms) to the relevant end entities.

ckuann message:

 Field Value Comment

 sender CA name responding CA name
 body ckuann(CAKeyUpdAnnContent)
 oldWithNew present see section B.0 above
 newWithOld present see section B.0 above
 newWithNew present see section B.0 above
 extraCerts optionally present can be used to "publish"
 certificates (e.g.,
 certificates signed using
 the new private key)

B6. PKI Information request/response

End entity sends information request to PKI requesting details which
will be required for later PKI managment operations. RA/CA responds with
information response. If an RA generates the response then it will
simply forward the equivalent message which it previously received from
the CA, with the possible addition of the certificates to the extracerts
fields of the PKIMessage.

Message Flows:

Step# End entity PKI

1 format infor
2 -> infor ->
3 handle infor
4 produce infop
5 <- infop <-
6 handle infop

Adams, Farrell [Page 50]

INTERNET-DRAFT June 1997

infor:

Field Value

recipient CA name
 -- the name of the CA as contained in issuerAltName extensions or
 -- issuer fields within certificates
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
SenderKID present if required
 -- must be present if required for verification of message protection
freeText any valid value
body infor (PKIInfoReqContent)
PKIInfoReqContent empty SET
 -- all relevant information requested
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG

infop:

Field Value

sender CA name
 -- name of the CA which produced the message
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
senderKID present if required
 -- must be present if required for verification of message protection
body infop (PKIInfoRepContent)
CAProtEncCert present (object identifier one
 of PROT_ENC_ALG), with relevant
 value
 -- to be used if end entity needs to encrypt information for the CA
 -- (e.g., private key for recovery purposes)
SignKeyPairTypes present, with relevant value
 -- the set of signature algorithm identifiers which this CA will
 -- certify for subject public keys
EncKeypairTypes present, with relevant value
 -- the set of encryption/key agreement algorithm identifiers which
 -- this CA will certify for subject public keys
PreferredSymmAlg present (object identifier one
 of PROT_SYM_ALG) , with relevant
 value
 -- the symmetric algorithm which this CA expects to be used in later
 -- PKI messages (for encryption)
CAKeyUpdateInfo optionally present, with

 relevant value
 -- the CA may provide information about a relevant root CA key pair
 -- using this field (note that this does not imply that the responding
 -- CA is the root CA in question)

Adams, Farrell [Page 51]

INTERNET-DRAFT June 1997

CurrentCRL present, with relevant value
 -- the CA may provide a copy of a complete CRL (i.e. fullest possible
 -- one)
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG
extraCerts optionally present
 -- can be used to send some certificates to the end entity. An RA may
 -- add its certificate here.

B7. Cross certification (1-way)

Creation of a single cross-certificate (i.e., not two at once). The
requesting CA is responsible for publication of the cross-certificate
created by the responding CA.

Preconditions:

1. Responding CA can verify the origin of the request (possibly
requiring out-of-band means) before processing the request.
2. Requesting CA can authenticate the authenticity of the origin of the
response (possibly requiring out-of-band means) before processing the
response

Message Flows:

Step# Requesting CA Responding CA
1 format ccr
2 -> ccr ->
3 handle ccr
4 produce ccp
5 <- ccp <-
6 handle ccp

ccr:
Field Value

sender Requesting CA name
 -- the name of the CA who produced the message
recipient Responding CA name
 -- the name of the CA who is being asked to produce a certificate
messageTime time of production of message
 -- current time at requesting CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this request
senderKID present if required
 -- must be present if required for verification of message protection

transactionID present
 -- implementation-specific value, meaningful to requesting CA.
 -- [If already in use at responding CA then a rejection message
 -- to be produced by responding CA]

Adams, Farrell [Page 52]

