Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA
<draft-ietf-pkix-sha2-dsa-ecdsa-10.txt>

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 07, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of
Abstract

This document updates RFC 3279 to specify algorithm identifiers and ASN.1 encoding rules for the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures when using SHA-224, SHA-256, SHA-384 or SHA-512 as hashing algorithm. This specification applies to the Internet X.509 Public Key infrastructure (PKI) when digital signatures are used to sign certificates and certificate revocation lists (CRLs). This document also identifies all four SHA2 hash algorithms for use in the Internet X.509 PKI.

1. Introduction

This specification defines the contents of the signatureAlgorithm, signatureValue and signature fields within Internet X.509 certificates and CRLs when these objects are signed using DSA or ECDSA with a SHA2 hash algorithm. These fields are more fully described in RFC 5280 [RFC 5280]. This document also identifies all four SHA2 hash algorithms for use in the Internet X.509 PKI.

This document profiles material presented in the "Secure Hash Standard" [FIPS 180-3], "Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)" [X9.62], and the "Digital Signature Standard" [FIPS 186-3].

This document updates RFC 3279 [RFC 3279] sections 2.1, 2.2.2, and 2.2.3. Note that RFC 5480 [RFC 5480] updates sections 2.3.5, 3
(ASN.1 Module) and 5 (Security Considerations) of RFC 3279.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
2. Hash Functions

This section identifies four additional hash algorithms for use with DSA and ECDSA in the Internet X.509 certificate and CRL profile [RFC 5280]. SHA-224, SHA-256, SHA-384, and SHA-512 produce a 224-bit, 256-bit, 384-bit and 512-bit "hash" of the input respectively and are fully described in the Federal Information Processing Standard 180-3 [FIPS 180-3].

The listed one-way hash functions are identified by the following object identifiers (OIDs):

```
id-sha224  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 4 }

id-sha256  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 1 }

id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 2 }

id-sha512  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 3 }
```

When one of these OIDs appears in an AlgorithmIdentifier, all implementations MUST accept both NULL and absent parameters as legal and equivalent encodings.

Conforming CA implementations SHOULD use SHA-224, SHA-256, SHA-384 or SHA-512 when generating certificates or CRLs, but MAY use SHA-1 if they have a stated policy that requires the use of this weaker algorithm.

3. Signature Algorithms

This section identifies OIDs for DSA with SHA-224 and SHA-256 as well as ECDSA with SHA-224, SHA-256, SHA-384, and SHA-512. The contents of the parameters component for each signature algorithm vary; details are provided for each algorithm.
3.1 DSA Signature Algorithm

The DSA is defined in the Digital Signature Standard (DSS) [FIPS 186-3]. DSA was developed by the U.S. Government, and can be used in conjunction with a SHA2 hash function such as SHA-224 or SHA-256. DSA is fully described in [FIPS 186-3].

When SHA-224 is used, the OID is:

\[
\text{id-dsa-with-sha224 ~ OBJECT IDENTIFIER ::= \{} \text{ joint-iso-ccitt}(2) \\
\text{ country}(16) \text{ us}(840) \text{ organization}(1) \text{ gov}(101) \text{ csor}(3) \\
\text{ algorithms}(4) \text{ id-dsa-with-sha2}(3) \text{ 1 } \text{ } \text{ } \text{ } \}.
\]

When SHA-256 is used, the OID is:

\[
\text{id-dsa-with-sha256 ~ OBJECT IDENTIFIER ::= \{} \text{ joint-iso-ccitt}(2) \\
\text{ country}(16) \text{ us}(840) \text{ organization}(1) \text{ gov}(101) \text{ csor}(3) \\
\text{ algorithms}(4) \text{ id-dsa-with-sha2}(3) \text{ 2 } \text{ } \text{ } \text{ } \}.
\]

When the id-dsa-with-sha224 or id-dsa-with-sha256 algorithm identifier appears in the algorithm field as an AlgorithmIdentifier, the encoding SHALL omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component, the OID id-dsa-with-sha224 or id-dsa-with-sha256.

