Network Working Group J. Schaad
Internet-Draft Soaring Hawk Consulting
Updates: 5272, 5273, 5274 (if approved) September 13, 2011
Intended status: Standards Track
Expires: March 16, 2012
Certificate Management over CMS (CMC) Updates
draft-ietf-pkix-rfc5272-bis-08

Abstract

This document contains a set of updates to the base syntax for CMC, a
Certificate Management protocol using the Cryptographic Message Syntax
(CMS). This document updates RFC 5272, RFC 5273 and RFC 5274.

The new items in this document are: New controls for future work in
doing server side key generation. Definition of a Subject Information
Access value to identify CMC servers. The registration of a port number
for TCP/IP for the CMC service to run on.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet- Drafts is
at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

This Internet-Draft will expire on March 16, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

*1. Introduction

*1

*2.

*2.

*2.

*2.

*2.

*2.

*2

*2.

*2.

*2.

*2.

*2.

*2

*3

.1. Requirements Terminology

Updates to RFC 5272 - Certificate Management over CMS (CMC)

1. New Section 1.3. Changes Since RFC 5272

2. Update Section 6. Controls

3. Replace Section 6.3. Linking Identity and POP Information

4. Replace Section 6.3.3. Renewal and Rekey Messages

5. New Section 6.20 RA Identity Proof Witness control

.6. New Section 6.21 Response Body Control

7. New Section 7. Other Attributes

8. New Section 7.1 Change Subject Name Attribute

9. New Section 9. Certificate Reguirements

10. New Section 9.1. Extended Key Usage

11. New Section 9.2. Subject Information Access

.12. Updates Section 8. Security Considerations

. Updates to RFC 5273 - Certificate Management over CMS (CMC):

Transport Protocols

*3

*3

*4

.1. Update to Section 5 TCP-Based Protocol

.2. New Section 6. IANA Considerations

. Updates to RFC 5274 - Certificate Management Message over CMS

(CMC): Compliance Requirements

*4

*5,

*6.

*7.

*7

*7

.1. Update to Section 4.2 Controls

IANA Considerations

Security Considerations

References

.1. Normative References

.2. Informational References

*Appendix A. ASN.1 Modules

*Appendix A.1. 1988 ASN.1 Module

*Appendix A.2. 2008 ASN.1 Module

*Author's Address

1. Introduction

While dealing with the Suite B profile of CMC [I-D.turner-suiteb-cmc],
a number of deficiencies were noted in the current base CMC
specification. This document has a set of updates to [RFC5272],
[REC5273] and [RFC5274] to deal with those issues.

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2. Updates to RFC 5272 - Certificate Management over CMS (CMC)
2.1. New Section 1.3. Changes Since RFC 5272

This section is inserted before the current section 1.3.
The following changes were made in this document.

*Addition of new controls:

RA Identity Witness allows for an RA to perform identity
checking using the identity and shared-secret, and then tell
any following servers that the identity check was successfully
performed.

Response Body allows for an RA to identify a nested response for
an EE to process.

*Creation of a new attribute, Change Subject Name, that allows a
client to request a change in the subject name and subject
alternate name fields in a certificate.

*Add Extended Key Usages for CMC - Defined a new Subject
Information Access to hold locations to contact the CMC server.

*Clarify that the use of a pre-existing certificate is not limited
to just renewal and rekey messages and is required for support.
This formalizes a requirement for the ability to do renewal and
rekey which previsously was implicity.

2.2. Update Section 6. Controls

Table 1 is to be updated by the addition of the following rows:

Control Identifier 0ID Syntax Section
id-cmc-raldentitywWitness id-cmc 35 BodyPartPath 6.20

id-cmc-responseBody id-cmc 37 BodyPartPath 6.21
Table 1: CMC Control Attributes

2.3. Replace Section 6.3. Linking Identity and POP Information

Replace the text of the section with the following text.

In a CMC Full PKI Request, identity proof information about the client
is carried in the certificate associated with the signature of the
SignedData containing the certification requests, one of the two
identity proof controls or the MAC computed for the AuthenticatedData
containing the certification requests. Proof-of-possession information
for key pairs, however, is carried separately for each PKCS #10 or CRMF
certification request. (For keys capable of generating a digital
signature, the POP is provided by the signature on the PKCS #10 or CRMF
request. For encryption-only keys, the controls described in Section
6.7 are used.) In order to prevent substitution-style attacks, the
protocol must guarantee that the same entity supplied both the POP and
proof-of-identity information.

We describe three mechanisms for linking identity and POP information:
witness values cryptographically derived from a shared-secret (Section
6.3.1), shared-secret/subject name matching (Section 6.3.2), and
subject name matching to an existing certificate (Section 6.3.3).
Clients and servers MUST support the witness value and the certificate
linking techniques. Clients and servers MAY support shared-secret/name
matching or MAY support other bilateral techniques of similar strength.
The idea behind the first two mechanisms is to force the client to sign
some data into each certification request that can be directly
associated with the shared-secret; this will defeat attempts to include
certification requests from different entities in a single Full PKI
Request.

2.4. Replace Section 6.3.3. Renewal and Rekey Messages

New section title is "Existing Certificate Linking". Replace all text
in this section with this text.

Linking between the POP and an identity is easy when an existing
certificate is used. The client copies all of the naming information
from the existing certificate (subject name and subject alternative
name) into the new certification request. The POP on the new public key
is then performed by using the new key to sign the identity information
(1inking the POP to a specific identity). The identity information is

then tied to the POP information by signing the entire enrollment
request with the private key of the existing certificate.
Existing certificate linking can be used in the following
circumstances:

*When replacing a certificate by doing a renewal or rekey
certification request.

*Using an existing certificate to get a new certificate. An
example of this would be to get a key establishment certificate
after having gotten a signature certificate.

*Using a third party certificate to get a new certificate from a
CA. An example of this would be using a certificate and key pair
distributed with a device to prove an identity. This requires
that the CA have an out-of-band channel to map the identity in
the device certificate to the new EE identity.

2.5. New Section 6.20 RA Identity Proof Witness control

The RA Identity Proof Witness control allows an RA to indicate to
subsequent control processors that all of the identity proof
requirements have been met. This permits the identity proof to be
performed at a location closer to the end-entity. For example, the
identity proof could be done at multiple physical locations while the
CA could operate on a company-wide basis. The RA performs the identity
proof, and potentially other tasks that require the secret to be used,
while the CA would be prevented from knowing the secret. If the
identity proof fails, then the RA returns an error to the client
denoting that fact.

The relevant ASN.1 for the RA Identity Proof Witness control is as
follows:

cmc-raldentityWitness CMC-CONTROL ::=
{ BodyPartPath IDENTIFIED BY id-cmc-raIdentityWitness }

id-cmc-raIdentityWitness OBJECT IDENTIFIER ::= {id-cmc 35}
The above ASN.1 defines the following items:

cmc-raIdentityWitness 1is a CMC-CONTROL associating the object
identifier id-cmc-raldentityWitness and the type BodyPartPath. This
object is omitted from the 1988 module. The object is added to the
object set Cmc-Control-Set . The control is permitted to appear only
in the control sequence of a PKIData object. It MUST NOT appear in
the control sequence of a PKIResponse. The control is permitted to
be used only by an RA. The control may appear multiple times in a
control sequence with each occurrence pointing to a different
object.

id-cmc-raIdentityWitness
is the object identifier used to identify
this CMC control.