INTERNET-DRAFT June 1997

senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ccr (CrossCertReqContent)
 only one FullCertTemplate
 allowed
 -- if multiple cross certificates are required they must be packaged
 -- in separate PKIMessages
certTemplate present
 -- details below
version v1 or v3
 -- <<v3 STRONGLY RECOMMENDED>>
signingAlg present
 -- the requesting CA must know in advance with which algorithm it
 -- wishes the certificate to be signed

subject present
 -- may be NULL-DN only if subjectAltNames extension value proposed
validity present
 -- must be completely specified (i.e., both fields present)
issuer present
 -- may be NULL-DN only if issuerAltNames extension value proposed
publicKey present
 -- the key to be certified which must be for a signing algorithm
extensions optionally present
 -- a requesting CA must propose values for all extensions which it
 -- requires to be in the cross-certificate
popoSigningKey present
 -- see "Proof of possession profile" (section B.4)
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- can contain certificates usable to verify the protection on
 -- this message

ccp:
Field Value

sender Responding CA name
 -- the name of the CA who produced the message
recipient Requesting CA name
 -- the name of the CA who asked for production of a certificate
messageTime time of production of message
 -- current time at responding CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this message
senderKID present if required

 -- must be present if required for verification of message
 -- protection
recipKID present if required

Adams, Farrell [Page 53]

INTERNET-DRAFT June 1997

transactionID present
 -- value from corresponding ccr message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- senderNonce from corresponding ccr message
freeText any valid value
body ccp (CrossCertRepContent)
 only one CertResponse allowed
 -- if multiple cross certificates are required they must be packaged
 -- in separate PKIMessages
response present
status present
PKIStatusInfo.status present
 -- if PKIStatusInfo.status is one of:
 -- granted, or
 -- grantedWithMods,
 -- then certifiedKeyPair to be present and failInfo to be absent
failInfo present depending on
 PKIStatusInfo.status
 -- if PKIStatusInfo.status is:
 -- rejection
 -- then certifiedKeyPair to be absent and failInfo to be present
 -- and contain appropriate bit settings

certifiedKeyPair present depending on
 PKIStatusInfo.status
certificate present depending on
 certifiedKeyPair
 -- content of actual certificate must be examined by requesting CA
 -- before publication
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- can contain certificates usable to verify the protection on
 -- this message

B8. Initial registration / certification

B8.1 Centralised scheme

In this scheme the CA effectively issues a personal security environment
(PSE) directly to an end entity using a PKIMessage to transport the
resulting certificate, private key, etc.

This profile only allows one certificate and private key to be contained

within the PKIMessage.

Adams, Farrell [Page 54]

INTERNET-DRAFT June 1997

Preconditions:

1. The end entity possesses the relevant root CA public key before
processing the PKIMessage.
2. The end entity is supplied with a symmetric key for decryption of its
private key before processing the PKIMessage.

cp:
Field Value

sender CA name
 -- the name of the CA who produced the message
recipient end entity name
 -- the name of the end entity who is the subject of the certificate
 -- (possibly NULL-DN)
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this message
senderKID present if required
 -- must be present if required for verification of message
 -- protection
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body cp (CertRepContent)
 only one CertResponse allowed
 -- if multiple certificates are required they must be packaged in
 -- separate PKIMessages
response present
status present
PKIStatusInfo.status "granted"
 -- no other values allowed (CA must only produce a message if a
 -- certificate has been produced)
certifiedKeyPair present
certifcate present
 -- according to pkix-1 profile

privateKey present
 -- see below
encValue present
 -- bits of private key encrypted (cleartext bits must be according
 -- to PKCS #1 spec.)
symmAlg present, SYM_PENC_ALG
 -- algo. to use to decipher encValue using symmetric key distributed
 -- out-of-band
protection present
 -- bits calculated using MSG_SIG_ALG

extraCerts optionally present
 -- can contain certificates usable to verify the protection on
 -- this message

Adams, Farrell [Page 55]

INTERNET-DRAFT June 1997

B8.2 Basic authenticated scheme

The end entity requests a certificate from a CA. When the CA responds
with a message containing a certificate the end entity replies with a
confirmation. All messages are authenticated.

