
PKIX Working Group J. Schaad (Soaring Hawk Consulting)
Internet Draft B. Kaliski (RSA Laboratories)
 R. Housley (Vigil Security)
expires September 2004 March 2004

Additional Algorithms and Identifiers for RSA Cryptography
for use in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile

 <draft-ietf-pkix-rsa-pkalgs-03.txt>

Status of this Memo
 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Drafts Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document supplements RFC 3279. It describes the conventions
 for using the RSASSA-PSS signature algorithm, the RSAES-OAEP key
 transport algorithm and additional one-way hash functions with the
 PKCS #1 version 1.5 signature algorithm in the Internet X.509 Public
 Key Infrastructure (PKI). Encoding formats, algorithm identifiers,
 and parameter formats are specified.

Table of Contents

1 Introduction...2
1.1 Terminology..2
1.2 RSA Public Keys..2
2 Common Functions...5
2.1 One-way Hash Functions...5
2.2 Mask Generation Functions......................................6
3 RSASSA-PSS Signature Algorithm.....................................7
3.1 RSASSA-PSS Public Keys...7
3.2 RSASSA-PSS Signature Values....................................9
3.3 RSASSA-PSS Signature Parameter Validation......................9
Schaad, Kaliski & Housley Page 1

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rsa-pkalgs-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3279

4 RSAES-OAEP Key Transport Algorithm................................10
4.1 RSAES-OAEP Public Keys..10
5 PKCS #1 Version 1.5 Signature Algorithm...........................12
6 ASN.1 Module..13
7 References..19
7.1 Normative References..19
7.2 Informative References..19
8 Security Considerations...20
10 Author Addresses...22
11 Full Copyright Statement...22

1 Introduction

 This document supplements RFC 3279 [PKALGS]. This document
 describes the conventions for using the RSASSA-PSS signature
 algorithm and the RSAES-OAEP key transport algorithm in the Internet
 X.509 Public Key Infrastructure (PKI) [PROFILE]. Both of these RSA-
 based algorithms are specified in [P1v2.1]. The algorithm
 identifiers and associated parameters for subject public keys that
 employ either of these algorithms are specified, and the encoding
 format for RSASSA-PSS signatures is specified. Also, the algorithm
 identifiers for using the SHA-224, SHA-256, SHA-384, and SHA-512
 one-way hash functions with the PKCS #1 version 1.5 signature
 algorithm [P1v1.5] are specified.

 This specification supplements RFC 3280 [PROFILE], which profiles
 the X.509 Certificates and Certificate Revocation Lists (CRLs) for
 use in the Internet. This specification extends the list of
 algorithms discussed in RFC 3279 [PKALGS]. The X.509 Certificate
 and CRL definitions use ASN.1 [X.208-88], the Basic Encoding Rules
 (BER) [X.209-88], and the Distinguished Encoding Rules (DER) [X.509-
 88].

 This specification defines the contents of the signatureAlgorithm,
 signatureValue, signature, and subjectPublicKeyInfo fields within
 Internet X.509 certificates and CRLs. For each algorithm, the
 appropriate alternatives for the keyUsage extension are provided.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [STDWORDS].

1.2 RSA Public Keys

https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc2119

RFC 3280 [PROFILE] specifies the profile for using X.509
 Certificates in Internet applications. When a RSA public key will
Schaad, Kaliski & Housley Page 2

 be used for RSASSA-PSS digital signatures or RSAES-OAEP key
 transport, the conventions specified in this section augment RFC

3280.

 Traditionally, the rsaEncryption object identifier is used to
 identify RSA public keys. However, to implement all of the
 recommendations described in the Security Considerations section of
 this document (see section 8), the certificate user needs to be able
 to determine the form of digital signature or key transport that the
 RSA private key owner associates with the public key.

 The rsaEncryption object identifier continues to identify the
 subject public key when the RSA private key owner does not wish to
 limit the use of the public key exclusively to either RSASSA-PSS or
 RSAES-OAEP. In this case, the rsaEncryption object identifier MUST
 be used in the algorithm field within the subject public key
 information, and the parameters field MUST contain NULL.

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

 Further discussion of the conventions associated with use of the
 rsaEncryption object identifier can be found in RFC 3279 (see
 [PKALGS], section 2.3.1).

 When the RSA private key owner wishes to limit the use of the public
 key exclusively to RSASSA-PSS, then the id-RSASSA-PSS object
 identifier MUST be used in the algorithm field within the subject
 public key information, and, if present, the parameters field MUST
 contain RSASSA-PSS-params. The id-RSASSA-PSS object identifier
 value and the RSASSA-PSS-params syntax are fully described in

section 3 of this document.

 When the RSA private key owner wishes to limit the use of the public
 key exclusively to RSAES-OAEP, then the id-RSAES-OAEP object
 identifier MUST be used in the algorithm field within the subject
 public key information, and, if present, the parameters field MUST
 contain RSAES-OAEP-params. The id-RSAES-OAEP object identifier
 value and the RSAES-OAEP-params syntax are fully described in

section 4 of this document.