Encoding rules for DSA signature values are specified in [RFC 3279].

Conforming CA implementations that generate DSA signatures for certificates or CRLs MUST generate such DSA signatures in accordance with all the requirements in Sections 4.1, 4.5 and 4.6 of [FIPS 186-3].

Conforming CA implementations that generate DSA signatures for certificates or CRLs MAY generate such DSA signatures in accordance with all the requirements and recommendations in [FIPS 186-3], if they have a stated policy that requires conformance to [FIPS 186-3].

3.2 ECDSA Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in "Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)" [X9.62]. The ASN.1 OIDs used to specify that an ECDSA signature was generated using SHA-224, SHA-256, SHA-384 or SHA-512 are respectively:
ecdsa-with-SHA224 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 1 }

ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }

ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }

ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }

When the ecdsa-with-SHA224, ecdsa-with-SHA256, ecdsa-with-SHA384
or ecdsa-with-SHA512 algorithm identifier appears in the algorithm
field as an AlgorithmIdentifier, the encoding MUST omit the
parameters field. That is, the AlgorithmIdentifier SHALL be a
SEQUENCE of one component, the OID ecdsa-with-SHA224, ecdsa-with-
SHA256, ecdsa-with-SHA384 or ecdsa-with-SHA512.

Conforming CA implementations MUST specify the hash algorithm
explicitly using the OIDs specified above when encoding
ECDSA/SHA2 signatures in certificates and CRLs.

Conforming client implementations that process ECDSA signatures
with any of the SHA2 hash algorithms when processing certificates
and CRLs MUST recognize the corresponding OIDs specified above.

Encoding rules for ECDSA signature values are specified in RFC 3279
[RFC 3279] Section 2.2.3 and RFC 5480 [RFC 5480].

Conforming CA implementations that generate ECDSA signatures in
certificates or CRLs MUST generate such ECDSA signatures in
accordance with all the requirements specified in Sections 7.2 and
7.3 of [X9.62] or with all the requirements specified in Section
4.1.3 of [SEC1].

Conforming CA implementations that ECDSA signatures in
certificates or CRLs MAY generate such ECDSA signatures in
accordance with all the requirements and recommendations in
[X9.62] or [SEC1] if they have a stated policy that requires
conformance to [X9.62] or [SEC1].

4. ASN.1 Module

The OIDs of the SHA2 hash algorithms are in the RFC 4055 [RFC 4055]
ASN.1 module and the OIDs for DSA with SHA-224 and SHA-256 as well
as ECDSA with SHA-224, SHA-256, SHA-384 and SHA-512 are defined
in the RFC 5480 [RFC 5480] ASN.1 module.
5. Security Considerations

NIST has defined appropriate use of the hash functions in terms of the algorithm strengths and expected time frames for secure use in Special Publications (SPs) 800-78-1 [SP 800-78-1], 800-57 [SP 800-57] and 800-107 [SP 800-107]. These documents can be used as guides to choose appropriate key sizes for various security scenarios.

ANSI also provides security considerations for ECDSA in [X9.62]. These security considerations may be used as a guide.

6. References

6.1 Normative references:

(SHS), October 2008.

6.2 Informative references:

7. Authors' addresses

Quynh Dang

NIST
100 Bureau Drive, Stop 8930
Gaithersburg, MD 20899-8930
USA

Email: quynh.dang@nist.gov

Stefan Santesson

3xA Security (AAA-sec.com)
Bjornstorp 744
247 98 Genarp
Sweden

EMail: sts@aaa-sec.com

Kathleen M. Moriarty
8. IANA Considerations

This document has no actions for IANA.

9. Acknowledgement

Authors of this document would like to acknowledge great inputs for this document from Alfred Hoenes, Sean Turner, Katrin Hoeper and many others from IETF community. The authors also appreciate many great revision suggestions from Russ Housley and Paul Hoffman.