BodyPartPath 1is the type structure associated with the control. The
syntax of BodyPartPath is defined in Section 3.2.2. The path
contains a sequence of body part identifiers leading to one of the
following items:

Identity Proof control if the RA verified the identity proof in
this control.

Identity Proof Version 2 if the RA verified the identity proof in
this control.

Full PKI Request if the RA performed an out-of-band identity proof
for this request. The request SHOULD NOT contain either Identity
Proof control.

Simple PKI Request 1if the RA performed an out-of-band identity
proof for this request.

The RA Identity Proof Witness control will frequently be associated
with a Modify Certification Request control which changes the name
fields in the associated certification requests. This is because the RA
knows the actual name to be assigned to the entity requesting the
certificate and the end entity does not yet have the details of the
name.

When this control is placed in a message, it is RECOMMENDED that the
Control Processed control be placed in the body sequence as well. Using
the explicit new control, rather than implicitly relying on the Control
Processed control is important due to the need to know explicitly which
identity proofs have been performed. The new control also allows an RA
to state that out-of-band identity proofs have been performed.

When the identity proof is performed by an RA, the RA also MUST
validate the linking between the identity proof and the name
information wrapped inside of the key proof-of-possession.

2.6. New Section 6.21 Response Body Control

This item is to be added to the table in section 6.

The Response Body Control is designed to enable an RA to inform an EE
that there is an embedded response message that MUST be processed as
part of the processing of this message. This control is designed to be
used in a couple of different cases where an RA has done some
additional processing for the certificate request, e.g., as key
generation. When an RA performs key generation on behalf of an EE, the
RA MUST respond with both the original response message from the
certificate issuer (containing the certificate issuance) as part of the
response generated by the RA (containing the new key). Another case

where this is useful is when the secret is shared between the RA and

the EE (rather than between the CA and the EE) and the RA returns the
Publish Trust Anchors control (to populate the correct trust points).
The relevant ASN.1 for the Response Body Control is as follows:

cmc-responseBody CMC-CONTROL ::= {
BodyPartPath IDENTIFIED BY id-cmc-responseBody
}
id-cmc-responseBody OBJECT IDENTIFIER ::= {id-cmc 37}

The above ASN.1 defines the following items:

cmc-responseBody 1is a CMC-CONTROL associating the object identifier
id-cmc-responseBody with the type BodyPartPath. This object is
omitted from the 1988 module. The object is added to the object set
Cmc-Control-Set. The control is permitted to appear only in the
control sequence of a PKIResponse. The control MUST NOT appear in
the control sequence of a PKIData. It is expected that only an
intermediary RA will use this control; a CA generally does not need
the control as it is creating the original innermost message.

id-cmc-responseBody 1is the object identifier used to identify this CMC
control.

BodyPartPath 1is the type structure associated with the control. The
syntax of BodyPartPath is defined in Section 3.2.2. The path
contains a sequence of body part identifiers leading to a
cmsSequence item which contains a PKIResponse within it.

2.7. New Section 7. Other Attributes

This section is to be inserted before the current section 7.

There are a number of different locations where various types of
attributes can be placed in either a CMC request or a CMC response
message. These places include the attribute sequence of a PKCS #10
request, controls in CRMF (Section 6 of [RFC4211]) and the various CMS
attribute sequences.

2.8. New Section 7.1 Change Subject Name Attribute

The Client Name Change Request Attribute is designed for a client to
ask for a change in its name as part of a certificate request. This
cannot be done in the simple way of just changing the requested subject
name in the certificate template because of security issues. The name
in the certificate request MUST match the name in the certificate used
to verify the request, in order that identity and possession proofs are
correctly applied.

The relevant ASN.1 for the Client Name Change Request attribute is as
follows:

at-cmc-changeSubjectName ATTRIBUTE ::=
{ ChangeSubjectName IDENTIFIED BY id-cmc-changeSubjectName }

id-cmc-changeSubjectName OBJECT IDENTIFIER ::= {id-cmc 36}
ChangeSubjectName ::= SEQUENCE {

subject Name OPTIONAL,

subjectAlt SubjectAltName OPTIONAL
}

(WITH COMPONENTS {..., subject PRESENT} |
COMPONENTS {..., subjectAlt PRESENT})

The attribute is designed to be used as an ATTRIBUTE object. As such,
the attribute is placed in one of the following two places:

*The attributes field in a CertificationRequest.

*The controls field of a CertRequest for a CRMF certification
request.

The control is identified by the Object Identifier id-cmc-
changeSubjectName.

The ASN.1 type associated with control is ChangeSubjectName. The fields
of the structure are configured as follows:

subject contains the requested subject name for the new certificate.

subjectAlt contains the requested subject alternative name for the new
certificate.

At least one of the fields in the sequence MUST be present when
encoding the structure.

When the CA processes this attribute in a certification request it will
do the following:

1. The subject field is copied to the name field of the template
if present. If the subject field is absent, the name field of
the template will be set to a empty sequence.

2. The subjectAlt field is used as the content of a SubjectAltName
extension in the certificate if present. The subjectAltName
extension is removed from the certificate template if the
subjectAlt field is absent.

2.9. New Section 9. Certificate Requirements

This section is to be inserted before the current section 8.
Certificates for servers used in the CMC protocol SHOULD conform to the
profile defined in [RFC5280]. This document defines some additional

items that MAY appear in CMC server certificates. Section 9.1 defines
some additional Extended Key Usage values that can appear in
certificates. Section 9.2 defines a new Subject Information Access
value which allows for a CMC certificate to publish information on how
to contact the services it provides.

2.10. New Section 9.1. Extended Key Usage
The Extended Key Usage (EKU) extension is used to restrict the use of a

certificate to specific applications. We define three different EKUs in
this document. The ASN.1 to define these EKUs is:

id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 }
id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 }
id-kp-cmcArchive OBJECT IDENTIFIER ::= { id-kp 29 }

The usage description for each of the EKUs is as follows:

CMC Certification Authorities are identified by the id-kp-cmcCA
extended key usage. The certificate may be the same as the CA
certificate or may be different than the CA certificate. If a
different certificate is used, the certificates containing the id-
kp-cmcCA extended key usage SHOULD have the same name as the
certificate used for issuing the certificates. (Using a separate key
pair for CMC protocol operations and for issuing Certificates and
CRLs decreases the number of operations for which the private key
used to sign certificates and CRLs would be used.)

CMC Registration Authorities are identified by the id-kp-cmcRA
extended key usage. This usage is placed into RA certificates.

CMC Archive Servers are identified by the id-kp-cmcArchive extended
key usage. CMC Archive Servers and the associated protocol are to be
defined in a future document.