 Note: It is not possible to restrict the use of a key to only just
 two of the algorithms (i.e. RSASSA-PSS and RSAES-OAEP) in this
 document.

 Regardless of the object identifier used, the RSA public key is
 encoded in the same manner in the subject public key information.
 The RSA public key MUST be encoded using the type RSAPublicKey type:

https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3279

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

Schaad, Kaliski & Housley Page 3

 Here, the modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is carried in the
 subjectPublicKey BIT STRING within the subject public key
 information.

 The intended application for the key MAY be indicated in the key
 usage certificate extension (see [PROFILE], section 4.2.1.3).

 If the keyUsage extension is present in an end entity certificate
 that conveys an RSA public key with the id-RSASSA-PSS object
 identifier, then the key usage extension MUST contain one or both of
 the following values:

 nonRepudiation; and
 digitalSignature.

 If the keyUsage extension is present in a certification authority
 certificate that conveys an RSA public key with the id-RSASSA-PSS
 object identifier, then the key usage extension MUST contain one or
 more of the following values:

 nonRepudiation;
 digitalSignature;
 keyCertSign; and
 cRLSign.

 When a certificate that conveys an RSA public key with the id-
 RSASSA-PSS object identifier, the certificate user MUST only use the
 certified RSA public key for RSASSA-PSS operations, and, if RSASSA-
 PSS-params is present, the certificate user MUST perform those
 operations using the one-way hash function, mask generation
 function, and trailer field identified in the subject public key
 algorithm identifier parameters within the certificate.

 If the keyUsage extension is present in a certificate that conveys
 an RSA public key with the id-RSAES-OAEP object identifier, then the
 key usage extension MUST contain only the following values:

 keyEncipherment; and
 dataEncipherment.

 However, both keyEncipherment and dataEncipherment SHOULD NOT be

 present.

 When a certificate that conveys an RSA public key with the id-RSAES-
 OAEP object identifier, the certificate user MUST only use the
 certified RSA public key for RSAES-OAEP operations, and, if RSAES-
 OAEP-params is present, the certificate user MUST perform those
 operations using the one-way hash function and mask generation

Schaad, Kaliski & Housley Page 4

 function identified in the subject public key algorithm identifier
 parameters within the certificate.

2 Common Functions

 The RSASSA-PSS signature algorithm and the RSAES-OAEP key transport
 algorithm make use of one-way hash functions and mask generation
 functions.

2.1 One-way Hash Functions

 PKCS #1 version 2.1 [P1v2.1] supports four one-way hash functions
 for use with the RSASSA-PSS signature algorithm and the RSAES-OAEP
 key transport algorithm: SHA-1, SHA-256, SHA-384, and SHA-512
 [SHA2]. This document adds additional support for SHA-224 [SHA-224]
 with both the RSASSA-PSS and the RSAES-OAEP algorithms. While
 support for additional one-way hash functions could be added in the
 future, no other one-way hash functions are supported by this
 specification.

 These one-way hash functions are identified by the following object
 identifiers:

 id-sha1 OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) oiw(14)
 secsig(3) algorithms(2) 26 }
 id-sha224 OBJECT IDENTIFIER ::= {{ joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 4 }
 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 1 }
 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 2 }
 id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 3 }

 There are two possible encodings for the AlgorithmIdentifier
 parameters field associated with these object identifiers. The two
 alternatives arise from the fact that when the 1988 syntax for
 AlgorithmIdentifier was translated into the 1997 syntax the OPTIONAL
 associated with the algorithm identifier parameters got lost. Later
 the OPTIONAL was recovered via a defect report, but by then many
 people thought that algorithm parameters were mandatory. Because of
 this history some implementations encode parameters as a NULL
 element and others omit them entirely. The correct encoding is to
 omit the parameters field; however, at the time that RSASSA-PSS and

Schaad, Kaliski & Housley Page 5

 RSAES-OAEP were defined it was done using the NULL parameters rather
 than absent parameters.

 All implementations MUST accept both NULL and absent parameters as
 legal and equivalent encodings.

 To be clear, the following algorithm identifiers are used when a
 NULL parameter MUST be present:

 sha1Identifier AlgorithmIdentifier ::= { id-sha1, NULL }

 sha224Identifier AlgorithmIdentifier ::= { id-sha224, NULL }
 sha256Identifier AlgorithmIdentifier ::= { id-sha256, NULL }
 sha384Identifier AlgorithmIdentifier ::= { id-sha384, NULL }
 sha512Identifier AlgorithmIdentifier ::= { id-sha512, NULL }

2.2 Mask Generation Functions

 One mask generation function is used with the RSASSA-PSS signature
 algorithm and the RSAES-OAEP key transport algorithm: MGF1 [P1v2.1].
 No other mask generation functions are supported by this
 specification.