This scheme allows the end entity to request certification of a locally-
generated public key (typically a signature key). The end entity may
also choose to request the centralised generation and certification of
another key pair (typically an encryption key pair).

Certification may only be requested for one locally generated public key
(for more, use separate PKIMessages).

The end entity must support proof-of-possession of the private key
associated with the locally-generated public key.

Preconditions:

1. The end entity can authenticate the CA s signature based on out-of-
band means
2. The end entity and the CA share a symmetric MACing key

Message flow:

Step# End entity PKI
1 format ir
2 -> ir ->
3 handle ir
4 produce ip
5 <- ip <-
6 handle ip
7 format confirm
8 -> conf ->
9 handle conf

For this profile, we mandate that the end entity must include all (i.e.
one or two) fullCertTemplates in a single PKIMessage and that the PKI
(CA) must produce a single response PKIMessage which contains the
complete response (i.e., including the optional second key pair, if it
was requested). For simplicity, we also mandate that this message be the
final one (i.e. no use of "waiting" status value).

ir:
Field Value

recipient CA name
 -- the name of the CA who is being asked to produce a certificate

protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this request, based on
 -- initial authentication key

Adams, Farrell [Page 56]

INTERNET-DRAFT June 1997

senderKID referenceNum
 -- the reference number which the CA has previously issued to
 -- the end entity (together with the MACing key)
transactionID present
 -- implementation-specific value, meaningful to end entity.
 -- [If already in use at the CA then a rejection message to be
 -- produced by the CA]
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ir (InitReqContent)
 only one or two FullCertTemplates
 are allowed
 -- if more certificates are required requests must be packaged in
 -- separate PKIMessages
protocolEncKey optionally present.
 [If present, object identifier
 must be PROT_ENC_ALG]
 -- if supplied, this short-term asymmetric encryption key (generated
 -- by the end entity) will be used by the CA to encrypt (symmetric
 -- keys used to encrypt) a private key generated by the CA on behalf
 -- of the end entity
fullCertTemplates one or two present
 -- see below for details, note: fct[0] means the first (which must
 -- be present), fct[1] means the second (which is optional, and used
 -- to ask for a centrally-generated key)
fct[0]. fixed value of zero
 certReqId
 -- this is the index of the template within the message
fct[0]. present
 certTemplate
 -- must include subject public key value, otherwise unconstrained
fct[0]. optionally present if public key
 popoSigningKey from fct[0].certTemplate is a
 signing key
 -- proof of possession may be required in this exchange (see section
 -- B.4 for details)
fct[0]. optionally present
 archiveOptions
 -- the end entity may request that the locally-generated private key
 -- be archived
fct[0]. optionally present
 publicationInfo
 -- the end entity may ask for publication of resulting cert.
fct[1]. fixed value of one
 certReqId
 -- the index of the template within the message

fct[1]. present if protocolEncKey is
 certTemplate present
 -- must not include actual public key bits, otherwise unconstrained
 -- (e.g., the names need not be the same as in fct[0])

Adams, Farrell [Page 57]

INTERNET-DRAFT June 1997

fct[1]. optionally present
 archiveOptions
fct[1].
 publicationInfo optionally present
protection present
 -- bits calculated using MSG_MAC_ALG

ip:
Field Value

sender CA name
 -- the name of the CA who produced the message
messageTime present
 -- time at which CA produced message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this response
recipKID referenceNum
 -- the reference number which the CA has previously issued to the
 -- end entity (together with the MACing key)
transactionID present
 -- value from corresponding ir message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ir message
freeText any valid value
body ir (CertRepContent)
 contains exactly one response
 for each request
 -- The PKI (CA) responds to either one or two requests as appropriate.
 -- crc[0] denotes the first (always present); crc[1] denotes the
 -- second (only present if the ir message contained two requests).
crc[0]. fixed value of zero
 certReqId
 -- must contain the response to the first request in the corresponding
 -- ir message
crc[0].status. present, positive values allowed:
 status "granted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[0].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[0]. present if and only if
 certifiedKeyPair crc[0].status.status is
 "granted" or "grantedWithMods"
certificate present unless end entity s public
 key is an encryption key and POP

 is required by CA/RA
encryptedCert present if and only if end entity s
 public key is an encryption key
 and POP is required by CA/RA