2.11. New Section 9.2. Subject Information Access

The subject information access extension indicates how to access
information and services for the subject of the certificate. We define
a new value for use in this extension, to identify the different
locations that CMC services will be available. If this value is placed
in a certificate, an appropriate extended key usage defined in section
9.1 MUST be included in the certificate as well.

The id-ad-cmc OID is used when the subject offers certification
services using the CMC Protocol. If the CMC services are available via
HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier. If the
CMC services are available via electronic mail, accessLocation MUST be
an rfc822Name. If CMC services are available using TCP/IP, the dNSName
or iPAddress name forms MUST be used. Since the GeneralName data

structure does not permit the inclusion of a port number, in the
absence of other external configuration information, the value of TBD1
should be used. (The port registration is in Section 3.2.) The
semantics of other name forms of accessLocation (when accessMethod is
id-ad-cmc) are not defined by this specification.

The ASN.1 for this extension is: GeneralName

id-ad-cmc OBJECT IDENTIFIER ::= { id-ad 12 }

2.12. Updates Section 8. Security Considerations

The following paragraphs are to be added to the end of section 8.

A number of controls such as the RA Identity Proof Witness control
exist for an RA to either make assertions about or modify a certificate
request. Any upstream request processor, such as a CA, MUST verify that
the RA is fully identified and authorized to make assertion or
modification it is claiming. If it is not identified or authorized then
any request MUST be rejected.

CMC servers, both RAs and CAs, need to due diligence in checking the
contents of a certificate request. At an absolute minimum all fields
should be checked to ensure that the policies of the CA/RA are
correctly enforced. While all fields need to be checked, special care
should be taken with names, name forms, algorithm choices and algorithm
parameters.

3. Updates to RFC 5273 - Certificate Management over CMS (CMC):
Transport Protocols

3.1. Update to Section 5 TCP-Based Protocol

The following replaces paragraph 3 in section 5.

CMC requires a registered port number to send and receive CMC messages
over TCP. The title of this IP Protocol number is "pkix-cmc". The value
of this TCP port is TBD1.

Prior to this update, CMC did not have a registred port number and used
an externally configured port from the Private Port range. Client
implementations MAY want to continue to allow for this to occur.
Servers SHOULD change to use the new port. It is expected that HTTP
will continue to be the primary transport method used by CMC
installations.

3.2. New Section 6. IANA Considerations

This is a new section to be inserted before the current section 6.

Service name: pkix-cmc

Port Number: [TBD1]

Transport protocol: TCP

Description: PKIX Certificate Management using CMS (CMC)
Reference: [RFC-to-be]

Assignee: iesg@ietf.org

Contact: chair@ietf.org

IANA is requested to assign a TCP port number in the Registered Port
Number range for the use of CMC.

4. Updates to RFC 5274 - Certificate Management Message over CMS (CMC):
Compliance Requirements

4.1. Update to Section 4.2 Controls

The following lines should be added to the end of Table 1.
The following table lists the name and level of support required for
each control.

Control EE RA CA
RA Identity Proof Witness N/A MUST (2)

Response Body (6) (6) N/A
Table 1: CMC Control Attributes
New Note #6
6. EE's SHOULD implement if designed to work with RAs and MUST
implement if intended to be used in environments where RAs are used for
identity validation or key generation. RAs SHOULD implement for
checking responses back for consistency.

5. IANA Considerations

This document contains a new IANA considerations section to be added to
[REC5273] as part of this update.

6. Security Considerations

No changes are made to the existing security considerations of RFC 5273
and RFC 5274. The security considerations for RFC 5272 have been
slightly modified (section 2.12).

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
Schaad, J. and M. Myers, "Certificate Management over
CMS (CMC)", RFC 5272, June 2008.

[RFC2119]

[RFC5272]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5272
http://tools.ietf.org/html/rfc5272

Schaad, J. and M. Myers, "Certificate Management over
CMS (CMC): Transport Protocols", RFC 5273, June 2008.
Schaad, J. and M. Myers, "Certificate Management
[RFC5274] Messages over CMS (CMC): Compliance Requirements", RFC
5274, June 2008.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R. and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, May 2008.

[RFC5273]

[RFC5280]

7.2. Informational References

Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 5652, September 2009.
Zieglar, L, Peck, M and S Turner, "Suite B Profile
of Certificate Management over CMS", Internet-Draft
draft-turner-suiteb-cmc-03, June 2010.
Schaad, J., "Internet X.509 Public Key
[RFC4211] Infrastructure Certificate Request Message Format
(CRMF)", RFC 4211, September 2005.
Hoffman, P. and J. Schaad, "New ASN.1 Modules for
[RFC5912] the Public Key Infrastructure Using X.509 (PKIX)",
RFC 5912, June 2010.

[CMS]

[I-D.turner-
suiteb-cmc]

Appendix A. ASN.1 Modules

Appendix A.1. 1988 ASN.1 Module

This section contains the updated ASN.1 module for [REC5272]. This
module replaces the module in Appendix A. Although a 2008 ASN.1 Module
is provided, this remains the normative module as per the policy of the
PKIX working group.

http://tools.ietf.org/html/rfc5273
http://tools.ietf.org/html/rfc5273
http://tools.ietf.org/html/rfc5274
http://tools.ietf.org/html/rfc5274
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5652
http://tools.ietf.org/html/draft-turner-suiteb-cmc-03
http://tools.ietf.org/html/draft-turner-suiteb-cmc-03
http://tools.ietf.org/html/rfc4211
http://tools.ietf.org/html/rfc4211
http://tools.ietf.org/html/rfc4211
http://tools.ietf.org/html/rfc5912
http://tools.ietf.org/html/rfc5912

EnrollmentMessageSyntax-2011-v88
{ iso(1) identified-organization(3) dod(4) internet(1)
security(5) mechansims(5) pkix(7) id-mod(0)
id-mod-enrollMsgSyntax-2011-88(76) }

DEFINITIONS IMPLICIT TAGS ::
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them for
-- their own purposes.

IMPORTS

-- PKIX Part 1 - Implicit From [RFC5280]
GeneralName, CRLReason, ReasonFlags, GeneralNames
FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-implicit(19)}

-- PKIX Part 1 - Explicit From [RFC5280]
AlgorithmIdentifier, Extension, Name, CertificateSerialNumber,
id-ad, id-kp
FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
internet (1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1l-explicit(18)}

-- Cryptographic Message Syntax FROM [CMS]
ContentInfo, Attribute, IssuerAndSerialNumber
FROM CryptographicMessageSyntax2004 { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
modules(@) cms-2004(24)}

-- CRMF FROM [RFC4211]
CertRegMsg, PKIPublicationInfo, CertTemplate
FROM PKIXCRMF-2005 {iso(1) identified-organization(3) dod(6)
internet (1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-crmf2005(36)};

-- Global Types
-- UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING
-- The content of this type conforms to RFC 2279.