 MGF1 is identified by the following object identifier:

 id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }

 The parameters field associated with id-mgf1 MUST have a
 hashAlgorithm value, which identifies the hash function being used
 with MGF1. This value MUST be sha1Identifier, sha224Identifier,
 sha256Identifier, sha384Identifier, or sha512Identifier, as
 specified in section 2.1. Implementations MUST support the default
 value, sha1Identifier, and implementations MAY support the other

 four values.

 The following algorithm identifiers have been assigned for each of
 these alternatives:

 mgf1SHA1Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha1Identifier }
 mgf1SHA224Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha224Identifier }
 mgf1SHA256Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha256Identifier }
 mgf1SHA384Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha384Identifier }
 mgf1SHA512Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha512Identifier }

Schaad, Kaliski & Housley Page 6

3 RSASSA-PSS Signature Algorithm

 This section describes the conventions for using the RSASSA-PSS
 signature algorithm with the Internet X.509 certificate and CRL
 profile [PROFILE]. The RSASSA-PSS signature algorithm is specified
 in PKCS #1 version 2.1 [P1v2.1]. The five one-way hash functions
 discussed in section 2.1 and the one mask generation function
 discussed in section 2.2 can be used with RSASSA-PSS.

 CAs that issue certificates with the id-RSASSA-PSS algorithm
 identifier SHOULD require that the parameters be present in the
 publicKeyAlgorithms field if the cA boolean flag is set in the basic
 constraints extension. CAs MAY require that the parameters be
 present in the publicKeyAlgorithms field for end-entity
 certificates.

 CAs that use the RSASSA-PSS algorithm for signing certificates,
 SHOULD have RSASSA-PSS-params the parameters present in their own
 certificates. CAs that use the RSASSA-PSS algorithm for signing,
 certificates and CRLs MUST include RSASSA-PSS-params the parameters
 in the signature algorithm field of the TBSCertificate and
 TBSCertList structures.

 Entities that validate RSASSA-PSS signatures MUST have support for
 SHA-1. They MAY also support the other hashing algorithms in

section 2.1.

 The data to be signed (e.g., the one-way hash function output value)
 is formatted for the signature algorithm to be used. Then, a

 private key operation (e.g., RSA encryption) is performed to
 generate the signature value. This signature value is then ASN.1
 encoded as a BIT STRING and included in the Certificate or
 CertificateList in the signature field. Section 3.2 specifies the
 format of RSASSA-PSS signature values.

3.1 RSASSA-PSS Public Keys

 When RSASSA-PSS is used in an AlgorithmIdentifier,the parameters
 MUST employ the RSASSA-PSS-params syntax. The parameters may be
 either absent or present when used as subject public key
 information. The parameters MUST be present when used in the
 algorithm identifier associated with for a signature value.

 When signing, it is RECOMMENDED that, except for saltLength, the
 parameters remain fixed for all usages of a given RSA key pair.

 id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

 RSASSA-PSS-params ::= SEQUENCE {
 hashAlgorithm [0] HashAlgorithm DEFAULT
 sha1Identifier,
Schaad, Kaliski & Housley Page 7

 maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT
 mgf1SHA1Identifier,
 saltLength [2] INTEGER DEFAULT 20,
 trailerField [3] INTEGER DEFAULT 1 }

 The fields of type RSASSA-PSS-params have the following meanings:

 hashAlgorithm

 The hashAlgorithm field identifies the hash function. It MUST
 be one of the algorithm identifiers listed in section 2.1, and
 the default hash function is SHA-1. Implementations MUST
 support SHA-1, and implementations MAY support other one-way
 hash functions listed in section 2.1. Implementations that
 perform signature generation MUST omit the hashAlgorithm field
 when SHA-1 is used, indicating that the default algorithm was
 used. Implementations that perform signature validation MUST
 recognize both the id-sha1 object identifier and an absent
 hashAlgorithm field as an indication that SHA-1 was used.

 maskGenAlgorithm

 The maskGenAlgorithm field identifies the mask generation
 function. The default mask generation function is MGF1 with
 SHA-1. For MGF1, it is strongly RECOMMENDED that the
 underlying hash function be the same as the one identified by

 hashAlgorithm. Implementations MUST support MGF1. MGF1
 requires a one-way hash function, and it is identified in the
 parameters field of the MGF1 algorithm identifier.
 Implementations MUST support SHA-1, and implementations MAY
 support other one-way hash functions listed in section 2.1.
 The MGF1 algorithm identifier is comprised of the id-mgf1
 object identifier and a parameter that contains the algorithm
 identifier of the one-way hash function employed with MGF1.
 The SHA-1 algorithm identifier is comprised of the id-sha1
 object identifier and an (optional) parameter of NULL.
 Implementations that perform signature generation MUST omit
 the maskGenAlgorithm field when MGF1 with SHA-1 is used,
 indicating that the default algorithm was used.