Adams, Farrell [Page 58]

INTERNET-DRAFT June 1997

publicationInfo optionally present
 -- indicates where certificate has been published (present at
 -- discretion of CA)
crc[1]. fixed value of one
 certReqId
 -- must contain the response to the second request in the
 -- corresponding ir message

crc[1].status. present, positive values allowed:
 status "granted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[1].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[1]. present if and only if
 certifiedKeyPair crc[0].status.status is "granted"
 or "grantedWithMods"
certificate present
privateKey present
publicationInfo optionally present
 -- indicates where certificate has been published (present at
 -- discretion of CA)
protection present
 -- bits calculated using MSG_MAC_ALG
extraCerts optionally present
 -- the CA may provide additional certificates to the end entity

conf:
Field Value

recipient CA name
 -- the name of the CA who was asked to produce a certificate
transactionID present
 -- value from corresponding ir and ip messages
senderNonce present
 -- value from recipNonce in corresponding ir message
recipNonce present
 -- value from senderNonce in corresponding ip message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this request. The MAC is
 -- based on the initial authentication key if only a signing key
 -- pair has been sent in ir for certification or if POP is not
 -- required by CA/RA. Otherwise, the MAC is based on a key derived
 -- from the symmetric key used to decrypt the returned encryptedCert.
senderKID referenceNum
 -- the reference number which the CA has previously issued to the

 -- end entity (together with the MACing key)
body conf (PKIConfirmContent)
 -- this is an ASN.1 NULL
protection present
 -- bits calculated using MSG_MAC_ALG

Adams, Farrell [Page 59]

INTERNET-DRAFT June 1997

Appendix C: "Compilable" ASN.1 Module

PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE OF Certificate OPTIONAL
 }

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { ietf-version1 (0) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable"; i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e. this will be the same in
 -- corresponding request, response and confirmation messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL
 -- this may be used to indicate context-specific
 -- instructions (this field is intended for human
 -- consumption)
 }

 PKIFreeText ::= CHOICE {
 iA5String [0] IA5String,
 bMPString [1] BMPString
 } -- note that the text included here would ideally be in the
 -- preferred language of the recipient

Adams, Farrell [Page 60]

INTERNET-DRAFT June 1997

 PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] InitReqContent,
 ip [1] InitRepContent,
 cr [2] CertReqContent,
 cp [3] CertRepContent,
 p10cr [4] PKCS10CertReqContent, -- imported from [PKCS10]
 popdecc [5] POPODecKeyChallContent,
 popdecr [6] POPODecKeyRespContent,
 kur [7] KeyUpdReqContent,
 kup [8] KeyUpdRepContent,
 krr [9] KeyRecReqContent,
 krp [10] KeyRecRepContent,
 rr [11] RevReqContent,
 rp [12] RevRepContent,
 ccr [13] CrossCertReqContent,
 ccp [14] CrossCertRepContent,
 ckuann [15] CAKeyUpdAnnContent,
 cann [16] CertAnnContent,
 rann [17] RevAnnContent,
 crlann [18] CRLAnnContent,
 conf [19] PKIConfirmContent,
 nested [20] NestedMessageContent,
 infor [21] PKIInfoReqContent,
 infop [22] PKIInfoRepContent,
 error [23] ErrorMsgContent
 }

 PKIProtection ::= BIT STRING

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

 PasswordBasedMac ::= OBJECT IDENTIFIER

 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])
 }

 DHBasedMac ::= OBJECT IDENTIFIER

 DHBMParameter ::= SEQUENCE {

 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])
 }

Adams, Farrell [Page 61]