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
dod(6) internet(1l) security(5) mechanisms(5) pkix(7) }

id-cmc OBJECT IDENTIFIER ::
id-cct OBJECT IDENTIFIER ::

{id-pkix 7} -- CMC controls
{id-pkix 12} -- CMC content types

-- The following controls have the type OCTET STRING

id-cmc-identityProof OBJECT IDENTIFIER ::= {id-cmc 3}
id-cmc-dataReturn OBJECT IDENTIFIER ::= {id-cmc 4}
id-cmc-regInfo OBJECT IDENTIFIER ::= {id-cmc 18}
id-cmc-responseInfo OBJECT IDENTIFIER ::= {id-cmc 19}
id-cmc-queryPending OBJECT IDENTIFIER ::= {id-cmc 21}
id-cmc-popLinkRandom OBJECT IDENTIFIER ::= {id-cmc 22}
id-cmc-popLinkWitness OBJECT IDENTIFIER ::= {id-cmc 23}

-- The following controls have the type UTF8String
id-cmc-identification OBJECT IDENTIFIER ::= {id-cmc 2}
-- The following controls have the type INTEGER
id-cmc-transactionId OBJECT IDENTIFIER ::= {id-cmc 5}
-- The following controls have the type OCTET STRING

id-cmc-senderNonce OBJECT IDENTIFIER ::= {id-cmc 6}
id-cmc-recipientNonce OBJECT IDENTIFIER ::= {id-cmc 7}

-- This is the content type used for a request message
-- in the protocol

id-cct-PKIData OBJECT IDENTIFIER ::= { id-cct 2 }
PKIData ::= SEQUENCE {
controlSequence SEQUENCE SIZE(©0..MAX) OF TaggedAttribute,
reqSequence SEQUENCE SIZE(O0..MAX) OF TaggedRequest,
cmsSequence SEQUENCE SIZE(O0..MAX) OF TaggedContentInfo,
otherMsgSequence SEQUENCE SIZE(©..MAX) OF OtherMsg
}
bodyIdMax INTEGER ::= 4294967295
BodyPartID ::= INTEGER(O..bodyIdMax)
TaggedAttribute = SEQUENCE {
bodyPartID BodyPartID,
attrType OBJECT IDENTIFIER,
attrvalues SET OF AttributeValue
}
AttributevValue ::= ANY
TaggedRequest ::= CHOICE {
ter [0] TaggedCertificationRequest,

crm [1] CertReqgMsg,

orm [2] SEQUENCE {
bodyPartID BodyPartID,
requestMessageType OBJECT IDENTIFIER,
requestMessageValue ANY DEFINED BY requestMessageType

}
}
TaggedCertificationRequest ::= SEQUENCE {
bodyPartID BodyPartID,
certificationRequest CertificationRequest
}
CertificationRequest ::= SEQUENCE {
certificationRequestInfo SEQUENCE {
version INTEGER,
subject Name,
subjectPublicKeyInfo SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING },
attributes [6] IMPLICIT SET OF Attribute },
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING
}
TaggedContentInfo ::= SEQUENCE {
bodyPartID BodyPartID,
contentInfo ContentInfo
}
OtherMsg ::= SEQUENCE {
bodyPartID BodyPartID,
otherMsgType OBJECT IDENTIFIER,
otherMsgvalue ANY DEFINED BY otherMsgType }
-- This defines the response message in the protocol
id-cct-PKIResponse OBJECT IDENTIFIER ::= { id-cct 3 }
ResponseBody ::= PKIResponse
PKIResponse ::= SEQUENCE {
controlSequence SEQUENCE SIZE(O..MAX) OF TaggedAttribute,
cmsSequence SEQUENCE SIZE(©..MAX) OF TaggedContentInfo,
otherMsgSequence SEQUENCE SIZE(©..MAX) OF OtherMsg
}

-- Used to return status state in a response

id-cmc-statusInfo OBJECT IDENTIFIER ::= {id-cmc 1}

CMCStatusInfo ::= SEQUENCE {

cMCStatus CMCStatus,
bodyList SEQUENCE SIZE (1..MAX) OF BodyPartID,
statusString UTF8String OPTIONAL,
otherInfo CHOICE {
failInfo CMCFailInfo,
pendInfo PendInfo } OPTIONAL
}
PendInfo ::= SEQUENCE {
pendToken OCTET STRING,
pendTime GeneralizedTime
}
CMCStatus ::= INTEGER {
success (0),
failed (2),
pending (3),
noSupport (4),
confirmRequired (5),
popRequired (6),
partial (7)
}
-- Note:
-- The spelling of unsupportedExt is corrected in this version.
-- In RFC 2797, it was unsuportedExt.
CMCFailInfo ::= INTEGER {
badAlg (0),
badMessageCheck (1),
badRequest (2),
badTime (3),
badCertId (4),
unsupportedext (5),
mustArchiveKeys (6),
badIdentity (7),
popRequired (8),
popFailed (9),
noKeyReuse (10),
internalCAError (11),
tryLater (12),
authDataFail (13)
}
-- Used for RAs to add extensions to certification requests
id-cmc-addExtensions OBJECT IDENTIFIER ::= {id-cmc 8}

AddExtensions ::= SEQUENCE {

pkiDataReference BodyPartID,

certReferences SEQUENCE OF BodyPartID,
extensions SEQUENCE OF Extension
}
id-cmc-encryptedPOP OBJECT IDENTIFIER = {id-cmc 9}
id-cmc-decryptedPOP OBJECT IDENTIFIER = {id-cmc 10}
EncryptedPOP ::= SEQUENCE {
request TaggedRequest,
cms ContentInfo,
thePOPAl1gID AlgorithmIdentifier,
witnessAlgID AlgorithmIdentifier,
witness OCTET STRING
}
DecryptedPOP ::= SEQUENCE {
bodyPartID BodyPartID,
thePOPAlgID AlgorithmIdentifier,
thePOP OCTET STRING
}
id-cmc-1lraPOPWitness OBJECT IDENTIFIER ::= {id-cmc 11}
LraPopwWitness ::= SEQUENCE {
pkiDataBodyid BodyPartID,
bodyIds SEQUENCE OF BodyPartID
}
id-cmc-getCert OBJECT IDENTIFIER ::= {id-cmc 15}
GetCert ::= SEQUENCE {
issuerName GeneralName,
serialNumber INTEGER }
id-cmc-getCRL OBJECT IDENTIFIER ::= {id-cmc 16}
GetCRL ::= SEQUENCE {
issuerName Name,
cRLName GeneralName OPTIONAL,
time GeneralizedTime OPTIONAL,
reasons ReasonFlags OPTIONAL }
id-cmc-revokeRequest OBJECT IDENTIFIER ::= {id-cmc 17}
RevokeRequest ::= SEQUENCE {
issuerName Name,

serialNumber INTEGER,

reason CRLReasonN,

invalidityDate GeneralizedTime OPTIONAL,

passphrase OCTET STRING OPTIONAL,

comment UTF8String OPTIONAL }
id-cmc-confirmCertAcceptance OBJECT IDENTIFIER ::= {id-cmc 24}
CMCCertId ::= IssuerAndSerialNumber

-- The following is used to request V3 extensions be added to a
-- certificate

id-ExtensionReq OBJECT IDENTIFIER ::= {iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 14}

ExtensionReq ::= SEQUENCE SIZE (1..MAX) OF Extension

-- The following exists to allow Diffie-Hellman Certification
-- Requests Messages to be well-formed

id-alg-noSignature OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 2}
NoSignaturevValue ::= OCTET STRING

-- Unauthenticated attribute to carry removable data.