 Although mfg1SHA1Identifier is defined as the default value
 for this field, implementations MUST accept both the default
 value encoding (i.e. an absent field) and mfg1SHA1Identifier
 to be explicitly present in the encoding.

 saltLength

 The saltLength field is the octet length of the salt. For a
 given hashAlgorithm, the minimum value of saltLength is the
 number of octets in the hash value. Unlike the other fields
 of type RSASSA-PSS-params, saltLength does not need to be

Schaad, Kaliski & Housley Page 8

 fixed for a given RSA key pair; a different value could be
 used for each RSASSA-PSS signature generated.

 trailerField

 The trailerField field is an integer. It provides
 compatibility with the draft IEEE P1363a [P1363a]. The value
 MUST be 1, which represents the trailer field with hexadecimal
 value 0xBC. Other trailer fields, including the trailer field
 composed of HashID concatenated with 0xCC that is specified in
 IEEE P1363a, are not supported. Implementations that perform
 signature generation MUST omit the trailerField field,
 indicating that the default trailer field value was used.
 Implementations that perform signature validation MUST
 recognize both a present trailerField field with value 1 and
 an absent trailerField field.

 If the default values of the hashAlgorithm, maskGenAlgorithm, and
 trailerField fields of RSASSA-PSS-params are used, then the
 algorithm identifier will have the following value:

 rSASSA-PSS-Default-Identifier AlgorithmIdentifier ::= {

 id-RSASSA-PSS, rSASSA-PSS-Default-Params }

 rSASSA-PSS-Default-Params RSASSA-PSS-Params ::= {
 sha1Identifier, mgf1SHA1Identifier, 20, 1}

3.2 RSASSA-PSS Signature Values

 The output of the RSASSA-PSS signature algorithm is an octet string,
 which has the same length in octets as the RSA modulus n.

 Signature values in CMS [CMS] are represented as octet strings, and
 the output is used directly. However, signature values in
 certificates and CRLs [PROFILE] are represented as bit strings, and
 conversion is needed.

 To convert a signature value to a bit string, the most significant
 bit of the first octet of the signature value SHALL become the first
 bit of the bit string, and so on through the least significant bit
 of the last octet of the signature value, which SHALL become the
 last bit of the bit string.

3.3 RSASSA-PSS Signature Parameter Validation

 Three possible parameter validation scenarios exist for RSASSA-PSS
 signature values.

 1. The key is identified by the rsaEncryption algorithm identifier.
 In this case no parameter validation is needed.

Schaad, Kaliski & Housley Page 9

 2. The key is identified by the id-RSASSA-PSS signature algorithm
 identifier, but the parameters field is absent. In this case no
 parameter validation is needed.

 3. The key is identified by the id-RSASSA-PSS signature algorithm
 identifier and the parameters are present. In this case all
 parameters in the signature structure algorithm identifier MUST
 match the parameters in the key structure algorithm identifier
 except the saltLength field. The saltLength field in the signature
 parameters MUST be greater or equal to that in the key parameters
 field.

4 RSAES-OAEP Key Transport Algorithm

 This section describes the conventions for using the RSAES-OAEP key
 transport algorithm with the Internet X.509 certificate and CRL
 profile [PROFILE]. RSAES-OAEP is specified in PKCS #1 version 2.1

 [P1v2.1]. The five one-way hash functions discussed in section 2.1
 and the one mask generation function discussed in section 2.2 can be
 used with RSAES-OAEP. Conforming CAs and applications MUST support
 RSAES-OAEP key transport algorithm using SHA-1. The other three
 one-way hash functions MAY also be supported.

 CAs that issue certificates with the id-RSAES-OAEP algorithm
 identifier SHOULD require that the parameters be present in the
 publicKeyAlgorithms field for all certificates.
 Entities that use a certificate with a publicKeyAlgorithm value of
 id-RSA-OAEP where the parameters are absent SHOULD use the default
 set of parameters for RSAES-OAEP-params. Entities that use a
 certificate with a publicKeyAlgorithm value of rsaEncryption SHOULD
 use the default set of parameters for RSAES-OAEP-params

4.1 RSAES-OAEP Public Keys

 When id-RSAES-OAEP is used in an AlgorithmIdentifier, the parameters
 MUST employ the RSAES-OAEP-params syntax. The parameters may be
 either absent or present when used as subject public key
 information. The parameters MUST be present when used in the
 algorithm identifier associated with an encryption value.

 id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }

 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier DEFAULT
 sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier DEFAULT

 mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier DEFAULT
 pSpecifiedEmptyIdentifier }

Schaad, Kaliski & Housley Page 10

 pSpecifiedEmptyIdentifier AlgorithmIdentifier ::=
 { id-pSpecified, nullOctetString }

 nullOctetString OCTET STRING (SIZE (0)) ::= { ''H }

 The fields of type RSAES-OAEP-params have the following meanings:

 hashFunc

 The hashFunc field identifies the one-way hash function. It
 MUST be one of the algorithm identifiers listed in section