INTERNET-DRAFT June 1997

 NestedMessageContent ::= ANY
 -- This will be a PKIMessage

 CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 -- used to ask for a particular syntax version
 serial [1] INTEGER OPTIONAL,
 -- used to ask for a particular serial number
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 -- used to ask the CA to use this alg. for signing the cert
 subject [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 issuer [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL,
 subjectUID [8] UniqueIdentifier OPTIONAL,
 extensions [9] Extensions OPTIONAL
 -- the extensions which the requester would like in the cert.
 }

 OptionalValidity ::= SEQUENCE {
 notBefore [0] UTCTime OPTIONAL,
 notAfter [1] UTCTime OPTIONAL
 }

 EncryptedValue ::= SEQUENCE {
 encValue BIT STRING,
 -- the encrypted value itself
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL
 -- algorithm used to encrypt the symmetric key
 }

Adams, Farrell [Page 62]

INTERNET-DRAFT June 1997

 PKIStatus ::= INTEGER {
 granted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- FullCertTemplate
 }

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)
 missingTimeStamp (8)
 -- when the timestamp is missing but should be there (by policy)
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,

 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

Adams, Farrell [Page 63]

INTERNET-DRAFT June 1997

 CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER
 }

 OOBCert ::= Certificate

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over DER encoding of the
 -- subjectPublicKey field of the corresponding cert.
 }

 PKIArchiveOptions ::= CHOICE {
 encryptedPrivKey [0] EncryptedValue,
 -- the actual value of the private key
 keyGenParameters [1] KeyGenParameters,
 -- parameters which allow the private key to be re-generated
 archiveRemGenPrivKey [2] BOOLEAN
 -- set to TRUE if sender wishes receiver to archive the private
 -- key of a key pair which the receiver generates in response to
 -- this request; set to FALSE if no archival is desired.
 }

 KeyGenParameters ::= OCTET STRING
 -- an alternative to sending the key is to send the information
 -- about how to re-generate the key (e.g. for many RSA
 -- implementations one could send the first random number tested
 -- for primality).
 -- The actual syntax for this parameter may be defined in a
 -- subsequent version of this document or in another standard.

 PKIPublicationInfo ::= SEQUENCE {
 action INTEGER {
 dontPublish (0),
 pleasePublish (1)
 },
 pubInfos SEQUENCE OF SinglePubInfo OPTIONAL
 -- pubInfos must not be present if action is "dontPublish"
 -- (if action is "pleasePublish" and pubInfos is omitted,
 -- "dontCare" is assumed)
 }

 SinglePubInfo ::= SEQUENCE {
 pubMethod INTEGER {
 dontCare (0),

 x500 (1),
 web (2)
 },
 pubLocation GeneralName OPTIONAL
 }

Adams, Farrell [Page 64]

INTERNET-DRAFT June 1997

 FullCertTemplates ::= SEQUENCE OF FullCertTemplate

 FullCertTemplate ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this request with corresponding response
 -- (note: must be unique over all FullCertReqs in this message)
 certTemplate CertTemplate,
 popoSigningKey [0] POPOSigningKey OPTIONAL,
 archiveOptions [1] PKIArchiveOptions OPTIONAL,
 publicationInfo [2] PKIPublicationInfo OPTIONAL,
 oldCertId [3] CertId OPTIONAL
 -- id. of cert. which is being updated by this one
 }

 POPOSigningKey ::= SEQUENCE {
 poposkInput POPOSKInput,
 alg AlgorithmIdentifier,
 signature BIT STRING
 -- the signature (using "alg") on the DER-encoded
 -- value of poposkInput
 }

 POPOSKInput ::= CHOICE {
 popoSigningKeyInput [0] POPOSigningKeyInput,
 certificationRequestInfo CertificationRequestInfo
 -- imported from [PKCS10] (note that if this choice is used,
 -- POPOSigningKey is simply a standard PKCS #10 request; this
 -- allows a bare PKCS #10 request to be augmented with other
 -- desired information in the FullCertTemplate before being
 -- sent to the CA/RA)
 }