-- This could be used in an update of "CMC Extensions: Server
-- Side Key Generation and Key Escrow" (February 2005) and in
-- other documents.

id-aa OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2)}

id-aa-cmc-unsignedData OBJECT IDENTIFIER ::= {id-aa 34}
CMCUnsignedData ::= SEQUENCE {

bodyPartPath BodyPartPath,

identifier OBJECT IDENTIFIER,

content ANY DEFINED BY identifier
}

-- Replaces CMC Status Info

id-cmc-statusInfov2 OBJECT IDENTIFIER ::= {id-cmc 25}
CMCStatusInfoV2 ::= SEQUENCE {
cMCStatus CMCStatus,
bodyList SEQUENCE SIZE (1..MAX) OF
BodyPartReference,
statusString UTF8String OPTIONAL,

otherInfo CHOICE {

failInfo CMCFailInfo,

pendInfo PendInfo,

extendedFailInfo SEQUENCE {
failInfoOID OBJECT IDENTIFIER,
failInfovalue Attributevalue

}
} OPTIONAL

BodyPartReference ::= CHOICE {
bodyPartID BodyPartID,
bodyPartPath BodyPartPath

BodyPartPath ::= SEQUENCE SIZE (1..MAX) OF BodyPartID

-- Allow for distribution of trust anchors

id-cmc-trustedAnchors OBJECT IDENTIFIER ::= {id-cmc 26}

PublishTrustAnchors ::= SEQUENCE {
seqNumber INTEGER,
hashAlgorithm AlgorithmIdentifier,
anchorHashes SEQUENCE OF OCTET STRING

id-cmc-authData OBJECT IDENTIFIER ::= {id-cmc 27}
AuthPublish ::= BodyPartID

-- These two items use BodyPartList
id-cmc-batchRequests OBJECT IDENTIFIER ::= {id-cmc 28}

id-cmc-batchResponses OBJECT IDENTIFIER ::= {id-cmc 29}

BodyPartList ::= SEQUENCE SIZE (1..MAX) OF BodyPartID

id-cmc-publishCert OBJECT IDENTIFIER ::= {id-cmc 30}

CMCPublicationInfo ::= SEQUENCE {
hashAlg AlgorithmIdentifier,
certHashes SEQUENCE OF OCTET STRING,
pubInfo PKIPublicationInfo

id-cmc-modCertTemplate OBJECT IDENTIFIER ::= {id-cmc 31}

ModCertTemplate ::= SEQUENCE {
pkiDataReference BodyPartPath,

certReferences BodyPartList,

replace BOOLEAN DEFAULT TRUE,

certTemplate CertTemplate
}
-- Inform follow on servers that one or more controls have already
-- been processed
id-cmc-controlProcessed OBJECT IDENTIFIER ::= {id-cmc 32}
ControlsProcessed ::= SEQUENCE {

bodyList SEQUENCE SIZE(1..MAX) OF BodyPartReference
}
-- Identity Proof control w/ algorithm agility
id-cmc-identityProofVv2 OBJECT IDENTIFIER ::= { id-cmc 34 }
IdentifyProofV2 ::= SEQUENCE {

proofAlgID AlgorithmIdentifier,

macAlgId AlgorithmIdentifier,

witness OCTET STRING
}
id-cmc-popLinkWitnessV2 OBJECT IDENTIFIER ::= { id-cmc 33 }
PopLinkWitnessV2 ::= SEQUENCE {

keyGenAlgorithm AlgorithmIdentifier,

macAlgorithm AlgorithmIdentifier,

witness OCTET STRING
}
id-cmc-raldentityWitness OBJECT IDENTIFIER ::= {id-cmc 35}
-- Allow for an End-Entity to request a change in name
-- This item is added to RegControlSet in CRMF
id-cmc-changeSubjectName OBJECT IDENTIFIER ::= {id-cmc 36}
ChangeSubjectName = SEQUENCE {

subject Name OPTIONAL,

subjectAlt GeneralNames OPTIONAL
}

-- (WITH COMPONENTS {..., subject PRESENT} |
-~ WITH COMPONENTS {..., subjectAlt PRESENT})

-- Embedded response from a third party for processing

id-cmc-responseBody OBJECT IDENTIFIER ::= {id-cmc 37}

-- Key purpose identifiers are in the extended key usage extension

id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 }
id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 }
id-kp-cmcArchive OBJECT IDENTIFIER ::= { id-kp 28 }

-- Subject Information Access identifier

id-ad-cmc OBJECT IDENTIFIER ::= { id-ad 12 }
END

Appendix A.2. 2008 ASN.1 Module

An updated 2008 ASN.1 module has been provided as part of this update.
The module contains changes that were made as part of the re-write to
current ASN.1 standards in [RFC5912] as well as the changes for this
document.

EnrollmentMessageSyntax-2011-v08
{iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechansims(5) pkix(7) id-mod(0)
id-mod-enrollMsgSyntax-2011-08(76)}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
EXPORTS ALL;
IMPORTS

AttributeSet{}, Extension{}, EXTENSION, ATTRIBUTE

FROM PKIX-CommonTypes-2009
{iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}

AlgorithmIdentifier{}, DIGEST-ALGORITHM, KEY-WRAP, KEY-DERIVATION,
MAC-ALGORITHM, SIGNATURE-ALGORITHM, PUBLIC-KEY

FROM AlgorithmInformation-2009
{iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(0©)
id-mod-algorithmInformation-02(58)}

CertificateSerialNumber, GeneralName, CRLReason, ReasonFlags,
CertExtensions, GeneralNames

FROM PKIX1Implicit-2009
{iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(0®) id-mod-pkix1-implicit-02(59)}

Name, id-pkix, PublicKeyAlgorithms, SignatureAlgorithms, id-ad, id-kp
FROM PKIX1Explicit-2009
{iso(1) identified-organization(3) dod(6) internet(1l) security(5)
mechanisms(5) pkix(7) id-mod(0®) id-mod-pkix1l-explicit-02(51)}

ContentInfo, IssuerAndSerialNumber, CONTENT-TYPE
FROM CryptographicMessageSyntax-2010
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

CertRegqMsg, PKIPublicationInfo, CertTemplate

FROM PKIXCRMF-2009
{iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(®) id-mod-crmf2005-02(55)}

mda-shal

FROM PKIXAlgs-2009
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1l-algorithms2008-02(56)}

kda-PBKDF2, maca-hMAC-SHA1
FROM CryptographicMessageSyntaxAlgorithms-2009

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1l) pkcs-9(9)
smime(16) modules(@) id-mod-cmsalg-2001-02(37) }

mda-sha256
FROM PKIX1-PSS-0AEP-Algorithms-2009
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(Q)
id-mod-pkix1l-rsa-pkalgs-02(54) } ;
-- CMS Content types defined in this document
CMC-ContentTypes CONTENT-TYPE ::= { ct-PKIData | ct-PKIResponse,
-- Signature Algorithms defined in this document
SignatureAlgs SIGNATURE-ALGORITHM ::= { sa-noSignature }