2.1, and the default hash function is SHA-1. Implementations
 MUST support SHA-1, and implementations MAY support other one-
 way hash functions listed in section 2.1. Implementations

 that perform encryption MUST omit the hashFunc field when SHA-
 1 is used, indicating that the default algorithm was used.
 Implementations that perform decryption MUST recognize both
 the id-sha1 object identifier and an absent hashFunc field as
 an indication that SHA-1 was used.

 maskGenFunc

 The maskGenFunc field identifies the mask generation function.
 The default mask generation function is MGF1 with SHA-1. For
 MGF1, it is strongly RECOMMENDED that the underlying hash
 function be the same as the one identified by hashFunc.
 Implementations MUST support MGF1. MGF1 requires a one-way
 hash function, and it is identified in the parameter field of
 the MGF1 algorithm identifier. Implementations MUST support
 SHA-1, and implementations MAY support other one-way hash
 functions listed in section 2.1. The MGF1 algorithm
 identifier is comprised of the id-mgf1 object identifier and a
 parameter that contains the algorithm identifier of the one-
 way hash function employed with MGF1. The SHA-1 algorithm
 identifier is comprised of the id-sha1 object identifier and
 an (optional) parameter of NULL. Implementations that perform
 encryption MUST omit the maskGenFunc field when MGF1 with SHA-
 1 is used, indicating that the default algorithm was used.

 Although mfg1SHA1Identifier is defined as the default value
 for this field, implementations MUST accept both the default
 value encoding (i.e. an absent field) and the
 mfg1SHA1Identifier to be explicitly present in the encoding.

 pSourceFunc

 The pSourceFunc field identifies the source (and possibly the
 value) of the encoding parameters, commonly called P.
 Implementations MUST represent P by an algorithm identifier,
 id-pSpecified, indicating that P is explicitly provided as an
 OCTET STRING in the parameters. The default value for P is an

Schaad, Kaliski & Housley Page 11

 empty string. In this case, pHash in EME-OAEP contains the
 hash of a zero length string. Implementations MUST support a
 zero length P value. Implementations that perform encryption
 MUST omit the pSourceFunc field when a zero length P value is
 used, indicating that the default value was used.
 Implementations that perform decryption MUST recognize both
 the id-pSpecified object identifier and an absent pSourceFunc
 field as an indication that a zero length P value was used.
 Implementations that perform decryption MUST support a zero

 length P value, and they MAY support other values. Compliant
 implementations MUST NOT use any value other than id-
 pSpecifieid for pSourceFunc.

 If the default values of the hashFunc, maskGenFunc, and pSourceFunc
 fields of RSAES-OAEP-params are used, then the algorithm identifier
 will have the following value:

 rSAES-OAEP-Default-Identifier AlgorithmIdentifier ::=
 { id-RSAES-OAEP,
 rSAES-OAEP-Default-Params }

 rSAES-OAEP-Default-Params RSASSA-OAEP-params ::=
 { sha1Identifier,
 mgf1SHA1Identifier,
 pSpecifiedEmptyIdentifier }

5 PKCS #1 Version 1.5 Signature Algorithm

RFC 2313 [P1v1.5] specifies the PKCS #1 Version 1.5 signature
 algorithm. This specification is also included in PKCS #1 Version
 2.1 [P1v2.1]. RFC 3279 [PKALGS] specifies the use of the PKCS #1
 Version 1.5 signature algorithm with the MD2, MD5, and the SHA-1
 one-way hash functions. This section specifies the algorithm
 identifiers for using the SHA-224, SHA-256, SHA-384, and SHA-512
 one-way hash functions with the PKCS #1 version 1.5 signature
 algorithm.

 The RSASSA-PSS signature algorithm is preferred over the PKCS #1
 Version 1.5 signature algorithm. Although no attacks are known
 against PKCS #1 Version 1.5 signature algorithm, in the interest of
 increased robustness, RSASSA-PSS signature algorithm is recommended
 for eventual adoption, especially by new applications. This section
 is included for compatibility with existing applications, and while
 still appropriate for new applications, a gradual transition to the
 RSASSA-PSS signature algorithm is encouraged.

 The PKCS #1 Version 1.5 signature algorithm with these one-way hash
 functions and the RSA encryption algorithm is implemented using the
 padding and encoding conventions described in RFC 2313 [P1v1.5].

Schaad, Kaliski & Housley Page 12

 The message digest is computed using the SHA-224, SHA-256, SHA-384,
 or SHA-512 one-way hash function.

 The PKCS #1 version 1.5 signature algorithm, as specified in RFC
2313 includes a data encoding step. In this step, the message

https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc2313

 digest and the object identifier for the one-way hash function used
 to compute the message digest are combined. When performing the
 data encoding step, the id-sha224, id-sha256, id-sha384, and id-
 sha512 object identifiers (see section 2.1) MUST be used to specify
 the SHA-224, SHA-256, SHA-384, and SHA-512 one-way hash functions,
 respectively.