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 -- from PKIHeader (used only if an authenticated identity
 -- has been established for the sender (e.g., a DN from a
 -- previously-issued and currently-valid certificate)
 publicKeyMAC [1] BIT STRING
 -- used if no authenticated GeneralName currently exists for
 -- the sender; publicKeyMAC contains a password-based MAC
 -- (using the protectionAlg AlgId from PKIHeader) on the
 -- DER-encoded value of publicKey
 },
 publicKey SubjectPublicKeyInfo -- from CertTemplate
 }

 InitReqContent ::= SEQUENCE {

 protocolEncKey [0] SubjectPublicKeyInfo OPTIONAL,
 fullCertTemplates FullCertTemplates
 }

 InitRepContent ::= CertRepContent

Adams, Farrell [Page 65]

INTERNET-DRAFT June 1997

 CertReqContent ::= CHOICE {
 fullCertTemplates [0] FullCertTemplates,
 pkcs10CertReqContent [1] PKCS10CertReqContent
 }

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- must be present in the first Challenge; may be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER must be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in FullCertTemplates). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

 CertRepContent ::= SEQUENCE {
 caPub [1] Certificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL
 }

 CertifiedKeyPair ::= SEQUENCE {

 certificate [0] Certificate OPTIONAL,
 encryptedCert [1] EncryptedValue OPTIONAL,
 privateKey [2] EncryptedValue OPTIONAL,
 publicationInfo [3] PKIPublicationInfo OPTIONAL
 }

Adams, Farrell [Page 66]

INTERNET-DRAFT June 1997

 KeyUpdReqContent ::= SEQUENCE {
 protocolEncKey [0] SubjectPublicKeyInfo OPTIONAL,
 fullCertTemplates [1] FullCertTemplates OPTIONAL
 }

 KeyUpdRepContent ::= InitRepContent

 KeyRecReqContent ::= InitReqContent

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE OF Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE OF CertifiedKeyPair OPTIONAL
 }

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g. for cases in which serialNumber is not available)
 revocationReason ReasonFlags,
 -- from the DAM, so that CA knows which Dist. point to use
 badSinceDate GeneralizedTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions
 -- requested crlEntryExtensions
 }

 RevRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 revCerts [0] SEQUENCE OF CertId OPTIONAL,
 -- identifies the certs for which revocation was requested
 crls [1] SEQUENCE OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
 }

 CrossCertReqContent ::= CertReqContent

 CrossCertRepContent ::= CertRepContent

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

 CertAnnContent ::= Certificate

Adams, Farrell [Page 67]

INTERNET-DRAFT June 1997

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
}

 CRLAnnContent ::= SEQUENCE OF CertificateList

 PKIConfirmContent ::= NULL

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- Example InfoTypeAndValue contents include, but are not limited to:
 -- { CAProtEncCert = { xx }, Certificate }
 -- { SignKeyPairTypes = { xx }, SEQUENCE OF AlgorithmIdentifier }
 -- { EncKeyPairTypes = { xx }, SEQUENCE OF AlgorithmIdentifier }
 -- { PreferredSymmAlg = { xx }, AlgorithmIdentifier }
 -- { CAKeyUpdateInfo = { xx }, CAKeyUpdAnnContent }
 -- { CurrentCRL = { xx }, CertificateList }

 PKIInfoReqContent ::= SET OF InfoTypeAndValue
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue is unused.
 -- The CA is free to ignore any contained OBJ. IDs that it does not
 -- recognize.
 -- The empty set indicates that the CA may send any/all information
 -- that it wishes.

 PKIInfoRepContent ::= SET OF InfoTypeAndValue
 -- The end entity is free to ignore any contained OBJ. IDs that it
 -- does not recognize.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

Adams, Farrell [Page 68]

INTERNET-DRAFT June 1997