-- CMS Unsigned Attributes

CMC-UnsignedAtts ATTRIBUTE ::= { aa-cmc-unsignedData }

id-cmc OBJECT IDENTIFIER ::
id-cct OBJECT IDENTIFIER ::

{id-pkix 7} -- CMC controls
{id-pkix 12} -- CMC content types

-- This is the content type for a request message in the protocol

ct-PKIData CONTENT-TYPE ::=
{ TYPE PKIData IDENTIFIED BY id-cct-PKIData }

id-cct-PKIData OBJECT IDENTIFIER ::= { id-cct 2 }

PKIData ::= SEQUENCE {
controlSequence SEQUENCE SIZE(©..MAX) OF TaggedAttribute,
reqSequence SEQUENCE SIZE(0..MAX) OF TaggedRequest,
cmsSequence SEQUENCE SIZE(©0..MAX) OF TaggedContentInfo,
otherMsgSequence SEQUENCE SIZE(©O..MAX) OF OtherMsg

}

BodyPartID ::= INTEGER(O..4294967295)

TaggedAttribute ::= SEQUENCE {
bodyPartID BodyPartID,
attrType CMC-CONTROL.&id({Cmc-Control-Set}),
attrvalues SET OF CMC-CONTROL.

&Type({Cmc-Control-Set}{@attrType})
}

Cmc-Control-Set CMC-CONTROL ::= {

cmc-identityProof | cmc-dataReturn | cmc-regInfo |
cmc-responseInfo | cmc-queryPending | cmc-popLinkRandom |
cmc-popLinkWitness | cmc-identification | cmc-transactionId |
cmc-senderNonce | cmc-recipientNonce | cmc-statusInfo |
cmc-addExtensions | cmc-encryptedPOP | cmc-decryptedPOP |
cmc-lraPOPwWitness | cmc-getCert | cmc-getCRL |
cmc-revokeRequest | cmc-confirmCertAcceptance |
cmc-statusInfov2 | cmc-trustedAnchors | cmc-authData |
cmc-batchRequests | cmc-batchResponses | cmc-publishCert |
cmc-modCertTemplate | cmc-controlProcessed |
cmc-identityProofVv2 | cmc-popLinkWitnessv2, ...,
cmc-raldentitywWitness | cmc-responseBody }

OTHER-REQUEST ::= TYPE-IDENTIFIER

-- We do not define any other requests in this document
-- examples might be attribute certification requests

OtherRequests OTHER-REQUEST ::= {...}

TaggedRequest ::= CHOICE {

ter [0] TaggedCertificationRequest,

crm [1] CertRegMsg,

orm [2] SEQUENCE {
bodyPartID BodyPartID,
requestMessageType OTHER-REQUEST.&id({OtherRequests}),
requestMessageValue OTHER-REQUEST.&Type({0OtherRequests}

{@.requestMessageType})

}
}
TaggedCertificationRequest ::= SEQUENCE {
bodyPartID BodyPartID,
certificationRequest CertificationRequest
}
AttributeList ATTRIBUTE ::= {at-extension-req, ...,
at-cmc-changeSubjectName}
CertificationRequest ::= SEQUENCE {
certificationRequestInfo SEQUENCE {
version INTEGER,
subject Name,
subjectPublicKeyInfo SEQUENCE {
algorithm AlgorithmIdentifier {PUBLIC-KEY,
{PublicKeyAlgorithms}},
subjectPublicKey BIT STRING
}l

attributes [6] IMPLICIT SET OF

AttributeSet{{AttributelList}}

3
signatureAlgorithm AlgorithmIdentifier
{SIGNATURE-ALGORITHM,
{SignatureAlgorithms}},
signature BIT STRING
}
TaggedContentInfo ::= SEQUENCE {
bodyPartID BodyPartID,
contentInfo ContentInfo
}
OTHER-MSG ::= TYPE-IDENTIFIER
-- No other messages currently defined
OtherMsgSet OTHER-MSG ::= {...}
OtherMsg ::= SEQUENCE {
bodyPartID BodyPartID,
otherMsgType OTHER-MSG.&id({OtherMsgSet}),
otherMsgvalue OTHER-MSG.&Type({OtherMsgSet}{@otherMsgType}) }

-- This defines the response message in the protocol

ct-PKIResponse CONTENT-TYPE ::=
{ TYPE PKIResponse IDENTIFIED BY id-cct-PKIResponse }

id-cct-PKIResponse OBJECT IDENTIFIER ::= { id-cct 3 }

ResponseBody ::= PKIResponse

PKIResponse ::= SEQUENCE {
controlSequence SEQUENCE SIZE(©0..MAX) OF TaggedAttribute,
cmsSequence SEQUENCE SIZE(0..MAX) OF TaggedContentInfo,
otherMsgSequence SEQUENCE SIZE(O..MAX) OF OtherMsg

}

CMC-CONTROL ::= TYPE-IDENTIFIER

-- The following controls have the type OCTET STRING

cmc-identityProof CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-identityProof }
id-cmc-identityProof OBJECT IDENTIFIER ::= {id-cmc 3}

cmc-dataReturn CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-dataReturn }
id-cmc-dataReturn OBJECT IDENTIFIER ::= {id-cmc 4}

cmc-regInfo CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-regInfo }
id-cmc-regInfo OBJECT IDENTIFIER ::= {id-cmc 18}

cmc-responseInfo CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-responseInfo }
id-cmc-responseInfo OBJECT IDENTIFIER ::= {id-cmc 19}

cmc-queryPending CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-queryPending }
id-cmc-queryPending OBJECT IDENTIFIER ::= {id-cmc 21}

cmc-popLinkRandom CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-popLinkRandom }
id-cmc-popLinkRandom OBJECT IDENTIFIER ::= {id-cmc 22}

cmc-popLinkWitness CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-popLinkWitness }
id-cmc-popLinkwWitness OBJECT IDENTIFIER ::= {id-cmc 23}

-- The following controls have the type UTF8String

cmc-identification CMC-CONTROL ::=
{ UTF8String IDENTIFIED BY id-cmc-identification }
id-cmc-identification OBJECT IDENTIFIER ::= {id-cmc 2}

-- The following controls have the type INTEGER

cmc-transactionId CMC-CONTROL ::=
{ INTEGER IDENTIFIED BY id-cmc-transactionId }
id-cmc-transactionId OBJECT IDENTIFIER ::= {id-cmc 5}

-- The following controls have the type OCTET STRING

cmc-senderNonce CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-senderNonce }
id-cmc-senderNonce OBJECT IDENTIFIER ::= {id-cmc 6}

cmc-recipientNonce CMC-CONTROL ::=
{ OCTET STRING IDENTIFIED BY id-cmc-recipientNonce }
id-cmc-recipientNonce OBJECT IDENTIFIER ::= {id-cmc 7}

-- Used to return status in a response

cmc-statusInfo CMC-CONTROL ::=
{ CMCStatusInfo IDENTIFIED BY id-cmc-statusInfo }
id-cmc-statusInfo OBJECT IDENTIFIER ::= {id-cmc 1}