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-224 is:

 sha224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 14 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-256 is:

 sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-384 is:

 sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-512 is:

 sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }

 When any of these three object identifiers appears within an
 AlgorithmIdentifier, the parameters MUST be NULL. Implementations
 MUST accept the parameters being absent as well as present.

 The RSA signature generation process and the encoding of the result
 is described in detail in RFC 2313 [P1v1.5].

6 ASN.1 Module

PKIX1-PSS-OAEP-Algorithms
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs(33) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- EXPORTS All;

 IMPORTS
Schaad, Kaliski & Housley Page 13

 AlgorithmIdentifier
 FROM PKIX1Explicit88 -- Found in [PROFILE]

https://datatracker.ietf.org/doc/html/rfc2313

 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) } ;

 -- ============================
 -- Basic object identifiers
 -- ============================

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) 1 }

 -- When rsaEncryption is used in an AlgorithmIdentifier the
 -- parameters MUST be present and MUST be NULL.

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

 -- When id-RSAES-OAEP is used in an AlgorithmIdentifier,
 -- and the parameters field is present, it MUST be RSAES-OAEP-params

 id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }

 -- When id-pSpecified is used in an AlgorithmIdentifier the
 -- parameters MUST be an OCTET STRING.

 id-pSpecified OBJECT IDENTIFIER ::= { pkcs-1 9 }

 -- When id-RSASSA-PSS is used in an AlgorithmIdentifier, and the
 -- parameters field is present, it MUST be RSASSA-PSS-params.

 id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

 -- When id-mgf1 is used in an AlgorithmIdentifier the parameters
 -- MUST be present and MUST be a HashAlgorithm.

 id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }

 -- When the following OIDs are used in an AlgorithmIdentifier, the
 -- parameters MUST be present and MUST be NULL.

 sha224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 14 }

 sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

 sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

 sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }

 -- When the following OIDs are used in an AlgorithmIdentifier the

Schaad, Kaliski & Housley Page 14

 -- parameters SHOULD be absent, but if the parameters are present,
 -- they MUST be NULL.

 id-sha1 OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) oiw(14)
 secsig(3) algorithms(2) 26 }

 id-sha224 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 4 }

 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 1 }

 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 2 }

 id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 3 }

 -- =============
 -- Constants
 -- =============

 nullOctetString OCTET STRING (SIZE (0)) ::= ''H

 nullParameters NULL ::= NULL

 -- =========================
 -- Algorithm Identifiers
 -- =========================

 sha1Identifier AlgorithmIdentifier ::= {
 algorithm id-sha1,
 parameters nullParameters }

 sha224Identifier AlgorithmIdentifier ::= {
 algorithm id-sha224,
 parameters nullParameters }

 sha256Identifier AlgorithmIdentifier ::= {
 algorithm id-sha256,
 parameters nullParameters }

 sha384Identifier AlgorithmIdentifier ::= {
 algorithm id-sha384,
 parameters nullParameters }

Schaad, Kaliski & Housley Page 15

 sha512Identifier AlgorithmIdentifier ::= {
 algorithm id-sha512,
 parameters nullParameters }

 mgf1SHA1Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha1Identifier }

 mgf1SHA224Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha224Identifier }

 mgf1SHA256Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha256Identifier }

 mgf1SHA384Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha384Identifier }

 mgf1SHA512Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha512Identifier }

 pSpecifiedEmptyIdentifier AlgorithmIdentifier ::= {
 algorithm id-pSpecified,
 parameters nullOctetString }

 rSASSA-PSS-Default-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha1Identifier,
 maskGenAlgorithm mgf1SHA1Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-Default-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-Default-Params }

 rSASSA-PSS-SHA224-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA224-Params }

 rSASSA-PSS-SHA224-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha224Identifier,
 maskGenAlgorithm mgf1SHA224Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA256-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA256-Params }

Schaad, Kaliski & Housley Page 16

 rSASSA-PSS-SHA256-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha256Identifier,
 maskGenAlgorithm mgf1SHA256Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA384-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA384-Params }

 rSASSA-PSS-SHA384-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha384Identifier,
 maskGenAlgorithm mgf1SHA384Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA512-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSSASSA-PSS-SHA512-params }

 rSSASSA-PSS-SHA512-params RSASSA-PSS-params ::= {
 hashAlgorithm sha512Identifier,
 maskGenAlgorithm mgf1SHA512Identifier,
 saltLength 20,
 trailerField 1 }

 rSAES-OAEP-Default-Params RSAES-OAEP-params ::= {
 hashFunc sha1Identifier,
 maskGenFunc mgf1SHA1Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-Default-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-Default-Params }

 rSAES-OAEP-SHA224-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA224-Params }

 rSAES-OAEP-SHA224-Params RSAES-OAEP-params ::= {
 hashFunc sha224Identifier,
 maskGenFunc mgf1SHA224Identifier,