CMCStatusInfo ::= SEQUENCE {
cMCStatus CMCStatus,

bodyList

SEQUENCE SIZE (1..MAX) OF BodyPartID,

statusString UTF8String OPTIONAL,
otherInfo CHOICE {
faillnfo CMCFaillInfo,
pendInfo PendInfo

} OPTIONAL

}

PendInfo ::= SEQUENCE {
pendToken OCTET STRING,
pendTime GeneralizedTime

}

CMCStatus ::= INTEGER {
success (0),
failed (2),
pending (3),
noSupport (4),
confirmRequired (5),
popRequired (6),
partial (7)

}

CMCFailInfo ::= INTEGER {
badAlg (0),
badMessageCheck (1),
badRequest (2),
badTime (3),
badCertId (4),
unsuportedExt (5),
mustArchiveKeys (6),
badIdentity (7),
popRequired (8),
popFailed (9),
noKeyReuse (10),
internalCAError (11),
tryLater (12),
authDataFail (13)

}

-- Used for RAs to add extensions to certification requests

cmc-addExtensions CMC-CONTROL ::=

{ AddExtensions

IDENTIFIED BY id-cmc-addExtensions }

id-cmc-addExtensions OBJECT IDENTIFIER ::= {id-cmc 8}
AddExtensions ::= SEQUENCE {

pkiDataReference BodyPartID,

certReferences SEQUENCE OF BodyPartID,

extensions SEQUENCE OF Extension{{CertExtensions}}

cmc-encryptedPOP CMC-CONTROL ::=

{ EncryptedPOP IDENTIFIED BY id-cmc-encryptedPOP }
cmc-decryptedPOP CMC-CONTROL ::=

{ DecryptedPOP IDENTIFIED BY id-cmc-decryptedPOP }

id-cmc-encryptedPOP OBJECT IDENTIFIER ::= {id-cmc 9}
id-cmc-decryptedPOP OBJECT IDENTIFIER ::= {id-cmc 10}
EncryptedPOP ::= SEQUENCE {
request TaggedRequest,
cms ContentInfo,
thePOPAl1gID AlgorithmIdentifier {MAC-ALGORITHM, {POPAlgs}},
witnessAlgID AlgorithmIdentifier {DIGEST-ALGORITHM,
{WitnessAlgs}},
witness OCTET STRING
}
POPAlgs MAC-ALGORITHM ::= {maca-hMAC-SHA1, ...}
WitnessAlgs DIGEST-ALGORITHM ::= {mda-shal, ...}
DecryptedPOP ::= SEQUENCE {
bodyPartID BodyPartID,
thePOPAlgID AlgorithmIdentifier{MAC-ALGORITHM, {POPAlgs}},
thePOP OCTET STRING
}

cmc-1lraPOPWitness CMC-CONTROL ::=
{ LraPopWitness IDENTIFIED BY id-cmc-lraPOPWitness }

id-cmc-lraPOPWitness OBJECT IDENTIFIER ::= {id-cmc 11}

LraPopwWitness ::= SEQUENCE {
pkiDataBodyid BodyPartID,
bodyIds SEQUENCE OF BodyPartID

cmc-getCert CMC-CONTROL ::=
{ GetCert IDENTIFIED BY id-cmc-getCert }
id-cmc-getCert OBJECT IDENTIFIER ::= {id-cmc 15}

GetCert ::= SEQUENCE {

issuerName GeneralName,
serialNumber INTEGER }

cmc-getCRL CMC-CONTROL ::=

{ GetCRL IDENTIFIED BY id-cmc-getCRL }

id-cmc-getCRL OBJECT IDENTIFIER ::= {id-cmc 16}
GetCRL ::= SEQUENCE {
issuerName Name,
cRLName GeneralName OPTIONAL,
time GeneralizedTime OPTIONAL,
reasons ReasonFlags OPTIONAL }

cmc-revokeRequest CMC-CONTROL ::=
{ RevokeRequest IDENTIFIED BY id-cmc-revokeRequest}

id-cmc-revokeRequest OBJECT IDENTIFIER ::= {id-cmc 17}
RevokeRequest ::= SEQUENCE {
issuerName Name,
serialNumber INTEGER,
reason CRLReasonN,
invalidityDate GeneralizedTime OPTIONAL,
passphrase OCTET STRING OPTIONAL,
comment UTF8String OPTIONAL }

cmc-confirmCertAcceptance CMC-CONTROL ::=
{ CMCCertId IDENTIFIED BY id-cmc-confirmCertAcceptance }
id-cmc-confirmCertAcceptance OBJECT IDENTIFIER ::= {id-cmc 24}

CMCCertId ::= IssuerAndSerialNumber

-- The following is used to request V3 extensions be added
-- to a certificate

at-extension-req ATTRIBUTE ::=
{ TYPE ExtensionReq IDENTIFIED BY id-ExtensionReq }
id-ExtensionReq OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) 14}

ExtensionReq ::= SEQUENCE SIZE (1..MAX) OF
Extension{{CertExtensions}}

-- The following allows Diffie-Hellman Certification Request
-- Messages to be well-formed

sa-noSignature SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-noSignature
VALUE NoSignatureValue
PARAMS TYPE NULL ARE required
HASHES { mda-shal }

}
id-alg-noSignature OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 2}

NoSignatureValue ::= OCTET STRING
-- Unauthenticated attribute to carry removable data.

id-aa OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2)}

aa-cmc-unsignedData ATTRIBUTE ::=
{ TYPE CMCUnsignedData IDENTIFIED BY id-aa-cmc-unsignedData }

id-aa-cmc-unsignedData OBJECT IDENTIFIER ::= {id-aa 34}
CMCUnsignedData ::= SEQUENCE {

bodyPartPath BodyPartPath,

identifier TYPE-IDENTIFIER.&I1d,

content TYPE-IDENTIFIER.&Type
}

-- Replaces CMC Status Info

cmc-statusInfov2 CMC-CONTROL ::=
{ CMCStatusInfoVv2 IDENTIFIED BY id-cmc-statusInfov2 }

id-cmc-statusInfov2 OBJECT IDENTIFIER ::= {id-cmc 25}
EXTENDED-FAILURE-INFO ::= TYPE-IDENTIFIER
ExtendedFailures EXTENDED-FAILURE-INFO = {...}
CMCStatusInfoV2 ::= SEQUENCE {
cMCStatus CMCStatus,
bodyList SEQUENCE SIZE (1..MAX) OF
BodyPartReference,
statusString UTF8String OPTIONAL,
otherInfo CHOICE {
failInfo CMCFailInfo,
pendInfo PendInfo,
extendedFailInfo [1] SEQUENCE {
failInfoOID TYPE-IDENTIFIER.&Iid
({ExtendedFailures}),
failInfovalue TYPE-IDENTIFIER.&Type
({ExtendedFailures}
{@.failInfo0ID})
}
} OPTIONAL
}
BodyPartReference ::= CHOICE {
bodyPartID BodyPartID,

bodyPartPath BodyPartPath

BodyPartPath ::= SEQUENCE SIZE (1..MAX) OF BodyPartID

-- Allow for distribution of trust anchors

cmc-trustedAnchors CMC-CONTROL ::=
{ PublishTrustAnchors IDENTIFIED BY id-cmc-trustedAnchors }

id-cmc-trustedAnchors OBJECT IDENTIFIER ::= {id-cmc 26}
PublishTrustAnchors ::= SEQUENCE {

seqNumber INTEGER,

hashAlgorithm AlgorithmIdentifier{DIGEST-ALGORITHM,

{HashAlgorithms}},

anchorHashes SEQUENCE OF OCTET STRING
}
HashAlgorithms DIGEST-ALGORITHM ::= {

mda-shal | mda-sha256,

}

cmc-authData CMC-CONTROL ::=
{ AuthPublish IDENTIFIED BY id-cmc-authData }
id-cmc-authData OBJECT IDENTIFIER ::= {id-cmc 27}