 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA256-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA256-Params }

 rSAES-OAEP-SHA256-Params RSAES-OAEP-params ::= {
 hashFunc sha256Identifier,

Schaad, Kaliski & Housley Page 17

 maskGenFunc mgf1SHA256Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA384-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA384-Params }

 rSAES-OAEP-SHA384-Params RSAES-OAEP-params ::= {
 hashFunc sha384Identifier,
 maskGenFunc mgf1SHA384Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA512-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA512-Params }

 rSAES-OAEP-SHA512-Params RSAES-OAEP-params ::= {
 hashFunc sha512Identifier,
 maskGenFunc mgf1SHA512Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 -- ===================
 -- Main structures
 -- ===================

 -- Used in SubjectPublicKeyInfo of X.509 Certificate.

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

 -- AlgorithmIdentifier parameters for id-RSASSA-PSS.
 -- Note that the tags in this Sequence are explicit.

 RSASSA-PSS-params ::= SEQUENCE {
 hashAlgorithm [0] HashAlgorithm DEFAULT
 sha1Identifier,
 maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT

 mgf1SHA1Identifier,
 saltLength [2] INTEGER DEFAULT 20,
 trailerField [3] INTEGER DEFAULT 1 }

 HashAlgorithm ::= AlgorithmIdentifier

 MaskGenAlgorithm ::= AlgorithmIdentifier

 -- AlgorithmIdentifier parameters for id-RSAES-OAEP.
 -- Note that the tags in this Sequence are explicit.

 RSAES-OAEP-params ::= SEQUENCE {

Schaad, Kaliski & Housley Page 18

 hashFunc [0] AlgorithmIdentifier DEFAULT
 sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier DEFAULT
 mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier DEFAULT
 pSpecifiedEmptyIdentifier }

 END

7 References

 This section provides normative and informative references.

7.1 Normative References

 [P1v1.5] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
RFC 2313, March 1998.

 [P1v2.1] Jonsson, J., and B. Kaliski, "PKCS #1: RSA
 Cryptography Specifications Version 2.1", RFC 3447,
 February 2003.

 [PROFILE] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure: Certificate and CRL
 Profile", RFC 3280, April 2002.

 [SHA2] National Institute of Standards and Technology (NIST),
 FIPS 180-2: Secure Hash Standard, 1 August 2002.

 [SHA224] Housley, R, "A 224-bit One-way Hash Function: SHA-224",
draft-ietf-pkix-sha224-00.txt, December 2003.

 [STDWORDS] S. Bradner, "Key Words for Use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-sha224-00.txt

 Requirement Levels", RFC 2119, March 1997.

 [X.208-88] CCITT Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1), 1988.

 [X.209-88] CCITT Recommendation X.209: Specification of Basic
 Encoding Rules for Abstract Syntax Notation One (ASN.1),
 1988.

 [X.509-88] CCITT Recommendation X.509: The Directory -
 Authentication Framework. 1988.

7.2 Informative References

 [CMS] Housley, R, "Cryptographic Message Syntax", RFC 3369,
 August 2002.

Schaad, Kaliski & Housley Page 19

 [GUIDE] National Institute of Standards and Technology,
 Second Draft: "Key Management Guideline, Part 1:
 General Guidance." June 2002.
 [http://csrc.nist.gov/encryption/kms/guideline-1.pdf]

 [P1363a] IEEE P1363 working group, IEEE P1363a D11: Standard
 Specifications for Public Key Cryptography: Additional
 Techniques, December 16, 2002
 Available from http://grouper.ieee.org/groups/1363/.

 [PKALGS] Polk, W., Housley, R., and L. Bassham, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 Lists (CRL) Profile", RFC 3279, April 2002.

 [RANDOM] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security, RFC 1750, December 1994.

8 Security Considerations

 This specification supplements RFC 3280 [PROFILE]. The security
 considerations section of that document applies to this
 specification as well.

 Implementations must protect the RSA private key. Compromise of the
 RSA private key may result in the disclosure of all messages
 protected with that key.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3369
http://grouper.ieee.org/groups/1363/
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc3280

 The generation of RSA public/private key pairs relies on a random
 numbers. The use of inadequate pseudo-random number generators
 (PRNGs) to generate cryptographic keys can result in little or no
 security. An attacker may find it much easier to reproduce the PRNG
 environment that produced the keys, searching the resulting small
 set of possibilities, rather than brute force searching the whole
 key space. The generation of quality random numbers is difficult.

RFC 1750 [RANDOM] offers important guidance in this area.

 Generally, good cryptographic practice employs a given RSA key pair
 in only one scheme. This practice avoids the risk that
 vulnerability in one scheme may compromise the security of the
 other, and may be essential to maintain provable security. While
 PKCS #1 Version 1.5 [P1v1.5] has been employed for both key
 transport and digital signature without any known bad interactions,
 such a combined use of an RSA key pair is not recommended in the
 future. Therefore, an RSA key pair used for RSASSA-PSS signature
 generation should not also be used for other purposes. For similar
 reasons, one RSA key pair should always be used with the same
 RSASSA-PSS parameters. Likewise, an RSA key pair used for RSAES-
 OAEP key transport should not also be used for other purposes. For
 similar reasons, one RSA key pair should always be used with the
 same RSAES-OAEP parameters.
Schaad, Kaliski & Housley Page 20

 This specification requires implementations to support the SHA-1
 one-way hash function for interoperability, but support for other
 one-way hash function is permitted. At the time of this writing,
 the best (known) collision attacks against SHA-1 are generic attacks
 with complexity 2^80, where 80 is one-half the bit length of the
 hash value. In general, when a one-way hash function is used with a
 digital signature scheme, a collision attack is easily translated
 into a signature forgery. Therefore, the use of SHA-1 in a digital
 signature scheme provides a security level of no more than 80 bits.
 If a greater level of security is desired, then a secure one-way
 hash function with a longer hash value is needed. SHA-256, SHA-384,
 and SHA-512 are reasonable choices [SHA2].

 The metrics for choosing a one-way hash function for use in digital
 signatures do not directly apply to the RSAES-OAEP key transport
 algorithm, since a collision attack on the one-way hash function
 does not directly translate into an attack on the key transport
 algorithm, unless the encoding parameters P varies (in which case a
 collision the hash value for different encoding parameters might be
 exploited).

 Nevertheless, for consistency with the practice for digital
 signature schemes, and in case the encoding parameters P is not the
 empty string, it is recommended that the same rule of thumb be

https://datatracker.ietf.org/doc/html/rfc1750

 applied to selection of a one-way hash function for use with RSAES-
 OAEP. That is, the one-way hash function should be selected so that
 the bit length of the hash value is at least twice as long as the
 desired security level in bits.

 The key size selected impacts the strength achieved when
 implementing cryptographic services. Thus, selection of appropriate
 key sizes is critical to implementing appropriate security. A 1024-
 bit RSA public key and SHA-1 both provide a security level of about
 80 bits. In [GUIDE], the National Institute of Standards and
 Technology (NIST) suggest that a security level of 80 bits is
 adequate for the protection of sensitive information until 2015.
 This recommendation is likely to be revised based on recent
 advances, and the revised recommendation is expected to be more
 conservative, suggesting that a security level of 80 bits is
 adequate for the protection of sensitive information until 2010. If
 a security level greater than 80 bits is needed, then a longer RSA
 public key and a secure one-way hash function with a longer hash
 value are needed. SHA-224, SHA-256, SHA-384, and SHA-512 are
 reasonable choices for such a one-way hash function and, for this
 reason, the algorithm identifiers for these one-way hash functions
 are included in the ASN.1 module in section 6.

 Current implementations MUST support 1024-bit RSA public key sizes.
 Before the end of 2007, implementations SHOULD support RSA public
 key sizes of at least 2048 bits and SHOULD support SHA-256. This

Schaad, Kaliski & Housley Page 21

 requirement is intended to allow adequate time for users to deploy
 the stronger digital signature capability by 2010.

 When using RSASSA-PSS, the same one-way hash function should be
 employed for the hashAlgorithm and the maskGenAlgorithm, but it is
 not required. Using the same one-way hash function helps with
 security analysis, and it reduces implementation complexity.
 When using RSAES-OAEP, the same one-way hash function should be
 employed for the hashFunc and the maskGenFunc, but it is not
 required. In each case, using the same one-way hash function helps
 with security analysis, and it reduces implementation complexity.

9 IANA Considerations

 Within the certificates and CRLs, algorithms are identified by
 object identifiers. All of the object identifiers used in this
 document were assigned in Public-Key Cryptography Standards (PKCS)
 documents or by the National Institute of Standards and Technology
 (NIST). No further action by the IANA is necessary for this
 document or any anticipated updates.

10 Author Addresses

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 housley@vigilsec.com

 Burt Kaliski
 RSA Laboratories
 174 Middlesex Turnpike
 Bedford, MA 01730
 USA
 bkaliski@rsasecurity.com

 Jim Schaad
 Soaring Hawk Consulting
 PO Box 675
 Gold Bar, WA 98251
 USA
 jimsch@exmsft.com

11 Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
Schaad, Kaliski & Housley Page 22

 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works.
 In addition, the ASN.1 modules presented in Section 5 may be used in
 whole or in part without inclusion of the copyright notice. However,
 this document itself may not be modified in any way, such as by
 removing the copyright notice or references to the Internet Society
 or other Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process shall be
 followed, or as required to translate it into languages other than
 English.
 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns. This
 document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT

 NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
 WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Schaad, Kaliski & Housley Page 23