AuthPublish ::= BodyPartID
-- These two items use BodyPartlList
cmc-batchRequests CMC-CONTROL ::=

{ BodyPartList IDENTIFIED BY id-cmc-batchRequests }
id-cmc-batchRequests OBJECT IDENTIFIER ::= {id-cmc 28}
cmc-batchResponses CMC-CONTROL ::=

{ BodyPartList IDENTIFIED BY id-cmc-batchResponses }
id-cmc-batchResponses OBJECT IDENTIFIER ::= {id-cmc 29}

BodyPartList ::= SEQUENCE SIZE (1..MAX) OF BodyPartID

cmc-publishCert CMC-CONTROL ::=
{ CMCPublicationInfo IDENTIFIED BY id-cmc-publishCert }

id-cmc-publishCert OBJECT IDENTIFIER ::= {id-cmc 30}
CMCPublicationInfo ::= SEQUENCE {
hashAlg AlgorithmIdentifier {DIGEST-ALGORITHM,
{HashAlgorithms}},
certHashes SEQUENCE OF OCTET STRING,
pubInfo PKIPublicationInfo

cmc-modCertTemplate CMC-CONTROL ::=
{ ModCertTemplate IDENTIFIED BY id-cmc-modCertTemplate }

id-cmc-modCertTemplate OBJECT IDENTIFIER ::= {id-cmc 31}
ModCertTemplate ::= SEQUENCE {
pkiDataReference BodyPartPath,
certReferences BodyPartList,
replace BOOLEAN DEFAULT TRUE,
certTemplate CertTemplate
}

-- Inform follow-on servers that one or more controls have
-- already been processed

cmc-controlProcessed CMC-CONTROL ::=
{ ControlsProcessed IDENTIFIED BY id-cmc-controlProcessed }

id-cmc-controlProcessed OBJECT IDENTIFIER ::= {id-cmc 32}
ControlsProcessed ::= SEQUENCE {

bodyList SEQUENCE SIZE(1..MAX) OF BodyPartReference
}

-- Identity Proof control w/ algorithm agility

cmc-identityProofV2 CMC-CONTROL ::=
{ IdentityProofV2 IDENTIFIED BY id-cmc-identityProofv2 }

id-cmc-identityProofV2 OBJECT IDENTIFIER ::= { id-cmc 33 }
IdentityProofV2 ::= SEQUENCE {
proofAlgID AlgorithmIdentifier{DIGEST-ALGORITHM,
{WitnessAlgs}},
macAlgId AlgorithmIdentifier{MAC-ALGORITHM, {POPAlgs}},
witness OCTET STRING
}

cmc-popLinkWitnessV2 CMC-CONTROL ::=
{ PopLinkWitnessV2 IDENTIFIED BY id-cmc-popLinkWitnessVv2 }

id-cmc-popLinkWitnessV2 OBJECT IDENTIFIER ::= { id-cmc 34 }
PopLinkWitnessV2 ::= SEQUENCE {
keyGenAlgorithm AlgorithmIdentifier{KEY-DERIVATION,
{KeyDevAlgs}},
macAlgorithm AlgorithmIdentifier{MAC-ALGORITHM, {POPAlgs}},
witness OCTET STRING
}

KeyDevAlgs KEY-DERIVATION ::= {kda-PBKDF2, ...}

cmc-raldentityWitness CMC-CONTROL ::=
{ BodyPartPath IDENTIFIED BY id-cmc-raldentityWitness }

id-cmc-raldentitywWitness OBJECT IDENTIFIER ::= {id-cmc 35}

-- Allow for an End-Entity to request a change in name
-- This item is added to RegControlSet in CRMF
at-cmc-changeSubjectName ATTRIBUTE ::=

{ TYPE ChangeSubjectName IDENTIFIED BY id-cmc-changeSubjectName }

id-cmc-changeSubjectName OBJECT IDENTIFIER ::= {id-cmc 36}
ChangeSubjectName ::= SEQUENCE {

subject Name OPTIONAL,

subjectAlt GeneralNames OPTIONAL
}

(WITH COMPONENTS {..., subject PRESENT} |
WITH COMPONENTS {..., subjectAlt PRESENT})

-- Embedded response from a third party for processing

cmc-responseBody CMC-CONTROL ::= {
BodyPartPath IDENTIFIED BY id-cmc-responseBody
}
id-cmc-responseBody OBJECT IDENTIFIER ::= {id-cmc 37}

-- Key purpose identifiers are in the extended key usage extension

id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 }
id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 }
id-kp-cmcArchive OBJECT IDENTIFIER ::= { id-kp 29 }

-- Subject Information Access identifier

id-ad-cmc OBJECT IDENTIFIER ::= { id-ad 12 }

END

Author's Address

Jim Schaad Schaad Soaring Hawk Consulting EMail:
jimsch@augustcellars.com

mailto:jimsch@augustcellars.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology
	2. Updates to RFC 5272 - Certificate Management over CMS (CMC)
	2.1. New Section 1.3. Changes Since RFC 5272
	2.2. Update Section 6. Controls
	2.3. Replace Section 6.3. Linking Identity and POP Information
	2.4. Replace Section 6.3.3. Renewal and Rekey Messages
	2.5. New Section 6.20 RA Identity Proof Witness control
	2.6. New Section 6.21 Response Body Control
	2.7. New Section 7. Other Attributes
	2.8. New Section 7.1 Change Subject Name Attribute
	2.9. New Section 9. Certificate Requirements
	2.10. New Section 9.1. Extended Key Usage
	2.11. New Section 9.2. Subject Information Access
	2.12. Updates Section 8. Security Considerations
	3. Updates to RFC 5273 - Certificate Management over CMS (CMC): Transport Protocols
	3.1. Update to Section 5 TCP-Based Protocol
	3.2. New Section 6. IANA Considerations
	4. Updates to RFC 5274 - Certificate Management Message over CMS (CMC): Compliance Requirements
	4.1. Update to Section 4.2 Controls
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informational References
	Appendix A. ASN.1 Modules
	Appendix A.1. 1988 ASN.1 Module
	Appendix A.2. 2008 ASN.1 Module
	Author's Address

